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Abstract — Predicting RNA binding protein (RBP) binding sites on circular RNAs (circRNAs) is a fundamental
step to understand their interaction mechanism. Numerous computational methods are developed to solve this prob-
lem,  but  they  cannot  fully  learn  the  features.  Therefore,  we  propose  circ-CNNED,  a  convolutional  neural  network
(CNN)-based encoding and decoding framework. We first adopt two encoding methods to obtain two original matri-
ces. We preprocess them using CNN before fusion. To capture the feature dependencies, we utilize temporal convolu-
tional network (TCN) and CNN to construct encoding and decoding blocks, respectively. Then we introduce global
expectation pooling to learn latent information and enhance the robustness of circ-CNNED. We perform circ-CNNED
across 37 datasets to evaluate its effect. The comparison and ablation experiments demonstrate that our method is
superior. In addition, motif enrichment analysis on four datasets helps us to explore the reason for performance im-
provement of circ-CNNED.
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 I. Introduction
Circular RNAs (circRNAs) are characterized by co-

valent closure [1]. They are strongly associated with bio-
logical  processes  [2]  and  diseases  [3],  [4] especially  can-
cers  [5].  They  can  also  serve  as  microRNA  (miRNA)
sponges  [5]  and  biomarkers  [6].  circRNAs  can  regulate
cancers  by  binding  RNA  binding  proteins  (RBPs)  [7].
The binding events between them play important roles in
some cellular processes [8]–[10].  Therefore, analyzing the
interaction mechanism of  them is  pivotal  and  the  bind-
ing sites prediction is helpful for this.

With  the  advent  of  many  biological  experimental
methods [11]–[13], various databases related to circRNAs
have been built. For example, circBase [14] collects circ-
RNA information of multiple species. CircInteractome [15]
stores  the  RBP  binding  sites  information  on  circRNAs.
There are other databases such as Circ2Traits [16], circ-

RNADb [17], and so on [18]. Benefit from these databas-
es, numerous computational methods are proposed.

Compared with traditional biological methods, com-
putational methods based on deep learning are obvious-
ly more advantageous [19] and have been used in bioin-
formatics [20]–[22]. There are many computational meth-
ods to predict RBP binding sites on circRNAs [23].  For
example,  CRIP  [24]  constructs  a  hybrid  neural  network
with a stacked encoding scheme based on codon. CRPB-
sites  [25]  comes  up  with  a  long  short-term  memory
(LSTM)-based  architecture.  HCRNet  [26]  adopts  deep
temporal convolutional network (TCN) architecture [27].
Besides,  a  web  tool  CirRBP  [28],  is  recently  proposed.
However, most methods still need improvement since the
insufficient learning of feature information.

Therefore,  we  propose  an  encoding  and  decoding
framework named circ-CNNED whose structure is shown
as Figure 1. It applies convolutional neural network (CNN) 
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and  TCN  to  predict  whether  a  circRNA  sequence  is  a
RBP binding site. To capture original features of circR-
NA sequences,  we  employ  one-hot  method to  get  a  raw
matrix.  Considering  the  characteristics  of  circRNAs,  we
apply loop-3-mer  to  get  another  raw matrix  to  incorpo-
rate context information. Innovatively, the two matrices
are preprocessed with CNN for concatenation. Next, the

concatenated matrix is processed by a TCN encoder block
and a CNN decoder block. Then, we utilize a global expect-
ation pooling layer. Finally, a fully connected layer (FC)-
softmax structure is used to classify. On 37 datasets, we
compare circ-CNNED with four latest methods to demon-
strate its effectiveness and the experimental results indi-
cate that circ-CNNED has superior performance.
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Figure 1  The structure of circ-CNNED. (A) Data preprocessing; (B) TCN encoder block; (C) CNN decoder block; (D) Classification block.
 

 II. Materials and Methods

 1. Datasets
To illustrate the efficiency of circ-CNNED, a dataset

consisting  of  37  sub-datasets  corresponding  to  37  RBPs
is  built  [24].  The  circRNA  sequences  are  downloaded
from  CircInteractome  database.  From  each  CLIP-seq
peak, we extend 50 nt (nucleotide) upstream and down-
stream  respectively  to  get  101  nt  segments  as  positive
samples. For  negative  samples,  we  extract  101  nt  seg-
ments from remaining fragments of circRNAs randomly.
Then  through  CD-HIT  [29]  whose  threshold  is  0.8,  the
redundant sequences are eliminated. The number of posi-
tive  and  negative  samples  within  each  sub-dataset  are
equal for data balance. Finally, we have a dataset associ-
ated with 37 RBPs.
 2. Sequence encoding

We use one-hot and loop-3-mer to get two raw ma-
trices. One-hot  method is  able  to  not  only  maintain  se-
quence  raw information  to  the  greatest  extent,  but  also
obtain a  low-dimensional  matrix.  Given  a  circRNA  se-

S = {s1, s2, s3, . . . , sL} L si
ith i = {1, 2, 3, . . . , L}

S M =
(mi,j)L×4

quence  whose  length  is .  is
the  nucleotide, .  Through  one-hot,
the  circRNA  sequence  is  encoded  as  a  matrix 

 whose elements are represented as
 

mi,j =

{
1, if si = jth element of {A,U,C,G}
0, otherwise

(1)

i jwhere  is the row and  is the column.
Considering  the  circular  structure  of  circRNAs,  we

adopt  loop-3-mer  to  get  another  matric  whose  encoding
rules are shown in Figure 2.

S′ = {s1, s2, s3, . . . ,
sL, s1, s2} L+ 2

S′

S′

S′ L
S′ L× 64 M ′

First,  we  complete  the  first  two  nucleotides  of  the
circRNA sequence  at  the  end of  the  sequence.  Then we
can  get  a  new  circRNA  sequence 

 whose  length  is . Considering  the  struc-
ture of amino acids,  we then use 3-mer to encode .  A
window whose  length  is  3  slides  along  with  stride=1
and  is  separated  into  segments.  One-hot  method
then transfers  into a  matrix .
 3. CNN for data preprocessing

Through sequence encoding, we get two matrices M
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and M'. In the data preprocessing stage, we perform the
parallel processing on the two matrices separately to cap-
ture  high-order  latent  features.  Take M as  an  example,
we first use CNN to capture the local features whose op-
eration is as follows:
 

zi = Wi ⊗Mi + bi (2)

i i bi
[z1, z2, z3, . . . , zl]

l

where the weight matrix is W , input is M , and bias is .
Z=  is  the  extracted  feature  map  and
there are  filters. After convolution, we introduce batch
normalization  (BN)-ReLU  [30]  to  normalize Z.  ReLU
may lead to the situation of the average value offset, re-
sulting  in  difficulty  convergence.  BN-ReLU  helps  ReLU
make better feature selection and speeds up the conver-
gence. Through preprocessing,  we  can  integrate  two en-
coding matrices in feature-level rather than in data-level.

We get R and R' after data preprocessing on M and
M', respectively. R and R' are then concatenated and fed
into the encoder block.
 4. Encoder-decoder architecture for feature learn-

ing
In circ-CNNED, we construct a CNN-based encoder-

decoder architecture.  We use  TCN to  construct  the  en-
coder  block  and  CNN  to  construct  the  decoder  block.
The  two  blocks  form  a  symmetrical  structure  (see Fig-
ure 1).

dilation

During  data  preprocessing,  we  obtain  local  features
of  circRNA  sequences  by  CNN.  In  order  to  obtain  the
context-dependent  information,  most  of  the  previous
methods  adopt  the  recurrent  neural  network  (RNN).
However, RNN  will  lose  its  ability  as  the  distance  in-
creases  due  to  vanishing  gradient  and  runs  for  a  long
time.  Thus,  we introduce  TCN [27]  which considers  the
full  temporal  dependencies  in  circRNA  sequences.  Take
filter_length=3 and =[1, 2, 4, 8] as an example,
the  dilated  acausal  convolution  is  shown  in Figure  3.
Compared with CNN and RNN, TCN can perform dilat-
ed  convolutions  in  parallel  and  residual  connections.  In
this way, TCN has not only flexible receptive field size,
but also stable gradients.

TCN  is  better  at  capturing  temporal  dependencies
and trains faster than RNN. The receptive field can cov-
er all values from the input sequence. The current, previ-
ous and future steps are cover as follows [26]: 

Ĉl
t = f(W 1Cl−1

t−d +W 2Cl−1
t +W 3Cl−1

t+d + b) (3)

Ĉl
t t

Cl lth
dilation

f W = {W 1,W 2,

W 3}

Cl

where  is the result at time  by acausal convolution.
 gives  the activations in the  layer. Each layer  in-

cludes a group of dilated convolutions with  and
ReLU  function .  The  parameters  are 

 and the bias vector b.  Residual connection is used
to eliminate vanishing or exploding gradients and to fa-
cilitate gradients flow.  is calculated as
 

Cl
t = Cl−1

t + V Ĉl
t + e (4)

e

lth

where V is  a  group of  weights  and  is  bias  in  residual
connection. Receptive field is proportional to dilated con-
volution, which conduces to longer memory. The parame-
ter numbers are not increased while avoiding overfitting
[27]. The receptive field at  layer is
 

Rf = 1 + (Lf − 1)(2l − 1) (5)

Rf Lfwhere  is the receptive field.  is the length of filter.
In  encoder  block,  we  adopt  four  TCN layers.  Each

layer has 64 filters and the filter_size is 10. After TCN,
a max-pooling layer is used as down-sampling and we get
the output of encoder block through it. We then feed the
output of the encoder block to the up-sampling layer. We
use  four  CNN  layers  whose  computing  mechanism  is
shown as equation (2) to construct a decoder block. The
output of  the  last  CNN  layer  is  the  output  of  the  de-
coder block which is used for binding site prediction.
 5. Global expectation pooling for classification

In classification block,  we introduce a global  expec-
tation  pooling  layer  to  assign  weights  to  features  and a
FC-softmax structure to classify.

Global expectation pooling [31] contains two sublay-
ers  (see Figure  4):  1)  An  one-dimensional  (1D)  global
max-pooling.  2)  A  dense  layer  without  parameterized
weights  of  size  1.  It  calculates  the  weighted averages  of
max pooled values.  In this  way,  there  are  no additional
parameters.

jth
Inputj Qj

i i = 1, 2, . . . , L

Suppose  that  feature is  the  input  of  global  ex-
pectation pooling: = , where . The
mathematical formulas are shown below.
 

First sub-layer: Bj = maxi=1,2,...L{Qj
i} (6)
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Second sub-layer: output =
L∑
i

prob× (Qj
i )

T
(7)

 

prob = exp
{
m(Qj

i −Bj)}/
∑

exp{m(Qj
i −Bj)

}
(8)

m > 0 m probwhere  and  in  circ-CNNED,  we  set =1.  is
the weight assignment. Larger input values tend to have
larger weights.

After  global  expectation  pooling  layer,  we  utilize  a
FC-softmax structure to classify. Through it, two results
between (0,1) represent the probability of two classes.

 III. Results

 1. Performance of circ-CNNED
In data preprocessing, we set the number of filters as

128. In encoder block, we set the number of filters as 64
and the pool_size is 5. In decoder block, we set the num-
ber of filters as 128. While training, we use Adam as op-
timizer  and  categorical_crossentropy  as  loss  function.
We set batch_size as 64 and max_epoches as 50.

We  obtain  receiver  operating  characteristic  (ROC)
curve  and  precision/recall  (PR)  curve  of  circ-CNNED
across 37 datasets (see Figure 5). Besides, we also evaluate
circ-CNNED  using  other  four  metrics:  ACC,  Precision,
Recall and F1_Score. From Figure 5, the largest AUC is
0.9870  (AUF1)  and  the  minimum  is  0.7800  (ZC3H7B).
The largest AUPR is 0.9853 (AUF1) and the minimum is

0.7649 (TNRC6). circCNNED is effective under a variety
of evaluation metrics.
 2. Comparison with other methods

We compare circ-CNNED with four existing predic-
tion methods:

•  CRIP  [24]:  Use  a  hybrid  neural  network  and  a
stacked encoding scheme based on codon.

•  PASSION  [32]:  Use  the  concatenated  artificial
neural network (ANN) and hybrid deep neural network.

•  CRBPDL  [33]:  Adopt  deep  hierarchical  network
integrated with Adaboost.

• icircRBP-DHN  [34]:  Merge  BiGRUs  and  a  deep
multi-scale residual network.
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Figure 5  Results of circ-CNNED across 37 datasets. (a) The ROC curve; (b) The PR curve; (c) Other four metrics.
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To  ensure  a  fair  comparison,  all  methods  use  the
same datasets and their own hyperparameter settings. To
compare  these  methods,  we  utilize  AUC  which  has  no
fixed threshold. From Table 1 and Figure 6 (The line in
the middle of each body represents the mean value), circ-
CNNED is obviously superior than CRBPDL, CRIP and
PASSION. The  average,  the  maximum  and  the  mini-
mum AUC of circ-CNNED are all higher than them. The
average  AUC  of  circ-CNNED  is  near  with  icircRBP-

DHN.  However,  the  number  of  improved  cases  between
them is 23/37 which indicates that circ-CNNED is better
than  icircRBP-DHN.  Overall,  circ-CNNED  outperforms
these four latest methods.

In  order  to  verify  whether  the  differences  between
circ-CNNED  and  these  methods  are  significant,  we  do
the t-test using AUC (see Figure 7).

Obviously,  circ-CNNED is  much  better  than  CRIP
and CRBPDL. Compared with PASSION and icircRBP-

  

Table 1  The comparisons of circ-CNNED with other methods using AUC

Datasets circ-CNNED PASSION CRIP CRBPDL icircRBP-DHN

AGO1 0.8967 0.9050 0.9052 0.8160 0.8992

AGO2 0.8136 0.8210 0.8062 0.7017 0.7940

AGO3 0.8939 0.9090 0.8911 0.8198 0.8622

ALKBH5 0.8282 0.7520 0.7865 0.9325 0.7909

AUF1 0.9870 0.9780 0.9820 0.9360 0.9769

C17ORF85 0.8683 0.8590 0.8006 0.8328 0.9576

C22ORF28 0.8781 0.8920 0.8590 0.8061 0.8915

CAPRIN1 0.8149 0.8580 0.8313 0.7674 0.8669

DGCR8 0.9106 0.9160 0.9028 0.8201 0.9055

EIF4A3 0.8117 0.8230 0.8084 0.7165 0.8017

EWSR1 0.9377 0.9380 0.9239 0.8664 0.9340

FMRP 0.9113 0.9000 0.8868 0.7922 0.8922

FOX2 0.8543 0.8300 0.7735 0.7422 0.9531

FUS 0.8416 0.8570 0.8418 0.7668 0.8569

FXR1 0.9574 0.9550 0.9269 0.9321 0.9065

FXR2 0.9325 0.9400 0.9143 0.8580 0.9338

HNRNPC 0.9819 0.9760 0.9710 0.9083 0.9732

HUR 0.8738 0.8770 0.8768 0.7693 0.8713

IGF2BP1 0.8541 0.8410 0.8436 0.7579 0.8504

IGF2BP2 0.8203 0.8270 0.8294 0.7416 0.8328

IGF2BP3 0.8176 0.8310 0.8170 0.7103 0.8187

LIN28A 0.8622 0.8740 0.8649 0.7582 0.8560

LIN28B 0.8857 0.8890 0.8662 0.7917 0.8849

METTL3 0.8511 0.8710 0.8057 0.7583 0.8203

MOV10 0.8087 0.8340 0.8379 0.7593 0.8404

PTB 0.8219 0.8290 0.8186 0.7322 0.8216

PUM2 0.9681 0.9480 0.9619 0.9194 0.9512

QKI 0.9230 0.9270 0.9132 0.9313 0.9039

SFRS1 0.9678 0.9640 0.9641 0.8877 0.9598

TAF15 0.9812 0.9670 0.9804 0.7808 0.8899

TDP43 0.9385 0.9330 0.9274 0.8489 0.9267

TIA1 0.9471 0.9330 0.9278 0.8939 0.9433

TIAL1 0.9058 0.9060 0.9028 0.8393 0.8396

TNRC6 0.7925 0.7760 0.7756 0.8206 0.9635

U2AF65 0.9263 0.9300 0.9183 0.8475 0.9196

WTAP 0.8993 0.7940 0.7344 0.5602 0.9220

ZC3H7B 0.7800 0.8040 0.7918 0.7172 0.8041

Note: Bold values are the maximum on the same dataset and the underlined values are the second maximum.
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DHN,  the  performance  of  circCNNED  is  very  close  to
them. In terms of the model structures of these compari-
son  methods,  circ-CNNED  performs  the  preprocessing
before  concatenating  the  two  encoding  matrices  which
helps  to  get  a  better  fusion.  Besides,  circ-CNNED  uses
TCN to learn context dependence which can avoid com-
mon defects of RNN.
 3. Ablation experiments

1) Comparison of two encoding mechanisms
In circ-CNNED,  we  adopt  two  encoding  mecha-

nisms.  To  demonstrate  the  contribution  of  them,  we
build the following structures:

• circ-one: Only use the one-hot encoding mechanism.
• circ-loop: Only  the  loop-3-mer  encoding  mecha-

nism is used.
• circ-CNNED: The  structure  proposed  in  this  pa-

per.
The comparison results can be seen in Figure 8 (The

indigo line represents the median and the green triangle
represents  the  mean)  and Table  2.  The  performance  of
circ-CNNED  is  obviously  better  than  the  other  two
structures. The other two structures both contribute sig-
nificantly to the performance of circ-CNNED. Compared
to circ-loop,  circ-one  is  superior  which  probably  is  be-
cause of the dimension of two matrices.

2) The effectiveness of global expectation pooling
To  verify  the  effectiveness  of  global  expectation

pooling, we build the following structure:
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Figure 8  Performance comparison of different structures.
 
 
 

Table 2  The comparisons of different structures.

Improved cases Average improved

circ-CNNED vs. circ-one 27/37 1.2%

circ-CNNED vs. circ-loop 33/37 2.8%

circ-CNNED vs. circ-CNNED* 34/37 3.5%

circ-CNNED vs. circ-max 37/37 4.9%
 
 

• circ-max: Use max-pooling to replace global expec-
tation pooling.

The  comparison  results  can  be  seen  in Figure  8,
Table 2 and the performance of circ-CNNED is obvious-
ly  better  than  circ-max.  Compared  with  max-pooling,
global expectation pooling is  based on probability inter-
pretability and helps us better  understand the potential
biological  sequence  from  the  perspective  of  statistical
pattern.

3) The effectiveness of data preprocessing
In circ-CNNED,  we  preprocess  the  data  before  fu-

sion.  In  this  section,  we  remove  the  data  preprocessing
block (block “(A)” in Figure 1) to construct a new struc-
ture  circ-CNNED*.  The  comparison  results  can  be  seen
in Figures  8 and 9, Table  2.  The  experimental  results
show that the data preprocessing is of great importance.
Through this, circ-CNNED gets more useful information.
 4. Motif enrichment analysis

By analyzing the experimental results,  we find that
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Figure 6  Performance comparison of different methods.
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Figure 7  p-value between circ-CNNED with four comparison meth-
ods.
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Figure 9  Performance  comparison  between  circ-CNNED  and  circ-
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the improvement of circ-CNNED is more pronounced on
small  datasets,  especially  in  FXR1,  PUM2,  TAF15  and
WTAP.

We utilize AME [35] and CentriMo [36] respectively
to do motif enrichment analysis [37]. The results can be
seen  in Figures  10 and 11. Compared  to  AME,  Centri-
Mo  is  characterized  by  finding  known  motifs  at  fixed
sites, i.e. motifs are in the same position in all sequences.
The  motifs  enriched  by  CentriMo  are  concentrated  on
the center of the sequences and the results of AME and

CentriMo are similar. As mentioned above, the center of
sequences  are  binding  sites.  circ-CNNED  is  probably
more sensitive to binding sites so that its performance on
these four datasets improves significantly.
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Figure 10  The motif enrichment results of AME.
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Figure 11  The motif enrichment results of CentriMo. The motifs shown have the smallest p-value.
 

 IV. Conclusion
In this study, we come up with an original method,

circ-CNNED, for prediction of RBP binding sites on cir-
cRNAs.  We  use  one-hot  and  loop-3-mer  respectively  to
get  two  raw  matrices  of  circRNA  sequences.  Then  we
adopt CNN to preprocess them thus we can obtain use-
ful information. Next, we utilize TCN to construct an en-
coder  block  and  CNN  to  construct  a  decoder  block.
Through global  expectation  pooling,  we  weight  the  fea-
tures  and  reduce  their  dimensionality.  Finally  we  use  a
FC-softmax struture to classify. On 37 datasets, we com-
pare circ-CNNED with four latest methods and perform
ablation  experiments.  Experiment  results  demonstrate
that circ-CNNED is effective for prediction of RBP bind-
ing sites on circRNAs.
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