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Abstract — Echo state network (ESN) as a novel artificial neural network has drawn much attention from time
series prediction in edge intelligence. ESN is slightly insufficient in long-term memory, thereby impacting the predic-
tion performance. It suffers from a higher computational overhead when deploying on edge devices. We firstly intro-
duce  the  knowledge  distillation into  the  reservoir  structure  optimization,  and then propose  the  echo state  network
based on improved knowledge distillation (ESN-IKD) for edge intelligence to improve the prediction performance and
reduce the computational  overhead.  The model  of  ESN-IKD is  constructed with the classic  ESN as a student net-
work, the long and short-term memory network as a teacher network, and the ESN with double loop reservoir struc-
ture as an assistant network.  The student network learns the long-term memory capability of  the teacher network
with the help of the assistant network. The training algorithm of ESN-IKD is proposed to correct the learning direc-
tion through the assistant network and eliminate the redundant knowledge through the iterative pruning. It can solve
the problems of error learning and redundant learning in the traditional knowledge distillation process. Extensive ex-
perimental  simulation  shows  that  ESN-IKD has  a  good  time  series  prediction  performance  in  both  long-term  and
short-term memory, and achieves a lower computational overhead.
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 I. Introduction
With the rapid development of artificial intelligence

(AI)  and  edge  computing,  edge  intelligence  emerges  as
time require [1]. Deploying time series prediction models
on edge devices closer to related data can improve the re-
al-time  performance  of  time  series  prediction.  However,
due to  the  limited  resources  (e.g.,  computing  and  stor-
age  resources)  of  edge  devices  [2],  [3],  it  is  necessary  to
reduce the computational overhead incurred by time se-
ries prediction models as much as possible. Therefore, it
is still  a great challenge to implement a time series pre-
diction model with high prediction performance and low
computational overhead on edge devices.

Echo  state  network  (ESN)  [4],  as  a  new  recurrent
neural network (RNN) [5], was firstly proposed by Jaeger
to solve the problems of  vanishing gradient and explod-

ing  gradient  [6]  during  the  training  of  traditional  RNN.
The hidden layer of ESN, also known as the reservoir, is
a randomly  generated  sparse  network  with  many  neu-
rons. The reservoir contains the network state and is af-
fected not only by the current moment, but also by the
past  moment,  thus  it  has  the  capability  for  short-term
memory.  The  sparse  structure  of  reservoir  ensures  the
gradient stability during the training process. Compared
to  the  traditional  RNN,  ESN only  requires  training  the
output weight, with a simple linear regression. Due to its
great  capability  of  processing  non-linear  feature,  great
short-term memory  capability  and  relatively  low  train-
ing  overhead,  ESN stands  out  when performing a  series
of tasks including speech recognition [7], automated con-
trol [8] and so on, especially in time series prediction [9],
[10]. However, the reservoir structure in the classic ESN
is  randomly  generated.  Although  the  reservoir  in  the 
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classic  ESN  has  a  great  short-term  memory  capability,
its  capability  for  long-term  memory  is  slightly  insuffi-
cient, which limits its capability to extract long-term cor-
relation features  in  time  series.  Moreover,  there  are  re-
dundant connections of neurons in the randomly generat-
ed reservoir structure, increasing the computational over-
head. We focus on the reservoir structure optimization of
ESN through knowledge transfer to solve the problems of
insufficient capability  for  long-term memory  and  redun-
dant connections of neurons in the reservoir, so as to im-
prove the prediction performance and reduce the compu-
tational overhead of ESN.

Knowledge  distillation  proposed  by  Hinton  [11]  can
realize the knowledge transfer  from the teacher network
to the student network. So far, knowledge distillation has
achieved quite excellent performance in computer vision,
natural  language  processing  and  other  fields  [12]. De-
pending on the types of transferred knowledge, the relat-
ed works of knowledge distillation can be roughly divid-
ed  into  three  directions.  Some  researchers  [13]  took  the
output of the teacher network as the knowledge and dis-
tilled it  to student network for  target  training.  Another
part  of  researchers  [14]  regarded  the  learned  features  of
teacher  network as  the  knowledge  and transferred them
from teacher network to student network. The last part
of researchers [15] distilled the relationship between net-
work layers of teacher network as the knowledge that is
to be learned by student network. All the knowledge dis-
tillation  methods  mentioned  above  achieve  the  goal  of
transfer learning and improve the performance of student
network.  However,  to  the  best  of  our  knowledge,  these
methods are limited to classification tasks and rarely ap-
plied  to  regression  tasks,  e.g.,  time  series  prediction.  In
this  paper,  knowledge  distillation  is  firstly  introduced
into the reservoir structure optimization, and traditional
knowledge distillation is improved to solve the problems
of error learning and redundant learning. Specifically, the
output of the teacher network is distilled for ESN to op-
timize  the  reservoir  structure,  aiming  to  achieve  better
capabilities  for  long-term  and  short-term  memory  and
simplify the structure further.

In order to improve the prediction performance and
reduce the computational  overhead, we propose an echo
state  network  based  on  improved  knowledge  distillation
(ESN-IKD)  for  edge  intelligence.  The  contributions  can
be concluded as the following two aspects.

1)  We  firstly  introduce  knowledge  distillation  into
reservoir  structure  optimization  and  propose  ESN-IKD
for edge intelligence. First, the model of ESN-IKD is con-
structed. In  particular,  with  the  help  of  ESN with  dou-
ble  loop  reservoir  structure  (ESN-DLRS),  the  classic
ESN learns the long-term memory capability of long and
short-term memory network (LSTM). Second, the train-
ing algorithm of ESN-IKD is proposed. In particular, the
error learning is alleviated by the assistant network and
the  redundant  learning  is  alleviated  by  the  iterative
pruning. The optimized reservoir structure enhances the

long-term memory  capability  and  prunes  the  redundant
neurons.

2)  We  carry  out  a  simulation  analysis  by  applying
ESN-IKD  in  three  datasets  of  typical  time  series.  The
simulation results show that ESN-IKD has better predic-
tion  performance  and  lower  computational  overhead
compared  with  the  teacher  network  and  the  ESNs  with
other optimized  reservoir  structures,  so  it  is  more  suit-
able for deploying on edge devices.

The rest  of  this  paper  is  organized  as  follows.  Sec-
tion II  introduces the related work.  Section III  proposes
ESN-IKD. Section IV simulates  and analyzes  ESN-IKD.
Finally, Section V summarizes the whole work.

 II. Related Work
With  the  gradual  popularization  of  edge  devices,

edge  intelligence  has  received  extensive  attention.  Deng
et al. [16] divided edge intelligence into AI for edge and
AI  on  edge.  The  former  focuses  on  using  the  effective
technology of AI to provide better solutions to key prob-
lems in edge computing, while the latter studies how to
deploy the AI models on edge devices. In the field of AI
for  edge,  Shen et  al.  [17]  proposed  a  power  control
method based on graph neural networks to achieve opti-
mal management of energy consumption. Wang et al. [18]
proposed a pricing prediction algorithm which can satis-
fy the service requirements of users by effectively utiliz-
ing edge computing resources. Chen et al. [19] proposed a
load signature construction method to improve the recog-
nition performance in  load recognition task.  In  the field
of AI on edge, Thakker et al. [20] proposed an implemen-
tation of compressing RNN cell to achieve a balance be-
tween  inferencing  accuracy  and  resource  consumption.
Ma et  al. [21]  proposed  a  truthful  combinatorial  double
auction mechanism  to  guarantee  truthfulness  and  bud-
get-balance  under  locality  constraints  of  mobile  edge
computing.  Peng et  al.  [22]  summarized  the  field-pro-
grammable gate array-based custom computing architec-
ture for convolutional neural network to achieve a better
appliance on edge devices. AI on edge has attracted more
attention  from  academia  and  industry  because  of  its
practicality.  Based on the new computing mode of  edge
computing,  edge  intelligence  can  deploy  AI  models  on
the edge devices closer to the data source, which greatly
reduces the delay cost of AI applications. Although edge
intelligence has been developed to a certain extent, how
to further optimize the performance and reduce the cost
of  edge  intelligence  is  still  an  important  problem  to  be
solved urgently.  The  fundamental  challenge  is  the  con-
flict  between  the  huge  computational  overhead  required
by AI models and the limited computational resources of
edge devices [23]. Network structure optimization can ad-
just  the  network  structure  of  AI  model  to  improve  the
model performance and reduce the model complexity, so
as to provide better edge computing services on resource-
constrained  edge  devices.  Nowadays,  network  structure
optimization is  becoming  an  important  research  direc-
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tion of edge intelligence.
The reservoir,  as  the  core  of  the  ESN,  plays  a  cru-

cial role in the performance of the entire network. In re-
cent years, many researchers have studied the optimiza-
tion of reservoir structure. The related work is mainly di-
vided into the fixed reservoir,  the growth reservoir,  and
the pruned reservoir [24]. In the field of the fixed reser-
voir,  Rodan et al.  [25]  proposed a simple cycle reservoir
(SCR), which organizes the neuros in the reservoir into a
cycle and keeps the connection weights between the neu-
rons  in  the  reservoir  identical.  The  simulation  results
show  that  SCR  reduces  the  computational  overhead  of
ESN. Based  on  SCR,  an  adjacent-feedback  loop  reser-
voir  (ALR)  was  proposed  by  Sun et  al.  [26].  Adjacent
neurons in ALR cooperate with each other through feed-
back connections, making ALR achieve better prediction
performance  than  SCR.  Zhou et  al.  [27]  organized  the
neuros in the reservoir into a double loop structure, and
then  proposed  ESN-DLRS.  Compared  with  SCR,  ESN-
DLRS strengthens the processing capability for temporal
features. In the above-mentioned studies, the fixed reser-
voir reduces  the  randomness  and  computational  over-
head in the forward propagation process of ESN, but al-
so weakens the flexibility and generalization capability of
ESN. In the field of the growth reservoir, Qiao et al. [28]
divided the reservoir into multiple sub-modules and sim-
plified  the  reservoir  by  gradually  adding  sub-modules.
Kawai et al. [29] introduced the small-world topology in-
to  the  reservoir  and  proposed  an  echo  state  network
based  on  improved  small-world  (ESN-ISW)  to  realize
sparse connection by gradually increasing connections be-
tween  neurons  in  the  reservoir.  In  the  above-mentioned
studies,  the growth reservoir has a simple structure and
low computational  overhead,  but it  is  difficult  to find a
suitable stop-adding criterion. In the field of the pruned
reservoir,  Wang et al. [30] proposed a sensitive iterative
pruning algorithm, which simplifies SCR by pruning the
neurons with low sensitivity.  Scardapane et al.  [31] pro-
posed an effective criterion for pruning the connection in
the  reservoir,  which  guides  the  entire  pruning  process
based on the state correlation between neurons. Li et al.
[32]  proposed  a  contribution-based  pruning  algorithm,
which  defines  the  contribution  of  each  neuron  through
mutual  information.  This  algorithm  prunes  the  neurons
with  low  contribution  and  finally  obtains  an  echo  state
network based on contribution (ESN-C). Wang et al. [33]
proposed  an  echo  state  network  optimized  by  the  bias
dropout algorithm (ESN-BD), which has a simpler reser-
voir. In ESN-BD, the neurons with low activation values
are divided into different contribution groups with differ-
ent pruning  probabilities.  In  the  above-mentioned  stud-
ies, the pruned reservoir removes the redundant neurons
through  defining  the  pruning  criteria  to  simplify  the
ESN, but the performance improvement of ESN is limit-
ed. Among the related works mentioned above, although
the computational overhead of ESN has been reduced to
a certain extent, the problem of insufficient capability for

long-term memory of the reservoir is still ignored. There-
fore, it is necessary to design an optimization method for
reservoir structure to realize the reservoir equipped with
great  capability  for  long-term  memory  and  simplified
structure.  This  paper  focuses  on  how  to  realize  the
knowledge transfer of  long-term memory capability,  and
how  to  integrate  the  advantages  of  the  fixed  reservoir
and  the  pruned  reservoir,  aiming  to  enhance  the  long-
term memory  capability  and  prune  the  redundant  neu-
ron.

 III. Design of Echo State Network Based
on Improved Knowledge Distillation

In this  work,  regarding  LSTM  as  the  teacher  net-
work, the classic ESN as the student network, and ESN-
DLRS as the assistant network, we propose ESN-IKD for
edge  intelligence.  LSTM  has  good  capability  for  long-
term memory and performs well in dealing with time se-
ries  problems  with  obvious  long-term  correlation  [34].
Meanwhile,  ESN-DLRS  has  good  capability  to  extract
nonlinear  and  temporal  feature  in  time  series.  We  use
knowledge distillation to optimize the reservoir structure
of ESN, so as to complete the knowledge transfer of long-
term memory capability from LSTM to ESN and reduce
the computational overhead.

Just like the teacher-student mode in real life, if the
teacher network  teaches  wrong  knowledge,  or  the  stu-
dent network  deviates  from  the  correct  learning  direc-
tion, the student network as the learning subject may be
not able to capture the correct knowledge. Therefore, we
add assistant  network  into  the  framework  of  traditional
knowledge distillation  and  use  ESN-DLRS  as  the  assis-
tant network  for  the  teaching  process  of  LSTM  to  re-
duce the adverse effects of error learning. The nonlinear
and temporal features extracted by ESN-DLRS will also
be used  as  tacit  knowledge  to  guide  the  structure  opti-
mization process of the student network.

Besides,  the  problem  of  redundant  learning  is  still
showing in the student network of traditional knowledge
distillation. Redundant learning can easily complicate the
reservoir structure and the dynamic characteristic of the
reservoir  may be  damaged.  In  this  work,  the  redundant
neurons generated during the learning process  are  itera-
tively  pruned,  which  can  not  only  alleviate  the  adverse
effects of redundant learning, but also reduce the compu-
tational overhead of ESN.

p
Tr = {tr(1), tr(2), . . . , tr(t), . . . , tr(p)}

tr(t) t t

tr(t+ 1)

TrK(t) TrK(t) = {tr(t−K + 1), tr(t−K + 2),
. . . , tr(t)} K

U = {(utrain(t), ytrain(t+ 1)) ,
K≤ t≤p− 1} utrain(t) TrK(t) ytrain(t+ 1)

ESN-IKD is applied to time series prediction. Let us
assume that the dataset contains  true values sorted by
time,  denoted  as ,
where  represents the true value at time . If time 
is taken as the current moment, the prediction task can
be  described  as  calculating  the  predicted  value 
of  the  next  moment  by  inputting  historical  sequence

. In particular, 
,  where  is  the  size  of  sliding  window.  We

construct  the  training  set 
, where  is  and  is
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tr(t+ 1)
U1 U2

U3

. The training set is further divided into teacher
training  set ,  assistant  training  set ,  and  student
training set .
 1. ESN-IKD model

utrain(t) U2

yteachertrain (t+ 1)

T1 =
{(

utrain(t), y
teacher
train (t+ 1)

)}
utrain(t) U3

yteacherNewtrain (t+ 1)

T2 = {(utrain(t), yteacherNewtrain (t+ 1))}

Figure  1 shows  the  ESN-IKD model  constructed  in
this work. In this model, the teacher network (LSTM) is
responsible for  teaching  the  long-term memory  capabili-
ty.  It  consists  of  the  input  layer,  the  hidden  layer,  and
the  output  layer.  The  in  is  fed  into  the
trained  LSTM,  then  LSTM  calculates  by
forward propagation  and outputs  the  distillation  knowl-
edge  to teach  the  assis-
tant network. Similarly, the  in  is fed into the
trained LSTM, then LSTM calculates  by
forward propagation  and outputs  the  distillation  knowl-
edge  to teach  the  stu-
dent network. The assistant network (ESN-DLRS) is re-

utrain(t) U3

yassitantNewtrain (t+ 1)

A =
{(

utrain(t), y
assitantNew
train (t+ 1)

)}

sponsible for  supervising  the  distillation  learning  direc-
tion. It consists of the input layer, the double loop reser-
voir, and the output layer. The  in  is fed into
the  trained  ESN-DLRS,  then  ESN-DLRS  calculates

 by forward propagation and outputs the
assistant knowledge  to
teach the  student  network.  As the  principal  part  of  the
model, the  student  network  (the  classic  ESN)  is  ulti-
mately  responsible  for  time  series  prediction.  It  consists
of  the  input  layer,  the  reservoir,  and  the  output  layer.
The classic ESN is trained according to the algorithm in
next section to optimize the reservoir structure. After the
training, the historical sequence of the current moment is
input, and  the  optimized  student  network  performs  for-
ward propagation calculation to obtain the predicted val-
ue of the next moment.

t
The forward propagation process of the student net-

work is as follows. Assume that the current moment is 
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Figure 1  The model of ESN-IKD.
 

  104 Chinese Journal of Electronics, vol. 33, no. 1



u(t) x(t)and the input vector is , the state vector  of the
reservoir can be updated by
 

x(t) = f in (W inu(t) +Wx(t− 1)
)

(1)

f in W in

W
W

W

W

where  is the reservoir activation function,  is the
randomly  generated  input  weight  matrix,  and  is  the
reservoir weight matrix. In the classic ESN,  is gener-
ated randomly and composed of a large number of zero-
value  elements,  which  makes  the  structure  sparse.  In
ESN-DLRS,  is generated by the double loop construc-
tion  algorithm  [27].  In  this  work,  the  reservoir  weight
matrix  is optimized  by  the  training  algorithm  de-
scribed in next section.

ŷ(t)The output  of ESN is calculated by
 

ŷ(t) = f out (W out[u(t), x(t)]
)

(2)

f out W outwhere  is the output activation function, and  is
the output  weight  matrix  obtained  by  the  ridge  regres-
sion [35].

The forward propagation process of LSTM can refer
to  [36].  The  forward  propagation  process  of  ESN-DLRS
is basically the same as that of the classic ESN, which is
not discussed repeatedly.
 2. ESN-IKD training

We  propose  the  training  algorithm  of  ESN-IKD  in
Algorithm 1, and the specific steps are as follows.

At the  beginning,  the  parameters  of  networks  in-
cluding the  teacher  network  (LSTM),  the  student  net-
work (the classic ESN), and the assistant network (ESN-
DLRS) are set, then each part of ESN-IKD is initialized.

U1Teacher network training  Depending on , LSTM
is  trained  by  the  adaptive  moment  estimation  gradient
descent algorithm [36]. The training objective function of
LSTM is represented by
 

min
m∑
t=0

(
y(t)− ŷteacher(t)

)2
/m (3)

y(t) ŷteacher(t)

m

where  is  the  true  value,  is  the  predicted
value of LSTM, and  is the size of the training set.

utrain(t) U2

T1

Afterwards,  the  in  is  fed  to  the  trained
LSTM to output the distillation knowledge  of LSTM.

U2

T1

T1

Assistant  network  training  Depending  on  and
,  ESN-DLRS  is  trained  by  the  ridge  regression.  The

training  objective  function  of  ESN-DLRS  is  similar  to
that of LSTM. The target value in the training process is
obtained by the fusion of the true value and the distilla-
tion knowledge . It can be calculated by
 

yassistanttrain (t+ 1) = α · ytrain(t+ 1) + β · yteachertrain (t+ 1) (4)

α β
α β

where  and  are  the  assistant  distillation  learning
rates, and + =1.

utrain(t) U3

A

Afterwards,  the  in  is  fed  to  the  trained
ESN-DLRS to output the assistant knowledge  of ESN-

utrain(t) U3

T2

DLRS. Meanwhile, the  in  is fed to the trained
LSTM to output the distillation knowledge  of LSTM.

Algorithm 1  Training algorithm of ESN-IKD
Require:

U　　 : Training set.
Ensure:

W　　 : The reservoir weight matrix.
W out　　 : The output weight matrix.

　Initialize ESN-IKD;
u U1　for  in :  //Train the teacher network

u ŷteacher(t)　　Input  into LSTM, calculate ;
　　Train LSTM by equation (3);

u U2 T1　for  in :  //Obtain the distillation knowledge 
u yteachertrain (t+ 1)　　Input  into the trained LSTM, calculate ;

u U2 T1　for  in  and :  //Train the assistant network
yassistanttrain (t+ 1)　　Calculate  by equation (4);

　　Train ESN-DLRS similarly by equation (3);
u U3 A

T2

　for  in :  //Obtain the assistant knowledge  and the
distillation knowledge 

u
yassistantNewtrain (t+ 1)

　　Input  into  the  trained  ESN-DLRS,  calculate
;

u
yteacherNewtrain (t+ 1)

　　Input  into  the  trained  LSTM,  calculate
;

u U3　for  in :  //Train the student network
u ŷstudent(t)　　Input  into the classic ESN, calculate ;

　　Train the classcial ESN by equation (5) firstly;
u A T2 U ′

3　for  in  and :  //Obtain the training set 

ystudenttrain (t+ 1)　　Calculate  by equation (6);
u U ′

3　for  in :  //Transfer knowledge
W　　Calculate  by equation (8);

i [0, N− 1]　for neuron  in :  //Prune iteratively
i　　Prune neuron ;

　　if the objective function value decreases, then
　　　continue
　　else
　　　undo pruning

u U3 W out　for  in :  //Obtain the weight martrix 
u ŷstudent(t)　　Input  into the trained classic ESN, calculate ;

　　Train the classic ESN by equation (5) secondly.

U3

W out

Student  network  training  Depending  on ,  the
classic ESN is trained by the ridge regression. Thus, the
output weight matrix  is obtained. The training ob-
jective function of the classic ESN is represented by
 

min
m∑
t=0

(
y(t)− ŷstudent(t)

)2
/m (5)

ŷstudent(t)where  is the predicted value of the classic ESN.
T2 A

U ′
3 =

{(
utrain(t), y

student
train (t+ 1)

)}
ystudenttrain (t+ 1)

Knowledge  transferring  Depending  on  and ,
the  long-term memory  capability  of  the  reservoir  of  the
classic  ESN is  enhanced.  For the classic  ESN, construct
the  training  set ,  where

 is  the  weighted  average  sum  of  the  true
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ytrain(t+ 1)
yteacherNewtrain (t+ 1)

yassitantNewtrain (t+ 1) ystudenttrain (t+ 1)

value , the predicted value of the teacher net-
work , and the predicted value of the as-
sistant  network .  is calcu-
lated by
 

ystudenttrain (t+ 1) =µ · ytrain(t+ 1) + v · yteacherNewtrain (t+ 1)

+ o · yassitantNewtrain (t+ 1)
(6)

µ, ν, o
µ+ v + o = 1

where  are  the  student  distillation  learning  rates,
and .

U ′
3Depending on , it can be deduced from (2) that

 

x(t) =
(
W out)−1

f arcout (ystudenttrain (t+ 1)
)

(7)

f arcout

W
where  is  the  inverse  output  activation  function.
Substitute  the  above  equation  into  (1),  then  can  be
calculated by
 

W =
[
f arcin(x(t))−W inutrain(t)

]
/x(t− 1) (8)

f arcin

W
where  is  the  inverse  reservoir  activation  function.
To  preserve  the  echo  property  of  the  reservoir,  is
scaled by
 

W = sr ·W/λmax(W ) (9)

sr λmax(W )
W

where  is the spectral radius and  is the maxi-
mum eigenvalue of .

U3

i

i
i

wi,j = wj,i = 0 wi,j

i j
0 ≤ j ≤ N − 1

Iterative pruning  Depending on ,  the redundant
knowledge  of  the  student  network  is  pruned  to  reduce
the impact of redundant learning. Equation (5) is used as
the evaluation criterion. Take neuron  in the reservoir as
an example. If the objective function value decreases af-
ter pruning neuron , that is, the prediction performance
improves,  then  neuron  is  pruned  and  the  connections
between  other  neurons  and  neuron  i  are  eliminated.
Specifically, let , where  represents the
connection  weight  between  neuron  and  neuron ,

.  If  the  objective  function  value  increases
or remains unchanged, there is no pruning.

W

Afterwards,  iterative  pruning  is  repeated  until  the
predefined pruning iteration times is  reached. Then, the
weight matrix  of the reservoir is obtained.

U3

W out

Finally, depending on , the optimized student net-
work is  optimized  by  the  ridge  regression.  Thus,  the  fi-
nal output weight matrix  is obtained.

 IV. Simulation Analysis

D

α β µ ν
o K

Referring to [27] and [36], Table 1 shows the param-
eter settings  of  ESN-IKD.  The  double  loop  interval  pa-
rameter  of ESN-DLRS is set to 10 and other parame-
ters of ESN-DLRS are consistent with that of the classic
ESN. Both  and  are set to 0.5.  is set to 0.5,  is set
to 0.3, and  is set to 0.2.  is set to 3, and the number
of pruning iterations is set to 50.

The normalized root mean square error (NRMSE) is
used to evaluate the prediction performance, the smaller
the better. NRMSE can be calculated by
 

Table 1  Parameter settings of ESN-IKD

Model Parameter Value

Teacher network
(LSTM)

Input layer size 3

Hidden layers number 2

Neurons in first layer 512

Neurons in second layer 128

Output layer size 1

Hidden activation Relu

Output activation Linear

Learning rate 0.001

Student network
(the classic ESN)

Input layer size 3

Reservoir size 50

Output layer size 1

Spectral radius 0.2

Reservoir activation Tanh

Output activation Identity

Learning rate 0.01
 
  

NRMSE =

√√√√( n∑
i=1

(ŷtest(i)− ytest(i))
2

)
/n · σ2 (10)

n ŷtest(i)

ytest(i) σ2

where  is the number of samples,  is the predict-
ed value,  is the true value, and  represents the
variance.

The  multiply-accumulate  operation  (MACC)  [37]  is
used to evaluate the computational overhead, the small-
er the better. One calculation of a neuron in the forward
propagation process is noted as 1 MACC.
 1. Dataset description

Three typical time series datasets, including Mackey-
Glass  chaotic  time  series  (MG)  [4], Intel  Berkeley  Re-
search Lab dataset (IBRL) [38] and Beijing University of
Posts and Telecommunications Academic Network data-
set (BUPTAN) [39], are used in our simulations.

MG  represents  the  random  motion  that  occurs  in
the determined system, which contains rich dynamic in-
formation and can be generated by
 

ds(t)/dt = 0.2s(t− τ)/
(
1 + s10(t− τ)

)
− 0.1s(t) (11)

s(t) τ

τ

where  is the true value at time t and  is the delay
time. In particular,  is  set to 17 [4]. Parts of  the sam-
ple data of MG are shown in Figure 2(a).

IBRL is collected from 54 sensor nodes scattered in
Intel Berkeley lab from February 28, 2004 to April 5, 2004.
Temperature data of node 1 is selected as the simulation
data in this work. Parts of the sample data are shown in
Figure 2(b) (The ordinate is the normalized temperature
value every 31 s). BUPTAN records the number of pack-
ets per minute from September 24, 2011 to September 30,
2011, in the backbone nodes of the academic network of
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Beijing  University  of  Posts  and  Telecommunications.
Parts of the sample data are shown in Figure 2(c).

As  shown  in Figure  2,  the  data  generated  by  the
equation  in  MG  has  the  characteristics  of  drastic
changes, small periodic intervals, and obvious short-term
correlations. Unlike  MG,  IBRL  and  BUPTAN  are  col-
lected in real world. The data in IBRL has the character-
istics of relatively gentle changes, long periodic intervals,
and obvious  long-term  correlations.  The  data  in  BUP-
TAN changes more complicatedly. It has the characteris-
tics of gentle changes at the troughs and drastic changes
at  the  peaks,  showing  a  relatively  balanced  long-term
correlation  and  short-term  correlation.  Considering  the
periodicity  of  each  dataset,  the  first 3,000 data  in  MG,
the first 10,000 data in IBRL and the first 10,000 data in
BUPTAN are taken as the simulation data. The simula-
tion data is divided into training set and test set accord-
ing to 8:2, in which the training set is further equally di-
vided into teacher training set, assistant training set and
student training set. All data is normalized by the MIN-
MAX algorithm [40].
 2. Prediction performance analysis

To verify  the  effectiveness  of  optimizing  the  reser-

voir structure based on improved knowledge distillation,
we  compare  ESN-IKD  with  the  student  network  (the
classic  ESN),  the  assistant  network  (ESN-DLRS),  and
the  teacher  network  (LSTM),  repesctively. Figure  3
shows  the  average  NRMSE  of  the  above-mentioned  4
models over 20 experiments on each dataset.
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Figure 3  Comparison of prediction errors of the classic ESN, ESN-
DLRS,  LSTM  and  ESN-IKD  models  on  datesets  (a)  MG,  (b)
IBRL, and (c) BUPTAN.
 

As shown in Figure 3,  the prediction error of  ESN-
DLRS  is  lower  than  that  of  the  classic  ESN  on  all  the
three  datasets.  The  reason  is  that  the  double  reservoir
structure  has  better  temporal  processing  capability.  On
IBRL  with  obvious  long-term  correlation  features,  the
prediction error of LSTM is significantly lower than that
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Figure 2  Parts of the sample data of time series datasets. (a) Mack-
ey-Glass chaotic time series (MG); (b) Intel Berkeley Research Lab
dataset (IBRL); (c) Beijing University of Posts and Telecommuni-
cations Academic Network data-set (BUPTAN).
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of the classic ESN and ESN-DLRS. That is because the
long-term  memory  capability  of  LSTM  is  better  than
that  of  the  classic  ESN  and  ESN-DLRS.  On  MG  with
obvious  short-term  correlation  features  and  BUPTAN
with  balanced  long-term  correlation  features  and  short-
term correlation features, the prediction error of LSTM is
slightly  lower  than  that  of  the  classic  ESN  and  ESN-
DLRS. That is because the classic ESN and ESN-DLRS
have  great  capability  for  short-term  memory,  making
them  extract  short-term  correlations  efficiently,  while
LSTM  uses  multiple  hidden  layers  to  capture  the  deep
features,  and  thus  compared  with  the  classic  ESN  or
ESN-DLRS with  single  hidden  layer,  its  feature  extrac-
tion  capability  is  better.  ESN-IKD  achieves  the  lowest
prediction error on all the three datasets. Across all cas-
es,  the  average  advantages  of  ESN-IKD are  17.8% over
ESN,  14.5%  over  ESN-DLRS,  and  8.6%  over  LSTM.
That is because ESN-IKD can improve the capability of
extracting  long-term  correlation  features  after  learning,
and thus its reservoir has good capabilities for both long-
term memory and short-term memory. In summary, the
optimization of  the  reservoir  structure  based  on  im-
proved knowledge distillation can enhance the long-term
memory capability of the reservoir.

To  verify  the  prediction  performance  of  ESN-IKD,
we compare  ESN-IKD  with  the  ESNs  with  other  opti-
mized reservoir structures, such as ESN-C [32], ALR [26],
ESN-ISW [29] and ESN-BD [33]. Figure 4 shows the av-
erage NRMSE of 20 experiments on each dataset for the
classic  ESN,  ESN-C,  ALR,  ESN-ISW,  ESN-BD  and
ESN-IKD.

As shown in Figure 4, the prediction errors of ESN-
C, ALR, ESN-ISW, ESN-BD and ESN-IKD are all lower
than that of the classic ESN, which shows that optimiz-
ing  the  reservoir  structure  can  improve  the  prediction
performance of ESN. On the three datasets, we compare
the  performance  of  the  pruned  reservoir  ESN-C  and
ESN-BD, the fixed reservoir ALR and the growth reser-
voir ESN-ISW. It can be seen from the figure that ESN-
C has the worst prediction performance, ESN-BD has the
best  prediction  performance.  ALR  and  ESN-ISW  have
the  prediction  performance  between  the  former  two.
That is because ESN-C aims to reduce the computation-
al  overhead  only,  and  yet  the  different  contribution
groups of  ESN-BD  can  make  the  optimization  of  reser-
voir more instructive. In addition, the small-world topol-
ogy of ESN-ISW might generate complex reservoir struc-
ture. ALR strengthens the capability  of  processing tem-
poral  features  through the  fixed reservoir  structure,  but
also  weakens  the  flexibility  to  a  certain  extent.  On  all
the  three  datasets,  ESN-IKD  outperforms  ESNs  with
other optimized  reservoir  structures.  Its  average  advan-
tages  are  15.3%  over  ESN-C,  13.2%  over  ALR,  10.1%
over  ESN-ISW,  and  5.6%  over  ESN-BD.  The  reason  is
that the reservoir of ESN-IKD not only learns the long-
term  memory  capability  of  LSTM,  but  also  learns  the
temporal  processing  capability  of  ESN-DLRS  with  the

fixed reservoir structure. The assistant network effective-
ly  reduces  the  impact  of  error  learning  in  traditional
knowledge distillation. At the same time, iterative prun-
ing  removes  redundant  neurons,  reducing  the  impact  of
redundant  learning.  In  summary,  ESN-IKD  integrates
the  advantages  of  the  fixed  reservoir  and  the  pruned
reservoir,  so  it  has  better  prediction  performance  than
ESNs with other optimized reservoir structures.
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Figure 4  Comparison of prediction errors of the classic ESN, ESN-
C,  ALR,  ESN-ISW,  ESN-BD  and  ESN-IKD  on  datesets  (a)  MG,
(b) IBRL, and (c) BUPTAN.
 

 3. Computational overhead analysis
To verify  the  effectiveness  of  ESN-IKD in  reducing

the computational  overhead  of  the  reservoir,  we  com-
pare ESN-IKD with ESN-C [32] and ESN-BD [33] which
are the representatives of the pruned reservoir. Figure 5
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shows the  average  number  of  pruned  neurons  of  20  ex-
periments  on  each  dataset  for  ESN-C,  ESN-BD  and
ESN-IKD.

As shown in Figure 5, ESN-IKD has a larger  num-
ber of pruned neurons than ESN-C and ESN-BD on MG
and BUPTAN, while ESN-C and ESN-BD pruned more
neurons on  IBRL.  That  is  because  ESN-IKD  is  less  af-
fected by redundant learning during the knowledge distil-
lation  on  IBRL  and  more  significantly  affected  on  MG
and BUPTAN,  making  its  reservoir  have  more  redun-
dant neurons. On the three datasets, the average advan-
tages  of  ESN-IKD are  3.6% over  ESN-C and 2.2% over
ESN-BD.
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Figure 5  Comparison  of  numbers  of  pruned  neurons  of  ESN-C,
ESN-BD and ESN-IKD.
 

To  verify  the  advantages  of  ESN-IKD  in  terms  of
computational overhead, we calculate the MACCs of the
classic  ESN,  ESN-C,  ESN-BD  and  ESN-IKD,  as  shown
in Table  2. LSTM  has  a  more  complex  network  struc-
ture and uses two hidden layers, which makes it contain
more neurons, so the MACC of LSTM far exceeds other
models.  ESN-DLRS,  ALR  and  ESN-ISW  do  not  prune
neurons in the reservoir, and thus their MACCs are con-
sistent with that of the classic ESN. Therefore, we do not
discuss  the  MACCs  of  LSTM,  ESN-DLRS,  ALR  and
ESN-ISW.
 
 

Table 2  MACCs  of  the  classic  ESN,  ESN-C,  ESN-BD  and  ESN-
IKD

Model MG IBRL BUPTAN

Classic ESN 2754 2754 2754

ESN-C 1638 1890 2068

ESN-BD 1638 1804 2068

ESN-IKD 1480 2350 1558
 
 

As  shown  in Table  2,  compared  with  the  classic
ESN,  ESN-C,  ESN-BD  and  ESN-IKD  have  lower
MACCs. The reason is that all these three models prune
redundant neurons  in  the  reservoir,  reducing  computa-
tional overhead. The MACCs of ESN-IKD is lower than
that of ESN-C and ESN-BD on MG and BUPTAN, and
higher than that of ESN-C and ESN-BD on IBRL. That

is because ESN-IKD prunes more redundant neurons on
MG and BUPTAN. On the  three  datasets,  the  MACCs
of ESN-IKD decreases 1.2% than ESN-C and 0.8% than
ESN-BD  on  average.  Compared  with  the  classic  ESN,
the decreasing value can reach 11.6%. In summary, com-
pared  with  the  teacher  network  (LSTM),  ESN-IKD
adopts  a  single  reservoir  and has  a  simplified  structure.
Compared  with  ESNs  with  other  optimized  reservoir
structures, ESN-IKD removes more redundant neurons in
the reservoir,  and  thus  reduces  the  computational  over-
head, making it more suitable for deploying on edge de-
vices.

 V. Conclusion
Edge intelligence is  of  great significance to time se-

ries prediction. In this paper, we proposed the echo state
network based on improved knowledge distillation (ESN-
IKD) for edge intelligence, aiming to improve the predic-
tion performance while reducing the computational over-
head. In ESN-IKD, the classic ESN learns the long-term
memory  capability  of  LSTM with  the  help  of  the  ESN-
DLRS.  ESN-IKD  reduces  the  adverse  effects  of  error
learning  and  redundant  learning  through  the  assistant
network  and  iterative  pruning.  Finally,  we  conducted
comprehensive  experiments  on  three  typical  time  series
prediction tasks  to  evaluate  the  ESN-IKD.  The  experi-
mental  results  show  that  ESN-IKD  is  superior  to  the
teacher  network  and  the  ESNs  with  other  optimized
reservoir structures  in  terms  of  both  prediction  perfor-
mance and computational  overhead. After the optimiza-
tion of  the  reservoir  structure,  ESN-IKD  is  more  suit-
able for deploying on edge devices. The training of ESN-
IKD is  a  little  complex,  and  our  future  work  will  focus
on how to optimize  the training of  ESN-IKD to further
reduce the training overhead.
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