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   Abstract — The  6G mobile  communications  demand
lower content  delivery  latency and higher  quality  of  ser-
vice  for  vehicular  edge  network.  With  the  popularity  of
content-centric  networks,  mobile  users  are  paying  more
and more  attention  to  the  delay  and  reliability  of  fetch-
ing cached content. For reducing communication costs, in-
creasing network capacity and improving the content de-
livery,  we  propose  a  collaborative  caching  scheme  based
on deep  reinforcement  learning  for  vehicular  edge  net-
work assisted by cell-free massive multiple-input multiple-
output (MIMO) system, in which the macro base station
is considered as the central processor unit, and the road-
side units are treated as roadside access points (RSAPs).
The  proposed  scheme  can  effectively  cache  contents  in
edge nodes, i.e., RSAPs and vehicles with caching capab-
ility. We jointly consider the mobility of vehicles and the
content request preferences of users, then we use deep Q-
networks  algorithm  to  optimize  the  caching  decisions.
Simulation results show that the proposed scheme can sig-
nificantly reduce the content delivery average latency and
increase the content cache hit ratio.

   Key words — Vehicular  edge  network, Cell-free

massive MIMO, Collaborative caching, Content delivery

latency, Deep reinforcement learning, Cache hit ratio.

 I. Introduction
With the  development  of  smart  vehicles  and  mo-

bile communication, artificial intelligence (AI)-based In-
ternet  of  vehicles  (IoV)  technologies  are  rapidly
evolving.  Meanwhile,  the  advancement  of  smart  cities
and  intelligent  transportation  systems  (ITSs)  [1]–[3]

also brings various new applications for the Internet of
everything  (IoE).  However,  IoV faces  the  challenges  of
high dynamic  topology,  computation  resource  limita-
tion, extended network scale [4],  and quality of  service
(QoS)  provisions.  The  AI  technology,  especially  deep
learning (DL) in 6G wireless networks, is necessary for
facilitating the  IoV  systems  to  coordinate  communica-
tion and computation resources [5].

The standardization of vehicle-to-everything (V2X)
technologies, such as IEEE 802.11 V2X and Cellular V2X
(C-V2X) [6]–[8], has been supporting transportation ser-
vices  like  road  safety,  traffic  efficiency,  and  passenger
entertainment,  etc.  [4],  [9].  There  is  no  doubt  that  6G
will generate more ultra-reliable and low-latency applic-
ation scenarios,  which makes the mobile  users  want to
get  content  rapidly  and  accurately  [10],  [11].  Mobile
edge computing  (MEC)  is  considered  as  a  novel  com-
puting  model  [12],  [13] that  provides  quasi-cloud  ser-
vices at the edge of the wireless access network and can
effectively relieve the burden on backhaul links by redu-
cing communication overhead caused by content trans-
mission [14]–[16]. Hence, vehicular edge computing (VEC)
networks  deploy  a  large  number  of  services  on  edge
nodes,  such  as  roadside  units  (RSUs)  equipped  with
MEC servers  [17],  [18]  and  vehicles  equipped  with  on-
board units  (OBUs).  There  are  two  fundamental  com-
munication  models  in  VEC:  vehicle-to-vehicle  (V2V)
and vehicle-to-infrastructure (V2I).  Vehicles within the
coverage of an RSU can request content from the RSU,
i.e., V2I, and the RSU can respond the request through 
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infrastructure-to-vehicle (I2V) [19]. Vehicles can also re-
quest content from other neighboring vehicles via V2V
links.

Content caching and delivery in vehicular edge net-
work need to provide passengers with a comfortable and
safe driving  environment,  abundant  and  various  enter-
tainment, information, and social network services [20],
[21]. Meanwhile, it is also expected to meet the scalabil-
ity  and  high  coverage  of  communication  brought  by
vehicular mobility. Thus we introduce cell-free massive
multiple-input  multiple-output  (MIMO)  to  solve  these
problems more  easily.  Cell-free  massive  MIMO  com-
bines  the  concepts  of  distributed  MIMO  and  massive
MIMO by  replacing  the  complicated  macro  base  sta-
tion  (MBS)  with  a  large  number  of  simplified  access
points (APs) [22], [23]. In the vehicular communication,
we consider  multiple  RSUs  equipped  with  simple  an-
tenna configuration as roadside access points (RSAPs).
Besides, we assume MBS connecting to the cloud serv-
ers via backhaul links can cache all contents and act as
the central processor unit (CPU) [24], [25]. A set of dis-
tributed  RSAPs  simultaneously  provides  collaborative
caching services to all the vehicles within the coverage.
RSAPs receive content delivery requests that are collec-
ted  and  processed  by  the  CPU.  The  integration  of
vehicular edge network and cell-free massive MIMO sys-
tem can  not  only  effectively  improve  the  stability  and
scalability  of  the  network  in  the  case  of  high-speed
vehicular  movement,  but  also  reduce  the  deployment
cost of  MBS and improve  the  performance  of  the  con-
tent transmission.

To  evaluate  the  caching  placement  scheme  in
vehicular  edge  network  assisted  by  cell-free  massive
MIMO,  cache  delivery  latency  and  cache  hit  ratio  are
the  two  metrics  that  are  commonly  used  [20].  Mobile
users are  sensitive  to  the  delay  and  reliability  of  con-
tent  delivery,  while  the  content  providers  focus  on the
content cache hit ratio, which means the faster retriev-
al of content brings fewer expenses. Caching contents in
edge  APs  including  RSAPs,  and  vehicles  with  caching
capability (CVs),  makes  content  closer  to  the  request-
ing  vehicles  (RVs).  When  RVs  enter  the  coverage  of
RSAPs, they  can  request  their  interested  content  ac-
cording to their preference, and if RSAPs or CVs have
cached  the  requested  content  [26],  the  corresponding
content can be sent to the RVs via V2I or  V2V links.
Besides, the vehicular mobility can also expand content
delivery. In contrast to content retrieval from the CPU,
RSAPs  and  CVs  collaboratively  cache  the  content  at
the edge,  which  can effectively  reduce  the  communica-
tion cost, increase the network capacity and content de-
livery  ratio.  However,  considering  the  limited  caching
capacity of RSAPs and CVs, it is necessary to investig-

ate a  collaborative  caching  scheme  that  can  both  re-
duce  content  delivery  latency  and  make  full  use  of
cache storage.

In  this  paper,  we  study  the  collaborative  caching
placement problem in urban intersections scenario. The
main contributions  of  this  work can be summarized as
follows:

1) We consider traffic congestion, vehicular mobil-
ity, mobile users’ content preferences and limited cache
storage  to  establish  an  efficient  collaborative  caching
model between RSAPs and CVs at intersections, which
gathers various popular contents.

2)  To  cache  popular  contents  preferentially  in  the
limited storages  of  edge  nodes  and  minimize  the  con-
tent delivery  average  latency,  we  propose  a  deep  rein-
forcement learning (DRL)-based caching algorithm. The
vehicular trajectory,  speed,  and  user  preferences,  re-
quested  contents  are  deliberatively  arranged  for  CVs
and RSAPs.

3)  We  conduct  extensive  simulations  to  evaluate
the proposed scheme. The results demonstrate that the
proposed  collaborative  caching  scheme  can  effectively
reduce the  content  delivery  average  latency  and  im-
prove the content cache hit ratio than other comparis-
on schemes.

The rest of this paper is organized as follows. Sec-
tion  II  reviews  the  related  work.  Section  III  describes
the system model of vehicular edge network assisted by
cell-free  massive  MIMO.  Then  Section  IV  illustrates
DRL-based collaborative caching scheme in detail. Sim-
ulation results are presented and discussed in Section V.
Finally, Section VI concludes this paper.

 II. Related Work
With  the  increasing  number  of  vehicles  and  the

new  demands  of  multimedia  services,  caching  schemes
in vehicular  edge  network  have  been  extensively  stud-
ied  [27]–[33].  The  VEC-based  content  caching  strategy
should  consider  not  only  the  QoS  of  content  delivery
but also the vehicular mobility, the content popularity,
the capacity of caching nodes, etc.

Su et  al.  [27]  proposed  a  vehicular  edge  caching
strategy  based  on  cross-entropy  to  adapt  to  dynamic
changes  of  the  content  popularity  and  considered  the
cooperative  caching  among  RSUs.  In  [28],  the  authors
presented  the  content  dissemination  framework,  in
which they took an auction game between vehicles into
account,  and incentivized vehicles to participate in the
content  distribution  through  V2X  communication  and
earn more profits from the content providers. Akhavan
Bitaghsir et al. [29] designed a content distribution net-
work  so  that  information  can  be  shared  among  RSUs.
They also proposed a caching algorithm that assigns an
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appropriate caching subset of content to each RSU and
used a strategic resource allocation game to improve the
caching hit ratio. Zhou et al. [30] focused on alleviating
the  consumption  of  backhaul  links.  They  studied  the
proactive caching  problem  in  multi-access  edge  net-
works and  used  game  theory  to  minimize  the  commu-
nication cost by considering content preferences and so-
cial  relationships  between  users.  In  [31],  the  authors
used Markov  processes  to  model  the  V2X communica-
tion and  proposed  a  proactive  caching  algorithm  in-
volving vehicle  mobility  and content  chunking  to  min-
imize the transmission delays while improving cache hit
ratio. AlNagar et al. [32] investigated caching algorithm
based on the knapsack problem and suboptimal relaxa-
tions  and  verified  it  in  collaborative  RSUs  and  non-
collaborative  ways.  Yao et  al.  [33] introduced  the  con-
cepts  of  social  similarity  and  bridging  centrality  of
vehicles. Furthermore, they used hidden Markov model
(HMM) to predict the probability of vehicular destina-
tions through historical  trajectories,  and select suitable
vehicles as  caching  relay  nodes  to  provide  better  qual-
ity of experience (QoE) to users.

Although the above studies have already take into
account part of the vehicular mobility, content popular-
ity, caching storage, and vehicles-RSUs collaboration in
caching  schemes,  these  factors  are  not  jointly  con
sidered  for  higher  caching  efficiency.  The  introduction
of AI  technologies  can  effectively  meet  these  require-
ments. To obtain the optimal caching strategy, caching
schemes were optimized by federated learning (FL) and
DRL approaches in [21], [34]–[38].

Yu et al. [34] presented a mobility-aware proactive
edge caching scheme based on FL, which used context-
aware adversarial autoencoder to predict highly dynam-
ic  content  popularity.  In  [21],  the  authors  designed  a
dynamic  content  delivery  policy  that  minimizes  the
vehicular cost  through  the  double  deep  Q-network  al-
gorithm,  which  overcomes  the  large-scale  state  space
and reduces Q-value overestimation. Qiao et al.  in [35]
jointly  optimize  the  content  placement  and  delivery
problem  through  three-way  cooperation  among  macro-
cell  station,  RSUs,  and  intelligent  vehicles,  and  they
proposed a collaborative edge caching scheme based on
the deep  deterministic  policy  gradient  (DDPG)  frame-
work. The aim in [36] is minimizing the latency of cach-
ing  services.  And  the  authors  conceived  a  heuristic  Q-
learning  scheme and used the  long  short-term memory
(LSTM)  networks  to  predict  vehicular  mobility  and
achieved  an  effective  proactive  caching  policy.  Ning et
al.  [37]  developed  an  intent-based  traffic  flow  control
system using DRL to dynamically coordinate edge com-
puting and content caching. It helps mobile network op-
erators  to maximize their  profits.  Zhang et  al.  [38] ap-

plied DDPG  model  and  proposed  an  edge  caching  al-
gorithm  in  a  high-speed  free-flow  scenario  to  improve
QoS.

Based  on  the  above  survey,  we  observe  that  the
collaborative caching schemes need to be improved, and
there is still a lack of joint consideration of communica-
tion,  computation  and  caching  resources,  as  well  as  a
need for more efficient algorithms with better QoS.

 III. System Model
In this section, we construct the collaborative cach-

ing  framework,  including  the  network model,  vehicular
mobility  model,  communication  model,  and  content
caching and delivery model.

 1. Network model
In  the  urban  area,  shopping  malls,  supermarkets,

office  buildings,  and  well-known  companies  can  all  be
potential content providers. The content providers hope
that  their  contents  can  accurately  target  nearby
vehicles  and  create  greater  cost-effectiveness.  Different
vehicular users have their own interests or preferences,
and some popular contents may be requested by sever-
al  vehicles  simultaneously.  To  increase  the  profits  for
content  providers  and  to  help  vehicular  users  obtain
their  interesting  contents  more  quickly  and  accurately
when passing a specific area, it makes sense to consider
content caching strategies in popular urban areas.

{rsap1, . . . , rsapm, . . . , rsapM}

{cv1, . . . , cvk, . . . ,
cvK}

{rv1, . . . , rvn, . . . , rvN}

Fig.1 illustrates  an  urban  vehicular  edge  caching
network assisted by cell-free massive MIMO, which con-
sists  of  the  cloud  server,  a  CPU,  RSAPs,  and  moving
vehicles  (CVs  and  RVs).  The  RSAPs  with  computing
and  caching  capabilities  that  are  equipped  with  MEC
servers  are  denoted  as .
Besides,  CVs  equipped  with  OBUs  that  have caching
capability are represented by the set of 

.  All  these  nodes  mentioned  above  can  serve  as
content providers. RVs with wireless transmission abil-
ity can be denoted by . CPU and
RSAPs  have  certain  communication  coverage.  After
RVs  request  the  content,  if  these  content  providers
have already cached the requested content, RVs can get
the content from RSAPs via V2I links or CVs via V2V
links.  If  there  is  no  cached  content,  the  content  can
only  be  obtained  from the  CPU.  The  CPU can  access
the cloud servers as they have enough storage to store
all  the  contents.  RSAPs  and  CVs  have  limited  cache
storage and can only selectively cache contents.

T

T={1, . . . , t, . . . , T}

Taking  into  account  the  mobility  of  vehicles,  the
content request time of RVs is divided into  discrete
time slots that can be expressed as .
Considering  the  signaling  overhead  caused  by  frequent
communication link switching, each RV can only choose
one link from V2I  or  V2V in  each time slot  to  deliver
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T

the content.  We focus on the caching policy that min-
imizes the content delivery latency for all RVs within 
time slots.

 2. Vehicular mobility model

hs

hv

{v1, . . . , vn, . . . , vN} {u1, . . . , uk, . . . ,

uK}
Rcpu Rs

The locations of the CPU and RSAPs are fixed and
the  positions  of  the  vehicles  are  changing  over  time.
The antenna height of RSAPs is denoted as , and the
antenna height of vehicles (CVs and RVs) is denoted as

.  Assuming  that  each  vehicle  moves  at  a  constant
speed on the road,  the sets  of  speeds of  RVs and CVs
are denoted as  and 

 respectively.  The  coverage  radiuses  of  CPU  and
RSAPs are  and  respectively.

rvn
cvk d0

t

In  V2V  communication  as  shown  in Fig.2,  if 
and  are moving in the same lane,  is  the initial
opposite  distance,  the  distance  between  them  at  time
slot  can be expressed as
 

dk,n(t) = |d0 + (uk − vn)t| (1)

  

h
s h

v



d

d
0

R
s

2

l

 
Fig. 2. The position model between RSAP and vehicles.

 

d

rsapm l

rsapm√
( l
2 )

2 + d2 + (hs − hv)2 = Rs

rvn rsapm t

In V2I communication as shown in Fig.2,  is  the
vertical distance of  from the lane,  is the max-
imum length of  the road covered by ,  which can
be calculated as , the dis-
tance between  and  at time slot  can be ex-

pressed as
 

dm,n(t) =

√(
l

2
− vnt

)2

+ d2 + (hs − hv)2 (2)

 3. Communication model

Bs Bv

t

It  is  assumed that  the  V2I  and V2V links  occupy
different  frequency  bands  and  there  is  no  interference
between each  other.  To  simplify  the  problem,  we  con-
sider  that  the  channel  environment  is  constant  within
one time slot of  each content request.  The bandwidths
allocated by the system for the V2I and V2V links are

 and  respectively.  Due  to  the  high  mobility  of
vehicles, the V2V link is unstable. And we want to en-
sure  that  the  RV can  acquire  one  whole  content  from
the  CV  during  the  period  of  V2V  link  connection.
Therefore, for simplicity, we only consider V2V commu-
nication  between  RVs  and  CVs  moving  in  the  same
lane and same direction. At time slot , the communica-
tion models of V2I and V2V links are shown as follows.

Cf

rsapm
rvn

We  consider  that  RSAPs  and  CVs  cache  content
with equal size , and all communication channels are
additive  white  Gaussian  noise  (AWGN)  channels.  The
transmission  rate  of  to  deliver  cached  contents
via V2I link to  can be expressed as
 

Rm,n(t) = Bs log2

(
1 +

PsGm,n(t)

σ2

)
(3)

Ps

Gm,n(t) rsapm
rvn σ2

where  is  the  constant  transmission  power  of  V2I
links,  is  the  channel  gain  between  and

,  is the noise power.
The content delivery latency of V2I link can be ex-

pressed as
 

Dm,n(t) =
Cf

Rm,n(t)
(4)

 

Cloud server

Coverage of MBS

Coverage of RSAP

CPU

RSAP

Edge server

RVs and CVs

V2I

V2V

 
Fig. 1. Vehicular edge network assisted by cell-free massive MIMO.
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cvk
rvn

The transmission rate of  to deliver cached con-
tent via V2V link to  can be expressed as
 

Rk,n(t) = Bv log2

(
1 +

PvGk,n(t)

σ2

)
(5)

Pv

Gk,n(t) cvk rvn

where  is  the  constant  transmission  power  of  V2V
links,  is the channel gain between  and .

Similarly, the content delivery latency of V2V link
can be expressed as
 

Dk,n(t) =
Cf

Rk,n(t)
(6)

 4. Content caching and delivery model

S

Cf

{c1, . . . , cs, . . . , cS}

To improve the caching efficiency, RSAPs and CVs
should cache not only the content of their own regions
but  also  the  content  of  the  adjacent  regions  that  may
be  requested  by  the  vehicles  passing  by.  contents
with  the  same  size  are  denoted  as  the  set  of

.

λ

rvn
x (x ≤ S) i

rvn

The  Zipf  distribution  is  often  used  to  model  the
popularity  of  content  according  to  [39],  in  which  is
the  skewness  parameter  for  the  Zipf  distribution.  For
different RVs,  there are contents that they are not in-
terested in at all or the contents that they are very in-
terested  in.  We  assume  that  has  interest  in

 contents,  the  probability  of th content  be-
ing requested by  can be expressed as
 

Pn,i =
i−λ∑x

j=1
j−λ (7)

Q = [Q1, . . . , Qn, . . . , QN ]
T

Qn=[qn(1), . . . , qn(t), . . . , qn(T )] (1≤n≤N)

qn(t)

rvn qn(t) = s

cs rvn t

 represents  the  content
request sequences of RVs, and is generated according to
formula (7). ,
where  represents the index of  content  that  is  re-
quested by . For example,  means the con-
tent  is requested by  at time slot .

Cs Cv

The  caching  policy  of  CVs  and  RSAPs  needs  to
take into account the preferences  of  different  RVs and
cache as much content as possible that are most reques-
ted by RVs. Due to the limited storage, we denote that
the  cache  capacity  of  RSAPs  and CVs  are  and 
respectively.

αm,s ∈ {0, 1} βk,s ∈ {0, 1} αm,s = 1 rsapm
cs αm,s = 0 βk,s = 1

cs cvk
βk,s = 0 cs αm,s = 0

βk,s = 0

We  define  two  binary  cache  indicators,  i.e.,
 and . If ,  have

cached the content ,  otherwise .  If ,
the  content  has  been  cached  by ,  otherwise

.  For  the  same  content ,  if  and
,  the RVs can only fetch the content from the

CPU which  brings  in  higher  latency.  Because  the  con-
tent  providers  need  to  pay  the  caching  incentives  to
RSAPs and CVs, the caching policy of RSAPs and CVs

should satisfy as many user preferences as possible dur-
ing the whole period.

rvn
ηm,n(t)

rvn
t ηm,n(t) = 1 rsapm

ηm,n(t) = 0
∑M

m=1 ηm,n(t) ≤ 1

rvn λk,n(t)

cv1 cvK∑K
k=1 λk,n(t) ≤ 1

rvn∑M
m=1 ηm,n(t)+

∑K
k=1 λk,n(t) ≤ 1 rvn

At each time slot,  requests only one content at
most,  is  the  binary  indicator  that  indicates
which RSAP is  used to deliver  content to  at  time
slot . If , the content is delivered by ,
otherwise .  indicates that
only one of  the RSAPs at  most  can deliver  content to

 per time slot. Similarly,  is the binary indic-
ator  of  content  delivery  condition  from  to .

 indicates that only one of the CVs at
most  can  deliver  content  to  per  time  slot.  And

 means  can choose
at  most  one  link  between  V2I  and  V2V links  to  fetch
content per time slot.

t

rvn raspm
rvn cvk

t+1 Pr(λk,n(t+1)=1|ηm,n(t)=1)

We  use  a  Markov  process  [31],  [40]  to  model  the
mobility of vehicles. When vehicles approach the cross-
roads,  their  mobility  can  be  seen  as  discrete  random
processes.  For  each  RV,  the  probability  of  moving  to
the  next  position  only  depends  on  its  position  at
present. As shown in Fig.1, one RV may connect with a
RSAP or a CV to fetch content. At current time slot 
of  connecting with , the state transition prob-
ability of  connecting with  in the next time slot

 can be expressed as .

rvn cs

According to the previous discussions, at each con-
tent requesting period, for  requests content , the
transmission delay of content delivery can be expressed
as
 

Dn,s(t) =

K∑
k=1

λk,n(t)βk,sDk,n(t)

+

M∑
m=1

ηm,n(t)αm,sDm,n(t)

+ (1− βk,s)(1− αm,s)τcpu (8)

τcpu
λk,n(t) ηm,n(t) 1

αm,s=1 λk,n(t)=0 ηm,n(t)=1

rvn cs rsapm t

βk,s=1 λk,n(t)=1 ηm,n(t)=0 rvn
cs cvk t rvn

cs

where  means  the  latency  of  content  delivery  from
the CPU.  and  cannot be both  at same
time slot. When , if  and ,

 can  fetch  content  from  at  time  slot .
When ,  if  and ,  can
fetch content  from  at time slot . Otherwise, 
can only fetch content  from the CPU.

 5. Problem formulation
In our proposed vehicular edge caching network as-

sisted by cell-free massive MIMO, RVs can be delivered
their requested content from neighboring CVs, RSAPs,
or CPU. To reduce the backhaul link pressure and im-
prove QoS, we aim to minimize the content delivery av-
erage  latency,  we  model  the  content  delivery  average
latency  optimization  problem  for  collaborative  caching
scheme as follows: 
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min
Q,αm,s,βk,s

∑T

t=1

∑N

n=1
Dn,s(t)

NT

s.t.

C1:
∑S

s=1
αm,s ≤

Cs

Cf
,∀m ∈ [1,M ],m ∈ N+

C2:
∑S

s=1
βk,s ≤

Cv

Cf
,∀k ∈ [1,K], k ∈ N+

C3:
∑M

m=1
ηm,n(t) ≤ 1,∀t ∈ T , n ∈ [1, N ], n ∈ N+

C4:
∑K

k=1
λk,n(t) ≤ 1,∀t ∈ T , n ∈ [1, N ], n ∈ N+

C5:
∑M

m=1
ηm,n(t) +

∑K

k=1
λk,n(t) ≤ 1

C6: αm,s ∈ {0, 1}, βk,s ∈ {0, 1}

C7: ηm,n(t) ∈ {0, 1}, λk,n(t) ∈ {0, 1} (9)

where  C1–C2  guarantee  that  the  capacity  of  RSAPs
and  CVs  are  not  exceeded.  C3–C5 limit  an  RV to  se-
lect at most one communication link (V2V or V2I) per
time  slot  to  obtain  content.  C6  denotes  the  content
caching indicators for RSAPs and CVs. C7 denotes the
content  delivery  communication  links  indicators  for
RSAPs and CVs.

 IV. Collaborative Caching Scheme
Based on DRL

In this section, we propose a DRL-based collaborat-
ive caching placement and content delivery latency op-
timization algorithm to solve formula (9). We focus on
the caching  policy  for  multiple  RSAPs  and  CVs  de-
ployed around the popular intersections in Fig.1. First,
we  are  concerned  with  the  mobility  and  preferences  of
vehicles. Then the deep Q-networks (DQN) algorithm is
proposed  to  optimize  the  proactive  caching  policy  of
RSAPs.  Furthermore,  the  CVs  are  introduced  to  help
achieve optimized collaborative caching decisions.

 1. System state space
Because of the limited budget of content providers,

to  improve  the  stability  of  V2V  communication  links,
for more stable content delivery communication between
CVs  and  RVs,  we  consider  the  position  and  speed  of
vehicles,  calculate  the  Euclidean  distance  between
vehicles, and choose the CV that is nearest and moves
in the same lane to the RV, which is the most suitable
for content delivery.

St,n

At  the  beginning  of  each  time  slot,  RVs  request
content from RSAPs or CVs through V2I or V2V links,
which  vehicular  mobility,  communication  transmission,
and caching capacity  have to  be  considered.  The state
space is denoted by , it can be expressed as 

St,n =
{
t, Lrv(t), Lcv(t), Cs, Cv,Q, αm,s, βk,s,

ηm,n(t), λk,n(t), Rm,n(t), Rk,n(t), τcpu
}

(10)

t

Lrv(t) Lcv(t)

Cs Cv

Q αm,s

βk,s ηm,n(t)

λk,n(t)

Rm,n(t) Rk,n(t)

τcpu

The  system  state  includes:  content  request  time
slot ,  location  sets  of  RVs  and  CVs  are  denoted  as

 and  respectively,  RSAPs  cache  capacity
,  CVs  cache  capacity ,  content  request  sequences

of RVs , RSAPs cache status , CVs cache status
,  content  delivery  status  of  V2I  link , con-

tent delivery status of V2V link , V2I transmis-
sion  rate  and  V2V  transmission  rate ,
latency of content delivery from the CPU .

 2. System action  space  and  state  transition
probability

At,n

At  each  time  slot,  vehicles  can  get  contents  from
RSAPs, CVs,  or  the  CPU.  To  reduce  the  communica-
tion loads, the CPU can decide which content should be
precached  in  RSAPs  and  CVs  based  on  the  vehicles’
locations  and  preferences  to  help  improve  the  content
delivery average latency. The action space  can be
expressed as
 

At,n = {αm,s, βk,s, ηm,n(t), λk,n(t)} (11)

αm,s

βk,s

ηm,n(t) λk,n(t)

where  represents the content caching indicator of
RSAPs,  represents the content caching indicator of
CVs.  and  indicates which  communica-
tion links is used for content delivery.

St,n At,n

St,n St+1,n

Pr = (St+1,n|St,n, At,n)

When  the  current  state  and  action  are
determined,  the  state  transition  probability  from  state

 to  the  next  state  can  be  expressed  as
.

 3. Reward

Rt,n

St,n ×At,n

We denote the feedback of an action taken by the
agent as . It  is  a mapping from state space to ac-
tion  space,  i.e., .  Depending  on  the  content
requests of  RVs, the system can take different actions,
which  result  in  different  content  delivery  latency.  For
one RV:

1) If  the  nearest  CV  cache  the  content,  the  con-
tent is delivered to RV via V2V link.

2) If the nearest CV do not cache the content but
the  RSAP  cache  the  content,  the  content  is  delivered
via V2I link.

3) If neither CV nor RSAP cache the content, the
content  is  delivered  by  the  CPU,  resulting  in  a  higher
delivery latency.

Therefore, we consider the reduction of content de-
livery latency as our reward, which can be expressed as
 

γt,n =


−Dk,n(t), if λk,n(t) = 1

−Dm,n(t), if ηm,n(t) = 1

−τcpu, otherwise

(12)
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τcpuwhere  is a constant.
When the caching policies  of  RSAPs and CVs are

determined, the reward of completing the content deliv-
ery of all RVs under all content request time slots can
be expressed as
 

Rt,n =

∑T

t=1

∑N

n=1
γt,n

NT
(13)

 4. Collaborative caching algorithm based on
DQN

t St,n

At,n

St+1,n Rt,n

St,n At,n π : S → A

At  time  slot ,  the  current  state  is ,  if  action
 is  taken,  the  state  transfers  into  the  next  state

.  The  agent  will  be  rewarded  with  accord-
ingly. The  collaborative  caching  policy  can  be  ex-
pressed as a mapping from  to , i.e., .

S0

We  use  the  cumulative  expected  discount  reward
to  represent  the  value  of  the  current  state,  which  can
evaluate the long-term impact of the caching policy. In
the  initial  state ,  the  cumulative  expected  discount
rewards can be formulated as
 

Vπ(St,n) = E

[ ∞∑
t=1

φR(St,n, At,n)|St,n = S0

]
(14)

E[·]
φ ∈ {0, 1}
where  is  the  expectation  for  a  long  time,  and

 is the  discount  factor.  It  indicates  the  im-
portance of predicting the expected payoff.

π∗

St,n

Vπ∗(St,n)

Our  goal  is  to  find  an  optimal  policy ,  which
maximizes the total content delivery rewards. Then we
obtain  the  optimal  action  of  under  the  optimal
policy . It can be expressed as
 

Vπ∗(St,n) =max
At,n

[
R(St,n, At,n)

+ φ
∑

St+1,n

Pr(St+1,n|St,n, At,n)Vπ∗(St+1,n)
]

(15)

Q(St,n, At,n)

We  decompose  a  policy  into  multiple  actions  and
obtain the Q-value function by an action ,
which is stored in the Q-table. Q-value is defined as
 

Qπ(St,n, At,n)

= R(St,n, At,n)

+ φ
∑

St+1,n

Pr(St+1,n|St,n, At,nt)Vπ∗(St+1,n) (16)

Vπ∗(St,n)

Qπ(St,n,At,n) Vπ∗(St,n) = max
At,n

Qπ(St,n, At,n)

ε

ε∈{0, 1}

We can express the relationship between 
and  as . To
obtain  the  maximum  Q-value,  an -greedy  strategy  is
used  in  [41].  During  the  exploration  phase,  the  agent
executes  random  action  with  probability .  In
the  exploitation  phase,  the  agent  executes  the  action

1−εwith probability ,  which has the highest estimated
Q-value as
 

Qπ(St,n, At,n)

= Q(St,n, At,n) + ε
[
R(St,n, At,n)

+ φ max
At+1,n

Qπ(St+1,n, At+1,n)−Q(St,n, At,n)
]

(17)

θ

However,  there  is  correlation  among  Q-values,
which is likely to cause overestimation problem. There-
fore,  we  propose  a  collaborative  caching  algorithm
based on DQN. DQN combines Q-learning method with
DL by adding deep neural networks (DNN), experience
replay  memory,  and  target  Q-network.  The  weights  of
the  DNN  are  used  to  approximate  the  optimal  Q-
value.  The  experience  replay  is  used  for  learning,  and
the  target  network is  used to  eliminate  the  correlation
between data and avoid divergence. To reduce the over-
estimation of  Q-values,  the  agent  should  find  the  ac-
tion  that  correspond  to  the  maximum  estimated  Q-
value, which can be expressed as
 

Amax
t+1,n = argmax

At+1,n

Q(St+1, At+1,n, θ) (18)

Then the action is taken to calculate the target Q-
value in the target DQN. The Q-value of the target Q-
network is expressed as
 

Yt,n = R(St,n, At,n) + ξQ(St+1,n, A
max
t+1,n, θ) (19)

ξwhere  is the learning rate of DQN.
Our goal is to make the estimated network approx-

imate the  target  network gradually,  and the  loss  func-
tion between them is formulated as
 

Loss(θt,n) = E[Yt,n −Q(St,n, At,n, θ)]
2 (20)

The stochastic  gradient descent method is  used to
solve  this  problem  [41],  [42]. Our  proposed  collaborat-
ive caching  algorithm  based  on  DQN  is  shown  in  Al-
gorithm 1.

Algorithm 1 can be divided into three phases. The
first  phase  is  the  initialization  of  parameters.  In  the
second phase, we use DQN algorithm to make the pro-
active  caching  decisions  of  RSAPs  to  achieve  content
delivery average latency minimization, which can effect-
ively solve the problem of various user preferences and
help improve the caching efficiency. In the third phase,
we coordinate  the  CVs  and  RSAPs  to  implement  col-
laborative caching. As we have already known the cach-
ing  decisions  of  RSAPs  through  the  second  phase,
which  are  different  from  RSAPs,  CVs  will  precache
their  own  preferred  contents  so  that  they  can  get  the
required content  from  themselves.  Hence,  caching  de-

1224 Chinese Journal of Electronics 2023



cisions of CVs depend on their own preferences. There-
after,  RVs  send  their  content  requests  to  the  CPU,
which controls the V2X links and decides which RSAP
or CV, who has cached the requested content,  delivers
the content to RVs to get the minimum latency.

Algorithm 1　DQN-based collaborative caching algorithm
Phrase 1　Initialization
1: Generate  RVs  and  CVs  (including  number,  trajectory

and speed);
2: Initialize cache state and cache capacity of RSAPs and

CVs;
Q3: Initialize  content  request  sequences  according  to

equation (7);
4: Initialize channel gains of V2I and V2V links;
5: Initialize the DQN network;
Phrase 2　RSAPs proactive caching based on DQN
6: for each episode do

S07:　 Initialize cache state  randomly;
t = {1, 2, . . . , T}8:　 for  do

At ε9: 　　 Select an action  randomly with probability ;
At10: 　　Otherwise choose  according to equation (18);

At Rt

St+1

11: 　　Execute  action  and  observe  reward  and
;
(St, At, Rt, St+1)12: 　　Store  in the replay memory;

13: 　　Update the Q-network to reduce the loss function
in equation (20);

14: 　end for
15: end for

Amax16: Output the optimal caching action  of RSAPs;
Phrase 3　Collaborative caching scheme
17: Obtain the caching actions of RSAPs from Phase 2;
18: Obtain the caching decisions of CVs according to their

own content preferences;
19: for each RV do

t = {1, 2, . . . , T}20: 　for  do
21: 　　RVs request content from the CPU;
22: 　　CPU arrange a communication link (V2V or V2I)

which have the shortest content delivery latency;
23: 　end for
24: end for

 V. Performance Evaluation
In this section, we evaluate the performance of our

proposed algorithm by comparing with other algorithms.
It is demonstrated that our proposed algorithm can ef-
fectively  reduce  the  content  delivery  average  latency
and improve the content cache hit ratio.

 1. Simulation parameters and settings

600 m× 800 m

We consider an urban intersections scenario with 24
RSAPs, one CPU, and the cloud servers distributed in
a  area  as  shown  in Fig.1.  RSAPs  are
evenly  distributed  in  the  scenario.  Each  road  has  two
lanes  and  RSAPs’ communication  coverage  is  150  m.
There is some overlapping coverage at the center of the

intersection.  In  addition,  the  area  is  covered  by  one
CPU, which is connected to the cloud server. We gener-
ate  vehicular  movements  and trajectories  using  SUMO
[43],  which  can  add  traffic  lights  to  simulate  vehicular
waiting and steering situations,  and it  conforms to the
Markovian movement model. The channel gain model is
set  according  to  [44]. We  use  Python  to  write  al-
gorithm  for  performance  evaluation.  The  cloud  server
stores 10 contents, each content is 2 MB in size. We list
the important simulation parameters in Table 1.
 
 

Table 1. The simulation parameters

Notation Definition Values
hs The antenna heights of RSAPs 5 m
hv The antenna heights of RVs and CVs 1.5 m
Rcpu The coverage radius of CPU 500 m
Rs The coverage radius of RSAPs 150 m

Bs, Bv The bandwidth of V2I and V2V links 1 MHz
Ps The transmission power of V2I links 23 dBm
Pv The transmission power of V2V links 15 dBm

vn, vk The speed of RVs and CVs [0, 40] km/h
Cf The size of each content 2 MB
S The number of contents 10
λ Zipf exponent 0.6
Cs Cache capacity of RSAPs 10 MB
Cv Cache capacity of CVs 6 MB
τcpu The delivery latency from the CPU 80 ms

Episode Training steps of DQN 12000
ξ Learning rate of DQN 0.0001

Gm,n, Gk,n The channel gain of V2I and V2V links Ref.[38]
 

We compare  our  proposed  algorithm with  the  fol-
lowing algorithm:

1)  Popularity-based  caching  scheme  [45]:  RSAPs
and  CVs  cache  the  most  popular  content  at  first,  and
there  are  a  situation  that  different  RSAPs  cache  the
same contents.

2) Random caching scheme: RSAPs and CVs util-
ize their storage space to cache contents randomly.

3)  Non-collaborative  caching  scheme:  only  RSAPs
and  the  CPU  can  cache  and  deliver  content  without
vehicular collaborative caching.

 2. Simulation results
The  relationship  between  the  number  of  episodes

and  the  loss  function  during  the  training  and  testing
phases of the DQN is shown in Fig.3. It can be noticed
that  at  the  beginning,  the  loss  function  increases  with
the number of episodes, which is due to the random se-
lection of actions by DQN for training. After about 4000
training steps, the loss function converges to 0 and the
system can obtain the caching policy with the smallest
average delay.

We evaluate the performance of the proposed cach-
ing  scheme using  content  delivery  average  latency  and
content cache hit  ratio. Figs.4 and 5 show the content
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delivery average  latency  and  cache  hit  ratio  for  differ-
ent caching schemes at different simulation times.  The
simulation  results  show  that  our  proposed  scheme
greatly  reduces  the  content  delivery  average  latency
and  outperforms  other  schemes  in  terms  of  content
caching hit ratio.
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Fig. 4. Content delivery average latency vs. service time.
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Fig. 5. Content cache hit ratio vs. service time.

 

In Figs.6 and 7,  the  performance  comparison with
different  numbers  of  RVs  in  terms  of  average  latency
and  cache  hit  ratio  is  shown.  The  increasing  of  RVs
brings some pressure to the communication links of V2V
and V2I, and there is a slight increase in content deliv-

ery latency and some decrease in the content cache hit
ratio.  However,  our  proposed  optimization  scheme still
has the lowest latency and highest hit ratio than other
three schemes.

Figs.8 and 9 depict  the  relationship  between  the
number  of  RSAPs  and  the  content  delivery  average
latency  and  cache  hit  ratio.  We  can  see  that  as  the
number  of  RSAPs  participating  in  caching  increases,
the  content  delivery  average  latency decreases  and the
cache hit ratio increases. The optimal content cache hit
ratio of our proposed scheme indicates that vehicles can
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Fig. 3. The loss function vs. training episode.
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Fig. 6. Content delivery average latency vs. number of RVs.
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Fig. 7. Content cache hit ratio vs. number of RVs.
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Fig. 8. Content  delivery  average  latency  vs.  number  of

RSAPs.           
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directly obtain their preferred contents with low latency
through V2V and V2I communication without fetching
content from the CPU with high latency.

Figs.10 and 11 show the effect of CVs’ number on
the content  delivery  average  latency  and  cache  hit  ra-
tio. Because  the  non-collaborative  scheme  only  con-
ducts  RSAPs  proactive  caching,  which  is  not  affected
by the number of CVs, we only compare the other three
schemes. It can be seen that as the number of CVs in-
creases,  the  content  delivery  average  latency  gradually
decreases and the cache hit ratio becomes progressively
larger.  It  proves  that  increasing  CVs  for  collaborative
caching is very effective and can help improve QoS.
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Fig. 10. Content delivery average latency vs. number of CVs.

 

In  summary,  the  simulation  results  show  that  the
proposed  collaborative  caching  scheme  can  effectively
improve the performance of the vehicular edge network
assisted  by  cell-free  massive  MIMO,  especially  when
considering vehicular mobility and preferences.

 VI. Conclusions
In this paper,  we proposed a collaborative caching

scheme based on DQN algorithm in vehicular edge net-
work  assisted  by  cell-free  massive  MIMO  system.  We
jointly consider  vehicular  mobility  and  content  prefer-
ences to achieve minimum content delivery latency. Be-

sides,  our  proposed  collaborative  caching  scheme  also
provides a significant advantage in content cache hit ra-
tio. In  future  work,  we  are  going  to  improve  the  con-
tent  request  prediction  to  enhance  the  caching  policy,
we will  also  design  a  comprehensive  V2V  communica-
tion  strategy  between  vehicles  with  more  complicated
trajectory.
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