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   Abstract — The  elliptic  curve  scalar  multiplication
(ECSM) is the core of elliptic curve cryptography (ECC),
which  directly  determines  the  performance  of  ECC.  In
this paper, a novel time-area-efficient and compact design
of a 256-bit ECSM processor over GF(p) for the resource-
constrained  device  is  proposed,  where p can  be  selected
flexibly according to the application scenario.  A compact
and efficient 256-bit modular adder/subtractor and an im-
proved  256-bit  Montgomery  multiplier  are  designed.  We
select Jacobian coordinates for point doubling and mixed
Jacobian-affine  coordinates  for  point  addition.  We  have
improved  the  binary  expansion  algorithm  to  reduce  75%
of  the  point  addition  operations.  The  clock  consumption
of each module in this architecture is constant, which can
effectively resist side-channel attacks. Reuse technology is
adopted  in  this  paper  to  make  the  overall  architecture
more compact and efficient. The design architecture is im-
plemented  on  Xilinx  Kintex-7  (XC7K325T-2FFG900I),
consuming 1439 slices,  2  DSPs,  and  2  BRAMs.  It  takes
about  7.9  ms  at  the  frequency  of  222.2  MHz  and  1763k
clock  cycles  to  complete  once  256-bit  ECSM  operation
over GF(p).

   Key words — Elliptic curve encryption, Finite field,

Montgomery multiplication, Field programmable gate ar-

ray, Side-channel attacks.

 I. Introduction
With  the  continuous  development  of  global  infor-

matization, network security has become a crucial issue
in  the  current  Internet  world.  Maintaining  the  regular
order of network society and ensuring the confidential-
ity and integrity  of  information  transmission  and stor-
age  in  the  network  is  a  significant  problem  that  has
been studied in the field of information security. Asym-
metric cryptography or public-key cryptography (PKC)

[1]  is  an  essential  branch  of  modern  cryptography  and
the  cornerstone  of  all  information security  systems.  As
one  of  the  most  widely  used  PKC  algorithms,  elliptic
curve  cryptography  (ECC)  [2] requires  minimal  re-
sources  with  the  advantage  of  high  security.  At  the
same security level, the key length required by ECC is
shorter  than  that  of  RSA  [3].  Hence,  ECC  is  widely
used in  systems and devices  with  limited  hardware  re-
sources,  such as wireless communication devices,  smart
IC cards,  Internet  of  things  (IoT),  smart  home  appli-
ances,  wearable  devices,  etc.  The  performance  of  ECC
systems  depends  on  elliptic  curve  scalar  multiplication
(ECSM) operations,  which  are  critical  to  ECC.  There-
fore,  it  is  an  extensive  research  field  to  achieve  high
computing performance of the ECSM processor and op-
timize its area-time (AT) value.
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The  implementation  of  ECSM  can  be  completed
over  GF( )  or  GF( ).  As  the  arithmetic  logic  unit
(ALU)  of  the  ECSM  processor  based  on  GF( )  is
composed of XOR operation, and the operation speed is
faster than that based on GF( ), most of the proposed
works  are  completed  over  GF( ),  such  as  works
[4]–[6]. The ALU of the ECSM processor over GF( ) is
composed of modular operation, so it can also calculate
RSA, which is  composed of  modular operation as well.
Hence,  the  ECSM  processor  over  GF( ) is  more  suit-
able  for  embedded  systems  and  IoT  security  devices,
such  as  near-field  communication  (NFC).  In  addition,
ECC on GF( ) is more secure under the same key size.
Therefore,  this  paper  implements  an  ECSM  processor
based on GF( ).

pSome  ECSM  processors  implemented  over  GF( )
have  been  proposed  with  good  performance  [7]–[10].
However, most of them are based on curves with a spe- 
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cial prime structure,  that is,  ECSM can only be calcu-
lated over a specific prime field. Although ECSM based
on this  method has  a  faster  computing  speed,  it  tends
to be not very flexible in the size and parameters of the
key. The computing speed of processors supporting the
implementation over any prime field may often be slow,
but in practical application, some security technologies,
such as  supersingular  isogeny key exchange (SIKE) al-
gorithm, do not support the implementation over a spe-
cific field. Therefore this paper aims to design a general
ECSM  framework  that  can  support  ECSM  calculation
over any GF( ) and ensure a low value of AT.

The software implementation of ECSM is low cost
and flexible,  but it cannot meet the speed of password
operation  required  by  the  network  security  equipment.
ECSM  hardware  implementation  can  be  achieved  via
the  field-programmable  gate  array  (FPGA)  [11]–[13]
and the application-specific integrated circuit (ASIC) [14].
While  the  implementation  of  ASIC  is  highly  effective
and requires  fewer  material  resources,  it  lacks  flexibil-
ity and  universality.  Once  the  ASIC  designs  determ-
ined,  it  can  no  longer  be  changed  again.  FPGA has  a
powerful  programmable  capability  compared  to  ASIC,
therefore  it  is  preferable  to  use  FPGA  to  implement
ECSM [15].

Side-channel  attack  (SCA)  is  one  of  the  main
threats affecting the security of encryption hardware [16].
The core idea of SCA is to obtain ciphertext from vari-
ous leaked information generated during hardware oper-
ations [17].  Some works [18],  [19]  use binary expansion
algorithm in  the  implementation  of  ECSM.  In  this  al-
gorithm,  whether  the  point  addition  (PA)  operation  is
performed  depends  on  the  binary  string  of  the  key,  so
this  method  has  low  immunity  to  SCAs,  such  as  the
power analysis attack.

p

In this  paper,  we present  a  time-area-efficient  and
compact design of a 256-bit ECSM processor over GF( ),
and  we  implement  it  on  Xilinx  Kintex-7  (XC7K325T-
2FFG900I) FPGA with the aim to reduce resource con-
sumption and make it possible to apply to the platform
with  limited  resources.  The  main  contributions  of  this
paper are as follows.

p

1)  A compact  and  efficient  256-bit  modular  adder
and  subtractor  based  on  DSP  units  are  proposed  to
complete the modular addition and subtraction calcula-
tion in ECSM, in which the modulus  can be selected
flexibly according to the application scenario.

2)  An  improved  256-bit  Montgomery  multiplier
based on two DSP units and some peripheral circuits is
proposed.  It  can efficiently complete  the multiplication
calculation in ECSM.

3) This scheme makes full use of reuse technology,
modular  adder/subtractor,  and  Montgomery  multiplier

100%
reuse two DSP units. In the process of ECSM, the util-
ization rate  of  two DSP units  can almost  reach ,
further improving the resource utilization rate.

4)  Jacobian coordinates  and mixed Jacobian-affine
coordinates  are  respectively  selected for  point  doubling
(PD) and point addition (PA) with the lowest compu-
tational complexity to replace the PA and PD in affine
coordinates.

75%

5) An  improved  binary  expansion  method  is  pro-
posed  to  calculate  the  point  addition  of  elliptic  curve.
Using  pre-calculation  and  table  lookup  methods, 
point addition calculation can be avoided.

6) In this design, the clock cycle consumption of all
modules is constant, which can effectively resist SCAs.

The remainder of this paper is organized as follows.
Section II will provide the basic theory of elliptic curve
cryptosystem  and  a  brief  description  of  Montgomery
multiplication. In Section III, we will first introduce our
newly designed process element (PE) operation unit ar-
chitecture, including  the  improved  Montgomery  multi-
plier and  modular  adder/subtractor.  Then,  the  imple-
mentation  of  PD  and  PA  modules  will  be  introduced,
respectively.  Additionally,  the  overall  architecture  will
be summarized. In Section IV, the result and the com-
parison are given. Finally, the conclusions are drawn in
Section V.

 II. Preliminaries
The overall structure of ECC is illustrated in Fig.1,

following a  top-down structure.  The top layer  includes
ECC  protocols,  such  as  elliptic  curve  digital  signature
algorithm (ECDSA) [20] and elliptic curve digital Hell-
man key exchange (ECDH). The second layer is elliptic
curve  scalar  multiplication  implemented  by  calling  the
PA and PD operation within the group operations lay-
er. At the same time, the PA and PD consist of modu-
lar  addition,  subtraction,  multiplication,  and  inversion
in the field operations layer.
  

ECC

protocols

Modular

add/sub

Modular

multiplication

Modular

invertion

Field

operations

Elliptic curve

group operations

ECSM

PA PD

 
Fig. 1. This is the structure of ECC algorithm.

 

 1. Elliptic curve
Elliptic curve refers to a curve determined by a cu-

bic equation defined on the field. In the affine coordin-
ates, the simplified Weierstrass equation is used to rep-
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present  the  elliptic  curve  over  the  prime  field  GF( ),
which is shown in equation (1).
 

y2 = x3 + ax+ b (1)

where
 

x, y, a, b ∈ GF(p) (2)

and
 

4a3 + 27b2 ̸= 0 (3)

p

In  addition  to  using  affine  coordinates,  elliptic
curves  based  on GF( ) can also  be  represented  by us-
ing Jacobian or  projective coordinates.  In affine coord-
inates, PA and PD operations need a lot of modular di-
vision operation, the cost of which is enormous. Hence,
Jacobian  coordinates  can  be  selected  to  avoid  a  large
number of modular division operations.

pIn Jacobian coordinates, elliptic curves over GF( )
can be expressed as
 

y2z = x3 + axz4 + bz6 (4)

Z ̸= 0 (X,Y, Z)

(x, y)

When , the Jacobian point  of ellipt-
ic curve can be transformed with the affine point 
as
 

X = xz2, Y = yz3, Z = 1 (5)

and
 

x = X/z2, y = Y /z3 (6)

 2. Group operation in Jacobian coordinates
2P (x1, y1, z1)

P (x0, y0, z0)

The definition of double point  of Jac-
obian  coordinate  point  is shown  as  equa-
tion (7).
 

x1 = T1
2 − 8x0T2

y1 = T1(4x0T2 − x1)− 8T2
2

z1 = 2y0z0 (7)

where
 

T1 = 3x0
2 + az0

4, T2 = y0
2 (8)

P (x0, y0, z0)

Q(x1, y1) P +Q = (x2, y2, z2)

The point addition algorithm in this paper will use
the  mixed  Jacobian-affine  coordinates,  that  is  to  say,
the  Jacobian  point  is  added  to  the  affine
point ,  and  the  result  is
defined as shown in equation (9).
 

x2 = T2
2 − (x1z0

2 + x0)T1
2

y2 = T2(x1T1
2 −X3)− y1T1

3

z2 = T1z0 (9)

where
 

T1 = x1z0
2 − x0, T2 = y1z0

2 − y0 (10)

 3. Montgomery multiplication
Compared with modular  addition and subtraction,

modular multiplication in finite field operations is very
complex and is also the bottleneck of Jacobian coordin-
ates ECSM.  The  commonly  used  modular  multiplica-
tion algorithms include Mersenne prime modular multi-
plication  and  Montgomery  multiplication  (MM).  The
former  is  a  kind  of  modular  multiplication  algorithm
that  is  mainly  intended  for  Mersenne  prime  numbers.
By using the properties of this kind of number, the al-
gorithm converts  one-time  multiplication  and  one-time
division of modular multiplication into partial  modular
addition  and  subtraction.  However,  the  disadvantages
of  the  algorithm are  also  apparent.  The  algorithm can
only be used in the specific prime field and can not be
applied  to  modular  multiplication  over  other  prime
fields with  variable  bit  width.  In  modular  multiplica-
tion, MM converts the modular operation into shift op-
eration,  which  effectively  reduces  the  computational
complexity  of  modular  multiplication  and  can  be  used
for different  finite  fields,  which  is  also  easy  to  imple-
ment  in  software  and  hardware.  Considering  operation
efficiency and  flexibility,  MM  is  selected  as  the  al-
gorithm  of  the  modular  multiplier  in  this  design.  The
definition  of  Montgomery  modular  multiplication  is
shown in formula (11).
 

r = MM(a, b) = a · b ·R−1 mod p (11)

R = 2n n pwhere , and  is the bit length of .
a b

a · b mod p

a b

â = a ·R b̂ = b ·R
â b̂

It can be seen that when  and  perform MM, the
calculation result is not . Therefore, we intro-
duce the  concept  of  Montgomery  field.  For  the  num-
bers  and  over the prime field are respectively rep-
resented by  and  in the Montgomery
domain, then the result of MM( , ) is
 

r̂ = MM(â, b̂) = a · b ·R mod p (12)

r̂ rwhere  is the representation of  in Montgomery Field.
The transformation between prime field and Mont-

gomery field can also be calculated by MM, as is shown
in formulas (13) and (14) respectively.
 

â = MM(â, R2) = a ·R mod p (13)
 

a = MM(â, 1) = a mod p (14)

 4. DSP48E1
DSP element in 7 Series FPGA, the DSP48E1 slice,

has great flexibility and utilization, which can improve
the  efficiency  of  application  while  reducing  the  overall
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energy consumption  and  improving  the  maximum  fre-
quency. The  high  performance  of  DSP48E1  allows  de-
signers  to  use  the  time-multiplexing  method  to  realize
multiple slow operations in a single DSP48E1 slice.

The  DSP48E1  slice  supports  many  independent
functions, such  as  multiplication,  accumulation  multi-
plication (MACC),  addition  multiplication,  barrel  dis-
placement, wide-bus  multiplexing,  and  scanning  detec-
tion. The architecture  can also  form broad math func-
tions, DSP  filters,  and  complex  algorithms  by  cascad-
ing multiple DSP48E1 slices, general FPGA logic is not
required.

The basic functionality of  the DSP48E1 slice is  il-
lustrated in Fig.2 [21]. It should be mentioned that DSP
also  has  many  salient  functionalities,  including  power
saving pre adder, 25 × 18 two’s complement multiplier
and pattern detector.
 
 

B

PA

D

C

48-Bit accumulator/Logic unit

Pre-adder

Pattern detector

25×18
Multiplier

 
Fig. 2. This is the basic DSP48E1 slice functionality.

 

 III. Hardware Implementation

75%

In  this  section,  the  details  of  modular  adder/sub-
tractor  and  improved  256-bit  Montgomery  multiplier
are explained, and the calculation paths of PA and PD
are introduced. We also propose an improved binary ex-
pansion  method  to  avoid  PA  calculations.  The
overall hardware  architecture  is  described  as  a  conclu-
sion.

 1. Modular adder and subtractor

a b p

The direct  implementation  of  modular  addition  or
subtraction with  256-bit  width  can  bring  fast  comput-
ing speed, but the resource consumption is huge. We di-
vide each 256-bit width operand into 16 operands with
16-bit  width.  Operands ,  and  modulus  are ex-
pressed as
 

a =

15∑
j=0

aj2
16j , b =

15∑
j=0

bj2
16j , p =

15∑
j=0

pj2
16j (15)

s0 s1

The pseudo-code of modular addition and subtrac-
tion algorithm is shown in Algorithm 1 and Algorithm 2.

 and  respectively  represent  carry-bit  and borrow-
bit in the modular addition algorithm, which is the op-
posite  situation  in  the  modular  subtraction  algorithm.
The algorithm consumes 16 cycles to complete a 256-bit
width modular addition or subtraction.

Algorithm 1　Modular addition
Require:

a =
∑15

j=0 aj2
16j , b =

∑15
j=0 bj2

16j , p =
∑15

j=0 pj2
16j　 .

Ensure:
a+ b mod p　 .
c = 0, d = 0 s0 = 0, s1 = 01: , ;

j = 0 j < 16 j ++2: for ; ;  do
(s0, cj) = aj + bj + s03: 　　 ;
(s1, dj) = cj − pj − s14: 　　 ;

5: end for
d < 06: if  then

c7: 　　return 
8: else

d9: 　　return 
10: end if

Algorithm 2　Modular subtraction.
Require:

a =
∑15

j=0 aj2
16j , b =

∑15
j=0 bj2

16j , p =
∑15

j=0 pj2
16j　 .

Ensure:
a− b mod p　 .
c = 0, d = 0 s0 = 0, s1 = 01: , ;

j = 0 j < 16 j ++2: for ; ;  do
(s0, cj) = aj − bj − s03: 　　 ;
(s1, dj) = cj + pj + s14: 　　 ;

5: end for
c < 06: if  then

d7: 　　return 
8: else

c9: 　　return 
10: end if

aj bj

pj

p

The  hardware  architecture  of  modular  adder  and
subtractor proposed in this paper is shown in Fig.3. In
order  to  make  the  design  architecture  more  compact,
two  integrated  DSP  units  are  used  for  addition  and
subtraction calculation of 16-bit width. DSP1 is used to
complete the addition/subtraction and carry/borrow of
operands  and , while DSP2 is used to complete the
addition/subtraction and  carry/borrow  of  DSP1  calcu-
lation  result  and  module .  Some  shift  registers  are
used  to  form  the  pipeline  and  store  the  intermediate
value. It consumes 18 clock cycles to perform one 256-
bit width addition or subtraction. By using DSP units,
we  can  not  only  choose  modulus  more  flexibly  but
also reduce the usage of logic resources.

 2. Montgomery multiplier
Montgomery  multiplication  is  the  most  time-con-

suming operation in the implementation of ECSM [22].
The  classical  Montgomery  algorithm  shown  in Al-
gorithm 3 requires large bit width multiplication, which
will consume many hardware resources. We propose an
efficient improved Montgomery multiplication based on
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the iterative algorithm, as is shown in Algorithm 4. In
this method, we also divide each 256-bit width operand
into 16 operands with 16-bit width, and the integrated
DSP units are used to complete the calculation of 16-bit
width.  The  hardware  architecture  of  the  Montgomery
multiplier  is  more compact at  the cost  of  adding some
iterative cycles.

Algorithm 3　Classical montgomary multiplication
Require:

a b p ω　　 , , , .
Ensure:

r = a · b ·R−1 mod p　　 .
c = 0, r = 01: ;
c = a · b2: ;
r = (c+ (c · ω mod R) · p)/R3: ;
r ≥ p4: if  then

5: 　　r=r−p;
6: end if
7: return r

Algorithm 4　Improved montgomary multiplication
Require:

a=
∑15

m=0am216m, b=
∑15

m=0bm216m, p=
∑15

m=0pm216m, ω .
Ensure:

r = a · b ·R−1 mod p　　 .
r = 0, c = 0, d = 01: ;

i = 0 i ≤ m− 1 i++2: for ; ;  do
ui = (r0 + bi · a0) · ω mod 2163: 　　 ;

j = 0 j ≤ m− 1 j ++4: 　　for ; ;  do
cj+1cj = biaj + cj5: 　　　　 ;
dj+1dj = uipj + dj6: 　　　　 ;

7: 　　end for
j = 0 j ≤ m− 1 j ++8: 　　for ; ;  do
(carry, rj) = rj + cj + dj + carry9: 　　　　 ;

10:　　end for
r = r/21611: 　　 ;

12: end for

r ≥ p13: if  then
i = 0 i ≤ m− 1 i++14: 　　for ; ;  do
(carry, ri) = ri − pi − carry15: 　　　　 ;

16: 　　end for
17: end if
18: return r

Two DSP  units  constitute  the  hardware  architec-
ture core of the improved Montgomery multiplier, as is
shown in Fig.4. These two DSP units can complete the
addition  and  multiplication  calculation  of  16-bit  width
in  the  Montgomery multiplier.  Some shift  registers  are
used  to  construct  the  pipeline  structure  and  store  the
calculated intermediate value. A few peripheral circuits
are responsible for process control.

The calculation  process  of  the  improved  Mont-
gomery multiplier is divided into four stages.

ui r0 + bi · a0
(r0 + bi · a0) · ω

1)  Calculate .  DSP1  calculates  and
DSP2  calculates ,  which  is  completed
after two clock cycles.

c d c

d

2) Calculate  and . DSP1 and DSP2 calculate 
and  respectively and complete the calculation after 16
clock cycles.

c+ d+ r c+ d

c+ d+ r

3) Calculate , DSP1 calculate , DSP2
calculate . The calculation is completed after 16
clock cycles.

r mod p

4) Cycle step 1) to step 3) 16 times, and finally cal-
culate  and output the result.

The  improved  Montgomery  multiplier  consumes
about  528  clock  cycles  to  complete  a  256-bit  width
multiplication  calculation.  The  hardware  architecture
mainly  comprises  DSP  units,  registers,  and  peripheral
circuits. Although the clock cycle consumption is relat-
ively  large,  the  circuit  structure  is  simple  and  comp-
act.

The modular adder/subtractor module and the im-
proved  Montgomery  multiplier  module  reuse  two  DSP
units  and  some  peripheral  control  circuits  together.  In
the process of ECSM calculation, the utilization rate of
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Fig. 3. This is the architecture of modular adder/subtractor.
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100%the  reused  two  DSP  units  can  almost  reach ,
which  significantly  improves  the  resource  utilization
and the compactness of the scheme.

 3. PA and PD
To  avoid  modular  division,  which  is  not  user-

friendly for  hardware,  this  paper  selects  Jacobian  co-
ordinates for  PD  and  Jacobian-affine  mixed  coordin-
ates  for  PA with  the  lowest  computational  complexity
to  replace  the  PA  and  PD  in  affine  coordinates.  As  a
result, the points for PD and one of the points for PA
are  in  the  Jacobian  coordinate  system.  At  the  same
time,  another  point  involved  in  PA  points  happens  to
be the input affine point, so there is no need to convert
Jacobian  points  into  affine  points  by  modulus  inverse.
Thus,  point  multiplication  can  continuously  carry  out
PD on Jacobian coordinates  and PA on mixed Jacobi-
an-affine coordinates.

Based on the definition of PD in Jacobian coordin-
ates,  as  is  shown  in  formula  (9),  this  paper  designs  a
serial  circuit that performs the calculation steps of PD
one by  one  to  improve  the  utilization  of  hardware  re-
sources and reduce the complexity. The operation path
based on Jacobian PD is shown in Fig.5.

R1 R6In Fig.5, –  represent the  intermediate  vari-
able register, which is used to store the value of the ini-
tial input of the PD and the value of the intermediate
variable generated in the calculation process.  Each ad-
dition,  subtraction,  or  multiplication  operation  will

change the value of  the corresponding register,  so  it  is
necessary to  plan the application of  each register  reas-
onably.

According  to  the  hardware  architecture  of  PD,  10
modular multiplications, 13 modular additions/subtrac-
tions, and 6 intermediate variable registers are required.

Similar to the PD, this  paper designs a circuit  for
serial  execution  according  to  the  definition  of  PA  in
mixed Jacobian-affine coordinates. The hardware archi-
tecture  of  PA  in  mixed  Jacobian-affine  coordinates  is
shown in Fig.6.

According  to  the  path  to  calculate  PA,  11  times
modular  multiplication,  7  times  modular  addition  or
subtraction,  and  7  intermediate  variable  registers  are
required.

 4. Improved binary expansion algorithm
Elliptic curve scalar multiplication is the core part

of  ECC, which is  implemented by calling PD and PA.
ECSM is the most expensive operation in ECC, so the
efficiency of ECSM determines the performance of ECC.

k

k =
∑255

j=0 kj2
j

k

k

kj = 1

The most common algorithm of calculating ECSM
is  binary  expansion  algorithm  shown  in Algorithm  5.
First,  the  256-bit  number  is  converted  into  binary
form  and  expressed  as .  Then  scan  the
binary form of  bit by bit from high to low until the
end of the last bit of , perform once PD in each cycle,
and perform PA if  in this cycle.
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Fig. 4. This is the architecture of improved Montgomery multiplier.
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Fig. 5. This is the hardware architecture of PD in Jacobian coordinates.
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Fig. 6. This is the hardware architecture of PA in mixed Jacobian-affine coordinates.
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Algorithm 5　Binary expansion algorithm
Require:

k =
∑255

j=0 kj2
j P　　 , ECC point .

Ensure:
kP　　 .

Q = 01: ;
j = 255 j ≥ 0 j––2: for ; ;  do
Q = 2Q3: 　　 ;
kj = 14: 　　if ; then

Q = Q+ P5: 　　　　 ;
6: 　　end if
7: end for
8: return Q

{P, 2P, · · · , 15P}

Based on the binary expansion algorithm, this pa-
per proposes a scheme to reduce the number of PA op-
erations in the binary expansion algorithm by pre-calcu-
lation,  making the calculation of  ECSM more efficient.
The  result  of  needs  to  be  pre-calcu-
lated and stored in the ROM.

k

k

k

k =
∑63

j=0 Kj2
4j ,Kj ∈ [0, 15]

Kj

K0

The specific algorithm is shown in the Algorithm 6.
Initially, it still converts  into binary form. The differ-
ence is  that the improved algorithm divides every four
bits of the binary form of  into one data block, so the
integer 256-bit number  will be divided into 64 data bl-
ocks, which are recorded as .
Next,  scan  each  from high  to  low  until  the  scan-
ning to  ends the cycle. In each cycle, the PD is ex-

Kj

ecuted  four  times,  and  the  point  corresponding  to  the
current  is added.

Algorithm 6　Improved binary expansion algorithm
Require:

k =
∑63

j=0 Kj2
4j {0, P, 2P, · · · , 15P}　　 , .

Ensure:
kP　　 .

Q = 01: ;
j = 63 j ≥ 0 j––2: for ; ;  do
Q = 24Q3: 　　 ;
Q = Q+KjP4: 　　 ;

5: end for
6: return Q

Fig.7 shows the hardware design scheme of the im-
proved binary expansion algorithm based on Algorithm
6. The input for each cycle corresponds to the output of
PA module in the previous round stored in Reg Q. The
final result is the output of the last cycle of PA.

k

In the improved binary expansion algorithm, there
are mainly two modules PD and PA to consume power.
The power of PA is higher than that of PD and the op-
eration  time  is  relatively  longer.  If  the  power  or  time
analysis  is  carried  out  when  the  hardware  is  running,
the binary form of key  can be easily divulged. So the
simple binary expansion algorithm can not resist SCAs.

However,  the  improved  binary  expansion  method
proposed in this paper, no matter how much the value
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Fig. 7. This is the architecture of poposed ECSM processor.
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k

k

of  the  is, needs  four  times  PD  and  once  PA  opera-
tion. The improved binary expansion algorithm will not
divulge  the  key  under  power  and time analysis,  and
can  well  resist  SCAs.  Moreover,  because  the  improved
algorithm mainly performs PD, the operation time also
has certain superiority with the same key length.

The  improved  binary  expansion  algorithm  avoids
part of PA by pre-calculating. And it can be seen that
the  time  of  PD  operations  used  in  calculating  256-bit
ECSM by this algorithm is 252, and the time of PD op-
erations used is 63.

75%

k

75%

In  comparison  to  other  SCAs-resistant  algorithms,
it reduces the number of PA operations by about .
More  precisely,  other  ECSM  algorithms  must  perform
PA and PD operations within each loop to avoid reveal-
ing  in  order  to  achieve  SCAs  resistance.  Therefore,
when  processing  256-bit  ECSM,  other  processors  that
can withstand SCAs must execute 255 times PD and 255
times PA  operations.  In  contrast,  our  algorithm  re-
duces  the  number  of  PA  operations  by  approximately

 and PD operations by multiple times.
 5. Overall hardware architecture of ECSM
The  overall  hardware  architecture  of  ECSM  is

shown  in Fig.8. The  details  of  each  module  are  intro-
duced in the previous article. Table 1 lists the resource
consumption of each module.
 
 

k kPECSM_CONTROL

PA

PE

ROM PD

 
Fig. 8. This is the the overall hardware architecture of ECSM.

 
 
 

Table 1. The resource consumption of each module

Module Slice DSP
ECSM_CONTROL 48 0

PA&PD 262 0
PE 1129 2

 

k

kP

In Fig.8, the top layer is ECSM_CONTROL mod-
ule,  which is  mainly  responsible  for  the  overall  control
and scheduling of other modules to complete the scalar
multiplication calculation in ECC. Firstly, the scalar 
involved in ECSM is input to the module, then it oper-
ates by calling the PA and PD module in the next lay-
er, and finally outputs the result of ECSM as .

PA  and  PD  modules  are  respectively  responsible

{P, 2P, . . . , 15P}

for calculating point addition and doubling. PA module
looks up the table by calling the ROM module and per-
forms the underlying calculation by calling the process
element (PE) module to complete PA calculation.  The
ROM module  stores  the  pre-calculated  results,  that  is,
the  15  values  of  points .  PD  module
only needs to call  PE module to complete  PD calcula-
tion.  PA  and  PD  modules  save  resource  consumption
and  improve  utilization  by  time-sharing  multiplexing
the PE module.

100%

The PE module comprises the modular adder/sub-
tractor and  the  improved  Montgomery  multiplier  de-
scribed above. They reused two DSP units to complete
256-bit modular  addition,  subtraction,  and  Mont-
gomery  multiplication.  In  the  calculation  process,  the
utilization rate of the two DSP units can almost reach

,  which  further  improves  the  compactness  of  the
hardware architecture and resource utilization.

 IV. Result and Comparison

p

The proposed design has been described by Verilog
HDL and implemented using the Xilinx Vivado 2019.1
software,  simulated  by  the  Xilinx  Vivado  simulator.
The  designs  are  synthesized,  mapped,  placed,  and
routed on the Xilinx Kintex-7 (XC7K325T-2FFG900I).
We  aim  to  present  a  time-area-efficient  and  compact
design  of  a  256-bit  ECSM  processor  over  GF( ), re-
duce resource consumption, and make it possible to ap-
ply to the platform with limited resources.

p

This work costs 1439 slices, 2 DSPs, and 2 BRAMs.
It  takes  about  7.9  ms  at  the  frequency  of  222.2  MHz
and 1763k clock cycles with a throughput of 32.3 kbps
to  complete  a  256-bit  ECSM  operation  over  GF(p),
where  can be flexibly selected according to the applic-
ation scenario. PE module is the bottom operation unit
of  ECSM,  which  is  responsible  for  calculating  modular
addition/subtraction and  Montgomery  modular  multi-
plication.  The  PE  module  consumes  532  slices  and  2
DSPs. It takes about 18 clock cycles to complete a 256-
bit  modular  addition/subtraction  and  528  clock  cycles
to complete a 256-bit Montgomery modular multiplica-
tion. It requires 13 modular additions/subtractions and
10  Montgomery  modular  multiplications  to  complete  a
256-bit PD operation in the PD module on Jacobian co-
ordinates. And it requires 7 modular additions/subtrac-
tions  and  10  Montgomery  modular  multiplications  as
well  to  complete  a  256-bit  PA  operation  in  the  PA
module on mixed Jacobian-affine coordinates. The clock
cycles consumed by the PD module and PA module to
complete a PD operation and a PA operation are 5514
and 5934, respectively. In the ECSM_CONTROL mod-
ule, 63  PA  operations  and  252  PD  operations  are  re-
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quired to complete a 256-bit ECSM. Due to the applica-
tion of improved ECSM architecture and reuse techno-
logy, the area-time value of this scheme has obvious ad-
vantages over other schemes. Moreover, since the clock
cycles  consumed  by  each  module  are  constant,  the
design architecture can effectively resist SCAs.

Table  2 lists the  performance  and  resource  con-

sumption  comparison  between  the  elliptic  curve  scalar
multiplication  design  proposed  in  this  paper  and other
ECSM processors designed over the 256-bit prime field
on  FPGA.  Although  the  throughput  of  this  article  is
low compared to other works, this paper has great ad-
vantages in  terms  of  the  AT  value  and  resource  con-
sumption.

 
 

pTable 2. Comparison between our ECSM design and similar work over GF( )

Reference Publish year Platform Freq. (MHz) Slice DSP Speed (ms) Throughput (kbps) ATa ATb Support arbitrary p
Ours 2023 Kintex-7 222.2 1.4k 2 7.90 32.30 11.06 15.8 yes

Islam et al. [23] 2019 Virtex-7 177.7 8.9k 0 1.48 173.20 13.17 0 no
Kudithi et al. [24] 2020 Kintex-7 122.8 7.4k 0 2.44 104.90 18.06 0 no
Amiet et al. [19] 2016 Virtex-7 225.0 1.7k 20 1.49 171.81 2.53 29.8 yes
Wu et al. [25] 2019 Virtex-4 162.0 21.9k 16 1.01 68.52 22.12 16.2 yes

Hossain et al. [18] 2016 Kintex-7 121.5 11.3k 0 3.27 78.28 36.95 0 no
Asif et al. [26] 2017 Virtex-7 72.9 24.2k 0 2.96 1816.20 71.63 0 yes

Note: a Slice cost multiplied by scalar multiplication delay; b DSP cost multiplied by scalar multiplication delay.
 

p

p

Islam et al. [23] proposed an efficient ECSM design
on special curves Edwards25519, which can achieve fast
scalar multiplication with high security. The design uses
Montgomery ladder  algorithm to  resist  SCAs and util-
ize operation parallelization to decrease the latency and
the number of arithmetic modules. However, the modu-
lus  in Edwards25519 is fixed, so the processor cannot
flexibly select  according to requirements. In addition,
the  area-time  product  of  their  design  is  slightly  bigger
than ours.

The work in reference [24] shows a hardware struc-
ture  of  ECSM  on  Jacobian  coordinates,  in  which  PA
and  PD  modules  share  resources.  It  is  implemented
both in FPGA and ASIC. On Virtex-7 FPGA platform,
the ECSM processor needs 2.44 ms to complete a 256-
bit  prime  ECSM,  which  is  three  times  as  fast  as  the
processor proposed  in  this  paper.  However,  the  pro-
cessor  uses  7.4k  slices,  five  times  as  many  as  ours.  In
addition, the processor does not provide any protection
against SCAs,  as  their  ECSM module  applies  the  bin-
ary expansion algorithm.

Amiet et  al.  [19]  designed a hardware architecture
that supports arbitrary prime fields up to 1024 bits and
different standards of ECSM. The processor needs 1.49
ms to realize 256-bit multiplication over the prime field
with 20 DSPs and 6816 LUTs, which has excellent per-
formance.  Their  design  is  about  a  quarter  of  ours  in
terms of AT value. However, they use 10 times as many
DSPs as ours.

Wu et al. [25] proposed a scalable hardware imple-
mentation multiplier, and a fast unified architecture for
ECSM  over  five  NIST  primes.  At  the  same  time,  the
Montgomery  ladder  with  projective  coordinate  is  used
in  the  design  to  reduce  the  computational  complexity
and provide the ability to resist SCAs. It takes 1.57 ms

to calculate a 256-bit ECSM, taking 21638 slices and 32
DSPs,  which  has  relatively  low  performance  compared
with ours in terms of DSP usage and AT value.

Hossain et  al.  [18]  presented  an  efficient  hardware
implementation of  a  new PA and  PD combined  archi-
tecture  for  ECSM processor.  The  design  supports  224-
bit and 256-bit prime numbers recommended by NIST.
It  takes  4.7  ms  to  complete  a  256-bit  ECSM in  affine
coordinates  on  Xilinx  Kintex-7  FPGA,  slightly  faster
than  our  design.  However,  their  design  area  is  nearly
7.5 times that of ours.

Asif et  al.  [26]  proposed  a  multi-key  ECSM based
on  the  residue  number  system,  which  employes  deep
pipelining to allow simultaneous encryption of 21 keys.
Their implementation  on  Virtex-7  FPGA took  the  ad-
vantages of  RNS-based  implementation,  whereas  it  ex-
pends 17.3 times more slices and is exactly 7 times less
efficient than our ECSM processor.

 V. Conclusions

p

75%

This paper presents  a time-area-efficient and com-
pact  design  of  a  256-bit  ECSM  processor  over  GF(p),
where  can be selected flexibly according to the applic-
ation scenario.  Improved  Montgomery  modular  multi-
plier and modular adder/subtracter are proposed. They
reuse 2 DSP units to make their hardware architecture
more compact and efficient. In ECSM processor, we use
Jacobian  coordinates  for  the  PD  operation  and  mixed
Jacobian-affine coordinates for the PA operation to fur-
ther  improve  the  calculation  efficiency.  An  improved
binary  expansion  method  is  proposed  to  calculate  the
scalar multiplication of elliptic curve. We avoid  of
the point addition calculations using pre-calculation and
table lookup method. The design architecture is imple-
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mented on Xilinx Kintex-7 (XC7K325T-2FFG900I) and
it  consums 1439 slices,  2  DSPs,  and  2  BRAMs,  which
makes  it  suitable  for  resource-constrained  devices.  It
takes about 7.9 ms at the frequency of 222.2 MHz and
1763k clock cycles  to complete a 256-bit  ECSM opera-
tion over GF(p).
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