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   Abstract — In  Internet  of  vehicles,  vehicular  edge
computing (VEC)  as  a  new  paradigm can  effectively  ac-
complish various  tasks.  Due  to  limited  computing  re-
sources of the roadside units (RSUs), computing ability of
vehicles can  be  a  powerful  supplement  to  computing  re-
sources. Then the task to be processed in data center can
be offloaded to the vehicles by the RSUs. Due to mobil-
ity of the vehicles, the tasks will  be migrated among the
RSUs.  How  to  effectively  offload  multiple  tasks  to  the
vehicles for processing is a challenging problem. A mobil-
ity-aware  multi-task  migration  and offloading  scheme for
Internet of  vehicles  is  presented and analyzed.  Consider-
ing  the  coupling  between  migration  and  offloading,  the
joint  migration  and  offloading  optimization  problem  is
formulated. The problem is a NP-hard problem and it is
very hard to be solved by the conventional  methods.  To
tackle the difficult problem, the idea of alternating optim-
ization and  divide  and  conquer  is  introduced.  The  prob-
lem can  be  decoupled  into  two  sub-problems:  computing
resource  allocation  problem  and  vehicle  node  selection
problem. If  the vehicle node selection is  given, the prob-
lem can be solved based on Lagrange function. And if the
allocation  of  computing  resource  is  given,  the  problem
turns  into  a  0-1  integer  programming  problem,  and  the
linear relaxation of branch bound algorithm is introduced
to  solve  it.  Then  the  optimization  value  is  obtained
through  continuous  iteration.  Simulation  results  show
that the  proposed  algorithm can  effectively  improve  sys-
tem performance.

   Key words — Vehicular  edge  computing, Task off-

loading, Task migration.

 I. Introduction
With the emergence of mobile and on-board applic-

ations with  high  computing  and  low  latency  require-
ments,  computing  offloading  based  on  vehicular  edge
computing (VEC) architecture has attracted increasing
attention [1].  Due to  the high mobility  of  vehicles  and
limited bandwidth of vehicular networks, the tasks will
be migrated among roadside units (RSUs). This aggrav-
ates  the  difficulty  of  task  offloading  and  becomes  a
thorny issue.

Recently,  there  are  many  researches  focusing  on
the field in the task offloading for  Internet of  vehicles.
Some scholars focus on the architecture of the Internet
of vehicles, such as software defined framework, cooper-
ation framework,  mobility  framework,  cloud  architec-
ture and so on. A motion-aware task offloading scheme
called soft-van is proposed in [2], which aims to minim-
ize  the  task  calculation  delay  in  software-defined
vehicular  networks.  The  proposed  scheme  consists  of
two  stages:  fog  node  selection  and  task  offloading.  In
the scheme  of  my  paper,  these  two  stages  are  also  in-
cluded. For the selection of fog nodes, my paper adopts
a better 0-1 selection strategy. An effective virtual edge
scheme is proposed in [3], which utilizes free computing
resources of multiple vehicles as virtual servers to real-
ize collaborative  vehicular  edge  computing.  The  au-
thors  design  a  virtual  edge  formation  algorithm  that
takes  into  account  both  the  stability  of  virtual  edges 
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and the  available  computing  resources  of  vehicles  con-
stituting  virtual  edges.  However,  this  paper  does  not
consider the vehicle unwilling to contribute its free com-
puting  resources,  so  a  reward  mechanism  is  set  up  in
my  paper  to  avoid  the  occurrence  of  this  situation.
Zhang et al. [4] propose a cloud-based mobile edge com-
puting  offloading  framework  for  vehicular  networks.
Considering  the  time  consumption  of  computing  tasks
and the mobility of vehicles, the authors propose an ef-
ficient  predictive  combination  mode  grading  scheme,
which adaptively offloads tasks to mobile edge comput-
ing (MEC) servers by direct uploading or predictive re-
lay transmission.  A  cloud  access  coverage  protocol  ar-
chitecture  is  proposed  in  [5] to  improve  the  perform-
ance of cloud access in distributed data center cloud ar-
chitecture.  The  authors  explore  how  virtual  machine
mobility and routing can be linked to user mobility to
compensate for  performance  degradation  due  to  in-
creased user-cloud network distance.

The  performance  is  crucial  when  the  Internet  of
vehicles is deployed and operated. Some important per-
formance parameters are optimized, such as latency, ro-
bustness,  energy  and  so  on.  A  parallel  task  offloading
model  and  a  small  area-based  edge  offloading  scheme
for MEC is presented in [6], and the problem is formu-
lated as an optimization problem to minimize the com-
pletion time of all tasks. A new dynamic edge comput-
ing  model  is  introduced  and  robust  task  offloading  is
studied  in  [7],  which  solves  the  challenges  caused  by
mobility  and  power  constraints.  Zhou et  al.  [8]  review
the state of the art for task offloading in vehicular fog
networks and argue that mobility is not only a barrier
to  timely  computation  in  vehicular  fog  networks,  but
can also  improve  latency  performance.  Then  the  au-
thors identify machine learning and coded computing as
key enabling techniques to address and leverage mobil-
ity. Yadav et al. [9] provide an energy-efficient dynam-
ic  computational  offloading  and  resource  allocation
scheme  to  reduce  energy  consumption  and  service
latency. The  energy-efficient  dynamic  computation  off-
loading  and  resources  allocation  scheme  problem  as  a
joint energy and delay cost minimization problem satis-
fying vehicular node mobility and end-to-end delay dur-
ation constraints  is  formulated,  and  a  three-stage  en-
ergy-efficient dynamic  computation  offloading  and  re-
sources allocation scheme solution is proposed.

Due to the mobility of the vehicles, task offloading
and  resource  allocation  will  face  enormous  difficulties.
How to effectively offload tasks to processors based on
mobility-aware  attract  many  researchers.  A  mobility-
aware  computation  offloading  design  is  investigated  in
[10],  which  considers  random  mobility  of  the  vehicle
and its  potential  handover  during  the  offloading  pro-

cess.  The  computation  offloading  task  in  VEC  is
modeled in  [11]  to  evaluate  the  ability  to  simulate  the
elements  that  contribute  to  enhancing  its  performance
for VEC. Hu et al.  [12] study computational offloading
and  resource  allocation  in  IoT  networks  that  support
both mobility and energy harvesting. The long-term av-
erage total service cost of all mobile IoT devices is min-
imized by  optimizing  the  collected  energy,  task  alloca-
tion factor, central processing unit frequency, transmis-
sion power, and association vector. A mobile device se-
lection  algorithm  is  proposed  in  [13],  which  takes  into
account the social relationship, location correlation and
mobile activity of the mobile device. Then based on the
improved Kuhn-Munkres algorithm, a joint social aware
and mobile-aware computational offloading algorithm is
proposed  to  obtain  a  resource  allocation  strategy  that
minimizes energy consumption while satisfying the min-
imum  delay  condition.  Li et  al.  [14]  develop  a  novel
computational offloading scheme that utilizes nonortho-
gonal multiple access and dual connectivity and focuses
on jointly  optimizing  task  segmentation  and  power  al-
location to minimize total energy consumption. An effi-
cient task offloading scheme in vehicular edge comput-
ing  network  is  studied  in  [15].  The  vehicle  selection
scheme  considers  the  offloading  time,  communication
and computing resources allocation, the mobility of the
vehicle,  and  the  delay  of  the  task.  An  optimization
model  is  proposed  in  [16] to  solve  the  resource  alloca-
tion problem of mobile users so as to maximize the total
number of completed tasks considering the mobile pat-
terns  of  users  in  the  network.  The  authors  develop  a
synthetic correlation  mobility  model  to  reproduce  hu-
man movements during the morning rush hour. On this
basis, a  practical  resource  allocation  algorithm  is  pro-
posed to solve the problem of mobile equipment deploy-
ment and  resource  allocation.  A  mobile  access  predic-
tion  algorithm  based  on  tail  matching  subsequences  is
proposed in [17],  and the effectiveness  and accuracy of
the algorithm  are  verified  by  experiments  on  real  mo-
bile datasets.

Meanwhile,  mobility  also  brings  the  task  or  data
migration problems.  Some  work  is  beginning  to  con-
sider  these  questions.  Liang et  al.  [18]  consider  jointly
managing  computing  and  radio  resources  to  optimize
migration/handoff  strategies  between  BSs.  The  goal  is
to maximize  offloading  rates,  quantify  MEC  through-
put,  and  minimize  migration  costs.  Then  an  efficient
method based on relaxed rounding is proposed to solve
complex  combinatorial  problems.  A  general  three-layer
fog  computing  network  architecture  is  considered  in
[19]. The mobility of the fog computing network is char-
acterized  by  its  residence  time  in  each  coverage  area,
which  follows  an  exponential  distribution.  In  order  to
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maximize  the  terminal  revenue,  the  offloading  decision
and computing  resource  allocation  are  jointly  optim-
ized to reduce the migration probability. A virtual ma-
chine joint migration model based on ant colony optim-
ization is  proposed in [20]  for  heterogeneous intelligent
medical  system  based  on  mobile  cloud  computing  in
smart  city  environment.  In  this  model,  user  migration
and  provisioning  of  virtual  machine  resources  in  the
cloud solve the problem of virtual machine migration.

As  mentioned above,  most  existing  studies  discuss
offloading  computing  tasks  from  vehicles  to  roadside
units, cloud servers or vehicles. However, there are still
some challenges in performing efficient computing tasks
offloading due to the high mobility of vehicles and lim-
ited bandwidth  of  vehicular  networks.  In  the  real  sys-
tem,  considering  the  mobility  of  the  vehicle,  the  task
may not be able to complete the task offloading to the
computing  nodes  in  the  initial  connected  RSU,  so  the
migration  cost  of  the  task  needs  to  be  considered.  In
this paper,  we first evaluate the migration process and
cost by comparing the offloading delay of the task and
the residence time of the vehicle within the coverage of
the current RSU. Considering the joint optimization of
delay and  cost,  an  effective  offloading  scheme  is  de-
signed to minimize the delay and cost. Then, the prob-
lem is  modeled  as  a  mixed  integer  nonlinear  program-
ming problem. In order to solve the optimization prob-
lem,  we  adopt  an  alternating  optimization  method  to
decompose the original problem into two sub-problems:
the resource allocation sub-problem and the node selec-
tion  sub-problem,  and  Lagrange  function  is  introduced
to  solve  the  resource  allocation  sub-problem.  And  an
improved branch and bound algorithm based on linear
relaxation  is  proposed  to  solve  the  node  selection  sub-
problem.

The main contributions of this paper are as follows:
•  The  problem  is  formulated  as  a  mixed  integer

nonlinear  programming problem.  And the problem can

be  decoupled  into  two  sub-problems.  An  improved
branch and bound algorithm based on linear relaxation
and  the  Harris  hawk  algorithm  are  presented  to  solve
the two sub-problems, respectively.

• A mobility-aware  multi-task  migration  and  off-
loading  scheme  for  Internet  of  vehicles  is  proposed.
Considering to mobility of the vehicles, we should con-
sider the task migration when the task is offloading. To
tackle the NP-hard problem, the method of alternating
optimization  and  divide  and  conquer  is  introduced  to
minimize the  total  cost  of  task  offloading  and  migra-
tion.

• Simulation platform is established and the simu-
lation results show that the proposed algorithm can ef-
fectively improve system performance.

The remainder of this paper is organized as follows.
In Section II,  the system model  including task offload-
ing model, computing model, migration model and cost
model is introduced and described. In Section III, a mo-
bility-aware multi-task migration and offloading scheme
is  presented.  The  simulation  results  are  provided  and
discussed  in  Section  IV  and  the  paper  is  concluded  in
Section V.

 II. System Model

M

m = {1, 2,
. . . ,M}

2R

In our scenario, we consider a straight road, where
 RSUs  are  deployed  along  one  side  of  the  road,  as

shown  in Fig.1.  Without  loss  of  generality,  we  assume
that the road is parallel to the horizontal axis. The seri-
al  number  of  the  RSUs  can  be  denoted  as 

,  and  the  distance  between  adjacent  RSUs  is
defined  as .  These  tasks  will  be  generated  by  the
pedestrians  or  vehicles  on  the  road.  These  complex
tasks will  be  transferred  to  the  data  center  to  be  pro-
cessed. Meanwhile, computing ability of vehicles can be
a powerful supplement to computing resources. To pro-
cess these  tasks  more  quickly,  the  vehicles  with  avail-
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Fig. 1. System model.
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K

wk = {Ik, Ck, T
max
k } k ∈ {1, 2, . . . ,K} Ik

k Ck

k Tmax
k

k

j fmax
j

d

able computing resources can cooperatively handle these
tasks.  We  assume  that  tasks  will  be  generated  in
every time slot. Each task can be defined by three items

, ,  where  is  the
data size of the task  (Mbits), and  represents the
total  number  of  CPU  cycles  required  to  complete  the
computing task ,  and  is  the delay constraint  of
the  task .  The  vehicles  can  provide  the  computing
ability,  and  the  maximum  CPU  computing  ability  of
vehicle  can be denoted as . To describe how the
positions  of  vehicles  change  over  time,  the  timeline  is
divided into many time slots, and  represents the time
length of each time slot.

In  addition,  considering  the  mobility  of  vehicles,
tasks will be migrated between different RSUs. Accord-
ing  to  the  offloading  model,  the  residence  time  of  the
vehicle  and  the  amount  of  data  transferred  in  every
RSU can  be  calculated.  Once  the  task  offloading  can-
not  be  completed  within  the  coverage  of  the  current
RSU,  the  task  will  be  migrated  to  next  adjacent  RSU
through optical fiber among RSUs. Sometimes, the task
offloading maybe completed across multiple RSUs, then
the total number of migrations should be calculated.

 1. Task offloading model
j vj , j ∈ {1,

2, . . . , J}
j

vjd j t

(pj [t], qj [t]) (pj [t], qj [t])

j t

The speed of vehicle  can be written as 
,  and  it  follows  uniform  distribution.  So  the

distance  that  vehicle  can  travel  in  each  time  slot  is
. We denote the position of vehicle  in time slot 

as .  Here,  are  the  abscissa  and
ordinate of the position, respectively. Because the road
is parallel to the horizontal axis, the horizontal and ver-
tical  coordinates  of  vehicle  in  time slot  can be ex-
pressed as
 

pj [t] = pj [0] +

t∑
i=1

vjd[i]

qj [t] = qj [0] (1)

pj [0] qj [0]

j

m pRSUm qRSUm

pRSU1 = R qRSU1 = 0

m j

t

where,  and  is the initial horizontal and ver-
tical coordinates of vehicle . We denote the horizontal
and  vertical  coordinates  of  RSU  as  and ,
respectively. Here, we set  and . Then
the distance between RSU  and vehicle  in time slot
 can be expressed as

 

Dm,j [t] =

√
(pj [t]− pRSUm )

2
+ (qj [t]− qRSUm )

2 (2)

j

t

Usually, we assume that the vehicles will establish
communication  link  with  the  nearest  RSU.  Therefore,
the communication distance between vehicle  and the
RSUs in time slot  can be expressed as
 

Doff
j [t] = min

m∈{1,2,...,M}
{Dm,j [t]} (3)

j t

Therefore,  the  transmission  rate  between  nearest
RSU and vehicle  in time slot  is written as
 

Rj [t] = B · log2

(
1 +

PRSU/(D
off
j [t])

α

n0 ·B

)
(4)

B

j PRSU

α

n0

j

j

j

Here,  is  the  bandwidth  of  the  communication
channel between RSU and vehicle ,  is the trans-
mission  power  of  RSUs,  is  the  path  loss  coefficient,

 is  the  power  spectral  density  of  Gaussian  white
noise.  Without  loss  of  generality,  we  assume  that
vehicle  locates in the coverage of RSU 1 in the begin-
ning.  Then the dwell  time of  the vehicle  in the pro-
cess of unloading the task is divided into three periods:
the  dwell  time in  the  first  RSU,  the  dwell  time in  the
intermediate RSUs, and the dwell time in the last RSU.
And the dwell time of vehicle  in the first RSU can be
calculated as
 

tstay1,j =
2R− pj [0]

vj
(5)

jIt can be obtained that the dwell time of vehicle 
in the intermediate RSUs for the next time slots except
for the last time slot is equal and can be written as
 

tstay2,j = tstay3,j = · · · = tstayM−1,j =
2R

vj
(6)

jNext,  the  dwell  time of  vehicle  in  the  last  RSU
can be written as
 

tstayM,j =
2R ·M − plastj

vj
(7)

plastj

j

Here,  is  horizontal  axis  of  the  last  position
where the task is completely offloaded to vehicle .

jThen, the whole dwell time of vehicle  during the
process of uploading the task can be calculated as
 

tstayj =

M∑
m=1

tstaym,j (8)

j

j

Once the dwell time of vehicle  is represented, the
total transmitted data of the vehicle  during the pro-
cess of uploading the task can be written as
 

D =

ˆ tstayj

0

Roff
j [t]dt, m = 1, 2, . . . ,M (9)

tstayj j

Roff
j [t]

j t

where,  represents the whole dwell time of vehicle 
during  the  process  of  uploading  the  task,  and 
represents  the  transmission  rate  between  the  nearest
RSU and vehicle  in time slot .

 2. Computing model
When  the  RSUs  offload  the  multi-task  to  the
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fmax
j

j j

k fk,j
j k

vehicle nodes,  the  vehicle  nodes  will  allocate  CPU  re-
sources for different tasks. As mentioned above,  is
the maximum computing ability of the CPU of vehicle
.  We denote  the computing ability  of  vehicle  alloc-

ated  to  task  as .  Then the  computing  time  that
vehicle  computes task  can be expressed as
 

tcomk,j =
Ck

fk,j
(10)

Ck kwhere  is the computing amount of task .
 3. Migration model

k H · Ik Ik
k H

k j s(k, j)

k

j

Considering the  mobility  of  vehicles,  the  task  off-
loading  may  not  be  able  to  be  completed  within  the
coverage  of  the  initial  RSU,  so  the  task  migration
should be noted. Meanwhile, the task migration will res-
ult  in  the  additional  cost  associated  with  the  task
switching process and computing migration. We denote
one time migration cost of task  as , where  is
the data size of the task  and  is the migration cost
per bit. Then we denote the number of the RSU migra-
tion if task  is offloaded to vehicle  as . Then
we can calculate the overall migration cost if task  is
offloaded to vehicle  as follows:
 

hk,j = H · Ik · s(k, j) (11)

 4. Cost model

γ

φk

In  addition,  considering  the  actual  circumstance,
not  every  vehicle  is  willing  to  contribute  their  spare
computing resources.  So  we  also  need  to  set  up  a  re-
ward mechanism to give certain rewards to the vehicles
that  provide  computing  resources  for  computing  tasks.
This also can be regarded as the computing cost of the
tasks. Let  represent the unit cost of computing task.
Then  we  can  denote  the  reward  of  completing  the

k γ · Ck + 1
tcomk,j

tcomk,j

j k

computing of  task  as ,  where  is  the
computing delay of  vehicle  for  task , and its  recip-
rocal represents an extra reward.

 5. Problem formulation

k j uk,j

In  the  process  of  unloading  task,  the  task  will  be
assigned  to  one  vehicle.  Then  we  denote  the  indicator
that  task  is  unloaded  to  vehicle  as ,  and  we
have
 

uk,j =

{
1, if task k is offloaded to vehicle j
0, otherwise

(12)

∑J
j=1 uk,j = 1, k ∈ {1,

2, . . . ,K}

Meanwhile, we  assume  that  one  task  is  only  off-
loaded  to  one  vehicle  node.  Then  based  on  the  above
equation, we have the constraints 

.
Next, the  delay  of  returning  the  resuls  can  be  ig-

nored because the size of the returned result is small in
general. Then  the  total  delay  is  the  sum of  the  trans-
mission delay and the computing delay and can be ex-
pressed as
 

tk,j = uk,j · (toffk,j + tcomk,j ) (13)

In  our  scenario,  multiple  tasks  are  unloaded  to
multiple  vehicles.  We  denote  the  overall  delay  as  the
sum of the transmission time and the computing time of
the last vehicle to return the result. Therefore, the over-
all delay of multiple tasks can be expressed as
 

tsum = max
k∈K,j∈J

tk,j = max
k∈K,j∈J

uk,j · (toffk,j + tcomk,j ) (14)

For the optimal uploading scheme, we should con-
sider how to simultaneously minimize the delay, reward,
and migration  cost.  Therefore,  the  optimization  prob-
lem can be formulated as 

P1 = minimize
uk,j ,fk,j

η · tsum + (1− η) ·

∑
k∈K

∑
j∈J

uk,j · φk,j +
∑
k∈K

∑
j∈J

uk,j · hk,j


= minimize

uk,j ,fk,j

η · max
k∈K,j∈J

uk,j ·
(
toffk,j +

Ck

fk,j

)
+(1−η) ·

∑
k∈K

∑
j∈J

uk,j

(
γ · Ck+

1

tcomk,j

)
+
∑
k∈K

∑
j∈J

uk,j · hk,j


s.t. C1: fk,j≥0, k ∈ K, j ∈ J

C2:
∑
k∈K

fk,j≤fmax
j , k ∈ K, j ∈ J

C3:
∑
j∈J

(uk,jt
off
k,j+uk,jt

com
k,j ) ≤ Tmax

k , k∈K, j∈J

C4: uk,j ∈ {0, 1}, k ∈ K, j ∈ J

C5:
∑
j∈J

uk,j = 1, k ∈ K, j ∈ J (15)

η

tsum
Here,  represents the balance parameter of the op-

timization problem,  represents the overall delay of
φk,j

j k hk,j

multiple  tasks,  represents  the  reward  given  by
vehicle  for completing task , and  represents the
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k

j

overall  migration  cost  when  task  is  offloaded  to
vehicle . In the constraints, C1 and C2 represent that
the  computing  resource  of  each  vehicle  is  non-negative
and the allocated computing resource for the task can-
not  exceed  its  allowed  maximum  computing  resource,
respectively.  Constraint  C3  indicates  that  the  delay  of
unloading task cannot exceed allowed maximum delay.
C4 and C5 describe that one task can only be offloaded
to one vehicle node.

 III. Proposed Mobility-Aware Multi-
Task Migration and Offloading Scheme

uk,j

fk,j uk,j

fk,j

In this section, a mobility-aware multi-task migra-
tion and offloading scheme is proposed. As shown in the
above optimal problem, the variable  and the vari-
able  are  coupled.  Here,  is  a  binary  variable
and  is a  continuous variable.  Therefore,  the prob-
lem P1 is a mixed integer nonlinear programming prob-
lem,  which  makes  it  difficult  to  be  solved.  But  it  is
shown that the problem P1 can be decoupled into two
sub-problems: vehicle node selection and computing re-
source  allocation.  Therefore,  we  present  an  alternative
optimization techniques to solve the problem.

 1. Task migration algorithm
Meanwhile, in the process of uploading the task to

the vehicle,  we  need  to  determine  whether  the  migra-

tion  has  occurred.  If  the  migration  has  happened,  we
should calculate how many times the task has been mi-
grated. Therefore,  a  task  migration  algorithm  is  pro-
posed as shown in Algorithm 1.

Algorithm 1　Task migration algorithm
wk = {Ik, Ck, T

max
k } k ∈ {1, 2, . . . ,K} R vj

j ∈ {1, 2, . . . , J} Datatmp
j j ∈ {1, 2, . . . , J}

1: Input:  ( ), , 
( ),  ( ).

h(k, j)2: Output: .
k K3: for  = 1 to  do
j J4:　for  = 1 to  do

t T5: 　　for  = 1 to  do

Datatmp
j Datatmp

j Rj [t] · d6: 　　　 = + ;

Datatmp
j > Ik7: 　　　If 

s(k, j) = argmin
m∈{1,2,...,M}

{Dm,j [t]}8: 　　　　 ;

9: 　　　end if
10: 　　end for
11: 　end for
12: end for

 2. Computing resource allocation
uk,j

fk,j
fk,j

When the node selection strategy  is given, P1
becomes a function of . Then we can omit the irrel-
evant terms to , and rewrite the original problem as
follows: 

P2 = min
fk,j

η · max
k∈K,j∈J

{
Ck · uk,j

fk,j
+ (1− η) ·

 J∑
j=1

K∑
k=1

uk,j

(
γ · Ck +

1

tcomk,j

)}
s.t. C1 : fk,j≥0, ∀k ∈ K, ∀j ∈ J

C2 :
∑
k∈K

fk,j≤fmax
j , ∀j ∈ J

C3 :
∑
j∈J

(
toffk,j +

Ck

fk,j

)
· uk,j≤Tmax

k , ∀k ∈ K
(16)

Obviously, the set of feasible solutions of P2 is con-
vex.  Now,  we  can  show the  convexity  of  the  objective

φ(f)

∇2φ(f)

function  P2.  Denoting  the  objective  function  as ,
we can obtain the second derivative  as follows: 

∂2φ(f)

∂f2
k,j

=
2Ck · η · uk,j

f3
k,j

+ (1− η) · uk,j

Ck
(17)

∇2φ(f) > 0It  is  easy  to  validate ,  so  the  Hessian
matrix is a positive semi-definite matrix. Therefore, the

problem  P2  is  a  convex  optimization  problem,  and  its
Lagrange function can be expressed as 

L(fk,j , θk, εj) = η max
k∈K,j∈J

Ck · uk,j

fk,j
+ (1− η) ·

J∑
j=1

K∑
k=1

uk,j ·
(
γ · Ck +

1

tcomk,j

)

+
∑
k∈K

θk

∑
j∈J

(
toffk,j +

Ck

fk,j

)
· uk,j − Tmax

k

+
∑
j∈J

εj

(∑
k∈K

fk,j − fmax
j

)
(18)

According to the KKT condition, we have
 

∇L(fk,j , θk, εj) = 0 (19)

  ∑
j∈J

(
toffk,j +

Ck

fk,j

)
· uk,j − Tmax

k = 0 (20)
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∑
k∈K

fk,j − fmax
j = 0 (21)

Finally, we have
 

∂L

∂fk,j
= η · −Ck

f2
k,j

+ θk · −Ck

f2
k,j

+ εj = 0

⇒ fk,j
∗ =

√
Ck · (η + θk) · uk,j

εj
(22)

Substituting (22) into (20) and (21), we can get
 

∑
j∈J

toffk,j +
Ck√

Ck · (η + θk) · uk,j

εj

 = Tmax
k (23)

  ∑
k∈K

√
Ck · (η + θk) · uk,j

εj
= fmax

j (24)

Based on  the  above  analysis,  the  computing  re-
source allocation algorithm is presented as shown in Al-
gorithm 2 if the vehicle node selection strategy is given.

Algorithm 2　Computing resource allocation algorithm

θk = θ0k k ∈ {1, 2, . . . ,K} εj = ε0j1: Select , , ,

j ∈ {1, 2, . . . , J}
step = 0.01

 as  the  Lagrange  initial  value,  set
;

m = 1 : L L2: for  (  is the number of iteration)
θmk εmj3:  Update  and  according to the equations below:

θmk = θm−1
k + step · grad(θm−1

k )　 

εmj = εm−1
j + step · grad(εm−1

j )　 
step = step/sqrt(m)4:  Update ;

θmk εmj5:  Substitute  and  into equations (23) and (24), if

abs

∑j∈J

toffk,j +
Ck√√√√√Ck · (η + θmk ) · uk,j

εmj

−Tmax
k

<ξ　 

abs

( ∑
k∈K

√
Ck · (η + θmk ) · uk,j

εmj
− fmax

j

)
< ξ

θmk εmj m m

　 and ,  then

output  and , go to step 7; Otherwise, let  = +
1 and go to step 2;

6: end for
θmk εmj

fk,j
∗ fk,j

∗
7: Substitute  and  into  equaiton  (22)  to  calculate

, then output .

 3. Vehicle node selection problem

fk,j
∗ fk,j

∗
Based  on  the  above  discussion,  we  can  obtain  the

optimal computing resource allocation . So if 
is given, we can rewrite the original problem P1 as

 

P3 = min
uk,j

{
η max
k∈K,j∈J

(
uk,jt

off
k,j + uk,j

Ck

fk,j
∗

)
+ (1− η)

 J∑
j=1

K∑
k=1

uk,j ·
(
γ · Ck +

fk,j
∗

Ck

)
+

J∑
j=1

K∑
k=1

uk,j · h(k, j)

}

s.t. C4 : uk,j ∈ {0, 1}, ∀k ∈ K, ∀j ∈ J

C5 :
∑
j∈J

uk,j = 1, ∀k ∈ K

(25)

uk,j

The  problem  P3  is  a  0-1  integer  programming
problem  for .  Now,  we  introduce  a  branch  and
bound algorithm to solve this problem[21]. Considering

0 ≤ uk,j ≤ 1

that problem P3 is a 0-1 integer programming problem,
it can be relaxed if we let , so problem P3
can be rewritten as 

P4 = min
uk,j

{
η max
k∈K,j∈J

(
uk,jt

off
k,j + uk,j

Ck

fk,j
∗

)
+ (1− η)

 J∑
j=1

K∑
k=1

uk,j ·
(
γ · Ck +

fk,j
∗

Ck

)
+

J∑
j=1

K∑
k=1

uk,j · h(k, j)

}
s.t. C6 : uk,j ∈ [0, 1], ∀k ∈ K, ∀j ∈ J

(26)

uk,j

The optimal solution of P4 is a lower bound of P3.
It can be easily obtained by using convex optimization
algorithm. Then, an integer solution for  can be ob-
tained by
 

uk,j =

{
1, uk,j > 0.5
0, uk,j ≤ 0.5

, ∀k ∈ K, j ∈ J (27)

uk,jOnce the value of  is determined, P3 can be re-
written as 

P5 = max
k∈K,j∈J,uk,j=1

η ·
(
toffk,j +

Ck

fk,j
∗

)
+ (1− η) ·

 J∑
j=1

K∑
k=1

γ · Ck +
fk,j

∗

Ck
+

J∑
j=1

K∑
k=1

h(k, j)

 (28)

The  solution  of  P5  is  an  upper  bound  of  P3,  and the  optimal  solution  of  P5  can  be  easily  found  using
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convex  optimization  algorithms.  By  solving  problems
P4 and P5,  the  lower  and upper  bounds  of  P3  can  be
obtained.  Therefore,  the optimal  solution of  P3 can be
obtained by using the branch and bound algorithm, as
shown in Algorithm 3.

Algorithm 3　Branch and bound algorithm

3∗ = ∅ UB = {+ ∝}
1: Initialize  the  optimal  solution  of  P3  as  an  empty  set,

that is, P  and the upper bound ;
uk,j ∈ {0, 1}

uk,j ∈ [0, 1] ∀k ∈ K ∀j ∈ J
2: Linear  relaxation: let  relax  into

, , , i.e., from P3 to P4;
4∗

5∗ LB∗

UB∗

3: Solve P4 and P5 to obtain its optimal solution P  and
P , and set them as the lower bound  and the up-
per bound  of P3, respectively;

4: Iteration:
n Q5: There are  branches in branch queue  to be solved;

m = 1 : n6: for 
LBm m7:  Obtain  the  lower  bound  of  branch  based  on

the form of P4;
UBm m8:  Obtain  the  upper  bound  of  branch  based  on

the form of P5;
LBm < UB∗ m

m1 m2 m1 m2

Q

9:  If ,  divide  branch  problem  into  2
branches  and  and  insert  and  into
branch queue ;

LB∗ {LB∗,LBm}10: Update =max ;
UB∗ {UB∗,UBm}11: Update =min ;

LB∗≥UB∗ 3∗

u∗
12: If ,  update  the  optimal  solution  P  and

corresponding feasible solution ;
m13: m= +1;

14: end for
Q = ∅

3∗ u∗
15: If ,  stop  iteration  and  output  current  optimal

solution  P  and  feasible  solution . Otherwise,  im-
plement next iteration.

 4. Mobility-aware  multi-task  migration  and
offloading algorithm

Based on the above analysis, a mobility-aware mul-
titask  migration  and  offloading  scheme  for  Internet  of
vehicles (MAMMOS) is proposed to minimize the total
cost  of  task  offloading  and  migration.  As  mentioned
above, the  method  of  alternating  optimization  and  di-
vide and  conquer  is  introduced.  Then  the  initial  prob-
lem can  be  decoupled  into  two  sub-problems:  comput-
ing resource allocation problem and vehicle  node selec-
tion problem. Given the solution of  vehicle  node selec-
tion problem, the solution of computing resource alloca-
tion problem will be obtained according to Algorithm 2.
Similarly, given  the  updated  solution  of  computing  re-
source  allocation  problem,  the  solution  of  vehicle  node
selection problem  will  be  calculated  according  to  Al-
gorithm 3. By constantly iterating the Algorithm 2 and
Algorithm  3  until  the  solution  converges  to  a  certain
range.  The  detailed  MAMMOS  algorithm  is  shown  as
follows.

Algorithm 4　MAMMOS algorithm
L1: Initialization parameters (the number of iteration );

m = 1 : L2: for 

fm
k,j

3:  Solve problem  P2  according  to  Algorithm  2,  and  ob-
tain the optimal computing resource allocation ;

um
k,j

4:  Solve  problem  P3  based  on  Algorithm  3,  and  obtain
optimal vehicle node selection ;

abs(fm
k,j − fm−1

k,j ) < σ abs(um
k,j − um−1

k,j ) < σ
fm∗
k,j um∗

k,j

m = m+ 1

5:  If  and , out-
put  and ,  and  go  to  step  6;  otherwise,  let

 and go to step 2;
6 end for

 IV. Simulation and Discussion
 1. Simulation scenarios and settings
In this section, some simulation results are presen-

ted to evaluate the effectiveness of the algorithm. In our
simulation, Monte  Carlo  method  are  used  to  imple-
ment the simulation in Matlab software, which uses re-
peated random  sampling  to  generate  tasks  and  attrib-
utes such as the speed and direction of the vehicle, then
simulate the process of the multiple tasks offloading and
computing according to the proposed algorithm. Mean-
while,  by  changing  the  size  of  the  task,  the  speed  of
vehicle,  the  number  of  vehicles  and  other  parameters,
the performance of the proposed algorithm is compared
with other  algorithms.  And  the  Monte  Carlo  simula-
tion is  executed  100  times  for  every  performance  com-
parison.  Detailed  simulation  parameters  are  shown  in
Table 1.
 
 

Table 1. Simulation parameters

Parameters Description Value

B
Channel bandwidth between

RSUs and vehicles 1 MHz

∂ Pass-loss exponent 4
N0 Noise power 10−15  W
PRSU Transmitted power of RSUs 0.1 W
2R Distance between the adjacent RSUs 100 m
d One time slot 0.1 s
J Number of vehicles 12
K Number of tasks 8
M Number of RSUs 20
η Trade-off factor 0.99999
v The speed of vehicle U(15,65) km/h
S Population size of HHO algorithm 30
T The max iterations of HHO algorithm 500

 

 2. Discussion of simulation results
• Random algorithm: Each task randomly selects a

vehicle node to offload and be completed.
•  Harris  hawks  optimization  (HHO)  algorithm  :

Harris hawks algorithm is a kind of effective intelligent
optimization algorithm inspired  by the  process  of  Har-
ris  Eagle  hunting  rabbits.  In  our  scenario,  the  vehicle
node selection problem is a typical combination optim-
ization question and Harris hawks algorithm is also in-
troduced to solve it.
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Fig.2 demonstrates the objective function values of
the proposed algorithm, HHO algorithm and random al-
gorithm under  different  task data sizes.  It  can be seen
that the  proposed  algorithm  can  obtain  the  best  per-
formance,  which  is  about  15.03%  higher  than  that  of
HHO algorithm  and  35.37%  higher  than  that  of  ran-
dom algorithm.
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Fig. 2. Objective function with different task sizes.

 

Fig.3 shows the relationship between delay and dif-
ferent task size. With the increasing of the data size of
the  task,  the  delay  also  increases  because  bigger  data
needs more  computing  ability.  And  the  proposed  al-
gorithm can get minimum delay. It is about 9.5% lower
than  that  of  HHO  algorithm  and  19.55%  lower  than
that  of  random  algorithm. Figs.3 and 4 validate  that
the proposed offloading method can achieve higher per-
formance in terms of cost and latency.
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Fig. 3. Delay with different task sizes.

 

Fig.4 illustrates the relationship between the num-
ber of vehicle nodes and the value of the objective func-
tion under the proposed algorithm, HHO algorithm and
random algorithm. It can be seen that with the increas-
ing of vehicle computing nodes, the value of the object-
ive  function  shows  a  downward  trend.  The  reason  is
that  the  task  can  preferentially  select  the  vehicle  with
stronger computing  ability  when the  number  of  select-
able  vehicles  increases.  Stronger  computing  ability  will
result in lower delay and cost. The proposed algorithm

can get the best performance in terms of objective func-
tion,  which  is  about  21.56% higher  than  that  of  HHO
algorithm and  about  37.92%  higher  than  that  of  ran-
dom algorithm.
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Fig. 4. Objective function with different number of vehicles.

 

Fig.5 shows  the  value  of  objective  function  of  the
three algorithms at different vehicle speeds.  Obviously,
with  the  increasing  of  the  vehicle  speed,  the  objective
function  will  increase.  The  main  reason  is  that  higher
vehicle  speed  will  result  in  more  migrations.  This  will
increase the  migration  cost  of  the  tasks  so  as  to  de-
crease the  performance.  In  this  situation,  the  perform-
ance  of  the  proposed  algorithm  is  about  7.27%  higher
than  that  of  HHO  algorithm  and  17.98%  higher  than
that of random algorithm.
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Fig. 5. Objective function with different vehicle speeds.

 

η

η

η

The  trade-off  parameter  can  be  used  to  adjust
the optimization performance index of the system. If 
is set  to  close  to  1,  the  delay  dominates  the  optimiza-
tion objective. If  is set to close to 0, the reward and
migration cost plays a leading role.

η

η

η

Fig.6 shows the delay with different  and number
of vehicles. It can be seen that the delay decreases signi-
ficantly with the increasing of . Therefore, we can get
the optimization results with different emphasis by ad-
justing .  Meanwhile,  more  number  of  vehicles  can
provide stronger computing ability and more choices to
offload the tasks. 
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Fig. 6. Delay with different number of vehicles.

 

 V. Conclusions
In this  paper,  a  mobility-aware  multi-task  migra-

tion  and  offloading  scheme  for  Internet  of  vehicles  is
proposed  to  minimize  the  total  cost  of  task  offloading
and migration.  Firstly,  task  offloading  model,  comput-
ing model,  migration  model  and  cost  model  is  presen-
ted. Then,  the  problem  is  formulated  as  a  mixed  in-
teger  nonlinear  programming  problem.  To  solve  the
thorny problem, it is decoupled into two sub-problems:
computing resource allocation problem and vehicle node
selection problem.  Next,  Lagrange  function  and  im-
proved branch and bound algorithm based on linear re-
laxation  are  presented  to  solve  the  two  sub-problems,
respectively.  Finally,  simulation  results  validate  that
the  proposed  algorithm can  effectively  improve  system
performance.
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