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   Abstract — Vehicles on the road exchange data with
base  station  frequently  through  vehicle  to  infrastructure
(V2I) communications to ensure the normal use of vehicu-
lar applications,  where  the  IEEE  802.11  distributed  co-
ordination  function  is  employed  to  allocate  a  minimum
contention  window  (MCW)  for  channel  access.  Each
vehicle may change its MCW to achieve more access op-
portunities at the expense of others, which results in un-
fair communication  performance.  Moreover,  the  key  ac-
cess  parameter  MCW  is  privacy  information  and  each
vehicle  is  not  willing  to  share  it  with  other  vehicles.  In
this  uncertain  setting,  age  of  information  (AoI),  which
measures the freshness of data and is closely related with
fairness, has become an important communication metric.
On this  basis,  we design an intelligent  vehicular  node to
learn  the  dynamic  environment  and  predict  the  optimal
MCW,  which  can  make  the  intelligent  node  achieve  age
fairness.  In  order  to  allocate  the  optimal  MCW  for  the
vehicular node, we employ a learning algorithm to make a
desirable decision by learning from replay history data. In
particular,  the  algorithm  is  proposed  by  extending  the
traditional  deep-Q-learning  (DQN)  training  and  testing
method.  Finally,  by comparing  with  other  methods,  it  is
proved that  the  proposed  DQN method can  significantly
improve the age fairness of the intelligent node.

   Key words — Vehicles, Fair, Chennel access, Age of

information (AoI), Deep-Q-learning.

 I. Introduction
With the development of the economy and quality

of life, people have an urgent demand for a more com-
fortable  driving  experience  [1].  Therefore,  more  and
more  advanced  networks  and  on-board  sensing  devices
have been  introduced  to  enable  a  large  number  of  ap-
plications  to  meet  the  demand  of  users  driving  on  the
road. Vehicles on the road have to exchange data with
the base station (BS) frequently through vehicle to in-
frastructure (V2I)  communications  to  ensure  the  nor-
mal  use  of  these  applications  [2],  [3].  These  data  may
include image streams,  video streams,  network instruc-
tions, and shared files. The vehicles adopt the tradition-
al access mechanism IEEE 802.11 (802.11 for short) dis-
tributed coordination function (DCF) with a fixed min-
imum contention  window  (MCW)  size  to  access  chan-
nel at the media access control (MAC) layer [4], [5], but
it  has  a  drawback  that  the  spectrum utilization  is  not
efficient  due  to  the  dynamic  change  of  vehicle  density
[6]–[9]. In this case, each vehicle may change its MCW
to achieve  more  access  opportunities  at  the  expense  of
others, which results in unfair communication perform-
ance [10]. Moreover, the key access parameters MCW is
the privacy information and each vehicle is  not willing
to share it with other vehicles. In this uncertain setting,
we design an intelligent vehicular node to learn the dy-
namic  environment  and  predict  the  optimal  MCW  to
achieve fair communication performance.

Usually,  communication  performance  is  evaluated
through wireless communication delay, throughput, and 
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quality  of  service  (QoS)  [11]. However,  these  perform-
ance metrics may not be able to reflect the freshness of
the transmission data  that  is  important  to  the  vehicu-
lar applications. As a novel communication metric, the
age of  information  (AoI)  has  received  extensive  re-
search attention in recent years [12]–[14]. The AoI met-
ric is different from the traditional performance metrics.
It  refers  to the time interval  between the current time
and the generation time of the data to be transmitted.
As  compared  to  the  transmission  delay,  the  AoI  can
better measure the freshness of the transmitted data [15].

In  this  paper,  we  consider  the  dynamic  scenario
where  the  number  and  MCW  of  vehicles  may  change
over  time.  In  the  scenario,  when  a  new  vehicle  enters
the  coverage  area  of  the  BS,  the  new  vehicle  neither
knows the MCW of the other vehicles nor how the oth-
er  vehicles  adjust  their  own  MCW.  We  designed  this
newly entered vehicle as an intelligent vehicle node and
proposed an extended DQN training and test method to
predict the optimal MCW which can ensure its age fair-
ness in the network*1.

The main contributions are summarized as follows:
1)  Considering  the  dynamic  and  unknown  vehicular
networks,  we  design  an  intelligent  vehicular  node  to
learn  the  environment  and  predict  the  optimal  MCW
which ensures  the age fairness  of  the  intelligent  node’s
transmission  data  in  the  network;  2)  The  age  fairness
utility  of  the  intelligent  vehicular  node  is  defined  to
measure  the  relationship  between  the  number  of
vehicles in the network and the age fairness; 3) We es-
tablish a training model by defining the state space, ac-
tion space, and reward mechanism, and propose an ex-
tended DQN training and test method to learn and pre-
dict  the  optimal  action  at  each  discrete  observation
time interval;  4)  The  performance  of  the  proposed  ac-
cess mechanism  is  evaluated  by  simulations  under  dif-
ferent  vehicle  characteristics,  as  compared  to  other
baseline methods.

The rest of this paper is organized as follows. Sec-
tion II reviews the related work. Section III briefly de-
scribes the system model and average AoI of vehicles in
the network. Section IV defines the age fairness metric
and the  deep  reinforcement  learning  (DRL) framework
is  set  up  to  formulate  age  fairness  problem.  Section  V
presents the extensions DQN algorithm on how to learn
the  optimal  action  based  on  the  DRL  framework.  We
present some simulation results in Section VI and con-
clude this paper in Section VII.

 II. Related Work
In this section, we first review the related work on

MAC protocol, then we review the existing work on the
AoI.

 1. MAC protocol
There has been a lot of work to improve the MAC

protocol.  Lv et al.  [16] proposed a new function to ad-
just the contention window (CW) in 802.11 networks to
extend DCF. Wu et al. [17] proposed a MAC layer pro-
tocol  that  uses  the  Q-learning  algorithm to  adjust  the
contention  window  in  order  to  provide  an  effective
channel  access  scheme  for  various  network  conditions.
Jamali et  al.  [18] proposed  a  new  type  of  MAC  pro-
tocol  based  on  802.11  DCF,  which  is  called  adaptive
back-off tuning MAC (ABTMAC). It also considers the
appropriate  transmission  attempt  rate  for  both  cases
where  the  request  to  send/clear  to  send  (RTS/CTS)
mechanism  is  not  used.  Zhou et  al.  [19]  proposed  a
practical  distributed back-off  algorithm called adaptive
contention window back-off (ACWB), which is suitable
for  802.11  wireless  local  area  network.  It  maximizes
throughput and fairness based on idle back-off interval
statistics.  Pressas et  al.  [20] proposed  a  modified  ver-
sion  of  802.11p  MAC  based  on  reinforcement  learning
(RL) to reduce the probability of  packet collisions and
bandwidth wastage.  At  the  same  time,  the  transmis-
sion delay is kept within an acceptable level. Wu et al.
[21] proposed a routing scheme based on reinforcement
learning, which can improve the contention-efficiency of
the 802.11p MAC layer and achieve low latency.

 2. Age of information
Many  works  also  consider  the  AoI.  To  solve  the

problem that the frequent cache of updates of Internet
of  things  (IoT)  sensors  may  incur  considerable  energy
costs,  Wu et  al.  [22]  proposed  an  online  cache  update
scheme to obtain an effective trade-off between average
AoI and energy costs.  Chen et al.  [13] investigated the
AoI-aware  radio  resource  management  problem  for  an
expected long-term performance optimization in a Man-
hattan grid V2V communication network and proposed
a  proactive  algorithm  based  on  the  deep  recurrent  Q-
network. Wu et al.  [23] considered cellular Internet as-
sisted  by  UAVs,  studied  the  UAV’s  AoI  minimization
problem by designing the UAV’s trajectory. Wang et al.
[24]  studied  the  problem  of  minimizing  the  weighted
sum  of  the  AoI  and  the  total  energy  consumption  of
IoT devices. To minimize the weighted sum of AoI cost
and energy consumption, the author proposed a distrib-
uted  reinforcement  learning  method  to  optimize  the
sampling strategy.  Han et al.  [25] proposed a novel  al-
gorithm  to  solve  the  optimal  blind  radio  resource
scheduling  problem  in  orthogonal  frequency  division
multiplexing access (OFDMA) systems to minimize the
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 Simulation codes are provided to reproduce the results in this paper: https://github.com/qiongwu86/Age-Fairness



long-term  average  AoI.  Leng et  al.  [26]  considered  the
user  scheduling  problem  on  communication  sessions,
studied  the  AoI  minimization  problem  in  a  network
composed of energy harvesting transmitters, and formu-
lated an  infinite-state  Markov  decision  problem  to  op-
timize AoI. Yates et al. [12] described the timeliness in-
dicators  of  AoI  and  proposed  general  methods  for  AoI
evaluation  and  analysis  applicable  to  various  sources
and  systems.  Kadota et  al.  [27]  considered  a  wireless
network with a BS and derived the lower  limit  of  AoI
performance that  can  be  achieved  for  any  given  net-
work operating under any queuing rule.

As mentioned above, currently there is no work to
design a  scheme to  jointly  optimize  the  MAC protocol
and the age fairness, which motivates us to conduct this
work.

 III. System Model
In  this  section,  we  will  describe  the  system model

in  detail.  It  includes  scenario  model  and  AoI  of  the
vehicle.

 1. Scenario model

Nv

n = 1, 2, . . .

T

λv µv

As illustrated in Fig.1, we consider a vehicular net-
work with a BS deployed at the roadside of a one-way
highway. The number of  vehicles  moving in the cover-
age area of the BS is  and each vehicle is moving to-
wards  the  same  direction.  We  divide  the  time  domain
into  discrete  time  intervals , and  the  dura-
tion of each time interval is . At the beginning of each
observation time interval, the vehicles enter or leave the
network  according  to  the  Poisson  distribution  process
with the arrival rate  and the departure rate , re-
spectively.
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Fig. 1. System model.

 

W0 − 1 W0

Assume  that  the  transceiver  is  installed  on  the
headstock  of  each  vehicle.  Once  the  headstock  of  a
vehicle  enters  the  coverage  of  BS,  it  will  transmit  the
data  packet  to  the  BS  immediately.  We  consider  the
network to be operating in a high-load regime [28], i.e.,
each vehicle  always  has  a  packet  to  transmit,  to  ex-
plore  the  extreme  performance  of  our  scheme.  Each
vehicle employs  the  802.11  DCF  mechanism  to  trans-
mit the packet. Specifically, a vehicle initializes a back-
off process and randomly chooses an integer value from
0  to  as  the  back-off  counter,  where  is  the
minimum  contention  window.  Then  the  value  of  the
back-off  counter is  decreases by 1 after each time slot.
When the value of the back-off counter decreases to 0,
the vehicle captures the channel. Then the vehicle gen-
erates a packet and transmits it to the BS over the cap-
tured channel. If more than one vehicle is transmitting
at the same time, a collision will occur and thus incurs
the  transmission  failure;  otherwise  the  transmission  is

successful. The above process will be repeated to trans-
mit different packets.

n

ωn = [ωn
0 , ω

n
1 , . . . , ω

n
Nv

]

node0

node0
node0

ωn
0

We assume  that  the  MCWs  of  all  vehicles  in  the
network keep constant in each discrete time interval ,
i.e., .  The  MCWs  of  these
vehicles may be changed at different discrete time inter-
vals.  We design an intelligent  vehicular  node,  which is
referred to as  in the following of this paper, and
adjust its MCW adaptively to achieve the fair age. Note
that  cannot  obtain  the  MCW of  any  vehicle  in
the network. To achieve the fairness of the AoI, 
communicates  with  the  BS  to  obtain  the  observation
data, including the number of vehicles, and learns from
the replay history data to select the optimal  at each
time interval.

 2. Age of information of the vehicle
Next,  we  describe  the  AoI  metric  to  measure  the

freshness of data transmitted by a vehicle. The process
of  802.11 DCF consists  of  discrete  time slots,  thus  the
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i tAoI of vehicle ’s data at time slot  is defined as
 

ati = max{t− vti , 1},∀i ∈ N (1)

vti
i N

N = {0, 1, . . . , Nv}
node0 Nv

where  is  the time stamp of  the generated packet of
vehicle ,  and  can  be  expressed  as

,  here  0  indicates  the  intelligent
vehicular  and  is  the  number  of  the  other
vehicles in the network.

t1

t2

t2 t3

t3
t4

1 t5
t6

t7

To further  describe  the  AoI  of  vehicle,  we  assume
that at most one packet is cached at each vehicle in the
network.  As  shown  in Fig.2, a  vehicle  starts  to  trans-
mit a packet to the BS at time slot , the BS success-
fully  receives  the  packet  transmitted  by  the  vehicle  at
time  slot .  The  vehicle  will  immediately  sample  and
generate the next packet to transmit at the same time.
Note that the next packet is generated by the vehicle at
time slot  and arrives at time slot  after a time slot.
At  this  time,  the  age  of  the  packet  has  passed  a  time
slot, so the age at time slot  becomes one. In addition,
the other vehicles are transmitting at time slot , thus
a collision  occurs  and  the  AoI  of  the  vehicle  still  in-
creases  by  after  time  slot . The  packet  is  success-
fully received at the BS at time slot , so a new pack-
et  will  be  sampled  immediately  at  the  vehicle  and  the
AoI of the vehicle is reset to 1 at time slot .
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Fig. 2. Illustration of the AoI of vehicle.

 

i t+ 1Therefore, the AoI of vehicle  at slot  can be
expressed as
 

at+1
i =

{
ati+1, BS not receives a packet at slot t
1, BS receives a packet at slot t

(2)

iTherefore, we can get the average AoI of vehicle 
in an observation time interval as
 

∆i =
Tslot

T

T/Tslot∑
t=1

ati,∀i ∈ {0, 1, . . . , Nv} (3)

Tslot Twhere  is the duration time of a time slot,  is the
duration of an observation time interval.

 IV. Problem Formulation
In  order  to  achieve  the  age  fairness,  we  use  the

node0 sn an
rn node0 n

DRL framework with state, action and reward mechan-
isms to model the problem of the search for the optim-
al  MCW for .  Next,  state ,  action  and re-
ward  for  at  observation  time  interval  will
be  defined,  respectively.  The  parameters  used  in  this
paper are listed in Table 1.
 
 

Table 1. Notations used in this paper

Notation Description
ati i tThe AoI of vehile  at time slot 

at+1
i i t+ 1The AoI of vehicle  at time slot 
an node0 nThe action of  in observation interval 
A The action set

Floss The loss of fairness
m The maximum back-off stage
n The discrete observation interval
Nd The number of vehicular nodes in network
Nmax The maximum number of vehicles in network
Nv The number of vehicles in network

Qθ(sn, an) The state action value of prediction network
Qθ′ (sn, an) The state action value of target network

rn node0 nThe reward of  in observation interval 
R The reward set
sn node0 nThe state of  in observation interval 
S The state set
T The duration time of each observation interval
Ts The average time of a successful transmission
Tc The average time of a failed transmission
Tslot The duration time of a time slot
vti iThe time stamp of the generated packet of vehicle 
W0 The contention window of a vehicle

∆
n

n

The observation vector of average AoI at observation
intervals 

∆
n
0 node0 nThe average AoI for  at observation interval 

∆
n
v n

The average AoI for all vehicles at observation
interval 

λv The arrival rate of vehicles
µv The departure rate of vehicles

µ(∆
n
, Nd) The age fairness utility

ωn

n

The MCW vector for all vehicles in the network at
observation interval 

ωn
0 node0 nThe MCW of  at observation interval 

ωn
i i nThe MCW of vehicle  at observation interval 
α The learning rate
β The discount factor of future utility
γ The discount factor of state action value
γr The discount factor of immediate reward
π∗ The optimal policy
Ω The discrete-time stochastic process state space

 

 1. State
node0

n

Nn
v

node0 Nn
v

The  intelligent  communicates  with  the  BS
within each time interval to obtain the observation in-
formation.  Since  the  BS  can  know  the  number  of
vehicles  in  the  network  within  each  time  interval ,
which  is  denoted  as ,  through  communicating  with
vehicles,  can  know  from the  BS.  Moreover,

Towards V2I Age-Aware Fairness Access: A DQN Based Intelligent Vehicular Node Training and Test Method 1233



node0
n

∆
n

v node0
∆

n

0 n

∆
n
= [∆

n

0 ,∆
n

v ]

n

∆
n

node0
ωn
0 n

the BS calculates the average AoI of all vehicles in each
time interval,  thus  can observe the average AoI
of  all  vehicles  for each time interval ,  which is  noted
as .  In  addition,  can  monitor  the  channel  to
observe its average AoI  in time interval . At this
point,  we  define  the  observation  vector 
of the AoI in observation interval . Since the AoI of a
vehicle is affected by the MCW of all vehicles in a time
interval and each vehicle may change its MCW at each
time  interval,  the  age  observation  vector  is a  ran-
dom vector  for  each  time  interval.  Besides,  can
also know its own MCW  in time interval .

node0 nAs described above, the state of  in the th
time interval can be defined as
 

sn = [∆
n

0 ,∆
n

v , ω
n
0 , N

n
v ] (4)

∆
n

0 ∆
n

v ωn
0 ωn

i

∆
n

0 ∆
n

v ωn
0 Nn

v

node0

where  and  depends on  and the MCW  of
all vehicles in the network. Since , ,  and 
are the values within discrete space,  the state space of

 is discrete.
 2. Action

node0
n+ 1 sn

n

node0

The  intelligent  changes  MCW  size  for  the
next observation interval  according to the  loc-
ally  observed  in  the  observation  interval ,  so  the
MCW action space of  can be defined as
 

an = {2j−132}5j=1 ∪ {2j−148}2j=1 (5)

node0
Ω

In  order  to  make  more  selective,  its  action
space not  only covers  the limited state  space  of  the
MCW that can be used by the vehicle, but also can ex-
tend to additional MCW options: 48 and 96.

 3. Reward
node0We  first  define  the  age  fairness  utility  for ,

then set the reward according to the age fairness utility.

Nn
v

n

1/Nn
d Nn

d

node0
Nn

d = Nn
v + 1

∆
n

0/(∆
n

0 +∆
n

v )

∆
n

0/(∆
n

0 +∆
n

v ) 1/Nd

∆
n

Nn
d

n

When  the  network  is  considered  as  a  saturated
state, there are  vehicles in the network in the time
interval . If the absolute fairness is provided, theoret-
ically, the  proportion  of  the  AoI  of  nodes  in  the  net-
work  should  be ,  where  is  the  number  of
nodes  (both  and the  other  vehicles)  in  the  net-
work, i.e., . However, in the real scenario,
the  proportion  of  AoI  for  each  node  will  be  given  by

,  the  absolute  difference  between
 and  can be  regarded  as  the  fair-

ness loss. According to the relationship between the av-
erage  age  observation  vector  and  the  number  of
nodes  in the network,  the fairness  loss  at  time in-
terval  can be defined as
 

Fn
loss =

∣∣∣∣∣ ∆
n

0

∆
n

0 +∆
n

v

− 1

Nn
d

∣∣∣∣∣ (6)

n

According to (6), the age fairness utility at time in-
terval  can be defined as
 

µ(∆
n
, Nn

d ) = 1− Fn
loss

= 1−

∣∣∣∣∣ ∆
n

0

∆
n

0 +∆
n

v

− 1

Nn
d

∣∣∣∣∣ (7)

node0
node0

n

In this paper, as the number of vehicles and MCW
changes,  aims to maintain its age fairness utility
in the network, so the reward of  at the observa-
tion interval  is defined as its age fairness utility, i.e.,
 

rn = µ(∆
n
, Nn

d ) (8)

node0

n

∆
n
= [∆

n

0 ,∆
n

v ] node0
ωn
0 Nn

d node0

n+ 1 ωn
0 + 1

E
[∑∞

k=n β
k−nµ(∆

k
, Nn

d )
]

β ∈ (0, 1)

With the  above  definition,  we  will  further  intro-
duce the MCW optimization problem for  in  the
vehicle  environment.  Specifically,  given  the  age  obser-
vation  vector  for  the  observation  interval ,  i.e.,

,  the MCW of  for observation in-
terval n, i.e., , and the number of nodes , 
predicts and  allocates  its  MCW  for  the  next  observa-
tion interval ,  i.e., ,  to maximize the long-
term  reward,  i.e.,  the  age  fairness  utility  of  the  entire
observation  process ,  where

 is  used to establish the importance of  future
utility.

 4. Policy
node0

an = π(sn) π

S A
π∗

Q∗ : S ×A → R Q∗(sn, an)

an sn
π∗

The  action  taken  by  in  each  state,  i.e.,
 is  determined  by  the  policy  that  maps

from the state set  to the action set . The goal of Q-
learning  is  to  find  the  optimal  policy  to  maximize
the long-term expected cumulative discount reward [29].
To  do  this,  we  define  the  optimal  Q  function

,  where  corresponds  to  the
long-term reward when choosing action  in state ,
i.e., following the optimal policy . Therefore, the op-
timal policy is defined as
 

π∗(sn) = argmax
an

Q∗(sn, an) (9)

 V. Solution
Since  the  state  and  action  space  are  discrete,  the

DQN algorithm is more suitable to solve the DRL prob-
lems. Therefore,  we  propose  an  extended  DQN  al-
gorithm to obtain the optimal action policy. In this sec-
tion, we first introduce how we extend the DQN train-
ing and testing method to better solve the above prob-
lem, then describe the training procedures to obtain the
optimal  age  fairness  utility,  finally  introduce  how  to
test the performance under the optimal policy.

 1. Extensions to DQN
We extend the traditional DQN from five aspects,
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i.e.,  double  Q-learning,  dueling  networks,  multi-step
learning,  distributional  reinforcement  learning,  and

noisy nets. The flow diagram of the extended DQN al-
gorithm is shown in Fig.3.
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Fig. 3. Flow diagram of extended DQN.

 

1) Double Q-learning
The classical method of searching for the optimal Q

value is  based  on  the  value  iteration  method  of  Bell-
man equation [30], i.e., 

Qθ(sn, an)← Qθ(sn, an) + α

(
rn + γmax

an+1

Qθ(sn+1, an+1)−Qθ(sn, an)

)
(10)

Qθ(sn, an)

an sn α rn
an

sn γ

Qθ(sn+1, an+1)

an+1 sn+1

θ

where  is the state action value when action
 is selected under state ,  is the learning rate, 

is  the  immediate  reward  obtained  by  taking  action 
under  the  state ,  is  the  discount  factor,  and

 is  the  state  action  value  when  action
 is  selected  under  state .  However,  only  one

neural network parameter  is used in (10) for Q value
θ θ′

iteration, which results in the overestimation bias, thus
it affects  the  Q  value  and  further  affects  the  perform-
ance of learning. Double Q-learning is designed in calcu-
lating the target Q value with two different neural net-
work parameters including the prediction network para-
meter  and the target network parameter  [31]. The
particular formula is shown as follows, 

Qθ(sn, an)← Qθ(sn, an) + α

(
rn+γQθ′(sn+1,max

an+1

Qθ(sn+1, an+1))−Qθ(sn, an)

)
(11)

The prediction network is responsible to select the
action  and  the  target  network  is  used  to  calculate  the
target  Q  value.  By  decoupling  the  selection  of  actions
and  the  estimation  of  the  value  of  state  actions,  the
harmful overestimation of DQN is reduced, thereby im-
proving the stability of the algorithm [32].

2) Dueling networks

V (sn)

A(sn, an)

V (sn)

Different  from  the  traditional  DQN  where  the
neural network directly outputs the Q value of each ac-
tion, the dueling DQN first divides the fully connected
layer  of  the network into an output state  value 
and  an  output  action  advantage  value .  The
state  value  function  has nothing  to  do  with  ac-

A(sn, an)

Softmax

tions, but represents the value of the static state envir-
onment  itself.  Meanwhile,  action  advantage  function

 is related to the action and represents the ad-
ditional value of choosing an action. In addition, the ac-
tion advantage value function can reflect the difference
between the value obtained by taking an action and the
average  value  obtained  by  this  state.  Finally,  the  two
features  are  aggregated  in  a  fully-linked  manner  and
nonlinear  activation is  performed through the 
activation function  to  obtain  the  Q  value  of  each  ac-
tion.  In  practical  applications,  the  action  advantage
function is generally set as the single action advantage
function minus  the  average  value  of  all  the  action  ad-
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vantage functions in a certain state, i.e.,
 

Qθ(sn, an, α
n, βn)

= Vθ(sn, β
n) +Aθ(sn, an, α

n)−

∑
a′
n

Aθ (sn, an
′, αn)

Nactions
(12)

αn βn

Vθ(sn, β
n) sn Aθ(sn, an, α

n)

an
sn Nactions

a′n
node0

V (sn, β
n)

where  and  represent  the  number  of  two  fully
linked  layers  of  the  neural  network,  respectively,

 is the state value of state , 
is  the  action  advantage  value  when action  is selec-
ted  under  state ,  is  the  number  of  actions
provided by the neural network,  is all  available ac-
tions.  Based on this,  can finally  achieve  a  more
accurate  in the environment without the in-
fluence  of  actions,  i.e.,  it  can  narrow  the  range  of  Q
value, remove  redundant  degrees  of  freedom  and  fur-
ther improve the stability of the algorithm [33].

3) Multi-step learning

rn

The  traditional  DQN  uses  the  immediate  reward
 and the value estimate at the next step as the tar-

get  value.  However,  with  a  large  number  of  deviations
in the  network  parameters  at  the  early  stage,  the  tar-
get  value  obtained  by  this  method  will  also  require  a
large number of deviations,  and thus incur a relatively
slow learning  rate  [34],  [35].  A more  accurate  estimate
can  be  obtained  by  changing  single-step  learning  to
multi-step learning,  because  immediate  rewards  can be
accurately obtained through interaction with the envir-
onment, so the immediate reward can be rewritten as
 

r(k)n ≡
k−1∑
j=0

γr rn+j (13)

γr
rn r

(k)
n

where  is  the  discount  factor  of  immediate  reward.
We can replace  in (11) with  in (13) to minim-
ize the  loss  of  action  value.  Note  that,  proper  adjust-
ment of the number of steps in multi-step learning can
achieve faster learning.

4) Distributional RL

[vmin, vmax] N

[vmin, vmax]

N

In the  traditional  DQN,  the  outputs  of  the  net-
work  are  always  the  expected  estimated  value  of  the
state-action value Q. However, the expectations for dif-
ferent  groups  of  state-action  values  may  be  the  same,
we should choose a more stable action if we want to re-
duce the risk of taking actions. Distributed DQN based
deep reinforcement learning models are designed from a
distributed perspective.  It  uses  a  histogram  to  repres-
ent  the  estimate  of  the  value  distribution,  limits  the
value among  and selects  equidistant value
sampling  points  in .  Thus  the  output  of  the
network  is  the  probability  of  these  value  sampling

z

z

points, where the sampling point with the largest prob-
ability is  the  optimal  action  to  be  selected.  After  pro-
jecting the state-action value output by the neural net-
work  onto  the  vector ,  the  action  with  the  highest
probability  becomes  the  stable  action  we  expect.
Among them, the calculation method of each element in

 is
 

zi = vmin + (i− 1)
vmax − vmin

N − 1
, i ∈ {1, . . . , N} (14)

5) Noisy nets
node0

ε-greedy

y = wx+ b

In  the  learning  process,  needs  to  perform a
lot  of  action  explorations,  but  the  algorithm
has limitations in performing exploration [36].  In order
to improve the search ability of  the agent,  by combin-
ing the determinism and the noise linear hidden layer of
the noise  flow,  i.e.,  the  weight  and  the  bias  are  in-
terfered by some parameter zero-mean noise, the exist-
ing  expression  of the  neural  network  hid-
den layer can be modified as
 

y = (µw + σw ⊙ εw)x+ (µb + σb ⊙ εb) (15)

⊙ µw

µb [− 1√
Nn

, 1√
Nn

]

Nn σw σb

Std√
Nn

Std

εb εw

Here,  denotes the element-wise product,  and
 obey a uniform distribution ranging of ,
 is the number of neural network nodes,  and 

can  be  initialized  via ,  and  is the  neural  net-
work  parameter.  In  addition,  and  are the  con-
stant randomly  generated  noise  variables  in  each  ex-
ploration, which can be expressed as
  {

εw = f(εi)
εb = f(εj)

(16)

εi εj
f(x)

f(x) = sgn(x)
√
|x|

where  and  follow the  standard  normal  distribu-
tion  with  mean  0  and  variance  1,  can be  ex-
pressed  as .  Over  time,  the  network
can overcome different rates of noise flow through self-
learning,  thereby completing the exploration of  actions
in the form of self-annealing.

 2. Training stage
The pseudocode  of  the  proposed  algorithm  is  de-

scribed  in  Algorithm 1.  For  ease  of  understanding,  we
will  further  introduce  the  proposed  DQN algorithm  in
detail below in conjunction with the pseudocode.

Algorithm 1　Training stage for extended DQN
Nv

λv µv ωn
i

1: Create  simulation  environment,  initialize  according
to the  and , initialize ;

2: Create predict network and target network;
D |D|3: Initialize replay experience buffer  to capacity ;

4: Reset simulation environment;
1 Emax5: FOR episode =  to 

s0 = [∆
0
0,∆

0
v, ω

0
0 , Nv]6: 　 Initialize  observation  sequence 
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ϕ0 = ϕ(s0)and normalized sequenced ;
n 1 Tmax7: 　 FOR time interval  =  to 

an8: 　　 Generate the action  according to (9);
sn+1 rn9: 　　 Execute  next  state  and  observe  reward 

from the system model;
ϕn+1 = ϕ(sn+1)10:　　 Normalized sequenced ;

(ϕn, an, rn, ϕn+1) D11:　　 Store transition  in ;
D ≥ I12:　　 IF number of tuples in  THEN

I
D

13: 　　　 Randomly sample a mini-batch of  transitions
tuples from ;

14: 　　　 Update the predict network by minimizing the
loss function according to (17);

n Tmax15:　　 IF time interval  =  THEN
θ′ ← θ16: 　　　 Update target networks .

node0 node0

λv µv

First, we create the simulation environment. In this
step,  we  declare  the  available  set  of  MCWs  of  both

 and vehicles, initialize the MCW value of 
and vehicles at the beginning and initialize the number
of vehicles  in  the  network  according  to  the  vehicle  ar-
rival rate  and departure rate  in the network.

node0

Nn

ReLu

Softmax

[vmin, vmax]

N

[vmin, vmax] z

N

Then we create neural networks for . We use
two neural  networks  to  create  our  extended DQN net-
work, i.e.,  the  prediction  network  and  the  target  net-
work.  The  prediction  neural  network  consists  of  four
layers. The first two layers are ordinary fully connected
layers  and  the  latter  two  layers  are  noise  nets,  where
each  layer  is  composed  of  neural  network  nodes.
Each layer of the neural network is fully connected and
the output of each node uses  activation function
for  non-linear  activation.  In  addition,  the  input  of  the
neural  network  is  the  state,  while  the  output  is  the
state action value of all available actions. We also intro-
duce  the  dueling  network  to  build  a  neural  network.
The prediction network starts from the third layer and
is divided into a state value network and an action ad-
vantage  value  network.  The  state  value  network  and
the action advantage value network share the first two
layers of fully connected neural networks. The two-way
features are  aggregated together  in  a  fully-linked man-
ner  and  the  activation  function  is  used  for
nonlinear  activation  before  outputting  the  Q  value.
Then  according  to  our  description  of  distributed  RL,
the  state  action  value  is  limited  to . By  se-
lecting  equidistant  value  sampling  points  in

, the network outputs the projection vector 
of  these  value  sampling  points  and  finally  outputs
the  action  index  value  with  the  largest  probability
value,  i.e.,  the  most  stable  action.  The  target  network
has  the  same  structure  as  the  prediction  network  and
will not be described in detail here.

DThen we initialize the experience buffer  to store
the state, action, reward and next state set during the
training process.  The experience buffer  has the storage

|D|capacity of  sets, which corresponds to line 3 of the
pseudocode.

Before  starting  the  training,  we  need  to  reset  the
environment, which corresponds to line 4 of the pseudo-
code.

node0

node0

At the beginning of the loop, we initialize the state
set  for  and  execute  it  at  the  beginning  of  each
episode. In addition, to facilitate the training process of
neural networks and reduce the magnitude of data pro-
cessing, we  have  carried  out  data  normalization  pro-
cessing  on  the  state  set  of .  This  corresponds  to
line 6 of the pseudocode.

nFor each observation interval , we input the state
into the neural network above to decide the action. At
the initial stage of training, due to the influence of the
randomly initialized parameters, the action will be ran-
domly given by the neural network. This corresponds to
line 8 of the pseudocode.

n node0
sn+1

In the training process, the MCW of vehicles in the
environment will change according to a Markov process
and the number of vehicles will change momentarily in
each time interval . After  selects the MCW, it
obtains the next state  by interacting with the en-
vironment  and can calculate  the  immediate  reward for
each state transition according to (8). This corresponds
to line 9 of the pseudocode.

sn+1

ϕn an
ϕn+1 rn

D

After getting the next state , we also need to
execute normalization for the convenience of processing.
Then we cache the current state , the action , the
next state  and the immediate reward  into the
experience buffer  for subsequent parameter training.

If the number of samples in the experience buffer is
less  than  the  mini-batch  size,  the  interaction  with  the
environment  will  continue  and  the  sample  will  be
cached  into  the  experience  buffer.  On  the  contrary,  a
sample is randomly picked up from the experience buf-
fer to train neural network parameters according to the
defined loss function [37]. The loss function is defined as
 

L(θ) =

E
(
rn+γQθ′(sn+1,max

an+1

Qθ(sn+1, an+1))−Qθ(sn, an)

)2

(17)

θ ← θ − α∇θ α = 0.0001

The neural  network  parameters  are  gradually  up-
dated  through  gradient  descent  by  backpropagation,
i.e., , where  is the learning rate
of  gradient descent.  This  corresponds to lines  13 to 14
of the pseudocode.

θ′

θ

θ′ ← θ

Finally, at the end of each episode, we will update
the  parameters  of  the  target  network  through  the
neural network parameters  of the prediction network,
i.e., . This corresponds to the end of the pseudo-

Towards V2I Age-Aware Fairness Access: A DQN Based Intelligent Vehicular Node Training and Test Method 1237



code.

θ∗

Through  continuous  iterative  calculations,  the
neural  network  parameters  of  double  DQN will  finally
approach  the  optimal ,  and  the  training  process  is
completed at this time.

 3. Testing stage

θ∗

To evaluate  the  performance  of  the  proposed  al-
gorithm, we load the optimal neural  network paramet-
ers  obtained  in  the  training  stage  and start  to  test
its performance. The pseudocode of the testing stage is
shown in Algorithm 2.

Algorithm 2　Testing stage for extended DQN
1: Create simulation environment;
2: Import the trained neural network parameters;

1 Emax3: FOR episode =  to 
Nv λv µv4: 　 Initialize  according to the  and ;
ωn
i5: 　 Initialize ;

s0 = [∆
0
0,∆

0
v, ω

0
0 ,

Nv] ϕ0 = ϕ(s0)

6: 　 Initialize  initial  observation  state 

 and normalized sequenced ;
n 1 Tmax7: 　 FOR time interval  =  to 

8: 　　 Generate the action according to
π∗(sn) = argmax

an

Q∗
θ∗(sn, an)　　　  ;

an rn
sn+1

9: 　　 Execute  action ,  observe  reward  and  new
state  from the system model;

 VI. Numerical Simulation

3.8

In this section, we evaluate the performance of the
algorithm by extensive simulation experiments and dis-
cuss the results in detail. The simulation parameters are
shown  in Table  2.  The  simulation  is  based  on  Python

. The  system  scenario  is  a  one-way  highway  net-
work scenario as described in Section III. We have con-
sidered two scenarios with dynamic MCW and number
of  vehicles,  i.e.,  the  simple  vehicle  scenario  and  the
complex vehicle scenario mentioned in the below simu-

ps 1.0 0.75

lation  analysis.  In  these  two  scenarios,  the  simulation
analysis is carried out when the MCW transition prob-
ability  of all vehicles is  and  respectively.

[s1, s2]

[32, 128] ωn
i ∈ [32, 128], ∀i ̸= 0

[s1, s2, s3, s4, s5]

[32, 64, 128, 256, 512]

ωn
i ∈ [32, 64, 128, 256, 512], ∀i ̸= 0

ps

s1 s5
s5 s1

In  the  simple  vehicle  scenario,  the  MCWs  of  all
vehicles  follow  a  Markov  process  with  only  two  states

.  In our simulation experiment,  these  two states
are ,  and  we  set .  In  the
second  complex  vehicle  scenario,  the  MCWs  of  all
vehicles  follow  a  Markov  process  with  five  states

.  In  our  simulation  experiment,  these
five  states  are ,  and  we  set

.  At  each  discrete
time interval, the MCWs of all vehicles in the network
transit  to  the  next  state  with  probability ,  and  the
state changes follow an increasing order from  to ,
and then a decreasing order from  to , so on and so
forth.

 1. Training stage

node0

We first obtain the age dataset based on real-time
protocol simulation. We will train the model for 
based on this dataset. To make our results more gener-
al,  we  train  the  model  10  times  in  different  scenarios
and averaged the convergence curves.

0 60 ps = 1.0

60

200

ps = 0.75

ps = 1.0

ps = 1.0

ps = 1.0

1.0

Fig.4 shows the learning curve of the training pro-
cess  in  the  simple  vehicle  scenario,  which  reflects  the
average  age  fairness  utility  in  each  step,  i.e.,  discrete
time  interval,  under  different  episodes.  It  can  be  seen
that the average age fairness utility gradually increases
from episode  to episode  when . Then the
age fairness utility turns to be stable from episode  to

,  which  means  that  the  optimal  MCW adjustment
policy for this simple vehicle scenario has been learned.
For  the  convergent  curve,  we  can  see  that  it  is  not
smooth, this is mainly because in the training process of
the model, we use the real simulation value of the real-
time protocol to calculate the age fairness utility. In ad-
dition, due to the randomness of the integer selection of
the back-off  counter,  and  the  impact  of  back-off  freez-
ing,  collision  transmission,  and  successful  transmission
during device communication, there will be a slight dif-
ference in the average age statistics for each time inter-
val. In addition, for the scenario where the state trans-
ition  probability ,  it  can  be  seen  that  the
curve has the same convergence trend as the scenario of

,  but  the  age  fairness  utility  after  convergence
is lower than that when , and the amplitude of
its fluctuation is higher than that in  scenario.
This  is  mainly because when the transition probability
is not , the changes of MCW states of other vehicles
will become complicated and no longer have a regular-
ity to follow. At the same time, the number of vehicles
changes dynamically at each time interval, which makes

 

Table 2. Related parameters

Parameters of system model
Parameter Value Parameter Value

Nv 0–9 Nd 1–10
λv 1–6 µv 1–6
T 1 s Tslot 50 µs

Ts 179.64 µs Tc 174.26 µs
m 3 Nmax 0–9

Parameters of extended DQN
Parameter Value Parameter Value

Emax 200/1000 Tmax 200/400

Nn 64/480 Std 0.4

αn 64/480 βn 64/480

vmin 45/43 vmax 50

γ 0.99 α 0.0001
γr 0.99 β 0.99

|D| 10000/100000 I 32
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node0the MCW prediction and adjustment of  challen-
ging.  Therefore,  the  prediction  may  be  undesirable  in
some  steps,  resulting  in  a  decrease  in  the  average  age
fairness utility.
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Fig. 4. Learning cuve of simple vehicle scenario.

 

In Fig.4, the red straight line represents the abso-
lute  fairness  limit,  because  according  to  equation  (4),
when the age is completely fair, the fairness loss should
be 0. Therefore, according to (5), for each step (i.e., one
time interval) of each episode, the age fairness utility is
always 1. However, in the real environment, even if dif-
ferent vehicles use the same MCW, their ages cannot be
completely equal  because  of  the  randomness  of  the  in-
teger selection  of  the  back-off  counter  in  the  exponen-
tial  back-off  mechanism.  Therefore,  we  only  use  it  to
express the absolute fairness upper limit. In the simula-
tion analysis of the following training stage and testing
stage,  we  will  no  longer  describe  the  absolute  fairness
limit.

ps = 1.0

ps = 0.75

ps = 1.0

Fig.5 shows the learning curve of the training pro-
cess in the complex vehicle scenario. It can be seen that
the  tendency  of  the  curve  is  similar  to  that  in  the
simple vehicle scenario, which means that the proposed
scheme is  suitable  for  different  dynamic  scenarios,  ex-
cept  that  the  average  age  fairness  utility  surged  from
episode 0 to 100. The curve increases slowly from epis-
ode  100  to  500  and  reaches  relative  stability  from 500
to  1000.  The  difference  is  that  when ,  the  age
fairness  utility  after  convergence  is  lower  than  that  in
the simple vehicle scenario.  This is  mainly because the
MCWs of all vehicles in complex vehicle scenario will be
more  difficult  to  predict  than  that  in  simple  vehicle
scenario.  However,  when ,  the  age  fairness
utility decreases slightly compared with , which
means that the proposed scheme has similar adaptabil-
ity  to  some  complex  scenarios.  In  addition,  compared
with the simple vehicle scenario, the age fairness utility
of  complex  vehicle  scenario  converges  at  around  500
episodes, which also indicates that more model training

time is required for the complex vehicle scenario.
 2. Testing stage

node0In the testing stage,  adopts the trained mod-
el to achieve the age fairness.

ps = 1.0 ps = 0.75

ps = 1.0

node0

node0

Figs.6(a) and (b) show the test results of age fair-
ness  utility  in  simple  vehicle  scenarios.  To  restore  the
real scenario,  we  only  execute  the  simulation  in  differ-
ent  situations  for  one  time,  without  averaging  the  age
fairness  utility. Fig.6(a) is  the  test  result  of  200  epis-
odes (each episode contains 200 steps, i.e., 200 time in-
tervals).  It  can  be  seen  that  during  the  test,  for  both

 or , the age fairness utility converges
similar to that in Fig.4,  which proves the reliability of
our model. In addition, Fig.6(b) shows the test result of
the  age  fairness  utility  in  an  episode  for  the  simple
vehicle  scenario  with .  The  yellow  line  is  the
average  age  fairness  utility  of  200  steps.  Since  we  are
using the  training  dataset  of  the  real  protocol  simula-
tion, we can see that the utility of most steps fluctuate
around  the  average  value.  It  is  worth  noting  that  the
age fairness utility of some steps is 1, which means that
only  exists  in  the  network  at  this  time;  thus
there is no fairness problem or we can also say that it is
absolutely  fair  for  the  network.  For  individual  points
where the age fairness utility is less than 0.95, such as 90,
119,  175,  199,  may  make  an  error  in  predicting
the  MCW,  which  causes  a  sudden  decrease  in  the  age
fairness utility, but we can see that we still get a relat-
ively high average age fairness utility.

ps = 1.0 ps = 0.75

ps = 1.0

Figs.7(a) and (b) show the test results of age fair-
ness utility in complex vehicle scenarios. Fig.7(a) is the
test  result  of 1000 episodes  (each  episode  contains  200
steps, i.e., 200 time intervals). It can be seen that dur-
ing  the  test,  for  both  and ,  the  age
fairness utility converges similar to that in Fig.5, which
proves  the  reliability  of  our  model.  Different  from
Fig.6(a),  the  age  fairness  utility  in Fig.7(a)  fluctuates
more greatly,  and when , the age fairness util-
ity  is  lower  than  that  in Fig.6(a). This  is  mainly  be-
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Fig. 5. Learning cuve of complex vehicle scenario.
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ps = 1.0

node0

node0

cause for scenarios where MCW changes are more com-
plex, the accuracy of MCW prediction will be degraded,
but this  does not affect  the superiority of  our method.
Fig.7(b) shows the test result of the age fairness utility
of 200 steps in an episode of the complex vehicle scen-
ario  with .  In  addition,  our  description  of  the
curve in Fig.7(b) is the same as that in Fig.6(b). It can
be  seen  that Fig.7(b)  has  a  lower  average  age  fairness
utility  than Fig.6(b)  (i.e.,  yellow  straight  line  in
Fig.6(b)). It can be seen that it has gone through more
steps before  the  age  fairness  utility  decreases  signific-
antly.  It  is  mainly  because  the  MCW changes  for  the
more  complex  vehicle  scenario  are  more  complicated,
which will degrade the accuracy of  predictions of
the  MCW,  thus  reducing  the  age  fairness  utility.
However, it can be seen that the age fairness utility in
the steps is  still  around the average value.  It  indicates
that although  the  performance  has  been  slightly  re-
duced,  can still adapt to the complex scenario.

 3. Vehicle characteristic analysis
We simulate  a  complex  vehicle  scenario  and  aver-

age  the  test  results  of 1000 episodes. Fig.8 shows  the
age  fairness  utility  when  the  maximum  number  of
vehicles changes.

The vehicle arrival rate and departure rate equal to

ps = 1.0 ps = 0.75

3. When the number of vehicles in the network is great-
er  than  1,  i.e.,  there  are  vehicles  in  the  network,  for
both  and ,  we can see that different
numbers of vehicles may incur similar age fairness util-
ity. Ideally, they should have exactly the same age fair-
ness  utility.  But  as  we  described  earlier,  we  calculate
the age  fairness  utility  based  on  the  age  dataset  ob-
tained  by  the  actual  protocol  simulation,  there  will  be
slight errors in the case of different numbers of vehicles,
so the complete equality cannot be achieved.

Fig.9 shows the age fairness utility under different
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Fig. 6. Testing cuve of simple vehicle scenario.
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Fig. 7. Testing cuve of complex vehicle scenario.
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n

node0

n

arrival rates when the maximum number of vehicles is 6
and the departure rate is 3. We can see that in each ob-
servation  interval ,  due  to  constant  departure  rate,
the  number  of  vehicles  in  the  network  is  very  small
when  the  arrival  rate  is  very  low.  As  there  is  only

, it is absolutely fair for the network. However, as
the  arrival  rate  increases,  the  number  of  vehicles  in
each time interval  in the network gradually increases,
thus  leading  to  degradation  of  the  age  fairness  utility.
But the  curve  will  eventually  stabilize.  The  jitter  ran-
ging from 3 to 6 is attributed to the fact that age data
is derived from the real protocol simulation.
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Fig. 9. Different  arrival  rate  rewards  cuve  of  complex

vehicle scenario.
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node0

Fig.10 shows the  age  fairness  utility  under  differ-
ent  departure  rates  when  the  maximum  number  of
vehicles is 6 and the arrival rate is 3. We can see that
in each observation interval , due to the constant ar-
rival rate, there are many vehicles in the network when
the departure rate is  very low. However,  as the depar-
ture rate increases, the number of vehicles in each time
interval  in  the  network  gradually  decreases,  thus
leading to an increase in the age fairness utility. As the
departure rate reaches 6, there will be only  in the
network for a long time, which is absolutely fair for the
network,  and  thus  the  age  fairness  utility  reaches  the
maximum.

 4. Performance evaluation
We set the maximum number of vehicles to 6, the

arrival  rate,  and the departure rate to 3,  and evaluate
the  performance  of  our  RL  method  and  the  following
baseline methods in two scenarios.

node0Optimal (OPT) This method is for  which is
fully aware  of  changes  in  the  network environment  in-
cluding the MCW changes of other vehicles. However, it
should be noted that this is impractical in reality, so we
only use this method as the upper limit of our perform-
ance evaluation.

[∆
n
, ωn

0 ] ωn
0

Random  forest  (RF)　 Random forest  is  a  super-
vised  machine  learning  algorithm.  The  classifier  takes
local observations  as input and  as the tar-

ω
(n+1)
0get label for training. The training label  is used

as  the  optimal  action  for  the  next  step.  We  fixed  the
number of trees to 20 and the depth of each tree to 15.

[∆
n
, ωn

0 ] ωn
0

Decision  tree  (DT)　Decision tree  is  also  a  super-
vised machine  learning  algorithm.  Random  forest  al-
gorithm just uses multiple randomly generated decision
trees to generate the final output result.  This classifier
also  takes  local  observations  as  input and 
as the target label for training. We set the depth of the
tree to 20.

node0Standard protocol (SP)　The intelligent  fol-
lows the fixed MCW protocol  mentioned in the 802.11
DCF protocol, and its MCW is fixed to 64 and 128 re-
spectively  in  simple  vehicle  scenarios.  In  complex
vehicle scenes, MCW is fixed to 64, 128, 256, and 512,
respectively.

ps = 1.0 ps = 0.75

ps = 1.0

ps = 0.75

Fig.11(a) shows the comparison of the age fairness
utility  between  our  RL method and the  other  baseline
methods  in  the  simple  vehicle  scenario.  Among  them,
the red and blue box-whisker  plots  represent  the cases
of  and , respectively. We can see that
no matter what the situation is, the age fairness utility
achieved by our RL method is always the highest, and
the fluctuation range of the box-whisker plot is also the
smallest,  (except  for  the  OPT  method),  which  means
that  the  average  age  fairness  utility  of  each  episode  is
very  stable.  When ,  the  performance  of  RF  is
slightly worse than that of RL, but it also achieves a re-
latively  ideal  age  fairness  utility.  But  as  compared  to
RF,  the  DT’s  performance  will  be  slightly  reduced,
when ;  however,  RL  can  still  learn  a  better
policy.  In  addition,  as  compared  to  OPT,  RL  only
slightly extends the fluctuation range, while RF and DT
not  only  decrease  the  performance  in  terms  of  average
age  fairness  utility,  but  also  extend  the  fluctuation
range  of  the  box-whisker  plot.  Generally  speaking,  the
age  fairness  utility  achieved  by  the  RL  method  is
slightly  better  than  that  of  DT  method.  Nevertheless,
the above three methods are better than the SP meth-
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Fig. 10. Different  departure  rate  rewards  cuve  of  complex

vehicle scenario.
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[32, 128]

node0
node0

node0
node0

node0 node0

od. For the SP method, we can see that the change of
 has little impact on the age fairness utility, because

in  either  case,  uses  a  fixed  MCW and  the  box-
whisker  plots  of  and  are  almost
equal. For MCW = 64, the age fairness utility is higher
than that when MCW = 128. This is because for simple
vehicle scenario, the MCW state space of all vehicles is

.  When  the  MCW of  other  vehicles  is  32,  the
opportunity for  to access the channel will be re-
duced, and the age fairness utility of  will be re-
duced. When the MCW of all vehicles becomes 128, the
opportunity  of  to access  the  channel  will  in-
crease, and thus the age fairness utility of  will in-
crease while the age fairness utility of the whole simula-
tion  process  will  not  be  too  low.  When  the  MCW  of

 is  128,  will have  less  opportunity  to  ac-
cess the channel for a long time, thus incurring a lower
age fairness utility of the whole simulation process than
that when MCW = 64.

Fig.11(b) shows the comparison of the age fairness
utility  between  our  RL  method  and  other  baseline
methods  in  the  complex  vehicle  scenario.  In  complex
vehicle  scenario,  the  MCW of  all  vehicles  has  a  larger

[32, 64, 128, 256, 512]state  space ,  and  the  changes  are
more complex, as described at the beginning of this sec-
tion.

ps

ps = 0.75

ps = 1.0

ps = 0.75

node0 node0

node0

node0

Fig.11(b) shows that RL achieves the result closest
to the optimal utility among all  the methods consider-
ing  the  two  values  of .  As  expected,  the  case  of

 is more  challenging.  Also  note  that  the  per-
formance gap between OPT and RL is reasonable.  Be-
cause the former has complete knowledge of  the envir-
onment, while the latter must rely entirely on local ob-
servations  to  gather  knowledge  of  the  environment.  In
addition,  the  performance  of  RL and  DT methods  has
been greatly reduced. When , it can only be the
same as the performance when the MCW is 64 and 128,
and when , its performance is significantly de-
graded. This is because for more complex situations, it
is  difficult  for  the  classifier  to  give  the  best  action  to
the current state of the network. Sometimes, the action
given by the  classifier  may be  the  worst  action,  which
will cause the average age fairness utility to be signific-
antly degraded  or  even  worse  than  the  standard  pro-
tocol.  For  the  SP  method,  when  the  MCW  used  by

 increases, from the perspective of , the age
fairness  utility  will  gradually  decrease.  This  is  because
the  opportunities  for  to  access  the  channel  will
decrease, leading to a sharp increase in terms of the age
of . So far it also further reflects the effectiveness
of the proposed method.

 VII. Conclusions and Future Work
In this paper, we considered a dynamic and uncer-

tain  V2I  communication  scenario,  where  each  vehicle
may change its MCW to achieve more access opportun-
ities  at  the  expense  of  others  and  each  vehicle  is  not
willing  to  share  its  MCW  with  other  vehicles.  In  this
scenario, we designed an intelligent vehicular node that
is  used  to  learn  the  dynamics  and  predict  the  optimal
MCW from local observations to ensure its age fairness.
In order to allocate the optimal MCW for the vehicular
node,  we  proposed  a  learning  algorithm  by  extending
the  traditional  DQN  training  and  testing  method  to
make a  desirable  decision  by  learning  from replay  his-
tory  data.  In  addition,  we  obtain  an  age  dataset  for
model  training  through  real-time  protocol  simulation,
and  the  superiority  of  our  proposed  RL  method  is
proved  through  experiment  simulations.  According  to
theoretical  analysis  and simulation experiment,  we can
get the following conclusions:

ps• For  different  state  transition  probabilities ,
the model has excellent adaptability and can achieve re-
latively high age fairness utility.

• For the maximum number of  vehicles  in differ-
ent networks,  the  model  can  also  achieve  approxim-
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Fig. 11. Performance evaluation  of  the  proposed  RL meth-

od (a) simple vehicle scenario; (b) complex vehicle
scenario.
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ately the same age fairness utility.
• In order  to  maximize  long-term  discount  re-

wards, given  different  vehicle  arrival  rates  and  depar-
ture rates, this method can also achieve approximately
the same age fairness utility.

If  each  vehicle  is  allowed to  become an intelligent
vehicle,  it  has  the  ability  to  independently  learn  and
adjust its own MCW, so that it  can realize the adapt-
ive compatibility  problem  of  various  network  environ-
ments.  This  may  lead  to  huge  training  difficulties.  In
the future, we will further study the multi-agent train-
ing problem for the adaptive MCW in the network.
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