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Abstract — Drug-target interactions (DTIs) prediction plays an important role in the process of drug discovery.
Most computational methods treat it as a binary prediction problem, determining whether there are connections be-
tween drugs and targets  while  ignoring relational  types information.  Considering the positive or  negative effects  of
DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we
model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally ex-
tracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural net-
works  (SHGNNs),  further  put  forward  an  end-to-end  framework  for  signed  DTIs  prediction,  called  SHGNN-DTI,
which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from
drug-drug interactions (DDIs) and protein-protein interactions (PPIs). For the framework, we solve the message pass-
ing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks
consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from DrugBank and relat-
ed databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction re-
sults show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study
with two drugs on breast cancer.
Keywords — Drug-target  interactions, Signed heterogeneous  network, Link sign prediction, Graph neural  net-
works.
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 I. Introduction
The prediction of drug-target interactions (DTIs) is

of great significance to the fields of drug design and drug
development. However, traditional biological experiments
are time-consuming and cost-effective, so it has prompt-
ed more people to pay their attention to the use of com-
puters to assist in predicting DTIs [1]–[6].

At present, there are many machine learning meth-
ods for  DTIs prediction.  Traditional  approaches,  includ-
ing network/graph  embedding  models,  matrix  factoriza-
tion or feature-based methods, either focus on extracting
associations between drugs and proteins or depend on in-

formation from  node  attributes.  Compared  with  tradi-
tional  methods,  as  a  deep  learning  branch  for  irregular
data, graph neural  networks  (GNNs)  have  shown excel-
lent performance in mining biomedical networks [7]–[11].
GNNs can  make  better  use  of  both  node  characteristics
and  network  structures  [7], and  their  powerful  comput-
ing  platforms  [12]  provide  convenient  model  training.
Currently,  GNNs  have  been  the  popular  methods  in
DTIs prediction [13], [14].

Most of  the  existing  DTIs  prediction  methods  ig-
nore the specific interaction patterns between drugs and
targets,  however,  enriching  a  drug-target  network  with
information of  functional  nature  like  the  sign  of  the  in- 
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teractions allows  to  explore  a  series  of  network  proper-
ties  of  key  importance  in  the  context  of  computational
drug combinatorics [15], [16]. For example, by attaching
signs to the mechanisms of action, we are able to quanti-
fy the  amount  of  synergism  (i.e.,  when  coherence  pre-
vails over incoherence) in a drug pair, and to classify all
drug pairs accordingly.

In this study, we construct signed networks of drugs
and targets according to pharmacological DTIs. Addition-
ally,  we  extract  information  from  interactions  between
drugs  and  their  associated  target  proteins.  But,  how  to
deal with  DTIs  prediction  on  signed  heterogeneous  net-
works  is  still  an  open  issue.  To  solve  the  problem,  we
dedicate  signed  heterogeneous  graph  neural  networks
(SHGNNs),  further  put  forward  a  method  for  signed
DTIs prediction, called SHGNN-DTI.
 1. Related work

There are a large amount of DTIs prediction studies.
Their  methods  are  roughly  divided  into  two  categories:
traditional  approaches  and  deep  learning  methods.  In
terms of  the  prediction  form,  existing  studies  either  ex-
plore  whether  the  drug  can  interact  with  the  target  or
exploit more informative details of DTIs.

Many machine learning directions have been applied
to  DTIs  prediction  and  most  of  them  either  focus  on
node features or links between nodes. The former calcu-
lates node representation vectors of drugs and targets re-
spectively and then trains a discriminator to predict DTIs.
Typical node embedding methods include graph/network
based  embedding  [17] etc.  And  classifiers  such  as  sup-
port vector machine [18] and random forest [19], can act
as a discriminator. However, traditional node representa-
tion  based  approaches  need  two-stage  training  process
and  cannot  fully  extract  deep  and  complex  associations
between  drugs  and  targets.  Another  direction  is  link-
based ways including matrix factorization (MF) [20] and
random walk (RW) [21]. MF uses the product of two or
more  low-rank  matrices  to  approximate  the  association
matrix,  while  RW [21]  is  widely  used in  methods  based
on  graph  theories.  But,  they  commonly  ignore  explicit
and natural integration of node features and graph struc-
tures. Other directions, such as hybrid methods [22] and
ensemble learning,  also  have  potentials  in  DTIs  predic-
tion.  However,  the  lack  of  computing  platform  support
hampers  the  development  of  traditional  methods  on
large-scale data.

Recently, GNNs, as a branch of deep learning dedi-
cated  for  irregular  data,  show  excellent  performance  in
graph mining research [7]–[11], [23]. Compared with tra-
ditional models, GNNs not only make better use of node
characteristics and network structures [7], but also inher-
it end-to-end learning frameworks from deep learning; In
addition, there  are  powerful  computing  platforms devel-
oped [12]. Until now, many kinds of GNNs have been ex-
plored to tackle  with the heterogeneous graphs [9],  [24].
Spectral  convolution  based  GNNs  [25],  attention  based

GNNs [13], meta-path based GNNs [14] have shown their
applications on DTIs networks.

However, most current studies take DTIs prediction
as  a  binary  classification  problem  [1],  [22]  which  lays  a
good foundation  for  the  initial  stage  of  drug  develop-
ment.  In  order  to  further  accelerate  the  process  of  drug
discovery,  it  is  far  from  enough  to  explore  whether  the
drug can interact with the target [17].  To overcome the
disadvantages  of  binary  classification,  some  researchers
turn to exploit more detailed information of DTIs. When
browsing  DrugBank  [26], we  find  more  than  35  mecha-
nisms of action modes of DTIs and most of them can be
reasonably classified as positive or negative on targets. It
is  reported  that  signed  DTIs  facilitate  the  study  of  the
comprehensive mechanism of drug combinatorics [15], [16],
[27], which is the main motivation of this paper.

There are  some  signed  GNNs  extended  from  un-
signed and raw models, but it is still open whether they
are applicable to signed DTIs networks. One extension is
from  spectral  GNNs,  which  explores  frequency  analysis
with  signed  graph  Laplacians  [28],  [29]  and  commonly
adapts  to  homogeneous  graphs.  Another  direction  is  to
combine  spatial  GNNs  with  a  notable  social  theory  on
signed graphs such as balance theory.

Typical  models  include  signed  graph  convolutional
network  (SGCN)  [30]  and  signed  bipartite  graph  neural
network (SBGNN) [31]. To our best knowledge, existing
signed GNNs focus on either signed graphs with the same
entities  [30]  or  simple  bipartite  graphs  [31]  separately.
Hence,  they  are  unable  to  handle  the  complexities
brought by both drug-drug interactions (DDIs) and pro-
tein-protein interactions (PPIs) information. In addition,
it is still open whether the most commonly used balance
theory  is  applicable  to  signed  DTIs  networks.  Actually,
unsatisfactory results are observed in our initial attempt
to  directly  apply  some  of  these  models  on  signed  DTIs
bipartite networks.
 2. Our contributions

In this study, we first model DTIs on signed hetero-
geneous  networks,  and  then  put  forward  a  signed  GNN
framework for DTIs prediction by designing information
propagation  process  and  considering  different  training
settings. Our contributions are concluded as follows.

• In terms of interaction modes between drugs and
targets, we  model  DTIs  prediction  on  signed  heteroge-
neous  networks.  DTIs  are  categorized  and  expressed  as
signed links [15], [16], [27], according to pharmacological
drug-target interactions in DrugBank [26] database, and
hence  form  a  signed  bipartite  network.  In  addition,  we
construct  a  two-layer  signed  heterogeneous  network,  by
extracting  DDIs,  drug chemical  features  from PubChem
[32], and PPIs from String [33].

•  We  propose  SHGNN-DTI,  to  realize  the  end-to-
end DTIs  sign  prediction,  which  takes  drug-target  em-
bedding pair  as  the  input  and  jointly  train  a  DTIs  dis-
criminator. To  deal  with  message  passing  and  aggrega-
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tion on signed DTIs networks, we dedicate signed aggre-
gation  on  bipartite  graphs.  Furthermore,  we  propose  a
three-module framework  to  handle  two  additional  un-
signed graphs,  and train it  with considerations of  either
cooperative  or  independent  mode  and  whether  sharing
weights. It is noted that our SHGNN-DTI not only adapts
to signed bipartite networks, but also could naturally in-
corporate auxiliary information from DDIs and PPIs.

• Comprehensive  experiments  on  two  DTIs  net-
works are conducted to verify the validity of our predic-
tion  model.  In  terms of  several  performance  metrics,  its
performance  greatly  exceeds  the  baselines.  The  effect  of
initial  features  of  nodes,  training  modes  and  embedding
dimensions are also discussed. Ablation study further il-
lustrates the role of three modules.  In addition, we pro-
vide the case study on two drugs for breast cancer, and
find that seven new DTIs out of their Top-10 links have
support from other literature, which verifies the feasibili-
ty of SHGNNs-based DTIs prediction.

 II. Problem Descriptions
In this  section,  we  model  DTIs  on  signed  heteroge-

neous networks. Firstly, the DTIs is modeled on a signed
bipartite  network,  and  then  extended  onto  a  two-level
signed heterogeneous network.

When browsing DrugBank [26], we see  many possi-
ble  mechanisms  of  drug-target  actions.  For  example,  a
drug activates or inhibits a target acting as an agonist or
antagonist, as a potentiator or blocker, as an inducer or
suppressor, and  so  on.  There  are  different  types  of  tar-
gets such as proteins, macro molecules, nucleic acids, and
small molecules, etc. Drug-target actions can be roughly
divided into positive or negative relations [15] and natu-
rally  represented  as  signed  links.  As  shown  in Table  1,
the action modes of drugs and targets are represented as
signed  links  [15].  Activator,  agonist  and  other  positive
types  are  classified  into  positive  effects  and  represented
by the label +1, whereas types with negative effects like
inhibitor and antagonist are labeled with −1. For exam-
ple, Pilocarpine  is  an  activator  of  Muscarinic  acetyl-
choline receptor, and the link is represented by +1. The
drug Bivalirudin,  as  an  inhibitor  of  Prothrombin,  in-
hibits  thrombin  action  by  binding  the  catalytic  site  of
thrombin  to  the  external  site  of  anion  binding,  and  the

link is indicated by −1.
It is noted that some modes are labeled with 0, e.g.,

“modulators”, “binder”, “cleavage”, because they are im-
possible to classify with a sign, and hence cannot be in-
cluded in our analysis. In this case, we do not construct
an edge between the drug and the target.

In  this  study,  we  further  extract  information  from
interactions  between  drugs  and  their  associated  target
proteins, to model a two-level signed heterogeneous net-
work. For all the drugs, we also crawl their features and
interaction information from DrugBank [26]. Meanwhile,
we search the known human protein interaction data in
String  [33] database  to  obtain  the  interaction  informa-
tion among targets. For DDIs and PPIs, we use 1 to in-
dicate the known interaction and 0 for the others.

? ∈ {+,−} D=(D1, D2,
. . . , Dn) T =(T1, T2, . . . ,Tm)

EDT = {eij , i=1, 2, . . . , n, j=1, , 2, . . . ,m}

GDT = (D,T,EDT)

GD = (D,AD, ED) GT =
(T,AT , ET )

Figure  1 shows the  DTIs  prediction  on  signed  net-
works. The problem is to determine the sign of drug-target
action, i.e., . Given a set of drugs 

,  a  set  of  targets  and  their
signed  edges ,
we  predict  new  DTIs  on  a  signed  bipartite  network

 (shown  in Figure  1(a))  according  to
Table  1.  Additionally,  with  the  help  of  unsigned  DDIs
network  and  PPIs  network 

,  the  problem  becomes  DTIs  prediction  on
the two-level  signed heterogeneous network as  shown in
Figure 1(b).
 

(a) A signed bipartite network (b) A two-level signed het-

erogeneous network
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Figure 1  DTIs prediction on signed networks. The problem is to de-
termine the link sign between a drug and a target for (a) a signed
bipartite network  and  (b)  a  two-level  signed  heterogeneous  net-
work.

 III. SHGNNs-Based DTIs Prediction
Methods

The positive and negative edges represent two polar-
ization relations  between  drugs  and  targets,  but  coexis-
tence of negativity and heterogeneity brings challenges to
the extension  of  the  existing  GNNs.  As  we  know,  cur-
rent  popular  GNNs-based  approaches  mainly  work  on
unsigned graphs, which will aggregate the neighbor infor-
mation  in  the  same  way  for  both  positive  and  negative
edges. Even though some signed GNNs have been devel-
oped,  the  graph was  assumed to  have  the  same kind of
entities or be simple bipartite graphs, and thus, they are
not  directly  applicable  to  handle  the  complexities  that
are brought by drug pairs and target pairs.

 

Table 1  Drug modes of action and edge signs

Edge sign Action modes in DrugBank

Positive (+)
Agonist; partial agonist; activator; stimulator;

inducer; positive allosteric modulator;
potentiator; positive modulator

Negative (−)

Inhibitor; inhibitory allosteric modulator;
inhibitor competitive; antagonist; partial
antagonist; negative modulator; inverse

agonist; blocker; suppressor; desensitize the
target; neutralizer; reducer

Not classifiable (0) Otherwise
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(zDi
, zTj

)

In this  section,  we  propose  SHGNNs  for  DTIs  pre-
diction on drug-target networks. SHGNN-DTI works fol-
lowing  the  framework  described  in Figure  2.  Firstly,  it
employs  SHGNN  to  obtain  embedding  results  of  drugs
and targets. Secondly, a drug-target pair, i.e., ,
which  is  concatenated  from above  embeddings,  is  taken
as an input of  a  DTIs discriminator  to predict  the DTI

sign. Our SHGNNs and the DTIs discriminator are joint-
ly  trained  with  the  loss  function  described  in  the  last
sub-section.  It  is  noted  that,  the  framework  still  works
on  signed  bipartite  networks  via  ignoring  Module2  and
Module3 directly.

To  enhance  the  readability  and  understandability,
Table 2 provides key symbols used in SHGNN-DTI.
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Figure 2  DTIs prediction based on SHGNNs. It employs a SHGNN model to obtain embedding results of drugs and targets, and then dis-
criminates the sign of concatenated embeddings of a drug-target pair. The SHGNN and the discriminator are jointly trained with a loss
function. When SHGNN works on only the DTIs subnetwork, Module2 and Module3 are missed.
 

 
 

Table 2  Key symbols in SHGNNs

Symbols Descriptions

h
(0)
Di

h
(0)
Tj

, Di TjInitial features of drug  and target 

h
DTI(l)
Di

h
DTI(l)
Tj

, lInputs of Module1 in -th layer

h
DDI(l)
Di

h
PPI(l)
Tj

, lInputs of Module2 and Module3 in -th layer

zDi
zTj

, Di TjFinal embedding of  and 

h
P (l)
Di

,h
N(l)
Di

,h
D(l)
Di

Di lHidden representations of  in -th layer

h
P (l)
Tj

,h
N(l)
Tj

,h
T (l)
Tj Tj lHidden representations of  in -th layer

Θ
P (l)
D ,Θ

N(l)
D

lLearnable parameter matrices of drugs in -th layer on the DTIs subnetwork

Θ
P (l)
T ,Θ

N(l)
T

lLearnable parameter matrices of targets in -th layer on the DTIs subnetwork

Θ
D(l)
D Θ

T (l)
T, lLearnable parameter matrices in -th layer on the DDIs and PPIs subnetworks

_C The cooperative mode

_I The independent mode

_S ΘThe same kind of nodes share  in different modules

CS Chemical structures of drugs

AD The link vectors of drugs

AP The link vectors of targets
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 1. The proposed SHGNNs

In  the  design  of  signed  GNNs,  there  are  two  key
problems. The first one is how to propagate messages on
DTIs networks and aggregate information for both drug
and target  nodes.  As  shown in Figure  3,  the  drug  (tar-
get) has signed relations. Inspired by SGCN [30] that is
customized on signed graphs with homogeneous entities,

we  solve  the  first  problem  and  then  propose  SHGNN
model to study node embedding results on signed bipar-
tite  network.  The  second  problem  is  how  to  extend
SHGNN  to  additionally  integrate  DDIs  and  PPIs,  and
solve the training problem. Here, we propose three-mod-
ule  SHGNNs  and  put  forward  an  end-to-end  learning
framework that  adapts  to  both  signed  bipartite  net-
works and two-level heterogeneous networks.
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Figure 3  Information propagation on DTIs networks. (a) Signed bipartite network; (b) Signed heterogeneous network.
 

1) SHGNN on signed bipartite networks
We dedicate  message  passing  and  aggregation  pro-

cess based on signed relations following the framework of
the simple SGCN variant [30].

l

SGCN is  the  first  GNN model  dedicated  on  signed
graphs. Its raw version, which is built on balanced theo-
ry  and  one-level  homogeneous  networks,  is  not  directly
applicable  to  our  two-level  DTIs  signed networks.  Here,
we borrow the aggregation in its variant. The -th SGCN
layer is calculated in terms of signed relations [30] among
the same kind of entities:
 

h
P (l)
i ≜ σ

ΘP (l)

 ∑
k∈N+

i

h
(l−1)
k

|N+
i |

,h
(l−1)
i


h
N(l)
i ≜ σ

ΘN(l)

 ∑
k∈N−

i

h
(l−1)
k

|N−
i |

,h
(l−1)
i


h
P (l)
i h

N(l)
i i

N+
i N−

i

vi
ΘP (l) ΘN(l)

Θ

σ
tanh

h
(l)
i ≜ h

P (l)
i ∥ hN(l)

i

where  and  are hidden states of node , follow-
ing  positive  and  negative  links,  respectively.  ( )
denotes  the  set  of  positive  (negative)  neighbors  of .

 and  are learnable parameter matrices for lin-
ear  transformation,  and  each  matrix  includes  two
parts corresponding to neighbors and the node itself, re-
spectively.  is  an  activation  function  which  is  set  as

. The concatenation of hidden states is taken as the
input for the next layer, i.e., .

h
′

k

vk

Inspired  by  SGCN  [30],  we  first  solve  the  message
aggregation and node update problem on signed DTIs bi-
partite networks. Let  be the output of linear transfor-
mation on . The underly message passing and aggrega-
tion in simple SGCN work as follows:
 

hP
i =

∑
k∈N+

i

h
′

k

|N+
i |

+ h
′

i, hN
i =

∑
k∈N−

i

h
′

k

|N−
i |

+ h
′

i

They are responsible for positive and negative neigh-

Di N+
Di
N−

Di

N+
Tj
N−

Tj

bors, respectively. For DTIs bipartite networks, Figure 3
(a) illustrates information propagation, where each node
has  heterogeneous  neighbors.  We  denote  the  positively
(negatively)-linked target neighbor set of  by  ( ).
Analogously, we define ,  for targets. After infor-
mation propagation,  nodes’ contents are  updated as  fol-
lows:
 

hP
Di

=
∑

Tk∈N+
Di

h
′

Tk

|N+
Di
|
+ h

′

Di
, hN

Di
=

∑
Tk∈N−

Di

h
′

Tk

|N−
Di
|
+ h

′

Di

 

hP
Tj

=
∑

Dk∈N+
Tj

h
′

Dk

|N+
Tj
|
+ h

′

Tj
, hN

Tj
=

∑
Dk∈N−

Tj

h
′

Dk

|N−
Tj
|
+ h

′

Tj

h
DTI(l−1)
Di

h
DTI(l−1)
Tj

l

l

Let  and  denote the inputs to the -
th layer. With the consideration of linear transformation
and  activation,  the -layer  embedding  process  on  signed
bipartite networks is
  

h
P (l)
Di

≜ σ

Θ
P (l)
D

 ∑
Tk∈N+

Di

h
DTI(l−1)
Tk

|N+
Di
|

,h
DTI(l−1)
Di




h
N(l)
Di

≜ σ

Θ
N(l)
D

 ∑
Tk∈N−

Di

h
DTI(l−1)
Tk

|N−
Di
|

,h
DTI(l−1)
Di




(1)
  

h
P (l)
Tj

≜ σ

Θ
P (l)
T

 ∑
Dk∈N+

Tj

h
DTI(l−1)
Dk

|N+
Tj
|

,h
DTI(l−1)
Tj




h
N(l)
Tj

≜ σ

Θ
N(l)
T

 ∑
Dk∈N−

Tj

h
DTI(l−1)
Dk

|N−
Tj
|

,h
DTI(l−1)
Tj




(2)

l ∈ {1, 2, . . . , L} i ∈ {1, 2, . . . , n} j ∈ {1, 2, . . . ,m}Here, , , .
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ΘNN(l) ≜ {ΘP (l)
D ,Θ

N(l)
D ,Θ

P (l)
T ,Θ

N(l)
T }

l

 are learnable  pa-
rameter matrices on the -th layer.

We employ their concatenation as the input for the
next layer, i.e.,
 

h
DTI(l)
Di

≜ h
P (l)
Di
∥ hN(l)

Di
,h

DTI(l)
Tj

≜ h
P (l)
Tj
∥ hN(l)

Tj
(3)

LA -layer SHGNN generate final embedding results by
 

zDi
≜ h

P (L)
Di

∥ hN(L)
Di

, zTj
≜ h

P (L)
Tj

∥ hN(L)
Tj

Algorithm  1 outlines  the  process  of  SHGNNs  on
signed bipartite DTIs networks.

Algorithm 1  SHGNN on signed bipartite networks
GDT = (D,T,EDT )

h
(0)
Di

(i = 1, 2, · · · , n), h(0)
Tj

(j = 1, 2, · · · ,m)

L

Input:  A  signed  bipartite  network ;
;  the  number  of

layers .
zDi zTjOutput: Low-dimension representations  and .

　Initialization:

h
DTI(0)
Di

≜ h
(0)
Di

i = 1, 2, . . . , n　　 , ;

h
DTI(0)
Tj

≜ h
(0)
Tj

j = 1, 2, . . . ,m　　 , ;

l ∈ {1, 2, . . . , L}　for  do

h
P (l)
Di

h
N(l)
Di

　　Calculate  and  using equation (1);

h
P (l)
Tj

h
N(l)
Tj

　　Calculate  and  using equation (2);

h
DTI(l)
Di

h
DTI(l)
Tj

　　Update  and  by eqution (3);

zDi ≜ h
DTI(L)
Di

zTj ≜ h
DTI(L)
Tj

　Return , .

2) SHGNNs with additional DDIs and PPIs subnet-
works

GDT GD GT

GDT GD

GT

Since DDIs or PPIs represent very different seman-
tics from heterogeneous DTIs, it needs to find out how to
extend  SHGNN  defined  on  to  cover  and ,
and solve the training problem. Here, we divide all rela-
tions  into three  subnetworks,  propagate  the information
in Figure  3(b)  via  applying  the  signed  GNN  layer  to

 and introducing unsigned GNN layers  for  and
.  Then,  we  try  several  training  modes  for  the  three-

module GNN framework.

Di h
DDI(l−1)
Di

l NDDI
Di

h
PPI(l−1)
Tj

N PPI
Tj

Tj

As  shown  in Figure  2,  SHGNNs  obtain  embedding
results not only from the DTIs network via Module1 de-
fined with above subsection, but also from the DDIs net-
work  and  PPIs.  For  a  drug  node ,  let  de-
notes the input to the -layer of  Module2 and  de-
notes its neighbor nodes within the DDIs network. Simi-
larly,  we  define  and  for  the  target  on
the PPIs network. Aggregation in Module2 and Module3
are
 

h
D(l)
Di

≜ σ

Θ
D(l)
D

 ∑
Dk∈NDDI

Di

h
DDI(l−1)
Dk

|NDDI
Di
|
,h

DDI(l−1)
Di


 (4)

 

h
T (l)
Tj

≜ σ

Θ
T (l)
T

 ∑
Tk∈N PPI

Tj

h
PPI(l−1)
Tk

|N PPI
Tj
|
,h

PPI(l−1)
Tj


 (5)

l ∈ {1, 2, . . . , L} i ∈ {1, 2, . . . , n} j ∈ {1, 2, . . . ,m}
ΘNN(l) ≜ {ΘP (l)

D ,Θ
N(l)
D ,Θ

D(l)
D ,Θ

P (l)
T ,Θ

N(l)
T ,Θ

T (l)
T }

l

Here, , , .
 are

learnable parameter matrices on the -th layer.
LAfter  layers, we concatenate results from all mod-

ules to get the final node representation:
 

zDTIDi
≜h

P (L)
Di

∥ hN(L)
Di

, zDDIDi
≜h

D(L)
Di

, zDi
≜zDTIDi

∥ zDDIDi

zDTITj
≜h

P (L)
Tj

∥ hN(L)
Tj

, zPPITj
≜h

T (L)
Tj

, zTj
≜zDTITj

∥ zPPITj

h
DTI(0)
Di

,h
DTI(0)
Tj

h
DDI(0)
Di

,h
PPI(0)
Tj

The  initial  features  of  nodes,  i.e., ,
, will  be  further  discussed  in  our  experi-

ments later.
To train the three-module SHGNN, it needs to con-

sider whether they interact with each other. One consid-
eration is how to deal with outputs on the previous lay-
er and feed them into the current layer. Another consid-
eration is  whether  the  same  kind  of  nodes  share  learn-
able parameters  in  linear  transformation.  Here,  we  pro-
pose  to  train  a  SHGNN  model  in  either  cooperative  or
independent  mode,  and  combine  them  with  sharing
weights.

i) The  cooperative  mode.  In  this  case,  three  mod-
ules are trained cooperatively by setting the inputs with
the same values for one kind of nodes:
 

h
DTI(l)
Di

= h
DDI(l)
Di

← h
P (l)
Di
∥ hN(l)

Di
∥ hD(l)

Di
(6)

 

h
DTI(l)
Tj

= h
PPI(l)
Tj

← h
P (l)
Tj
∥ hN(l)

Tj
∥ hT (l)

Tj
(7)

As  a  result,  in  each  layer  Module  1  interacts  with
Module 2 and Module 3.

ii) The independent  mode.  In  this  case,  three  mod-
ules are trained independently within sub-networks. The
input of each module is updated as its last embedding re-
sult as follows:
 

h
DTI(l)
Di

← h
P (l)
Di
∥ hN(l)

Di
,h

DDI(l)
Di

← h
D(l)
Di

(8)
 

h
DTI(l)
Tj

← h
P (l)
Tj
∥ hN(l)

Tj
,h

PPI(l)
Tj

← h
T (l)
Tj

(9)

Θ
P (l)
Di

=Θ
N(l)
Di

=Θ
D(l)
Di

Θ
P (l)
Tj

=Θ
N(l)
Tj

=

Θ
T (l)
Tj

∥

iii)  Sharing  weights.  For  both  modes,  we  further
consider whether  the  same  kind  of  nodes  share  one  pa-
rameter matrix, i.e. , 

. To keep the same embedding dimension, the inde-
pendent  mode  replaces  concatenation  “ ”  by  addition
“+” in equation (8)–(9), i.e.,
 

h
DTI(l)
Di

← h
P (l)
Di

+ h
N(l)
Di

,h
DTI(l)
Tj

← h
P (l)
Tj

+ h
N(l)
Tj

Algorithm  2 outlines  the  embedding  generation  on
two-level DTIs networks. In Figure 4, we further show 2-
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layer  SHGNNs  under  either  cooperative  or  independent
mode.

Algorithm 2  SHGNNs on signed heterogeneous networks
GDT = (D,T,EDT )

GD = (D,AD, ED)

GT = (T,AT , ET ) h
(0)
Di

(i = 1, 2, . . . , n), h
(0)
Tj

(j = 1, 2, . . . ,

L

Input:  A  signed  bipartite  network ;
a  DDIs  network ;  a  PPIs  network

; 
m); the number of layers .

zDi zTjOutput: Low-dimension representations {  and .}
　Initialization:

h
DTI(0)
Di

= h
DDI(0)
Di

≜ h
(0)
Di

i = 1, 2, . . . , n　　 , ;

h
DTI(0)
Tj

= h
PPI(0)
Tj

≜ h
(0)
Tj

j = 1, 2, . . . ,m　　 , ;

l ∈ {1, 2, . . . , L}　for  do

h
P (l)
Di

h
N(l)
Di

　　Calculate  and  using equation (1);

h
P (l)
Tj

h
N(l)
Tj

　　Calculate  and  using equation (2);

h
D(l)
Di

　　Calculate  using equation (4);

h
T (l)
Tj

　　Calculate  using equation (5);

h
DTI(l)
Di

h
DDI(l)
Di

　　Update  and  by equation (6) or equation (8);

h
DTI(l)
Tj

h
PPI(l)
Tj

　　Update  and  by equation (7) or equation (9);

zDi ≜ h
DTI(L)
Di

∥ h
DDI(L)
Di

,zTj ≜ h
DTI(L)
Tj

∥ h
PPI(L)
Tj

　Return  .

 2. The loss function
(zDi

, zTj
)Taking the final drug-target pair  as an in-

put, we  employ  a  multilayer  perception  (MLP)  to  fur-
ther  extract  characteristics  of  a  drug-target  pair,  and
then utilize a softmax regression classifier to discriminate
the DTI type.

ΘNN = {ΘNN(1), . . . ,ΘNN(L)}
L

Here, we  jointly  train  SHGNNs  and  the  DTIs  dis-
criminator.  Let  include
weight  matrix  parameters  of  layers  SHGNNs and the

ΘMLP ΘR = {ΘR
+1,

ΘR
−1} ΘR

+1 ΘR
−1

weight  parameters  for  MLP,  and 
 denotes regression coefficients, where  ( ) is

the  positive  (negative)  edge  type  coefficient.  The  loss
function is defined as follows:
 

L(ΘNN ,ΘR,ΘMLP)

=
∑
ij

−ωeij

∑
c∈S

I(eij=c) log
exp(ΘR

c

[
MLP(zDi

||zTj
)
]
)∑

q∈S

exp(ΘR
q

[
MLP(zDi ||zTj )

]
eij ∈ S

Di Tj S ∈ {+1,−1} ωeij

eij I(·)

where  represents  the  type of  edge between drug
 and  target ,  and  denotes  the

weight  associated  with  link  type .  returns  1  if  a
given prediction is true, and 0 otherwise.

 IV. Experimental Settings and Analyses
In  this  section,  we  conduct  experiments  on  two

datasets,  one  of  which  is  newly  extracted  in  this  study
from  DrugBank  [26]  and  related  databases.  First,  our
SHGNN shows excellent performance on signed bipartite
DTIs  networks  compared  with  classic  baselines.  And
then,  its  performance  is  further  verified  on  a  two-level
DTIs  signed  network,  and  analyzed  under  different
modes and settings. Finally, a case study is provided to
verify our SHGNN-based DTI prediction.
 1. Datasets

Two datasets  are  collected  and their  data  statistics
are shown in Table 3, where signed DTIs are labeled ac-
cording  to Table  1.  Torres et  al.  [15]  provided  a  signed
DTIs network from early version of DrugBank. Here, we
also  extracted  signed  DTIs  from  a  recent  version  of
DrugBank  [26],  and  additional  information  from related
databases.

Dataset1  contains  a  signed  bipartite  network,
which has 1178 drug nodes,  578  target  nodes,  and 2599
signed DTIs.
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Figure 4  Two modes of SHGNNs and its 2-layer illustrative examples. (a) and (b) are the framework under cooperative mode and indepen-
dent mode respectively. (c) and (d) are their 2-layer illustrative examples, in which the dashed boxes show their differences. “&” in (d) de-
notes “ ” or “ ”.
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Table 3  Descriptions of datasets

Drugs
(features)

Target
proteins DTIs DDIs PPIs

Dataset1 1,178 (–) 578 +:1,093
−:1,506 – –

Dataset2 846 (881) 685 +:909
−:1,859 169,162 5,820

 
 

Dataset2  contains a DTIs signed bipartite network,
and  additional  DDIs  and  PPIs  within  these  drugs  and
target  proteins.  It  is  processed  as  follows.  According  to
statistics  on  DrugBank  5.1.7  [26],  in  commonly  used
drugs,  the  number  of  small  molecule  drugs  can  account
for a  high  probability.  And  hence,  we  first  collect  ap-
proved  small  molecule  drugs,  and  their  target  proteins.
Also, we extract an unsigned DDIs network from Drug-
Bank. Furthermore,  we  search  the  interaction  informa-
tion among target proteins from String 11.5 [33] database
to build an unsigned PPIs network. The chemical struc-
ture  information  of  the  drug  is  additionally  obtained
from  PubChem [32]  database.  Each  drug  is  represented
by a 881-dimensional  binary vector,  where 1 value indi-
cates that the drug has a specific chemical structure seg-
ment.  After  discarding  drugs  not  in  PubChem  [32]
database  and  targets  not  in  String  11.5  [33],  we  finally
keep 846 drugs and 685 targets, 2768 signed DTIs, 169162
DDIs and 5820 PPIs.
 2. Training settings and baselines

Settings  of  SHGNNs  Here, we  list  SHGNN  vari-
ants,  hyper-parameters  settings,  and  initial  features  of
nodes.

• SHGNN variants. Given datasets with only DTIs
networks, SHGNN in Algorithm 1 is employed. With ad-
ditional  DDIs  and  PPIs,  SHGNNs  in  Algorithm  2  are
trained  under  the  cooperative  mode  or  independent
mode,  as  well  as  whether  weight  matrices  are  shared.
Here, we use “_C” and “_I” to distinguish two training
modes, and let “_S” denote sharing weights.

AD

AT

• Initial features of nodes. For convenience, we use
“CS”, “AD” and “AP” to represent cases of initial fea-
tures.  As  summarized  in Table  2,  they  correspond  to
chemical  structures  of  drugs,  the  link  vectors  of  drugs
(i.e., one row in adjacency matrix ), and the link vec-
tors of targets (i.e., one row in adjacency matrix ), re-
spectively.

L = 2

dout

h
P (l)
Di

,h
N(l)
Di

,h
D(l)
Di

,h
P (l)
Tj

,h
N(l)
Tj

,h
T (l)
Tj
∈ Rdout

dout ∈ {8, 16, 32, 64, 128, 256}

• Hyper-parameter  settings.  As  shown  in Table  4,
SHGNNs  employ  convolutional  layers  and  an
Adam optimizer  with  a  learning  rate  of  0.005.  For  sim-
plicity,  let  drugs  and  targets  have  the  same  embedding
dimensions  after  all  linear  transformation,  i.e.,

.  Here,  we  set
.  We  use  different  numbers

of iterations to train the model and find that 2000 epochs
are enough to achieve good results.

Baselines  In this study, we take 5 models as base-
lines. The first kind is from traditional models. Here, we
choose signed bipartite random walk (SBRW) [34]. With
the help of the extended balanced theory, it carries out a
random  walk  on  signed  bipartite  networks.  The  second
kind  of  baseline  is  from  deep  learning  frameworks.  We
consider  two  most  popular  GNNs  on  unsigned  graphs
such as GCN [35] and GraphSAGE [36]. SBGNN [31] is a
typical GNN model based on the extend balanced theory,
and adapts to signed bipartite networks. We apply it to
tackle  with  signed  drug-target  relations.  The  popular
heterogeneous graph attention network (HAN) [37] is al-
so  tested  on  our  datasets.  It  is  a  heterogeneous  GNN
model  based  on  meta  paths  and  hierarchical  attention
mechanisms.

•  Code  sources  and  configurations.  Since  SBRW
and SBGNN are dedicated on signed bipartite networks,
we  run  them  only  on  DTIs  subnetworks.  Their  official
source codes are employed*1*2. Since raw GCN and Graph-
SAGE adapt to  unsigned networks,  here  we apply their
PyG code versions*3 into the underly unsigned graphs of
signed  DTIs  networks  and  set  the  mean  aggregator  in
GraphSAGE.  When  applying  HAN  to  signed  relations,
we define different meta paths for positive and negative
DTIs.  Its  DGL code  version*4 with  9-head  attentions  is
employed  here.  For  fair  comparisons,  all  baselines  are
trained with the same loss function in this study.

ω δp δn ω
δp δn

ω ∈ {1, 2, 3,
4, 5} δp ∈ {0, 25, 50, 75, 100} δn ∈ {0,−25,−50,−75,
−100}

ω = 2 δp = 50 δn = −100

•  Hyper-parameter  settings.  All  GNNs  keep  the
same  hyper-parameter  settings  as  those  of  SHGNNs,  as
shown in Table  4. For SBRW, there are  parameters  in-
cluding ,  and .  is  a bias parameter for random
walkers. The thresholds  and  are used to define ele-
ments of adjacency matrices. Here, we varied 

,  and 
, and find that SBRW achieves optimal performance

when , , .
 3. Comparisons

We  employ  the  area  under  the  receiver  operating
characteristic curve (AUC), accuracy (ACC) and two F-
score indicators to evaluate experimental results. A high-
er  value  of  these  metrics  indicates  better  performance.

 

Table 4  Hyper-parameters of SHGNNs and GNNs baselines

Hyper-parameter Value

Optimizer Adam

Learning rate 0.005

Num of convolutional layers 2

doutEmbedding dimension {8, 16, 32, 64, 128, 256}
Num of Epochs 2000
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*1
 https://github.com/DSE-MSU/signed-bipartite-networks

*2
 https://github.com/huangjunjie-cs/SBGNN

*3
 https://github.com/pyg-team/pytorch_geometric

*4
 https://github.com/dmlc/dgl/tree/master/examples/pytorch/han



Each experiment run is 5-fold cross-validation (CV) and
all the results are the statistical values across 5 runs. In
CV  experiments,  we  randomly  divide  all  DTIs  into  5
equal-size groups. 4-group DTIs serve as the training set
and the rest one is used to test the model. All DDIs and
(or) PPIs data are employed in training SHGNNs if the

responding module is integrated. In Tables 5–7, we show
the overview results of all methods in terms of best val-
ues over all settings. And Figure 5 shows detailed perfor-
mance  with  different  embedding  dimensions.  We  report
the  average  and  the  standard  deviation  (std)  of  these
metrics across 5 runs.

 
 

Table 5  Comparisons of methods on the signed bipartite networks from dataset1 and dataset2

Dataset1 Dataset2

Methods ACC Macro-F1 Micro-F1 AUC ACC Macro-F1 Micro-F1 AUC

SBRW ±0.0130.775 ±0.0120.757 ±0.0130.775 ±0.0150.777 ±0.0180.756 ±0.0180.738 ±0.0180.756 ±0.0120.824

SBGNN ±0.0060.867 ±0.0060.865 ±0.0060.867 ±0.0170.928 ±0.0150.865 ±0.0150.849 ±0.0150.865 ±0.0190.917

GCN ±0.0020.872 ±0.0080.868 ±0.0020.872 ±0.0030.945 ±0.0120.869 ±0.0130.867 ±0.0120.869 ±0.0060.916

GraphSAGE ±0.0080.876 ±0.0080.870 ±0.0080.876 ±0.0030.943 ±0.0070.885 ±0.0070.873 ±0.0070.885 ±0.0040.922

HAN ±0.0040.878 ±0.0030.875 ±0.0040.878 ±0.0030.947 ±0.0030.868 ±0.0030.851 ±0.0030.868 ±0.0020.929

SHGNN ±0.0030.885 ±0.0030.882 ±0.0030.885 ±0.0060.950 ±0.0030.889 ±0.0060.874 ±0.0030.889 ±0.0040.935

Note: The highest score is in bold.

 
 

Table 6  Comparisons on the two-level signed heterogeneous network from the dataset2

Methods ACC Macro-F1 Micro-F1 AUC

GCN ±0.0030.892 ±0.0030.879 ±0.0030.892 ±0.0070.921

GraphSAGE ±0.0030.889 ±0.0020.878 ±0.0030.889 ±0.0020.924

HAN ±0.0030.874 ±0.0030.858 ±0.0030.874 ±0.0040.933

SHGNN_I ±0.0050.896 ±0.0100.884 ±0.0050.896 ±0.0100.935

SHGNN_C ±0.0040.904 ±0.0060.889 ±0.0040.904 ±0.0060.938

Note: The best is marked in bold and the second best is in underline.

 
 

Table 7  The effect of different initial features of drug and target nodes on SHGNNs-based prediction methods

Methods Feature ACC Macro-F1 Micro-F1 AUC

SHGNN_I (_S)

CS&AP 0.893 (0.893) 0.880 (0.877) 0.893 (0.893) 0.927 (0.928)

∥CS AD&AP 0.892 (0.892) 0.884 (0.880) 0.892 (0.892) 0.933 (0.934)
AD&AP 0.896 (0.894) 0.884 (0.885) 0.896 (0.894) 0.935 (0.934)

SHGNN_C (_S)

CS&AP 0.897 (0.891) 0.884 (0.879) 0.897 (0.891) 0.931 (0.930)

∥CS AD&AP 0.899 (0.896) 0.887 (0.883) 0.899 (0.896) 0.935 (0.933)
AD&AP 0.904 (0.903) 0.889 (0.887) 0.904 (0.903) 0.938 (0.936)

Note: The bold indicates the best within the group.
　　　CS&AP: initial inputs include the chemical structures of drugs and the link vectors of targets.
　　　AD&AP: initial inputs include link vectors of drugs and targets.

∥　　　CS AD&AP: initial inputs include the concatenation of chemical structures and link vectors of drugs, and link vectors of targets.

The purpose of our experiments is to obtain the fol-
lowing observations: 1) the validity of the SHGNNs-DTI
framework, not only on the signed bipartite network but
also on  the  two-level  heterogeneous  network;  2)  the  ef-
fect of  model  settings  and  training  modes  on  perfor-
mance of SHGNNs.

From Table  5,  we  can  find  the  performance  of  six
methods on signed bipartite networks as shown in Figure 1
(a) from dataset1 and dataset2. Here, since attributes of
drugs and targets are missing in dataset1, we employ the
link vectors between drugs and targets as the initial fea-
tures of nodes. Compared with SBRW and SBGNN, the

performance of the SHGNN greatly exceeds those of the
baseline methods. It hints that the extended balance the-
ory,  which  is  the  underly  basis  of  the  two  baselines,  is
not  applicable  between  drugs  and  targets.  Compared
with GCN and GraphSAGE, SHGNN follows signs to ag-
gregate  messages  from different  kinds  of  neighbors,  and
hence it makes better use of signed graph structures. In
addition, it is observed that, the meta-path based HAN,
which also considers the link signs, is still inferior to our
SHGNN  model  in  all  metrics  values.  In  summary,
SHGNN-DTI shows its significant better performance on
predicting signed DTIs on bipartite networks.
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In Table 6, we can find the performance of SHGNNs
and baselines on the two-level signed heterogeneous net-
work (as shown in Figure 1(b)) from the dataset2. First-
ly, both SHGNN_C and SHGNN_I are significantly su-
perior to  baselines  such  as  GraphSAGE and HAN.  Sec-
ondly, SHGNN_C performs better than SHGNN_I, and
the observation  will  be  further  analyzed  later.  In  addi-
tion,  compared  with  the  results  of  dataset2  shown  in
Table 5, SHGNNs and baselines promote almost all met-
ric  values.  As  a  result,  it  illustrates  benefits  from DDIs
and PPIs networks.

AD

In Table  7, we  show the  effect  of  initial  nodes  fea-
tures on SHGNN_C, SHGNN_I and their versions with
sharing  weights.  Firstly,  the  model  performance  of
SHGNN-DTI maintains  a  high  level  for  all  initial  fea-
tures.  Secondly,  it  is  observed  that  the  best  values  of
SHGNN generally occur in consideration of the link vec-
tor from  as the initial features of drugs, and the link

ATvector  from  as  the  initial  features  of  targets.  This
may be caused by the inconsistency between the chemi-
cal structure features and the DTIs network.

In Figure  5,  we  further  show  the  performance  of
SHGNN_C,  SHGNN_I  and  their  versions  with  sharing
weights, in different embedding dimensions. Their Micro-
F1 values are not illustrated, but they also have similar
trends.  Here,  we  employ  the  initial  feature  setting  that
can achieve the best performance (i.e. AD&AP). Firstly,
versions with sharing weights are more stable, and their
model performance maintains a high level for any embed-
ding  dimensions  with  the  maximum  difference  between
indicators  not  more  than  1  percentage  point.  Secondly,
SHGNN_C is  better  than  SHGNN_I,  which  hints  that
when  SHGNNs in  cooperatively  training  mode,  modules
can interact with each other to capture the hidden infor-
mation within signed heterogeneous networks.

Observations  about  the  SHGNN-DTI  can  be  con-

 

0.86

0.84

0.88

0.90

0.82
32168 64

ACC

128 256

0.86

0.84

0.88

0.90

0.82
32168 64

Macro-F1

128 256

0.91

0.90

0.92

0.93

0.94

0.89
32168 64

AUC

128 256

0.86

0.84

0.88

0.90

0.82
32168 64

ACC

128 256

0.86

0.84

0.88

0.90

0.82
32168 64

Macro-F1

128 256

0.91

0.90

0.92

0.93

0.94

0.89
32168 64

AUC

128 256

0.86

0.84

0.88

0.90

0.82
32168 64

ACC

128 256

0.86

0.84

0.88

0.90

0.82
32168 64

Macro-F1

128 256

0.91

0.90

0.92

0.93

0.94

0.89
32168 64

AUC

128 256

SHGNN_C SHGNN_C_S

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

Embedding dimensions

(a)

(b)

(c)

(d)

SHGNN_I_SSHGNN_C_S

SHGNN_I SHGNN_I_S

0.86

0.84

0.88

0.90

0.82
32168 64

ACC

128 256

0.86

0.84

0.88

0.90

0.82
32168 64

Macro-F1

128 256

0.91

0.90

0.92

0.93

0.94

0.89
32168 64

AUC

128 256

SHGNN_C SHGNN_I

Figure 5  Comparison of three-module SHGNNs with different embedding dimensions on dataset2. (a) Comparison of SHGNN_C and its
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cluded  as  follows:  1)  it  is  an  effective  way  to  predict
signed DTIs; 2) DDIs and PPIs could provide benefits for
promoting  performance  of  SHGNNs;  3)  the  cooperative
mode is better than the independent mode; 4) SHGNNs
with sharing weights are more robust in terms of embed-
ding dimensions.
 4. Ablation study

In  this  section,  we  vary  the  configurations  of
SHGNNs to verify the role of  modules.  For the purpose
of  illustration,  we  conduct  experiments  on  subnetworks
extracted from dataset2. We consider several versions of
SHGNNs as follows.

• SHGNN: the SHGNN model works on three mod-
ules.

•  SHGNN  (Wo_DDI):  the  SHGNN  model  works
without the DDI network.

•  SHGNN  (Wo_PPI):  the  SHGNN  model  works
without the PPI network.

• SHGNN (Wo_DTI): the SHGNN model works on
DDIs and PPIs networks, i.e., without the DTI network.

• SHGNN (O_DTI): the SHGNN model works on-
ly  on  the  signed  bipartite  DTI  network,  i.e.,  without
DDIs and PPIs.

The last one runs Algorithm 1, while others run Al-
gorithm  2  under  the  cooperative  mode  without  sharing
weights.

Figure 6 shows their best values of 5 runs of 5-fold
CV experiments. Their Micro-F1 values are not illustrat-
ed,  but  they  also  have  similar  trends.  When  SHGNN
works with all modules, it achieves the best performance,
i.e.,  ACC:  0.904,  Macro-F1:  0.889,  Micro-F1:  0.904  and
AUC: 0.938. Besides, we obtain some observations.
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Figure 6  Ablation study results of the variants on dataset2.
 

i)  Compared  above  results  with  those  of  SHGNN
(Wo_DDI), SHGNN (Wo_PPI) and SHGNN (Wo_DTI),
we find  that  missing  any  module  will  lead  to  perfor-
mance  degradation.  When  the  DTI  module  is  removed,
scores of SHGNN decrease to ACC: 0.856, Macro-F1: 0.842,
Micro-F1: 0.856  and  AUC:  0.917.  The  largest  gap  be-
tween  SHGNN  (Wo_DTI)  and  SHGNN  indicates  that
information within the DTI network is  the most  impor-
tant in our model.

ii) The auxiliary role of DDI and PPI modules is il-

lustrated.  The  performance  of  SHGNN  (O_DTI),  i.e.,
ACC  0.889,  Macro-F1  0.874,  Micro-F1  0.889  and  AUC
0.935, is promoted when DDIs and (or) PPI networks are
(is) integrated. It illustrates that they can provide addi-
tional information.
 5. Case study

Here,  we  choose  Goserelin  and  Epirubicin  to  verify
our  model’s performance,  as  they  are  common  and  im-
portant drugs for the treatment of breast cancer that is
the  main  cancer  diagnosed  in  women.  According  to  the
announcement of the World Health Organization in De-
cember 2020, breast cancer has surpassed lung cancer as
the most common cancer in the world [38], [39]. Gosere-
lin is a synthetic analog of luteinizing hormone-releasing
hormone, which can be used to treat breast cancer by re-
ducing  secretion  of  gonadotropins  from  the  pituitary.
Epirubicin is an anthracycline topoisomerase II inhibitor
used as an adjuvant to treating axillary node metastases
in patients who have undergone surgical resection of pri-
mary breast cancer.

However,  we  find  in  DrugBank  [26]  that  the  DTIs
related  to  these  two  drugs  are  very  few.  Goserelin  only
contains two  positive  DTIs,  and  Epirubicin  only  con-
tains two  negative  DTIs.  Goserelin  has  “agonist ”  rela-
tions with Gonadotropin-releasing hormone receptor and
Lutropin-choriogonadotropic hormone  receptor.  Mean-
while, Epirubicin  has  “antagonist ”  relation  with  Chro-
modomain-helicase-DNA-binding  protein  1  (CHD1),  and
the “inhibitor” action mode on DNA topoisomerase 2-al-
pha. In this case study, we aim at verifying the validity
of the model on discovering potential DTIs, via predict-
ing all signed relations between both drugs and their in-
teractions with all targets.

5 runs of 5-fold cross-validation experiments are con-
ducted  on  SHGNN_C,  to  predict  known  DTIs  for
Goserelin  and  Epirubicin.  The  best  model  settings  in
above section is employed, i.e., without sharing weights,
setting AD&AP for the initial features of nodes and the
number  of  dimensions  equal  to  32. Table  8 shows DTIs
within their top-10 ranks in terms of “softmax” values.

Top-10 DTIs of Goserelin  Apoptosis regulator Bcl-
2 is the predicted target protein with the largest score in
the DTIs predicted to be positive. As reported in the lit-
erature  [40],  Goserelin  results  in  increased  expression  of
Bcl-2 protein. Goserelin is shown in DrugBank [26] as an
agonist  of  Gonadotropin-releasing hormone receptor and
Lutropin-choriogonadotropic hormone receptor. Two tar-
get  proteins  of  DTIs  predicted  to  be  negative,  Plasma
kallikrein and Transmembrane protein serine 2, have al-
so  been  confirmed  by  literature  [41].  Among  the  DTIs
with  the  top-10  prediction  scores,  no  relevant  evidence
was found for the DTIs between Goserelin and Synaptic
vesicle glycoprotein  2A,  Androgen  receptor,  Somato-
statin receptor,  Sterol  o-acyltransferase  1  and  Osteocal-
cin, leaving for further study.

Top-10  DTIs  of  Epirubicin  The  probably  positive

Drug-Target Interactions Prediction Based on Signed Heterogeneous Graph Neural Networks 241  



α
β

α
β

α
β

DTI related to Caspase-3 is supported in literature [42],
where Epirubicin was demonstrated to result in increased
activity  of  Caspase-3  protein.  The  link  sign  between
Epirubicin and ATP-binding cassette sub-family G mem-
ber 1 is also predicted to be positive, which agrees with
that Epirubicin analog results in increased expression of
ATP-binding cassette sub-family G member 1 mRNA [43].
Within the negative DTIs, Epirubicin is predicted to in-
teract with Estrogen receptor alpha (ER ) and Estrogen
receptor  beta  (ER ).  Estrogen  antagonists  and  drugs
that  reduce  estrogen  biosynthesis  have  become  highly
successful  therapeutic  agents  for  breast  cancer  patients,
the effects of estrogen are largely mediated by ER  and
ER  [45].  A  previous  study  [44] has  shown  that  Epiru-
bicin  binds  to  and  results  in  decreased  activity  of  ER
and ER . DNA topoisomerase 2-alpha as an inhibitor in
DrugBank  [26],  is  predicted  to  be  negatively  related  to
Epirubicin. However, unconfirmed DTIs are still  present
in  the  predicted  results  of  Epirubicin,  including  Fatty
acid-binding  protein,  Serine/threonine-protein  kinase
mTOR,  Nucleolar  and  coiled-body  phosphoprotein  1,
Synaptic  vesicle  glycoprotein  2A,  and  Estrogen  sulfo-
transferase.

In  addition,  Synaptic  vesicle  glycoprotein  2A  is
present in the top 10 DTIs for both Goserelin and Epiru-

bicin, which are unproven DTIs in the relevant databas-
es or literatures. In descriptions of DrugBank [26], Leve-
tiracetam acts as an agonist of Synaptic vesicle glycopro-
tein  2A  to  treat  various  types  of  seizures  caused  by
epilepsy. This means that Goserelin and Epirubicin may
also be used as adjuvant treatment for such diseases.

In summary, half of 20 signed DTIs have evidence in
DrugBank [26] or have support in related literature. Al-
though the known record between Epirubicin and CHD1
is not included within the Top-10 ranks, its score is still
very  high  and  it  belongs  to  top-50  DTIs  of  Epirubicin.
Especially,  7  records  are  out  of  DrugBank  [26],  which
further verifies the model performance in predicting new
signed DTIs.

 V. Conclusions
DTIs  prediction  is  a  potential  way  to  discover  the

types  of  relations  between  drugs  and  target  proteins,
which  is  of  great  significance  for  pharmaceutical
medicine. Existing computational methods can screen po-
tential  DTIs  from  a  large  number  of  drug  pairs  at  low
cost, but they are mostly unable to predict specific types
of DTIs, such as positive and negative DTIs. In this pa-
per, the DTIs prediction problem is regarded as the sign
prediction  problem  on  signed  heterogeneous  networks,

  

Table 8  Top-10 DTIs predicted by SHGNN for Goserelin and Epirubicin

Drug Target Sign Evidence

Goserelin

Apoptosis regulator Bcl-2 + Goserelin results in increased expression of Bcl-2 protein [40]

Synaptic vesicle glycoprotein 2A + Null

Androgen receptor − Null

Gonadotropin-releasing hormone receptor + Agonist in DrugBank

Lutropin-choriogonadotropic hormone receptor + Agonist in DrugBank

Plasma kallikrein − Goserelin inhibited cell growth and Plasma kallikrein protein
secretion in LNCaP and C4-2 cells [41]

Somatostatin receptor + Null

Transmembrane protein serine 2 −

When treated with the combination of Goserelin and
Bicalutamide, Transmembrane protein serine 2 was strongly

inhibited in benign glands and moderately inhibited in malignant
glands [41]

Sterol o-acyltransferase 1 − Null

Osteocalcin − Null

Epirubicin

Caspase-3 + Epirubicin results in increased activity of Caspase-3 protein [42]

ATP-binding cassette sub-family G member 1 + Epirubicin analog results in increased expression of ATP-binding
cassette sub-family G member 1 mRNA [43]

Fatty acid-binding protein + Null

Estrogen receptor alpha − Epirubicin binds to and results in decreased activity of Estrogen
receptor alpha protein [44]

Serine/threonine-protein kinase mTOR + Null

Estrogen receptor beta − Epirubicin binds to and results in decreased activity of Estrogen
receptor beta protein [44]

Nucleolar and coiled-body phosphoprotein 1 − Null

Synaptic vesicle glycoprotein 2A − Null

DNA topoisomerase 2-alpha − Inhibitor in DrugBank

Estrogen sulfotransferase − Null
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and an end-to-end prediction method based on the signed
heterogeneous graph  neural  networks  (SHGNNs)  is  pro-
posed to  predict  the  link  signs  between  drugs  and  tar-
gets.  When  designing  SHGNNs,  we  dedicate  message
passing  and  aggregation  on  signed  bipartite  networks,
and additionally incorporate DDIs and PPIs information,
further  try  several  training  modes.  The  performance  of
the  SHGNNs-based  prediction  method  greatly  exceeds
those of the baseline methods. We test the method with
different settings,  including  its  working  modes,  embed-
ding  dimensions  and  initial  features.  In  the  case  study,
two drugs for breast cancer are chosen for DTIs predic-
tion and the results show feasibility of our method.

In  future  research,  we  will  extend  our  method  to
cold-start DTIs prediction problems with unknown drugs
and targets and consider multi-modal node attributes to
further improve the prediction performance.
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