
A Time-Area-Efficient and Compact ECSM
Processor over GF(p)

HE Shiyang1, LI Hui1, LI Qingwen1, and LI Fenghua1,2

(1. Xidian University, Xi’an 710126, China)
(2. Chinese Academy of Sciences, Beijing 100093, China)

 Abstract — The elliptic curve scalar multiplication
(ECSM) is the core of elliptic curve cryptography (ECC),
which directly determines the performance of ECC. In
this paper, a novel time-area-efficient and compact design
of a 256-bit ECSM processor over GF(p) for the resource-
constrained device is proposed, where p can be selected
flexibly according to the application scenario. A compact
and efficient 256-bit modular adder/subtractor and an im-
proved 256-bit Montgomery multiplier are designed. We
select Jacobian coordinates for point doubling and mixed
Jacobian-affine coordinates for point addition. We have
improved the binary expansion algorithm to reduce 75%
of the point addition operations. The clock consumption
of each module in this architecture is constant, which can
effectively resist side-channel attacks. Reuse technology is
adopted in this paper to make the overall architecture
more compact and efficient. The design architecture is im-
plemented on Xilinx Kintex-7 (XC7K325T-2FFG900I),
consuming 1439 slices, 2 DSPs, and 2 BRAMs. It takes
about 7.9 ms at the frequency of 222.2 MHz and 1763k
clock cycles to complete once 256-bit ECSM operation
over GF(p).

 Key words — Elliptic curve encryption, Finite field,

Montgomery multiplication, Field programmable gate ar-

ray, Side-channel attacks.

 I. Introduction
With the continuous development of global infor-

matization, network security has become a crucial issue
in the current Internet world. Maintaining the regular
order of network society and ensuring the confidential-
ity and integrity of information transmission and stor-
age in the network is a significant problem that has
been studied in the field of information security. Asym-
metric cryptography or public-key cryptography (PKC)

[1] is an essential branch of modern cryptography and
the cornerstone of all information security systems. As
one of the most widely used PKC algorithms, elliptic
curve cryptography (ECC) [2] requires minimal re-
sources with the advantage of high security. At the
same security level, the key length required by ECC is
shorter than that of RSA [3]. Hence, ECC is widely
used in systems and devices with limited hardware re-
sources, such as wireless communication devices, smart
IC cards, Internet of things (IoT), smart home appli-
ances, wearable devices, etc. The performance of ECC
systems depends on elliptic curve scalar multiplication
(ECSM) operations, which are critical to ECC. There-
fore, it is an extensive research field to achieve high
computing performance of the ECSM processor and op-
timize its area-time (AT) value.

2m p

2m

p

2m

p

p

p

p

The implementation of ECSM can be completed
over GF() or GF(). As the arithmetic logic unit
(ALU) of the ECSM processor based on GF() is
composed of XOR operation, and the operation speed is
faster than that based on GF(), most of the proposed
works are completed over GF(), such as works
[4]–[6]. The ALU of the ECSM processor over GF() is
composed of modular operation, so it can also calculate
RSA, which is composed of modular operation as well.
Hence, the ECSM processor over GF() is more suit-
able for embedded systems and IoT security devices,
such as near-field communication (NFC). In addition,
ECC on GF() is more secure under the same key size.
Therefore, this paper implements an ECSM processor
based on GF().

pSome ECSM processors implemented over GF()
have been proposed with good performance [7]–[10].
However, most of them are based on curves with a spe-

Manuscript Received Aug. 9, 2022; Accepted Dec. 20, 2022. This work was supported by the National Key R&D Program of China
(2022YFB3103400), the National Natural Science Foundation of China (61732022), the Province Key R&D Program of Shaanxi (2019
ZDLGY12-09), the Mobile Internet Security Innovation Team of Shaanxi Province (2018TD-007), and the China 111 Project (B16037).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2022.00.267

Chinese Journal of Electronics
Vol.32, No.6, Nov. 2023

p

cial prime structure, that is, ECSM can only be calcu-
lated over a specific prime field. Although ECSM based
on this method has a faster computing speed, it tends
to be not very flexible in the size and parameters of the
key. The computing speed of processors supporting the
implementation over any prime field may often be slow,
but in practical application, some security technologies,
such as supersingular isogeny key exchange (SIKE) al-
gorithm, do not support the implementation over a spe-
cific field. Therefore this paper aims to design a general
ECSM framework that can support ECSM calculation
over any GF() and ensure a low value of AT.

The software implementation of ECSM is low cost
and flexible, but it cannot meet the speed of password
operation required by the network security equipment.
ECSM hardware implementation can be achieved via
the field-programmable gate array (FPGA) [11]–[13]
and the application-specific integrated circuit (ASIC) [14].
While the implementation of ASIC is highly effective
and requires fewer material resources, it lacks flexibil-
ity and universality. Once the ASIC designs determ-
ined, it can no longer be changed again. FPGA has a
powerful programmable capability compared to ASIC,
therefore it is preferable to use FPGA to implement
ECSM [15].

Side-channel attack (SCA) is one of the main
threats affecting the security of encryption hardware [16].
The core idea of SCA is to obtain ciphertext from vari-
ous leaked information generated during hardware oper-
ations [17]. Some works [18], [19] use binary expansion
algorithm in the implementation of ECSM. In this al-
gorithm, whether the point addition (PA) operation is
performed depends on the binary string of the key, so
this method has low immunity to SCAs, such as the
power analysis attack.

p

In this paper, we present a time-area-efficient and
compact design of a 256-bit ECSM processor over GF(),
and we implement it on Xilinx Kintex-7 (XC7K325T-
2FFG900I) FPGA with the aim to reduce resource con-
sumption and make it possible to apply to the platform
with limited resources. The main contributions of this
paper are as follows.

p

1) A compact and efficient 256-bit modular adder
and subtractor based on DSP units are proposed to
complete the modular addition and subtraction calcula-
tion in ECSM, in which the modulus can be selected
flexibly according to the application scenario.

2) An improved 256-bit Montgomery multiplier
based on two DSP units and some peripheral circuits is
proposed. It can efficiently complete the multiplication
calculation in ECSM.

3) This scheme makes full use of reuse technology,
modular adder/subtractor, and Montgomery multiplier

100%
reuse two DSP units. In the process of ECSM, the util-
ization rate of two DSP units can almost reach ,
further improving the resource utilization rate.

4) Jacobian coordinates and mixed Jacobian-affine
coordinates are respectively selected for point doubling
(PD) and point addition (PA) with the lowest compu-
tational complexity to replace the PA and PD in affine
coordinates.

75%

5) An improved binary expansion method is pro-
posed to calculate the point addition of elliptic curve.
Using pre-calculation and table lookup methods,
point addition calculation can be avoided.

6) In this design, the clock cycle consumption of all
modules is constant, which can effectively resist SCAs.

The remainder of this paper is organized as follows.
Section II will provide the basic theory of elliptic curve
cryptosystem and a brief description of Montgomery
multiplication. In Section III, we will first introduce our
newly designed process element (PE) operation unit ar-
chitecture, including the improved Montgomery multi-
plier and modular adder/subtractor. Then, the imple-
mentation of PD and PA modules will be introduced,
respectively. Additionally, the overall architecture will
be summarized. In Section IV, the result and the com-
parison are given. Finally, the conclusions are drawn in
Section V.

 II. Preliminaries
The overall structure of ECC is illustrated in Fig.1,

following a top-down structure. The top layer includes
ECC protocols, such as elliptic curve digital signature
algorithm (ECDSA) [20] and elliptic curve digital Hell-
man key exchange (ECDH). The second layer is elliptic
curve scalar multiplication implemented by calling the
PA and PD operation within the group operations lay-
er. At the same time, the PA and PD consist of modu-
lar addition, subtraction, multiplication, and inversion
in the field operations layer.

ECC

protocols

Modular

add/sub

Modular

multiplication

Modular

invertion

Field

operations

Elliptic curve

group operations

ECSM

PA PD

Fig. 1. This is the structure of ECC algorithm.

 1. Elliptic curve
Elliptic curve refers to a curve determined by a cu-

bic equation defined on the field. In the affine coordin-
ates, the simplified Weierstrass equation is used to rep-

1356 Chinese Journal of Electronics 2023

present the elliptic curve over the prime field GF(),
which is shown in equation (1).

y2 = x3 + ax+ b (1)

where

x, y, a, b ∈ GF(p) (2)

and

4a3 + 27b2 ̸= 0 (3)

p

In addition to using affine coordinates, elliptic
curves based on GF() can also be represented by us-
ing Jacobian or projective coordinates. In affine coord-
inates, PA and PD operations need a lot of modular di-
vision operation, the cost of which is enormous. Hence,
Jacobian coordinates can be selected to avoid a large
number of modular division operations.

pIn Jacobian coordinates, elliptic curves over GF()
can be expressed as

y2z = x3 + axz4 + bz6 (4)

Z ̸= 0 (X,Y, Z)

(x, y)

When , the Jacobian point of ellipt-
ic curve can be transformed with the affine point
as

X = xz2, Y = yz3, Z = 1 (5)

and

x = X/z2, y = Y /z3 (6)

 2. Group operation in Jacobian coordinates
2P (x1, y1, z1)

P (x0, y0, z0)

The definition of double point of Jac-
obian coordinate point is shown as equa-
tion (7).

x1 = T1
2 − 8x0T2

y1 = T1(4x0T2 − x1)− 8T2
2

z1 = 2y0z0 (7)

where

T1 = 3x0
2 + az0

4, T2 = y0
2 (8)

P (x0, y0, z0)

Q(x1, y1) P +Q = (x2, y2, z2)

The point addition algorithm in this paper will use
the mixed Jacobian-affine coordinates, that is to say,
the Jacobian point is added to the affine
point , and the result is
defined as shown in equation (9).

x2 = T2
2 − (x1z0

2 + x0)T1
2

y2 = T2(x1T1
2 −X3)− y1T1

3

z2 = T1z0 (9)

where

T1 = x1z0
2 − x0, T2 = y1z0

2 − y0 (10)

 3. Montgomery multiplication
Compared with modular addition and subtraction,

modular multiplication in finite field operations is very
complex and is also the bottleneck of Jacobian coordin-
ates ECSM. The commonly used modular multiplica-
tion algorithms include Mersenne prime modular multi-
plication and Montgomery multiplication (MM). The
former is a kind of modular multiplication algorithm
that is mainly intended for Mersenne prime numbers.
By using the properties of this kind of number, the al-
gorithm converts one-time multiplication and one-time
division of modular multiplication into partial modular
addition and subtraction. However, the disadvantages
of the algorithm are also apparent. The algorithm can
only be used in the specific prime field and can not be
applied to modular multiplication over other prime
fields with variable bit width. In modular multiplica-
tion, MM converts the modular operation into shift op-
eration, which effectively reduces the computational
complexity of modular multiplication and can be used
for different finite fields, which is also easy to imple-
ment in software and hardware. Considering operation
efficiency and flexibility, MM is selected as the al-
gorithm of the modular multiplier in this design. The
definition of Montgomery modular multiplication is
shown in formula (11).

r = MM(a, b) = a · b ·R−1 mod p (11)

R = 2n n pwhere , and is the bit length of .
a b

a · b mod p

a b

â = a ·R b̂ = b ·R
â b̂

It can be seen that when and perform MM, the
calculation result is not . Therefore, we intro-
duce the concept of Montgomery field. For the num-
bers and over the prime field are respectively rep-
resented by and in the Montgomery
domain, then the result of MM(,) is

r̂ = MM(â, b̂) = a · b ·R mod p (12)

r̂ rwhere is the representation of in Montgomery Field.
The transformation between prime field and Mont-

gomery field can also be calculated by MM, as is shown
in formulas (13) and (14) respectively.

â = MM(â, R2) = a ·R mod p (13)

a = MM(â, 1) = a mod p (14)

 4. DSP48E1
DSP element in 7 Series FPGA, the DSP48E1 slice,

has great flexibility and utilization, which can improve
the efficiency of application while reducing the overall

A Time-Area-Efficient and Compact ECSM Processor over GF(p) 1357

energy consumption and improving the maximum fre-
quency. The high performance of DSP48E1 allows de-
signers to use the time-multiplexing method to realize
multiple slow operations in a single DSP48E1 slice.

The DSP48E1 slice supports many independent
functions, such as multiplication, accumulation multi-
plication (MACC), addition multiplication, barrel dis-
placement, wide-bus multiplexing, and scanning detec-
tion. The architecture can also form broad math func-
tions, DSP filters, and complex algorithms by cascad-
ing multiple DSP48E1 slices, general FPGA logic is not
required.

The basic functionality of the DSP48E1 slice is il-
lustrated in Fig.2 [21]. It should be mentioned that DSP
also has many salient functionalities, including power
saving pre adder, 25 × 18 two’s complement multiplier
and pattern detector.

B

PA

D

C

48-Bit accumulator/Logic unit

Pre-adder

Pattern detector

25×18
Multiplier

Fig. 2. This is the basic DSP48E1 slice functionality.

 III. Hardware Implementation

75%

In this section, the details of modular adder/sub-
tractor and improved 256-bit Montgomery multiplier
are explained, and the calculation paths of PA and PD
are introduced. We also propose an improved binary ex-
pansion method to avoid PA calculations. The
overall hardware architecture is described as a conclu-
sion.

 1. Modular adder and subtractor

a b p

The direct implementation of modular addition or
subtraction with 256-bit width can bring fast comput-
ing speed, but the resource consumption is huge. We di-
vide each 256-bit width operand into 16 operands with
16-bit width. Operands , and modulus are ex-
pressed as

a =

15∑
j=0

aj2
16j , b =

15∑
j=0

bj2
16j , p =

15∑
j=0

pj2
16j (15)

s0 s1

The pseudo-code of modular addition and subtrac-
tion algorithm is shown in Algorithm 1 and Algorithm 2.

 and respectively represent carry-bit and borrow-
bit in the modular addition algorithm, which is the op-
posite situation in the modular subtraction algorithm.
The algorithm consumes 16 cycles to complete a 256-bit
width modular addition or subtraction.

Algorithm 1　Modular addition
Require:

a =
∑15

j=0 aj2
16j , b =

∑15
j=0 bj2

16j , p =
∑15

j=0 pj2
16j　 .

Ensure:
a+ b mod p　 .
c = 0, d = 0 s0 = 0, s1 = 01: , ;

j = 0 j < 16 j ++2: for ; ; do
(s0, cj) = aj + bj + s03: 　　 ;
(s1, dj) = cj − pj − s14: 　　 ;

5: end for
d < 06: if then

c7: 　　return
8: else

d9: 　　return
10: end if

Algorithm 2　Modular subtraction.
Require:

a =
∑15

j=0 aj2
16j , b =

∑15
j=0 bj2

16j , p =
∑15

j=0 pj2
16j　 .

Ensure:
a− b mod p　 .
c = 0, d = 0 s0 = 0, s1 = 01: , ;

j = 0 j < 16 j ++2: for ; ; do
(s0, cj) = aj − bj − s03: 　　 ;
(s1, dj) = cj + pj + s14: 　　 ;

5: end for
c < 06: if then

d7: 　　return
8: else

c9: 　　return
10: end if

aj bj

pj

p

The hardware architecture of modular adder and
subtractor proposed in this paper is shown in Fig.3. In
order to make the design architecture more compact,
two integrated DSP units are used for addition and
subtraction calculation of 16-bit width. DSP1 is used to
complete the addition/subtraction and carry/borrow of
operands and , while DSP2 is used to complete the
addition/subtraction and carry/borrow of DSP1 calcu-
lation result and module . Some shift registers are
used to form the pipeline and store the intermediate
value. It consumes 18 clock cycles to perform one 256-
bit width addition or subtraction. By using DSP units,
we can not only choose modulus more flexibly but
also reduce the usage of logic resources.

 2. Montgomery multiplier
Montgomery multiplication is the most time-con-

suming operation in the implementation of ECSM [22].
The classical Montgomery algorithm shown in Al-
gorithm 3 requires large bit width multiplication, which
will consume many hardware resources. We propose an
efficient improved Montgomery multiplication based on

1358 Chinese Journal of Electronics 2023

the iterative algorithm, as is shown in Algorithm 4. In
this method, we also divide each 256-bit width operand
into 16 operands with 16-bit width, and the integrated
DSP units are used to complete the calculation of 16-bit
width. The hardware architecture of the Montgomery
multiplier is more compact at the cost of adding some
iterative cycles.

Algorithm 3　Classical montgomary multiplication
Require:

a b p ω　　 , , , .
Ensure:

r = a · b ·R−1 mod p　　 .
c = 0, r = 01: ;
c = a · b2: ;
r = (c+ (c · ω mod R) · p)/R3: ;
r ≥ p4: if then

5: 　　r=r−p;
6: end if
7: return r

Algorithm 4　Improved montgomary multiplication
Require:

a=
∑15

m=0am216m, b=
∑15

m=0bm216m, p=
∑15

m=0pm216m, ω .
Ensure:

r = a · b ·R−1 mod p　　 .
r = 0, c = 0, d = 01: ;

i = 0 i ≤ m− 1 i++2: for ; ; do
ui = (r0 + bi · a0) · ω mod 2163: 　　 ;

j = 0 j ≤ m− 1 j ++4: 　　for ; ; do
cj+1cj = biaj + cj5: 　　　　 ;
dj+1dj = uipj + dj6: 　　　　 ;

7: 　　end for
j = 0 j ≤ m− 1 j ++8: 　　for ; ; do
(carry, rj) = rj + cj + dj + carry9: 　　　　 ;

10:　　end for
r = r/21611: 　　 ;

12: end for

r ≥ p13: if then
i = 0 i ≤ m− 1 i++14: 　　for ; ; do
(carry, ri) = ri − pi − carry15: 　　　　 ;

16: 　　end for
17: end if
18: return r

Two DSP units constitute the hardware architec-
ture core of the improved Montgomery multiplier, as is
shown in Fig.4. These two DSP units can complete the
addition and multiplication calculation of 16-bit width
in the Montgomery multiplier. Some shift registers are
used to construct the pipeline structure and store the
calculated intermediate value. A few peripheral circuits
are responsible for process control.

The calculation process of the improved Mont-
gomery multiplier is divided into four stages.

ui r0 + bi · a0
(r0 + bi · a0) · ω

1) Calculate . DSP1 calculates and
DSP2 calculates , which is completed
after two clock cycles.

c d c

d

2) Calculate and . DSP1 and DSP2 calculate
and respectively and complete the calculation after 16
clock cycles.

c+ d+ r c+ d

c+ d+ r

3) Calculate , DSP1 calculate , DSP2
calculate . The calculation is completed after 16
clock cycles.

r mod p

4) Cycle step 1) to step 3) 16 times, and finally cal-
culate and output the result.

The improved Montgomery multiplier consumes
about 528 clock cycles to complete a 256-bit width
multiplication calculation. The hardware architecture
mainly comprises DSP units, registers, and peripheral
circuits. Although the clock cycle consumption is relat-
ively large, the circuit structure is simple and comp-
act.

The modular adder/subtractor module and the im-
proved Montgomery multiplier module reuse two DSP
units and some peripheral control circuits together. In
the process of ECSM calculation, the utilization rate of

DSP 1

DSP 2

17 17
17 17 256

256

256

16
16

1

1
1

1

Carry Carry

D
D D

D

aj [15: 0]

bj [15: 0]

cj [15: 0]

pj [15: 0]
dj [15: 0]

M
U

X
1

M
U

X
2

Fig. 3. This is the architecture of modular adder/subtractor.

A Time-Area-Efficient and Compact ECSM Processor over GF(p) 1359

100%the reused two DSP units can almost reach ,
which significantly improves the resource utilization
and the compactness of the scheme.

 3. PA and PD
To avoid modular division, which is not user-

friendly for hardware, this paper selects Jacobian co-
ordinates for PD and Jacobian-affine mixed coordin-
ates for PA with the lowest computational complexity
to replace the PA and PD in affine coordinates. As a
result, the points for PD and one of the points for PA
are in the Jacobian coordinate system. At the same
time, another point involved in PA points happens to
be the input affine point, so there is no need to convert
Jacobian points into affine points by modulus inverse.
Thus, point multiplication can continuously carry out
PD on Jacobian coordinates and PA on mixed Jacobi-
an-affine coordinates.

Based on the definition of PD in Jacobian coordin-
ates, as is shown in formula (9), this paper designs a
serial circuit that performs the calculation steps of PD
one by one to improve the utilization of hardware re-
sources and reduce the complexity. The operation path
based on Jacobian PD is shown in Fig.5.

R1 R6In Fig.5, – represent the intermediate vari-
able register, which is used to store the value of the ini-
tial input of the PD and the value of the intermediate
variable generated in the calculation process. Each ad-
dition, subtraction, or multiplication operation will

change the value of the corresponding register, so it is
necessary to plan the application of each register reas-
onably.

According to the hardware architecture of PD, 10
modular multiplications, 13 modular additions/subtrac-
tions, and 6 intermediate variable registers are required.

Similar to the PD, this paper designs a circuit for
serial execution according to the definition of PA in
mixed Jacobian-affine coordinates. The hardware archi-
tecture of PA in mixed Jacobian-affine coordinates is
shown in Fig.6.

According to the path to calculate PA, 11 times
modular multiplication, 7 times modular addition or
subtraction, and 7 intermediate variable registers are
required.

 4. Improved binary expansion algorithm
Elliptic curve scalar multiplication is the core part

of ECC, which is implemented by calling PD and PA.
ECSM is the most expensive operation in ECC, so the
efficiency of ECSM determines the performance of ECC.

k

k =
∑255

j=0 kj2
j

k

k

kj = 1

The most common algorithm of calculating ECSM
is binary expansion algorithm shown in Algorithm 5.
First, the 256-bit number is converted into binary
form and expressed as . Then scan the
binary form of bit by bit from high to low until the
end of the last bit of , perform once PD in each cycle,
and perform PA if in this cycle.

256 16

16

16256

a15 a14 ··· a1 a0

c15

A1

A2

B2

C2

B1

C1
P1

P1 [16]

P1 [31: 16]

P2 [31: 16]

P2

P1 [15: 0]

P2 [15: 0]

P2 [16]

sel1

sel2

Out

carry1

carry2

DSP 1

DSP 2

1

32

16

256

16

32

32

16
16
16

16
16

c14 ··· c1 c0

R15

ui

ω

R14 ··· R1 R0

d15 d14 ··· d1 d0

p15 p14 ··· p1 p0

b15 b14 ··· b1 b0

Fig. 4. This is the architecture of improved Montgomery multiplier.

1360 Chinese Journal of Electronics 2023

R1 R2 R3

x0 y0 z0

z1

y0

x0

x0

T2

T1

T2

az0

a

a

R4 R5 R6

1

2

3

4

5

6

7

8

9

10

11

12

^2

^2

^2

^2

4

2x0T2

4x0T2−x1

4x0T2−x1

2x0T2

az0
4

R1 R2 R3

x1

y1

T1

T1

T2

R4 R5 R6

13

14

15

16

17

18

19

20

21

22

23

^2

^2

Fig. 5. This is the hardware architecture of PD in Jacobian coordinates.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

R1 R2 R3

x0 x0

x2

y2

y0 z0 x1 y1

z0

x1

x0

z0

z2

y1

y0

A

A

A2

A2

A3

A3y0

B

B

x0A2

x0A2

A3

B

R4 R5 R6 R7 R1 R2 R3 R4 R5 R6 R7

^2

^2

^2

Fig. 6. This is the hardware architecture of PA in mixed Jacobian-affine coordinates.

A Time-Area-Efficient and Compact ECSM Processor over GF(p) 1361

Algorithm 5　Binary expansion algorithm
Require:

k =
∑255

j=0 kj2
j P　　 , ECC point .

Ensure:
kP　　 .

Q = 01: ;
j = 255 j ≥ 0 j––2: for ; ; do
Q = 2Q3: 　　 ;
kj = 14: 　　if ; then

Q = Q+ P5: 　　　　 ;
6: 　　end if
7: end for
8: return Q

{P, 2P, · · · , 15P}

Based on the binary expansion algorithm, this pa-
per proposes a scheme to reduce the number of PA op-
erations in the binary expansion algorithm by pre-calcu-
lation, making the calculation of ECSM more efficient.
The result of needs to be pre-calcu-
lated and stored in the ROM.

k

k

k

k =
∑63

j=0 Kj2
4j ,Kj ∈ [0, 15]

Kj

K0

The specific algorithm is shown in the Algorithm 6.
Initially, it still converts into binary form. The differ-
ence is that the improved algorithm divides every four
bits of the binary form of into one data block, so the
integer 256-bit number will be divided into 64 data bl-
ocks, which are recorded as .
Next, scan each from high to low until the scan-
ning to ends the cycle. In each cycle, the PD is ex-

Kj

ecuted four times, and the point corresponding to the
current is added.

Algorithm 6　Improved binary expansion algorithm
Require:

k =
∑63

j=0 Kj2
4j {0, P, 2P, · · · , 15P}　　 , .

Ensure:
kP　　 .

Q = 01: ;
j = 63 j ≥ 0 j––2: for ; ; do
Q = 24Q3: 　　 ;
Q = Q+KjP4: 　　 ;

5: end for
6: return Q

Fig.7 shows the hardware design scheme of the im-
proved binary expansion algorithm based on Algorithm
6. The input for each cycle corresponds to the output of
PA module in the previous round stored in Reg Q. The
final result is the output of the last cycle of PA.

k

In the improved binary expansion algorithm, there
are mainly two modules PD and PA to consume power.
The power of PA is higher than that of PD and the op-
eration time is relatively longer. If the power or time
analysis is carried out when the hardware is running,
the binary form of key can be easily divulged. So the
simple binary expansion algorithm can not resist SCAs.

However, the improved binary expansion method
proposed in this paper, no matter how much the value

Km−1 Km−2 Km−3 ···

MUX 1

MUX 2

K0

15P 14P

kP PA PD PD PD PD

Reg Q

··· P 0

S
t

S
0

t=
log

2 m−1
···

Fig. 7. This is the architecture of poposed ECSM processor.

1362 Chinese Journal of Electronics 2023

k

k

of the is, needs four times PD and once PA opera-
tion. The improved binary expansion algorithm will not
divulge the key under power and time analysis, and
can well resist SCAs. Moreover, because the improved
algorithm mainly performs PD, the operation time also
has certain superiority with the same key length.

The improved binary expansion algorithm avoids
part of PA by pre-calculating. And it can be seen that
the time of PD operations used in calculating 256-bit
ECSM by this algorithm is 252, and the time of PD op-
erations used is 63.

75%

k

75%

In comparison to other SCAs-resistant algorithms,
it reduces the number of PA operations by about .
More precisely, other ECSM algorithms must perform
PA and PD operations within each loop to avoid reveal-
ing in order to achieve SCAs resistance. Therefore,
when processing 256-bit ECSM, other processors that
can withstand SCAs must execute 255 times PD and 255
times PA operations. In contrast, our algorithm re-
duces the number of PA operations by approximately

 and PD operations by multiple times.
 5. Overall hardware architecture of ECSM
The overall hardware architecture of ECSM is

shown in Fig.8. The details of each module are intro-
duced in the previous article. Table 1 lists the resource
consumption of each module.

k kPECSM_CONTROL

PA

PE

ROM PD

Fig. 8. This is the the overall hardware architecture of ECSM.

Table 1. The resource consumption of each module

Module Slice DSP
ECSM_CONTROL 48 0

PA&PD 262 0
PE 1129 2

k

kP

In Fig.8, the top layer is ECSM_CONTROL mod-
ule, which is mainly responsible for the overall control
and scheduling of other modules to complete the scalar
multiplication calculation in ECC. Firstly, the scalar
involved in ECSM is input to the module, then it oper-
ates by calling the PA and PD module in the next lay-
er, and finally outputs the result of ECSM as .

PA and PD modules are respectively responsible

{P, 2P, . . . , 15P}

for calculating point addition and doubling. PA module
looks up the table by calling the ROM module and per-
forms the underlying calculation by calling the process
element (PE) module to complete PA calculation. The
ROM module stores the pre-calculated results, that is,
the 15 values of points . PD module
only needs to call PE module to complete PD calcula-
tion. PA and PD modules save resource consumption
and improve utilization by time-sharing multiplexing
the PE module.

100%

The PE module comprises the modular adder/sub-
tractor and the improved Montgomery multiplier de-
scribed above. They reused two DSP units to complete
256-bit modular addition, subtraction, and Mont-
gomery multiplication. In the calculation process, the
utilization rate of the two DSP units can almost reach

, which further improves the compactness of the
hardware architecture and resource utilization.

 IV. Result and Comparison

p

The proposed design has been described by Verilog
HDL and implemented using the Xilinx Vivado 2019.1
software, simulated by the Xilinx Vivado simulator.
The designs are synthesized, mapped, placed, and
routed on the Xilinx Kintex-7 (XC7K325T-2FFG900I).
We aim to present a time-area-efficient and compact
design of a 256-bit ECSM processor over GF(), re-
duce resource consumption, and make it possible to ap-
ply to the platform with limited resources.

p

This work costs 1439 slices, 2 DSPs, and 2 BRAMs.
It takes about 7.9 ms at the frequency of 222.2 MHz
and 1763k clock cycles with a throughput of 32.3 kbps
to complete a 256-bit ECSM operation over GF(p),
where can be flexibly selected according to the applic-
ation scenario. PE module is the bottom operation unit
of ECSM, which is responsible for calculating modular
addition/subtraction and Montgomery modular multi-
plication. The PE module consumes 532 slices and 2
DSPs. It takes about 18 clock cycles to complete a 256-
bit modular addition/subtraction and 528 clock cycles
to complete a 256-bit Montgomery modular multiplica-
tion. It requires 13 modular additions/subtractions and
10 Montgomery modular multiplications to complete a
256-bit PD operation in the PD module on Jacobian co-
ordinates. And it requires 7 modular additions/subtrac-
tions and 10 Montgomery modular multiplications as
well to complete a 256-bit PA operation in the PA
module on mixed Jacobian-affine coordinates. The clock
cycles consumed by the PD module and PA module to
complete a PD operation and a PA operation are 5514
and 5934, respectively. In the ECSM_CONTROL mod-
ule, 63 PA operations and 252 PD operations are re-

A Time-Area-Efficient and Compact ECSM Processor over GF(p) 1363

quired to complete a 256-bit ECSM. Due to the applica-
tion of improved ECSM architecture and reuse techno-
logy, the area-time value of this scheme has obvious ad-
vantages over other schemes. Moreover, since the clock
cycles consumed by each module are constant, the
design architecture can effectively resist SCAs.

Table 2 lists the performance and resource con-

sumption comparison between the elliptic curve scalar
multiplication design proposed in this paper and other
ECSM processors designed over the 256-bit prime field
on FPGA. Although the throughput of this article is
low compared to other works, this paper has great ad-
vantages in terms of the AT value and resource con-
sumption.

pTable 2. Comparison between our ECSM design and similar work over GF()

Reference Publish year Platform Freq. (MHz) Slice DSP Speed (ms) Throughput (kbps) ATa ATb Support arbitrary p
Ours 2023 Kintex-7 222.2 1.4k 2 7.90 32.30 11.06 15.8 yes

Islam et al. [23] 2019 Virtex-7 177.7 8.9k 0 1.48 173.20 13.17 0 no
Kudithi et al. [24] 2020 Kintex-7 122.8 7.4k 0 2.44 104.90 18.06 0 no
Amiet et al. [19] 2016 Virtex-7 225.0 1.7k 20 1.49 171.81 2.53 29.8 yes
Wu et al. [25] 2019 Virtex-4 162.0 21.9k 16 1.01 68.52 22.12 16.2 yes

Hossain et al. [18] 2016 Kintex-7 121.5 11.3k 0 3.27 78.28 36.95 0 no
Asif et al. [26] 2017 Virtex-7 72.9 24.2k 0 2.96 1816.20 71.63 0 yes

Note: a Slice cost multiplied by scalar multiplication delay; b DSP cost multiplied by scalar multiplication delay.

p

p

Islam et al. [23] proposed an efficient ECSM design
on special curves Edwards25519, which can achieve fast
scalar multiplication with high security. The design uses
Montgomery ladder algorithm to resist SCAs and util-
ize operation parallelization to decrease the latency and
the number of arithmetic modules. However, the modu-
lus in Edwards25519 is fixed, so the processor cannot
flexibly select according to requirements. In addition,
the area-time product of their design is slightly bigger
than ours.

The work in reference [24] shows a hardware struc-
ture of ECSM on Jacobian coordinates, in which PA
and PD modules share resources. It is implemented
both in FPGA and ASIC. On Virtex-7 FPGA platform,
the ECSM processor needs 2.44 ms to complete a 256-
bit prime ECSM, which is three times as fast as the
processor proposed in this paper. However, the pro-
cessor uses 7.4k slices, five times as many as ours. In
addition, the processor does not provide any protection
against SCAs, as their ECSM module applies the bin-
ary expansion algorithm.

Amiet et al. [19] designed a hardware architecture
that supports arbitrary prime fields up to 1024 bits and
different standards of ECSM. The processor needs 1.49
ms to realize 256-bit multiplication over the prime field
with 20 DSPs and 6816 LUTs, which has excellent per-
formance. Their design is about a quarter of ours in
terms of AT value. However, they use 10 times as many
DSPs as ours.

Wu et al. [25] proposed a scalable hardware imple-
mentation multiplier, and a fast unified architecture for
ECSM over five NIST primes. At the same time, the
Montgomery ladder with projective coordinate is used
in the design to reduce the computational complexity
and provide the ability to resist SCAs. It takes 1.57 ms

to calculate a 256-bit ECSM, taking 21638 slices and 32
DSPs, which has relatively low performance compared
with ours in terms of DSP usage and AT value.

Hossain et al. [18] presented an efficient hardware
implementation of a new PA and PD combined archi-
tecture for ECSM processor. The design supports 224-
bit and 256-bit prime numbers recommended by NIST.
It takes 4.7 ms to complete a 256-bit ECSM in affine
coordinates on Xilinx Kintex-7 FPGA, slightly faster
than our design. However, their design area is nearly
7.5 times that of ours.

Asif et al. [26] proposed a multi-key ECSM based
on the residue number system, which employes deep
pipelining to allow simultaneous encryption of 21 keys.
Their implementation on Virtex-7 FPGA took the ad-
vantages of RNS-based implementation, whereas it ex-
pends 17.3 times more slices and is exactly 7 times less
efficient than our ECSM processor.

 V. Conclusions

p

75%

This paper presents a time-area-efficient and com-
pact design of a 256-bit ECSM processor over GF(p),
where can be selected flexibly according to the applic-
ation scenario. Improved Montgomery modular multi-
plier and modular adder/subtracter are proposed. They
reuse 2 DSP units to make their hardware architecture
more compact and efficient. In ECSM processor, we use
Jacobian coordinates for the PD operation and mixed
Jacobian-affine coordinates for the PA operation to fur-
ther improve the calculation efficiency. An improved
binary expansion method is proposed to calculate the
scalar multiplication of elliptic curve. We avoid of
the point addition calculations using pre-calculation and
table lookup method. The design architecture is imple-

1364 Chinese Journal of Electronics 2023

mented on Xilinx Kintex-7 (XC7K325T-2FFG900I) and
it consums 1439 slices, 2 DSPs, and 2 BRAMs, which
makes it suitable for resource-constrained devices. It
takes about 7.9 ms at the frequency of 222.2 MHz and
1763k clock cycles to complete a 256-bit ECSM opera-
tion over GF(p).

References

 T. Elgamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions
on Information Theory, vol.31, no.4, pp.469–472, 1985.

[1]

 N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol.48, no.177, pp.203–209, 1987.

[2]

 R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol.21, no.2, pp.120–126,
1978.

[3]

 J. Y. Lai and C. T. Huang, “A highly efficient cipher pro-
cessor for dual-field elliptic curve cryptography,” IEEE
Transactions on Circuits and Systems II:Express Briefs,
vol.56, no.5, pp.394–398, 2009.

[4]

 J. Y. Lai and C. T. Huang, “Elixir: High-throughput cost-ef-
fective dual-field processors and the design framework for el-
liptic curve cryptography,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol.16, no.11,
pp.1567–1580, 2008.

[5]

 C. Rebeiro and D. Mukhopadhyay, “High speed compact el-
liptic curve cryptoprocessor for FPGA platforms,” in Pro-
ceedings of the 9th International Conference on Cryptology
in India, Kharagpur, India, pp.376–388, 2008.

[6]

 N. Guillermin, “A high speed coprocessor for elliptic curve
scalar multiplications over Fp,” in Proceedings of the 12th
International Workshop on Cryptographic Hardware and
Embedded Systems, Santa Barbara, CA, USA, pp.48–64,
2010.

[7]

 J. Y. Lai, Y. S. Wang, and C. T. Huang, “High-perform-
ance architecture for elliptic curve cryptography over prime
fields on FPGAs,” Interdisciplinary Information Sciences,
vol.18, no.2, pp.167–173, 2012.

[8]

 G. Chen, G. Q. Bai, and H. Y. Chen, “A high-performance
elliptic curve cryptographic processor for general curves over
GF(p) based on a systolic arithmetic unit,” IEEE Transac-
tions on Circuits and Systems II:Express Briefs, vol.54,
no.5, pp.412–416, 2007.

[9]

 J. F. Fan, K. Sakiyama, and I. Verbauwhede, “Elliptic
curve cryptography on embedded multicore systems,”
Design Automation for Embedded Systems, vol.12, no.3,
pp.231–242, 2008.

[10]

 S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Pet-
rel: Power and timing attack resistant elliptic curve scalar
multiplier based on programmable GF(p) arithmetic unit,”
IEEE Transactions on Circuits and Systems I:Regular Pa-
pers, vol.58, no.8, pp.1798–1812, 2011.

[11]

 H. Marzouqi, M. Al-Qutayri, and K. Salah, “An FPGA im-
plementation of NIST 256 prime field ECC processor,” in
2013 IEEE 20th International Conference on Electronics,
Circuits, and Systems (ICECS), Abu Dhabi, United Arab
Emirates, pp.493–496, 2013.

[12]

 C. J. McIvor, M. Mcloone, and J. V. Mccanny, “Hardware
elliptic curve cryptographic processor over rmGF(p),” IEEE
Transactions on Circuits and Systems I:Regular Papers,
vol.53, no.9, pp.1946–1957, 2006.

[13]

 M. Machhout, Z. Guitouni, K. Torki, et al., “Coupled FP-
GA/ASIC implementation of elliptic curve crypto-
processor,” International Journal of Network Security & its
Applications, vol.2, no.2, pp.100–112, 2010.

[14]

 T. Y. Li, F. Zhang, W. Guo, et al., “A survey: FPGA-based
dynamic scheduling of hardware tasks,” Chinese Journal of
Electronics, vol.30, no.6, pp.991–1007, 2021.

[15]

 K. K. Wu, H. Y. Li, D. J. Zhu, et al., “Efficient solution to
secure ECC against side-channel attacks,” Chinese Journal
of Electronics, vol.20, no.3, pp.471–475, 2011.

[16]

 P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Proceedings of
the 16th Annual International Cryptology Conference,
Santa Barbara, CA, USA, pp.104–113, 1996.

[17]

 S. Hossain, Y. N. Kong, E. Saeedi, et al., “High-perform-
ance elliptic curve cryptography processor over NIST prime
fields,” IET Computers & Digital Techniques, vol.11, no.1,
pp.33–42, 2017.

[18]

 D. Amiet, A. Curiger, and P. Zbinden, “Flexible FPGA-
based architectures for curve point multiplication over
GF(p),” in Proceedings of the 2016 Euromicro Conference
on Digital System Design (DSD), Limassol, Cyprus,
pp.107–114, 2016.

[19]

 M. D. Zhu, X. Qin, L. Wang, et al., “A time-to-digital-con-
verter utilizing bits-counters to decode carry-chains and
DSP48E1 slices in a field-programmable-gate-array,” Journ-
al of Instrumentation, vol.16, no.2, 2021.

[20]

 W. Yu, K. P. Wang, B. Li, et al., “Montgomery algorithm
over a prime field,” Chinese Journal of Electronics, vol.28,
no.1, pp.39–44, 2019.

[21]

 G. Locke and P. Gallagher, FIPS PUB 186-3 Digital signa-
ture standard (DSS), Federal Information Processing Stand-
ards Publication, 2009, article no.186.

[22]

 M. Islam, S. Hossain, M. K. Hasan, et al., “FPGA imple-
mentation of high-speed area-efficient processor for elliptic
curve point multiplication over prime field,” IEEE Access,
vol.7, pp.178811–178826, 2019.

[23]

 T. Kudithi and R. Sakthivel, “An efficient hardware imple-
mentation of the elliptic curve cryptographic processor over
prime field,” International Journal of Circuit Theory and
Applications, vol.48, no.8, pp.1256–1273, 2020.

[24]

 T. Wu and R. M. Wang, “Fast unified elliptic curve point
multiplication for NIST prime curves on FPGAS,” Journal
of Cryptographic Engineering, vol.9, no.4, pp.401–410, 2019.

[25]

 S. Asif, S. Hossain, and Y. N. Kong, “High-throughput
multi-key elliptic curve cryptosystem based on residue num-
ber system,” IET Computers & Digital Techniques, vol.11,
no.5, pp.165–172, 2017.

[26]

HE Shiyang received the M.S.
degree in telecommunications engineer-
ing from Xidian University, China, in 2016.
He is currently working toward the Ph.D.
degree at the School of Cyber Engineer-
ing, Xidian University, Xi’an, China. His
research interests include cryptographic
algorithm, hardware speedup and field-
programmable gate array architectures

and applications. (Email: syhe@xidian.edu.cn)

LI Hui (corresponding author)
received the B.S. degree from Fudan Uni-
versity in 1990, M.S. and Ph.D. degrees
from Xidian University in 1993 and 1998.
Since June 2005, he has been a Professor
in the School of Cyber Engineering, Xidi-
an University, Xi’an, China. His research
interests are in the areas of cryptography,
wireless network security, information

theory, hardware security, and network coding. He is a Chair of
ACM SIGSAC China. He served as the Technique Committee
Chair or Co-chair of several conferences. He has published more

A Time-Area-Efficient and Compact ECSM Processor over GF(p) 1365

than 170 international academic research papers on information
security and privacy preservation.
(Email: lihui@mail.xidian.edu.cn)

LI Qingwen received the B.S.
degree in information security from Xidi-
an University, Xi’an, China, in 2022. She
is currently working toward the M.S. de-
gree at the School of Cyber Security,
Xidian University, Xi’an, China. Her re-
search interests include cryptographic al-
gorithm. (Email: liqwww1017@163.com)

LI Fenghua received the B.S.
degree in computer software, M.S. and
Ph.D. degrees in computer systems archi-
tecture from Xidian University, Xi’an,
China, in 1987, 1990, and 2009, respect-
ively. He is currently a Professor and a
Doctoral Supervisor with the State Key
Laboratory of Information Security, Insti-
tute of Information Engineering, Chinese

Academy of Sciences, Beijing, China. He is also a Doctoral Super-
visor with the Xidian University. His research interests include
network security, system security, privacy computing, and crypto-
graphic processors. (Email: lfh@iie.ac.cn)

1366 Chinese Journal of Electronics 2023

