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Abstract — Vehicles on the road exchange data with
base station frequently through vehicle to infrastructure
(V2I) communications to ensure the normal use of vehicu-
lar applications, where the IEEE 802.11 distributed co-
ordination function is employed to allocate a minimum
(MCW) for channel Each
vehicle may change its MCW to achieve more access op-

contention window access.
portunities at the expense of others, which results in un-
fair communication performance. Moreover, the key ac-
cess parameter MICW is privacy information and each
vehicle is not willing to share it with other vehicles. In
this uncertain setting, age of information (Aol), which
measures the freshness of data and is closely related with
fairness, has become an important communication metric.
On this basis, we design an intelligent vehicular node to
learn the dynamic environment and predict the optimal
MCW, which can make the intelligent node achieve age
fairness. In order to allocate the optimal MCW for the
vehicular node, we employ a learning algorithm to make a
desirable decision by learning from replay history data. In
particular, the algorithm is proposed by extending the
traditional deep-Q-learning (DQN) training and testing
method. Finally, by comparing with other methods, it is
proved that the proposed DQN method can significantly
improve the age fairness of the intelligent node.

Key words — Vehicles, Fair, Chennel access, Age of

information (Aol), Deep-Q-learning.

I. Introduction

With the development of the economy and quality

of life, people have an urgent demand for a more com-
fortable driving experience [1]. Therefore, more and
more advanced networks and on-board sensing devices
have been introduced to enable a large number of ap-
plications to meet the demand of users driving on the
road. Vehicles on the road have to exchange data with
the base station (BS) frequently through vehicle to in-
frastructure (V2I) communications to ensure the nor-
mal use of these applications [2], [3]. These data may
include image streams, video streams, network instruc-
tions, and shared files. The vehicles adopt the tradition-
al access mechanism IEEE 802.11 (802.11 for short) dis-
tributed coordination function (DCF) with a fixed min-
imum contention window (MCW) size to access chan-
nel at the media access control (MAC) layer [4], [5], but
it has a drawback that the spectrum utilization is not
efficient due to the dynamic change of vehicle density
[6]-[9]. In this case, each vehicle may change its MCW
to achieve more access opportunities at the expense of
others, which results in unfair communication perform-
ance [10]. Moreover, the key access parameters MCW is
the privacy information and each vehicle is not willing
to share it with other vehicles. In this uncertain setting,
we design an intelligent vehicular node to learn the dy-
namic environment and predict the optimal MCW to
achieve fair communication performance.

Usually, communication performance is evaluated
through wireless communication delay, throughput, and
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quality of service (QoS) [11]. However, these perform-
ance metrics may not be able to reflect the freshness of
the transmission data that is important to the vehicu-
lar applications. As a novel communication metric, the
age of information (Aol) has received extensive re-
search attention in recent years [12]-[14]. The Aol met-
ric is different from the traditional performance metrics.
It refers to the time interval between the current time
and the generation time of the data to be transmitted.
As compared to the transmission delay, the Aol can
better measure the freshness of the transmitted data [15].

In this paper, we consider the dynamic scenario
where the number and MCW of vehicles may change
over time. In the scenario, when a new vehicle enters
the coverage area of the BS, the new vehicle neither
knows the MCW of the other vehicles nor how the oth-
er vehicles adjust their own MCW. We designed this
newly entered vehicle as an intelligent vehicle node and
proposed an extended DQN training and test method to
predict the optimal MCW which can ensure its age fair-
ness in the network™!.

The main contributions are summarized as follows:
1) Considering the dynamic and unknown vehicular
networks, we design an intelligent vehicular node to
learn the environment and predict the optimal MCW
which ensures the age fairness of the intelligent node’s
transmission data in the network; 2) The age fairness
utility of the intelligent vehicular node is defined to
relationship between the number of
vehicles in the network and the age fairness; 3) We es-
tablish a training model by defining the state space, ac-
tion space, and reward mechanism, and propose an ex-

measure the

tended DQN training and test method to learn and pre-
dict the optimal action at each discrete observation
time interval; 4) The performance of the proposed ac-
cess mechanism is evaluated by simulations under dif-
ferent vehicle characteristics, as compared to other
baseline methods.

The rest of this paper is organized as follows. Sec-
tion II reviews the related work. Section III briefly de-
scribes the system model and average Aol of vehicles in
the network. Section IV defines the age fairness metric
and the deep reinforcement learning (DRL) framework
is set up to formulate age fairness problem. Section V
presents the extensions DQN algorithm on how to learn
the optimal action based on the DRL framework. We
present some simulation results in Section VI and con-
clude this paper in Section VII.

II. Related Work

In this section, we first review the related work on

MAC protocol, then we review the existing work on the
Aol.

1. MAC protocol

There has been a lot of work to improve the MAC
protocol. Lv et al. [16] proposed a new function to ad-
just the contention window (CW) in 802.11 networks to
extend DCF. Wu et al. [17] proposed a MAC layer pro-
tocol that uses the Q-learning algorithm to adjust the
contention window in order to provide an effective
channel access scheme for various network conditions.
Jamali et al. [18] proposed a new type of MAC pro-
tocol based on 802.11 DCF, which is called adaptive
back-off tuning MAC (ABTMAC). It also considers the
appropriate transmission attempt rate for both cases
where the request to send/clear to send (RTS/CTS)
mechanism is not used. Zhou et al. [19] proposed a
practical distributed back-off algorithm called adaptive
contention window back-off (ACWB), which is suitable
for 802.11 wireless local area network. It maximizes
throughput and fairness based on idle back-off interval
statistics. Pressas et al. [20] proposed a modified ver-
sion of 802.11p MAC based on reinforcement learning
(RL) to reduce the probability of packet collisions and
bandwidth wastage. At the same time, the transmis-
sion delay is kept within an acceptable level. Wu et al.
[21] proposed a routing scheme based on reinforcement
learning, which can improve the contention-efficiency of
the 802.11p MAC layer and achieve low latency.

2. Age of information

Many works also consider the Aol. To solve the
problem that the frequent cache of updates of Internet
of things (IoT) sensors may incur considerable energy
costs, Wu et al. [22] proposed an online cache update
scheme to obtain an effective trade-off between average
Aol and energy costs. Chen et al. [13] investigated the
Aol-aware radio resource management problem for an
expected long-term performance optimization in a Man-
hattan grid V2V communication network and proposed
a proactive algorithm based on the deep recurrent Q-
network. Wu et al. [23] considered cellular Internet as-
sisted by UAVs, studied the UAV’s Aol minimization
problem by designing the UAV’s trajectory. Wang et al.
[24] studied the problem of minimizing the weighted
sum of the Aol and the total energy consumption of
IoT devices. To minimize the weighted sum of Aol cost
and energy consumption, the author proposed a distrib-
uted reinforcement learning method to optimize the
sampling strategy. Han et al. [25] proposed a novel al-
gorithm to solve the optimal blind radio resource
scheduling problem in orthogonal frequency division
multiplexing access (OFDMA) systems to minimize the

*ISimulation codes are provided to reproduce the results in this paper: hitps://github.com,/qiongwu86/Age-Fairness
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long-term average Aol. Leng et al. [26] considered the
user scheduling problem on communication sessions,
studied the Aol minimization problem in a network
composed of energy harvesting transmitters, and formu-
lated an infinite-state Markov decision problem to op-
timize Aol. Yates et al. [12] described the timeliness in-
dicators of Aol and proposed general methods for Aol
evaluation and analysis applicable to various sources
and systems. Kadota et al. [27] considered a wireless
network with a BS and derived the lower limit of Aol
performance that can be achieved for any given net-
work operating under any queuing rule.

As mentioned above, currently there is no work to
design a scheme to jointly optimize the MAC protocol
and the age fairness, which motivates us to conduct this
work.

/

\
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III. System Model

In this section, we will describe the system model
in detail. It includes scenario model and Aol of the
vehicle.

1. Scenario model

As illustrated in Fig.1, we consider a vehicular net-
work with a BS deployed at the roadside of a one-way
highway. The number of vehicles moving in the cover-
age area of the BS is N, and each vehicle is moving to-
wards the same direction. We divide the time domain
into discrete time intervals n =1,2,..., and the dura-
tion of each time interval is T'. At the beginning of each
observation time interval, the vehicles enter or leave the
network according to the Poisson distribution process
with the arrival rate A, and the departure rate pu,, re-

spectively.

Intelligent
vehicular node /

Fig. 1. System model.

Assume that the transceiver is installed on the
headstock of each vehicle. Once the headstock of a
vehicle enters the coverage of BS, it will transmit the
data packet to the BS immediately. We consider the
network to be operating in a high-load regime [28], i.e
each vehicle always has a packet to transmit, to ex-
plore the extreme performance of our scheme. Each
vehicle employs the 802.11 DCF mechanism to trans-
mit the packet. Specifically, a vehicle initializes a back-
off process and randomly chooses an integer value from
0 to Wy — 1 as the back-off counter, where Wy is the
Then the value of the
back-off counter is decreases by 1 after each time slot.
When the value of the back-off counter decreases to 0,
the vehicle captures the channel. Then the vehicle gen-
erates a packet and transmits it to the BS over the cap-
tured channel. If more than one vehicle is transmitting
at the same time, a collision will occur and thus incurs

minimum contention window.

the transmission failure; otherwise the transmission is

successful. The above process will be repeated to trans-
mit different packets.

We assume that the MCWs of all vehicles in the
network keep constant in each discrete time interval n,
,wh, |- The MCWs of these
vehicles may be changed at different discrete time inter-
vals. We design an intelligent vehicular node, which is
referred to as nodey in the following of this paper, and
adjust its MCW adaptively to achieve the fair age. Note
that nodey cannot obtain the MCW of any vehicle in
the network. To achieve the fairness of the Aol, nodeg

3 n _ n n
ie, w"=wy,wl,...

communicates with the BS to obtain the observation
data, including the number of vehicles, and learns from
the replay history data to select the optimal w( at each
time interval.

2. Age of information of the vehicle

Next, we describe the Aol metric to measure the
freshness of data transmitted by a vehicle. The process
of 802.11 DCF consists of discrete time slots, thus the
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Aol of vehicle i’s data at time slot t is defined as

al = max{t —v!,1},Vi e N (1)

i =

where v} is the time stamp of the generated packet of
vehicle ¢, and N can be expressed as
N ={0,1,...,N,}, here 0 indicates the intelligent
vehicular nodey and N, is the number of the other
vehicles in the network.

To further describe the Aol of vehicle, we assume
that at most one packet is cached at each vehicle in the
network. As shown in Fig.2, a vehicle starts to trans-
mit a packet to the BS at time slot t1, the BS success-
fully receives the packet transmitted by the vehicle at
time slot t;. The vehicle will immediately sample and
generate the next packet to transmit at the same time.
Note that the next packet is generated by the vehicle at
time slot ¢to and arrives at time slot t3 after a time slot.
At this time, the age of the packet has passed a time
slot, so the age at time slot t3 becomes one. In addition,
the other vehicles are transmitting at time slot ¢4, thus
a collision occurs and the Aol of the vehicle still in-
creases by 1 after time slot ¢5. The packet is success-
fully received at the BS at time slot tg, so a new pack-
et will be sampled immediately at the vehicle and the
Aol of the vehicle is reset to 1 at time slot ¢7.

;MM‘HI

A ty ts to &, t

Aol of vehicle

Fig. 2. Illustration of the Aol of vehicle.

Therefore, the Aol of vehicle ¢ at slot ¢+ 1 can be
expressed as

(2)

t+1_ [ al+1, BS not receives a packet at slot ¢
i1 BS receives a packet at slot ¢

b

Therefore, we can get the average Aol of vehicle ¢
in an observation time interval as

T T/nlot
Zi:% Z CL§7V7;€{0,1,~~~7N1)} (3)
t=1

where Ty, is the duration time of a time slot, T is the
duration of an observation time interval.

IV. Problem Formulation

In order to achieve the age fairness, we use the

DRL framework with state, action and reward mechan-
isms to model the problem of the search for the optim-
al MCW for nodeg. Next, state s,, action a, and re-
ward 7, for nodey at observation time interval n will
be defined, respectively. The parameters used in this
paper are listed in Table 1.

Table 1. Notations used in this paper

Notation Description
aﬁ The Aol of vehile i at time slot ¢
a?l The Aol of vehicle 7 at time slot ¢t + 1
an The action of nodegp in observation interval n
A The action set
Floss The loss of fairness
m The maximum back-off stage
n The discrete observation interval
Ny The number of vehicular nodes in network
Nmax The maximum number of vehicles in network
Ny The number of vehicles in network
Qo(Sn,an) The state action value of prediction network
Qo' (8n,an) The state action value of target network
Tn The reward of nodeg in observation interval n
R The reward set
Sn The state of nodeg in observation interval n
S The state set
T The duration time of each observation interval
Ts The average time of a successful transmission
Te The average time of a failed transmission
Tslot The duration time of a time slot
Uf The time stamp of the generated packet of vehicle ¢
Wo The contention window of a vehicle
3n The observation vector of average Aol at observation
intervals n
Zg The average Aol for nodeg at observation interval n
" The average Aol for all vehicles at observation
v interval n
Ay The arrival rate of vehicles
Mo The departure rate of vehicles
w(A", Ny) The age fairness utility
o The MCW vector for all vehicles in the network at
observation interval n
wy The MCW of nodeg at observation interval n
w? The MCW of vehicle i at observation interval n
« The learning rate
B8 The discount factor of future utility
Y The discount factor of state action value
Yr The discount factor of immediate reward
* The optimal policy
2 The discrete-time stochastic process state space
1. State

The intelligent nodey communicates with the BS
within each time interval to obtain the observation in-
formation. Since the BS can know the number of
vehicles in the network within each time interval n,
which is denoted as N;', through communicating with
vehicles, nodeg can know N’ from the BS. Moreover,
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the BS calculates the average Aol of all vehicles in each
time interval, thus modey can observe the average Aol
of all vehicles for each time interval n, which is noted
as A, . In addition, nodey can monitor the channel to
observe its average Aol Ay in time interval n. At this
point, we define the observation vector A" = [Ay, A.]
of the Aol in observation interval n. Since the Aol of a
vehicle is affected by the MCW of all vehicles in a time
interval and each vehicle may change its MCW at each
time interval, the age observation vector A" isa ran-
dom vector for each time interval. Besides, nodey can
also know its own MCW wg in time interval n.

As described above, the state of nodeg in the nth
time interval can be defined as

Sn = [ngZZWU(T)lvNZ” (4)

where Ay and A, depends on w? and the MCW w of
wy and N
are the values within discrete space, the state space of
nodeg is discrete.

2. Action

The intelligent nodey changes MCW size for the
next observation interval n 4+ 1 according to the s, loc-
ally observed in the observation interval n, so the
MCW action space of nodeg can be defined as

all vehicles in the network. Since Zg, A

v

an ={277132}5_, U {2/ 148)7_, (5)

In order to make modey more selective, its action
space not only covers the limited state space € of the
MCW that can be used by the vehicle, but also can ex-
tend to additional MCW options: 48 and 96.

3. Reward

We first define the age fairness utility for nodeg,
then set the reward according to the age fairness utility.

When the network is considered as a saturated
state, there are N vehicles in the network in the time
interval n. If the absolute fairness is provided, theoret-
ically, the proportion of the Aol of nodes in the net-
work should be 1/NJ}, where N} is the number of
nodes (both nodeg and the other vehicles) in the net-
work, i.e., N = N’ + 1. However, in the real scenario,
the proportion of Aol for each node will be given by
Ay /(Ay +AY), the absolute difference between
Ay /(Ay +A)) and 1/Ny can be regarded as the fair-
ness loss. According to the relationship between the av-
erage age observation vector A" and the number of
nodes N} in the network, the fairness loss at time in-
terval n can be defined as

n

S
A, +A) N}

3

loss —

(6)

According to (6), the age fairness utility at time in-
terval n can be defined as

N(vaNg) =1- E:)qu

ar |
A, + A4, Ny

=1

(7)

In this paper, as the number of vehicles and MCW
changes, nodey aims to maintain its age fairness utility
in the network, so the reward of nodeg at the observa-
tion interval n is defined as its age fairness utility, i.e.,

ro = u(A", Nj) (8)

With the above definition, we will further intro-
duce the MCW optimization problem for nodeg in the
vehicle environment. Specifically, given the age obser-
vation vector for the observation interval n, i.e.,
A" =[A;, 4], the MCW of nodeg for observation in-
terval n, i.e., w{, and the number of nodes N}, nodeg
predicts and allocates its MCW for the next observa-
tion interval n+1, i.e.,
term reward, i.e., the age fairness utility of the entire
observation process E [Z;o:n Bk_”u(zk7N;)], where
B € (0,1) is used to establish the importance of future
utility.

4. Policy

The action taken by nodey in each state, i.e.,
ap = m(sy) is determined by the policy = that maps
from the state set S to the action set A. The goal of Q-
learning is to find the optimal policy 7* to maximize
the long-term expected cumulative discount reward [29)].
To do this, we define the optimal Q function
QR*: S x A— R, where Q*(sp,a,) corresponds to the
long-term reward when choosing action a,, in state s,,

wy + 1, to maximize the long-

i.e., following the optimal policy 7*. Therefore, the op-
timal policy is defined as

7*(s,) = argmax Q" (sn, an) (9)

Qn

V. Solution

Since the state and action space are discrete, the
DQN algorithm is more suitable to solve the DRL prob-
lems. Therefore, we propose an extended DQN al-
gorithm to obtain the optimal action policy. In this sec-
tion, we first introduce how we extend the DQN train-
ing and testing method to better solve the above prob-
lem, then describe the training procedures to obtain the
optimal age fairness utility, finally introduce how to
test the performance under the optimal policy.

1. Extensions to DQN

We extend the traditional DQN from five aspects,
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i.e., double Q-learning, dueling networks,
learning,

multi-step

distributional reinforcement learning, and

a,=r, (s,)=arg max Q, (s,, a,) Transition tuples

an Simulation
environment D

Arg max Qy (415 dye1)

noisy nets. The flow diagram of the extended DQN al-
gorithm is shown in Fig.3.

Target network '

] Noisy state value network
i ReLU ReLU :

Updatey’ @~ i ReLU RelU " _

Qo (S5 @pr)

Prediction network 6
Noisy state value network
S O O Softmax
&l
g W g
VGRS )
A | N
Q5. a) @ e
al\e
W
Vi Y
Wl
VI
W\
@ @
U Ui
Noisy advantage value network

Fig. 3. Flow diagram of extended DQN.

1) Double Q-learning
The classical method of searching for the optimal Q

Qo(5n,an) < Qo(sn,an) +a <7"n +ymax Qo(Snt1,Ant1) —

where Qp(sn,ar) is the state action value when action
an is selected under state s,, « is the learning rate, r,
is the immediate reward obtained by taking action a,
under the state s,, < is the discount factor, and
Qo(sn+1,a,+1) is the state action value when action
Gn4+1 is selected under state s,41. However, only one

neural network parameter 6 is used in (10) for Q value

Q0(5n7 an) < QG(Snv @n) +a (Tn+7Q9’(Sn+1a g}i)l{ Q@(Sn-i-h an-i-l)) - Q9(5n7 an))

The prediction network is responsible to select the
action and the target network is used to calculate the
target Q value. By decoupling the selection of actions
and the estimation of the value of state actions, the
harmful overestimation of DQN is reduced, thereby im-
proving the stability of the algorithm [32].

2) Dueling networks

Different from the traditional DQN where the
neural network directly outputs the Q value of each ac-
tion, the dueling DQN first divides the fully connected
layer of the network into an output state value V(s,)
and an output action advantage value A(s,,a;). The
state value function V'(s,) has nothing to do with ac-

An41

value is based on the value iteration method of Bell-
man equation [30], i.e

Qulsnsan) ) (10)

iteration, which results in the overestimation bias, thus
it affects the Q value and further affects the perform-
ance of learning. Double Q-learning is designed in calcu-
lating the target Q value with two different neural net-
work parameters including the prediction network para-
meter @ and the target network parameter 6’ [31]. The
particular formula is shown as follows,

(11)

tions, but represents the value of the static state envir-
onment itself. Meanwhile, action advantage function
A(sn,ay) is related to the action and represents the ad-
ditional value of choosing an action. In addition, the ac-
tion advantage value function can reflect the difference
between the value obtained by taking an action and the
average value obtained by this state. Finally, the two
features are aggregated in a fully-linked manner and
nonlinear activation is performed through the Softmax
activation function to obtain the Q value of each ac-
tion. In practical applications, the action advantage
function is generally set as the single action advantage
function minus the average value of all the action ad-
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vantage functions in a certain state, i.e.,

QQ(S’VM Qs an7 Bn)
Z A9 (Sna anlv an)
a/

= Vo($n, ") + Ag(Sn, an,a™) — ~
actions
(12)

where o™ and (™ represent the number of two fully
linked layers of the neural network, respectively,
Vo(sn, B™) is the state value of state s,, Ag(sn,an,a™)
is the action advantage value when action a, is selec-
ted under state s,, Nactions 1S the number of actions
provided by the neural network, a}, is all available ac-
tions. Based on this, nodey can finally achieve a more
accurate V(s,, ™) in the environment without the in-
fluence of actions, i.e., it can narrow the range of Q
value, remove redundant degrees of freedom and fur-
ther improve the stability of the algorithm [33].

3) Multi-step learning

The traditional DQN uses the immediate reward
r, and the value estimate at the next step as the tar-
get value. However, with a large number of deviations
in the network parameters at the early stage, the tar-
get value obtained by this method will also require a
large number of deviations, and thus incur a relatively
slow learning rate [34], [35]. A more accurate estimate
can be obtained by changing single-step learning to
multi-step learning, because immediate rewards can be
accurately obtained through interaction with the envir-
onment, so the immediate reward can be rewritten as

k—1
r = "y vy (13)
j=0

where ~,. is the discount factor of immediate reward.
We can replace 7, in (11) with ri) in (13) to minim-
ize the loss of action value. Note that, proper adjust-
ment of the number of steps in multi-step learning can
achieve faster learning.

4) Distributional RL

In the traditional DQN, the outputs of the net-
work are always the expected estimated value of the
state-action value Q. However, the expectations for dif-
ferent groups of state-action values may be the same,
we should choose a more stable action if we want to re-
duce the risk of taking actions. Distributed DQN based
deep reinforcement learning models are designed from a
distributed perspective. It uses a histogram to repres-
ent the estimate of the value distribution, limits the
value among [Umin, Umax] and selects N equidistant value
sampling points in [Unin, Umax]. Thus the output of the
network is the probability of these N value sampling

points, where the sampling point with the largest prob-
ability is the optimal action to be selected. After pro-
jecting the state-action value output by the neural net-
work onto the vector z, the action with the highest
probability becomes the stable action we expect.
Among them, the calculation method of each element in
z is

Umax — Umin’ = {17

i .
= Umin -1 N
2" = Upin + (1 — 1) .

..N} (14)
5) Noisy nets
In the learning process, nodey needs to perform a
lot of action explorations, but the e-greedy algorithm
has limitations in performing exploration [36]. In order
to improve the search ability of the agent, by combin-
ing the determinism and the noise linear hidden layer of
the noise flow, i.e., the weight and the bias are in-
terfered by some parameter zero-mean noise, the exist-
ing expression y = wx + b of the neural network hid-
den layer can be modified as
y=@"+o0"0e")z+ W+ 0"  (15)
Here, ® denotes the element-wise product, u" and
u? obey a uniform distribution ranging of [—ﬁ, ﬁ],
N,, is the number of neural network nodes, o and ob
Std

VN’
work parameter. In addition, ¢’ and " are the con-

stant randomly generated noise variables in each ex-
ploration, which can be expressed as

{ e = f(ei)
e’ = f(ej)

where €; and ¢; follow the standard normal distribu-

can be initialized via and S;4 is the neural net-

(16)

tion with mean 0 and variance 1, f(z) can be ex-
pressed as f(z) = sgn(z)+/|z[. Over time, the network
can overcome different rates of noise flow through self-
learning, thereby completing the exploration of actions
in the form of self-annealing.

2. Training stage

The pseudocode of the proposed algorithm is de-
scribed in Algorithm 1. For ease of understanding, we
will further introduce the proposed DQN algorithm in
detail below in conjunction with the pseudocode.

Algorithm 1 Training stage for extended DQN

1: Create simulation environment, initialize N, according
to the A\, and u,, initialize w;';

: Create predict network and target network;

: Initialize replay experience buffer D to capacity |D|;
: Reset simulation environment;
: FOR episode = 1 to Emnax

O = W N

@

i 1s . A0 A0 0
Initialize observation sequence so = [4y, A,,wq, No]
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and normalized sequenced ¢ = ¢(s0);
7: FOR time interval n = 1 to Tax

8: Generate the action a, according to (9);
9: Execute next state s,4+1 and observe reward r,
from the system model;

10: Normalized sequenced ¢ni1 = ¢(Sn+1);

11: Store transition (¢n,an,Tn, dnt1) in D;

12: IF number of tuples in D > I THEN

13: Randomly sample a mini-batch of I transitions
tuples from D;

14: Update the predict network by minimizing the
loss function according to (17);

15: IF time interval n = T THEN

16: Update target networks 6’ < 6.

First, we create the simulation environment. In this
step, we declare the available set of MCWs of both
nodeg and vehicles, initialize the MCW value of nodeg
and vehicles at the beginning and initialize the number
of vehicles in the network according to the vehicle ar-
rival rate A\, and departure rate p, in the network.

Then we create neural networks for nodeg. We use
two neural networks to create our extended DQN net-
work, i.e., the prediction network and the target net-
work. The prediction neural network consists of four
layers. The first two layers are ordinary fully connected
layers and the latter two layers are noise nets, where
each layer is composed of N, neural network nodes.
Each layer of the neural network is fully connected and
the output of each node uses ReLu activation function
for non-linear activation. In addition, the input of the
neural network is the state, while the output is the
state action value of all available actions. We also intro-
duce the dueling network to build a neural network.
The prediction network starts from the third layer and
is divided into a state value network and an action ad-
vantage value network. The state value network and
the action advantage value network share the first two
layers of fully connected neural networks. The two-way
features are aggregated together in a fully-linked man-
ner and the Softmax activation function is used for
nonlinear activation before outputting the Q wvalue.
Then according to our description of distributed RL,
the state action value is limited to [Umin, Umax]. By se-
lecting N
[Umin, Umax], the network outputs the projection vector z

equidistant value sampling points in
of these N value sampling points and finally outputs
the action index value with the largest probability
value, i.e., the most stable action. The target network
has the same structure as the prediction network and
will not be described in detail here.

Then we initialize the experience buffer D to store
the state, action, reward and next state set during the

training process. The experience buffer has the storage

capacity of |D| sets, which corresponds to line 3 of the
pseudocode.

Before starting the training, we need to reset the
environment, which corresponds to line 4 of the pseudo-
code.

At the beginning of the loop, we initialize the state
set for nodey and execute it at the beginning of each
episode. In addition, to facilitate the training process of
neural networks and reduce the magnitude of data pro-
cessing, we have carried out data normalization pro-
cessing on the state set of nodey. This corresponds to
line 6 of the pseudocode.

For each observation interval n, we input the state
into the neural network above to decide the action. At
the initial stage of training, due to the influence of the
randomly initialized parameters, the action will be ran-
domly given by the neural network. This corresponds to
line 8 of the pseudocode.

In the training process, the MCW of vehicles in the
environment will change according to a Markov process
and the number of vehicles will change momentarily in
each time interval n. After nodey selects the MCW, it
obtains the next state s,y1 by interacting with the en-
vironment and can calculate the immediate reward for
each state transition according to (8). This corresponds
to line 9 of the pseudocode.

After getting the next state s,y1, we also need to
execute normalization for the convenience of processing.
Then we cache the current state ¢, , the action a,,, the
next state ¢,41 and the immediate reward r, into the
experience buffer D for subsequent parameter training.

If the number of samples in the experience buffer