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   Abstract — Text-to-image synthesis  refers  to  gener-
ating  visual-realistic  and  semantically  consistent  images
from given textual descriptions. Previous approaches gen-
erate an initial low-resolution image and then refine it to
be high-resolution. Despite the remarkable progress, these
methods are limited in fully utilizing the given texts and
could  generate  text-mismatched  images,  especially  when
the text description is complex. We propose a novel fine-
grained  text-image  fusion  based  generative  adversarial
networks (FF-GAN), which consists of two modules: Fine-
grained text-image fusion block (FF-Block) and global se-
mantic refinement (GSR).  The proposed FF-Block integ-
rates an attention block and several convolution layers to
effectively fuse the fine-grained word-context features in-
to the corresponding visual features, in which the text in-
formation  is  fully  used  to  refine  the  initial  image  with
more  details.  And  the  GSR  is  proposed  to  improve  the
global  semantic  consistency between linguistic  and visual
features during the refinement process.  Extensive experi-
ments on CUB-200 and COCO datasets demonstrate the
superiority of  FF-GAN  over  other  state-of-the-art  ap-
proaches  in  generating  images  with  semantic  consistency
to the given texts.

   Key words — Text-to-image  synthesis, Text-image

fusion, Generative adversarial network.

 I. Introduction
Text-to-image synthesis is one of the most signific-

ant tasks in the field of natural language processing [1]–
[3] and computer vision [4]–[10], which aims to synthes-
ize  visual-realistic  and  text-matched  images  from  the
given linguistic descriptions. With the recent success of
the  generative  adversarial  networks  (GANs)  [9]–[14],
text-to-image  synthesis  has  drawn  increasing  attention

and a great number of advanced methods [15]–[19] have
been proposed.

Most  approaches  adopt  a  fashion  of  multi-stage
generation [4],  [16],  [19]–[22] to obtain high-quality im-
ages,  which  first  generates  a  coarse  image  by  utilizing
sentence-level textual feature and improve it to be high-
resolution. Although  conventional  approaches  are  im-
pressive  in  generating  high-quality  images,  most  of
these approaches often synthesize mismatch images and
fail to fully utilize the text, in particular when the text
is complicated. One major reason for this problem is the
ineffective and inadequate fusion of text and image in-
formation during the refinement process of these meth-
ods.  Early  works  [16],  [18],  [20],  [23]–[25]  attempt  to
simply  concatenate  the  encoded  text  information  with
the visual feature or utilize the attention mechanism [7],
[26], [27] to integrate the cross-modal features. However,
the semantic gap between different modalities seriously
impedes  the  fusion  of  texts  and  images.  For  example,
Attn-GAN [20] employs an attention mechanism to fuse
the fine-grained word-level linguistic and visual inform-
ation, which  first  utilizes  cross-modal  attention  to  ob-
tain  word-context  features  for  each  image  sub-region.
And  then  concatenates  the  word-context  features  with
the  corresponding  image  features  to  refine  the  initial
image.  However,  simply  concatenating  features  of  two
different modalities is sub-optimal because it cannot ex-
plicitly distinguish which regions to be refined. Recent-
ly,  SD-GAN  [28] adopts  conditional  batch  normaliza-
tion [29]–[33]  to  inject  text  information into the image
feature maps.  However,  conducting  batch  normaliza-
tion on the visual feature maps and transforming it in- 
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to  a  normal  distribution  may  reduce  the  conditional
representation space of the generators.

By  fusing  cross-modal  features,  the  fine-grained
word-level features can be used to refine the visual fea-
tures, which can make full use of text information while
adding  more  vivid  details  to  the  initial  images.
However, previous methods cannot fully fuse the cross-
modal features,  and  thus  synthesize  images  inconsist-
ent with the given text descriptions. As shown in Fig.1,
images generated by Attn-GAN [20] and DM-GAN [22]
failed to match the texts semantically. In order to syn-
thesize more  text-matched  images,  we  need  to  effect-
ively  inject  fine-grained  linguistic  features  into  visual
features. Also,  the  global  semantics  is  required  to  en-
courage  the  generated  images  semantically  consistent
with the texts.
 
 

Attn-GAN DM-GAN Ours

A bird with dark
brown beak,

tarsus and feet,
and light brown
nape and back,
and white belly

This water bird
has a long neck

with a white
throat, long thin
beak, and bright

red eyes 
Fig. 1. Samples generated by Attn-GAN [20], DM-GAN [22]

and our  model  on  CUB-200  dataset.  Images  gener-
ated by our method are more realistic and semantic-
ally consistent with the given texts.

 
To this  end,  we develop a novel  fine-grained text-

image  fusion  based  generative  adversarial  networks
(FF-GAN) to  improve  the  quality  of  images.  Specific-
ally,  the first mechanism is the fine-grained text-image
fusion  block  (FF-Block),  which  selects  important  word
features that  contains  more  fine-grained  linguistic  in-
formation  and  conducts  affine  transformation  on  the
visual feature maps. In this way, fine-grained textual in-
formation can be added to its corresponding image sub-
region in a sufficient and efficient manner.  The second
novel  mechanism is  global  semantic  refinement (GSR),
which  introduces  a  global  semantic  constraint  during
the refinement phase.  Combing the GSR with the FF-
Block in the refinement process makes it gradually and
smoothly drives the generators toward the goal of fine-
grained  semantic  alignment  both  globally  and  locally.
We  performed  extensive  experiments  on  two  widely
used and challenging benchmark datasets  to  verify  the
performance of  the  FF-GAN.  Our  FF-GAN  shows  re-
markable superiority compared with the most advanced
approaches in two evaluation metrics.

The main contributions of this paper are as follows:

1)  We  develop  a  novel  end-to-end  framework  named
FF-GAN, which makes full use of given textual descrip-
tions to produce more visual-realistic and text-matched
images;  2)  An  effective  FF-Block  is  proposed  to  fuse
cross-modal  features  more  adequately  and  efficiently,
and a GSR is developed to improve the global semantic
alignment during the refinement phase.

 II. Related Work
 1. GAN for text-to-image synthesis

64× 64

The success of GAN has greatly promoted the de-
velopment of text-to-image generation, and many mod-
els based on GANs and its variants have been proposed.
For the first time, Reeds et al. [15], [34] use conditional
GAN [17], [35] to generate  fuzzy resolution im-
ages from texts. In a bid to improve the quality of syn-
thesized  pictures,  Stack-GAN  [16]  is  proposed,  which
synthesizes  visual-authentic  images  with  two stages  by
stacking a series of generators and discriminators. First,
a  coarse image is  generated in the low-stage,  and then
the details of the image are modified to generate a high-
resolution  one.  Attn-GAN [20]  introduces  an  attention
mechanism to align the semantics of  texts and images.
By combining semantically aligned image and text fea-
tures,  the  generated  images  may  maintain  semantic
consistency  with  the  texts.  DM-GAN  [22]  develops  a
dynamic memory based network to obtain the more sig-
nificant linguistic feature at each image refinement pro-
cess. DAE-GAN [36] introduces extra knowledge named
aspect information  to  improve  the  details  of  synthes-
ized images.

The aforementioned  methods  proposed  many  im-
pressive  mechanisms  to  align  the  feature  of  different
modalities,  which  have  achieved  remarkable  success.
However,  simply  concatenating  aligned  cross-modal
representations  is  sub-optimal  for  the  fusion  of  cross-
modal  features,  which  leads  to  insufficient  use  of  text
semantics to generate semantic-consistent images.

In  order  to  fuse  the  text  and visual  features  more
adequate,  SD-GAN  [28] adopts  conditional  batch  nor-
malization to inject text information into the visual fea-
ture  maps  instead  of  concatenating  the  aligned  cross-
modal features directly, which is more sufficient for the
fusion of cross-modal features. However, the normaliza-
tion of visual features will reduce the conditional repres-
entation space [37] of the generators, which is very bad
for our text-image generation task.

Different from the previous methods, we propose to
use affine  transformation  to  fuse  the  features  of  differ-
ent modalities.  In  this  way,  we  introduce  a  more  ad-
equate  and  efficient  word-level  text-image  fusion  that
enables the model to generate fine-grained images with
high quality.
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 2. Affine transformation
Affine transformation is widely used in the case of

conditional batch normalization to introduce additional
conditional  information  [29]–[31]  and  avoid  the  loss  of
information [32], [33] caused by normalization.

Mani-GAN [38] introduces affine transformation in
semantic image  manipulation.  It  uses  an  affine  trans-
formation  to  fuse  cross-modal  representations  between
texts and images for effectively editing the image. MS-
GAN [21]  introduces  an  attention-modulation  block  to
fuse the representations of text and image. DF-GAN [37]
also proposed a deep text-image fusion block that stacks
multiple  affine  transformations  to  make  a  full  text-
image fusion.

Although the  above  methods  have  achieved  re-
markable  results,  only  fusing  sentence-level  semantics
and visual  feature maps will  lead to affine transforma-
tion  work  on  the  visual  representation  in  a  spatially
uniform  manner  and  result  in  inadequate  fusion.
Ideally, the  linguistic  information  should  be  incorpor-
ated  into  the  sub-region  of  images  with  corresponding
semantics. Different  from the  above  methods,  our  pro-

posed model introduces more fine-grained word-level af-
fine  transformation  to  fully  integrate  the  cross-modal
features, which reinforces  the  generative  model  to  syn-
thesize  authentic  and  text-matched  images  with  more
vivid details.

 III. Proposed Method
As Fig.2 shows, the framework of the proposed FF-

GAN mainly consists of two modules: the initial image
generation and  fine-grained  semantic  fusion  based  re-
finement.  In  initial  image  generation,  we  first  extract
semantic representations from the given textual descrip-
tion into sentence-level and word-level features, then we
synthesize  a  initial  low-resolution  image  according  to
the  sentence-level  linguistic  feature.  In  the  refinement
stage,  we  develop  an  effective  fine-grained  text-image
fusion block (FF-Block) which fuses word-level features
into visual  features to refine the initial  image with de-
tails, while a global semantic refinement to improve the
globally  semantic  consistency,  in  a  bid  to  synthesize
high-quality images that match with the corresponding
textual sentences.
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Fig. 2. Framework of our proposed FF-GAN. Our FF-GAN utilizes Bi-LSTM to extract linguistic features of two granularities,

i.e., the  sentence-level  and word-level  features,  then it  generates  a  low-resolution  image  by using  the  sentence-level  fea-
tures in the initial image generation (stage 0) and refines it to obtain a high-resolution image in fine-grained semantic fu-
sion based refinement by using both the word-level features and sentence-level features (stage 1 and stage 2).

 

 1. Initial image generation

S

We employ a bidirectional LSTM [1]–[3] to encode
the input semantic representation into two granularity,
namely sentence-level  feature  and  the  word-level  fea-
ture.  The  sentence-level  text  feature  is  leveraged  to

W

synthesize the initial image in this phase and the word-
level  representation  is  utilized  to  refine  the  initial
image in the following refinement phase.
 

{W,S} = LSTM(T ) (1)
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T = {Tt|t = 0, . . . , L− 1}
L W = {Wt|t = 0, 1, . . . , L− 1} ∈

RDw×L

S ∈ RDw

Dw

Wt S

where  is  the  text  description
which contains  words, 

 is  the  word-level  feature  by  concatenating  the
hidden  states  of  LSTM,  is  the  sentence-level
feature from the last hidden layer of LSTM, and  is
dimension of  and .

S

Fca

Sca

Limited training data could lead to the sparsity in
the  textual  conditioning  manifold,  so  we  follow  Stack-
GAN [16] by using conditioning augmentation (CA) to
augment input text information. It yields more training
data and thus improves the robustness of model against
small  perturbations.  Explicitly,  we  enhance  sentence-
level  linguistic  feature  with  conditioning  augment
function  and obtain  the  augmented  sentence  se-
mantic representation  as follows:
 

Sca = Fca(S) (2)

Sca z ∼ N(0, 1)

I0 ∈ RDm×Dm

h0 ∈ RDm×Dm

Then,  we  employ  the  augmented linguistic  feature
 and  a  noise  vector  that is  stochastic-

ally  sampled  from  a  normal  distribution  to  synthesize
an initial image. Formally, we can obtain the initial im-
age  and its  corresponding  image  feature

 as follows:
 

{I0, h0} = G0(Sca, z) (3)

G0where  is the generator which is composed of a fully
connected layer and multiple up-sampling layers.

 2. Fine-grained semantic  fusion  based  re-
finement

The image generated in the initial generation stage
is  coarse  with  only  a  rough  shape  and  always  ignores
some  important  details  of  the  text  description.  In  this
stage, we  propose  an  FF-Block  to  fuse  word-level  fea-
tures into visual feature maps, which contributes to re-
fining the  initial  images  with more  fine-grain  linguistic
information.  Also,  we  develop  a  GSR  to  improve  the
globally semantic consistency of cross-modal features.

1) Fine-grained semantic-aware fusion
In  this  section,  we  propose  a  novel  FF-Block,  as

can  be  seen  from Fig.3,  which  contains  an  attention
block  and  several  convolution  layers,  to  fuse  the  fine-
grained word-level feature into the image feature maps
for refining the initial images with more vivid details.

Uw

Wi

Each word in the textual description possesses dif-
ferent importance, so it is sub-optimal to fuse the word-
level  linguistic  feature  and  image  feature  directly.  We
employ an attention mechanism to obtain an attentive
word-context feature, which contributes to determining
the  importance  of  every  word  for  cross-modal  fusion.
Specifically,  we  firstly  utilize  a  preception  layer  to
map  the  word-level  linguistic  feature  into  the

Wi h0

fw
att

UwWi

identical latent  space  of  visual  feature.  Then  we  com-
pute an attention score between the word-level  feature

 and image feature  by the softmax function. We
obtain the attentive word-context linguistic feature 
by  conducting  the  inner  product  between  and
the attention score as follows:
 

fw
att =

L−1∑
i=0

(UwWi)(softmax(hT0 (UwWi)))
T (4)

Uw ∈ RDm×Dw fw
att ∈ RDm×Dm

fw
att

h0

where  and , and the di-
mension  of  attentive  word-context  feature  is  the
same as visual feature .

fw
att

h0

fw
att

M(fw
att) B(fw

att)

h0

h′
0

fw
att h0

To integrate  linguistic  and  visual  features  effi-
ciently,  we  utilize  the  attentive  word-context  feature

 to conduct affine transformation on the visual fea-
ture .  To  be  specific,  we  adopt  several  convolution
layers to process the attentive word-context feature 
and then predict the linguistic-conditional channel-wise
scaling  matrix  and  shifting  matrix 
that both have the same size as . Finally, we obtain a
cross-modal  fusion  representation  by  fusing  the
word-context  feature  and image  feature  as fol-
lows:
 

h′
0 = h0 ⊙M(fw

att) +B(fw
att) (5)

M(fw
att) B(fw

att)

fw
att ⊙

where  and  are the learned weights and
bias  term  based  on  the  attentive  word-context  feature

, and  is the Hadamard element-wise product. Our
FF-Block is able to effectively integrate word-level text
features  and  image  features  to  achieve  a  fine-grained
cross-modal  fusion.  We could comprehend the effect  of
the affine transformation in cross-modal fusion from the
following two aspects:

M(fw
att)

M(fw
att)

a)  Scaling  matrix :  By  multiplying  with
the  scaling  term , it  helps  establish  the  rela-

 

f w
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Fig. 3. The  architecture  of  our  proposed  FF-Block,  which

aligns the word feature and image feature by an at-
tention block,  and utilizes  the affine transformation
to fuse text and image features effectively.
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h0

fw
att h0

h0

fw
att

tionship  between  image  feature  and linguistic  fea-
ture , while re-weight the visual feature . Sub-re-
gions  of  image  feature  that  match  with  the  word-
context feature  will be precisely highlighted, other-
wise it will be weakened, which plays a role in regional
selection. In this way, FF-Block can accurately identify
the  attributes  in  the  image  that  match  the  word-con-
text semantics and establish the correlation between at-
tributes and  word-context  semantics,  so  as  to  encour-
age the refined image of better image-text consistency.

B(fw
att) B(fw

att)b) Shifting matrix : The bias term 
can effectively  encode  the  text  information  and  intro-
duce  the  details  in  text  descriptions  which are  ignored
by  initial  images.  Meanwhile,  as  mentioned  in  Feat-
Trans [39],  the bias term can achieve similar effects as
the implementation  of  concatenation,  which  contrib-
utes  to  taking  full  advantage  of  linguistic  information
while  retaining  the  invariant  information  in  the  visual
features.

By  conducting  the  above  affine  transformations,
the  word-context  features  can  be  efficiently  fused  into
the visual feature maps to realize the fine-grained modi-
fication of the initial coarse images, and the refined im-
ages will  contain more vivid details and be better con-
sistent with the textual descriptions.

2) Global semantic refinement
We have introduced an FF-Block to effectively fuse

cross-modal  features  to  refine  the  initial  images  in  the
previous part. However, such a local fusion may lead to
an  inconsistency  between  the  synthesized  images  and
the linguistic  semantics  from  the  global  semantic  per-
spective.  Some  words  with  a  higher  importance  in  the
descriptions may even affect the direction of the whole
image refinement process, while those relatively less im-
portant word-context features may be ignored.

Sca

Us ∈ RDm×Dw

fS
att

In order  to  maintain  the  global  semantic  consist-
ency, we introduce the GSR inspired by Mirror-GAN [19]
which  exploits  the  sentence-level  attention  mechanism.
The augmented linguistic feature  is first mapped in-
to the same latent space as the visual feature by a per-
ceptron layer . Then it conducts the soft-
max function on the visual feature to attain the similar-
ity score between the cross-modal features. Specifically,
we  could  obtain  a  sentence-context  feature  as fol-
lows:
 

fS
att = (UsSca)(softmax(hT0 (UsSca)))

T (6)

fS
att

h′
0 ith (i = 1, 2) Gi

Ii
hi

To this  end,  the  sentence-context  feature  will
be concatenated with cross-modal fusion representation

 and then fed into the  generator  to
synthesize  a  refined  high-resolution  image  and  its
corresponding visual feature  as follows: 

{Ii, hi} = Gi(h
′
0, f

S
att) (7)

Giwhere  the  generator  integrates  a  series  of  up-
sampling layers and a residual block.

It is  worthy  to  note  that  the  combination  of  sen-
tence-context features and word-level fusion representa-
tions  can not  only ensure  the consistency of  visual-lin-
guistic semantics,  but  also  help  smoothen  the  refine-
ment progress from both global and local perspectives.

 3. Objective functions

Gi (i = 0, 1, 2)

To  generate  visual-realistic  images  and  maintain
the cross-modal semantic consistency, we design the fi-
nal objective function of generators which contains two
practical  adversarial  losses:  the  unconditional  loss  and
the conditional loss. To be specific, the loss function of
the generator  can be expressed as
 

LGi
= −1

2
Ex∼pGi

[log(Di(x))]︸ ︷︷ ︸
Unconditional loss

−1

2
Ex∼pGi

[log(Di(x, Sca))]︸ ︷︷ ︸
Conditional loss

(8)

x

pGi ith Sca

where  is the generated image sampled from the distri-
bution  in the  stage, and  is the augmented
linguistic  features.  The  first  part  is  an  unconditional
loss that  estimates  the  input  image  to  be  visually  au-
thentic  or  fake,  while  another  one  is  the  conditional
loss, which  is  utilized  to  discriminate  whether  the  im-
age and input text is a correct match.

LDAMSM

LCA

LCA

Following  the  common  practice  [19],  [20],  [22],  we
further  adopt  the  practical  DAMSM  [20] loss  to  com-
pute the alignment degree between linguistic  and visu-
al features,  denoted as . To smoothen the con-
ditional  manifold  and  avoid  over-fitting  [16],  we  also
employ  a  regularization  term  during  training,
which is defined as the Kullback-Leibler divergence (KL
divergence) between  the  standard  Gaussian  distribu-
tion  and  the  conditioning  Gaussian  distribution  of  the
texts. Mathematically, the  is defined as follows:
 

LCA = DKL(N (µ(Sca), Σ(Sca))||N (0, 1)) (9)

µ(Sca) Σ(Sca)where  is  the  mean  and  is  the  diagonal
covariance  matrix  of  the  linguistic  feature,  which  are
computed by a perception layer. Finally, we define the
final loss function of the generative neural networks as
follows:
 

LG =
∑
i

LGi
+ λ1LCA + λ2LDAMSM (10)

Di

Di

Similarly,  the  adversarial  loss  of  discriminator 
also  contains  an  unconditional  loss  and  a  conditional
loss.  Mathematically,  the loss  function of  discriminator

 can be defined as 
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LDi
= −1

2
[Ex̂∼pdata [log(Di(x̂))] + Ex∼pGi

[log(1−Di(x))]︸ ︷︷ ︸
Unconditional loss

+Ex̂∼pdata [log(Di(x̂, Sca))] + Ex∼pGi
[log(1−Di(x, Sca))]]︸ ︷︷ ︸

Conditional loss

(11)

x̂

pdata

where the  is the image sample from the realistic im-
age  distribution .  The  final  objective  function  of
the discriminator is defined as follows:
 

LD =
∑
i

LDi (12)

 IV. Experiments
In this  section,  we  performed  extensive  experi-

ments on the CUB-200 [40] and COCO [41] benchmark
datasets  to  evaluate  the  proposed  FF-GAN.  Section
IV.1 details the datasets, evaluation metrics, and train-
ing  details  used  in  the  experiments.  Then  we  compare
our  FF-GAN quantitatively  and  qualitatively  with  the
advanced  GAN-based  methods,  e.g.,  Attn-GAN  [20],
Mirror-GAN [19],  DM-GAN [22],  etc.  We also  perform
extensive  ablation  experiments  on  the  key  components
of our proposed FF-GAN. Code is available at https://
github.com/haoranhfut/FF-GAN.

 1. Experiment setup
1) Datasets
We  perform  the  experiments  on  two  challenging

open datasets,  i.e.,  CUB-200 [40]  and COCO [41].  The
CUB-200  contains  200  species  of  bird  with  about  12k
images. Each bird image is annotated with ten linguist-
ic descriptions. The training set of CUB-200 includes 9k
images of  150 bird categories  while  the test  set  has 50
categories with 3k images. The COCO dataset consists
of 80k training images and 40k testing images. Each im-
age  is  annotated  with  five  textual  sentences  in  the
COCO dataset.

2) Evaluation metrics

Fr�echet

Fr�echet

100−R

Following the  practice,  we  quantify  the  perform-
ance  of  our  method  and  related  competitors  on  two
widely used quantitative metrics:  inception dis-
tance (FID) [42] and R-precision [20]. FID evaluates the
realism  of  the  synthetic  images  by  computing  the

 distance between  the  visual  feature  distribu-
tion of the synthesized and authentic images, which are
extracted by an inception-V3 network [5] pre-trained by
Attn-GAN  [20].  A  lower  FID  score  suggests  a  higher
realism  of  the  generated  images.  Following  Attn-GAN
[20], we  use  R-precision  to  evaluate  whether  the  syn-
thesized pictures  are  well-conditioned  on  the  corres-
ponding textual sentences. Specifically, we compute the
cosine similarities between a query visual feature and 100
candidate linguistic features extracted from R matched
text descriptions and  stochastically selected de-
scriptions in the dataset. Then we rank the results and

R = 1

retrieve the top-R matched sentences to get the R-pre-
cision  score.  In  practice,  we  set  in our  experi-
ment. Higher R-precision values suggests  that the syn-
thetic  image  is  much  semantically  consistent  with  the
corresponding textual description.

×

To  compute  the  FID  score  and  R-precision  score,
we randomly select textual captions from the test set to
generate 30,000 images from each model, with each im-
age of 256  256 resolution.

3) Implementation details
64× 64

128× 128 256× 256

λ1 λ2

Our  proposed  FF-GAN  first  generates  a 
image  in  the  initial  generation  stage,  then  refines  the
initial  image  to  and  resolution.
Note  that  we only  repeat  the  refinement  process  twice
for the GPU memory limitation. Following DM-GAN [22],
we apply spectral normalization for all discriminators to
enhance the  stability  of  the  training  process  and  im-
prove performance. We utilize a pre-trained bidirection-
al LSTM [1], [2] by Attn-GAN [20] to produce the sen-
tence-level  and  word-level  representations.  Meanwhile,
we set the dimension of word-level vector to 256, the di-
mension  of  the  augmented  sentence  vector  is  100  and
the sentence  length  is  18  for  the  balance  of  perform-
ance and calculation. Following the Attn-GAN [20] and
DM-GAN [22], we set the hyper-parameter  to 1, 
is 5 on the CUB-200 and 50 on the COCO respectively.
We adopt the Adam optimizer with a learning rate set
to 0.0002 during  training  on  one  Geforce  GTX 1080Ti
GPU.  Then,  we  train  our  proposed  FF-GAN with 600
epochs on CUB-200 and 120 epochs on COCO.

 2. Quantitative results
We compare our method quantitatively with sever-

al  advanced  methods  on  the  test  set  of  CUB-200  and
COCO, the performance results on two evaluation met-
rics are reported in Tabels 1 and 2 [43]–[46]. It is worth
mentioning  that  recent  approaches  often  employ  extra
supervisions,  e.g.,  KT-GAN [44]  uses  the extra teacher
network,  and  TIME  [46] uses  extra  2-D  positional  en-
coding.

It is  illustrated  that  our  model  achieves  competit-
ive  performance  compared  with  other  methods  in  all
evaluation  metrics,  especially  in  the  R-precision  score.
Our method remarkably increases the R-precision score
by a large margin from 72.31 to 80.49 on the CUB-200
as compared with DM-GAN [22]. As for the more chal-
lenging COCO dataset  with multiple  objects  and com-
plex backgrounds, our FF-GAN also outperforms other
approaches and achieves a 91.28 R-precision score by a
1.59 numerical  improvement  compared  with  Huang et
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al. [45],  and  a  2.72  numerical  improvements  compared
with  DM-GAN  [22].  The  superior  performance  of  our
method demonstrates that our FF-GAN is able to syn-
thesize  images  that  are  more  semantically  consistent
with the given texts.

Table  2 shows  the  performance  on  the  CUB-200
and COCO datasets with respect to the FID score. As
can  be  seen,  the  FID  score  of  our  FF-GAN  is  15.13,
which is only inferior to the result given by TIME [46]
that uses extra 2-D positional encoding, but much bet-
ter than other advanced models: 23.98 in Attn-GAN [20],
18.34 in  Mirror-GAN [19]  and  16.09  in  DM-GAN [22].
As for the more challenging COCO dataset,  our meth-
od shows remarkable  superiority  over  all  advanced ap-
proaches  and  decreases  the  FID  score  to  29.44,  which
indicates  our  FF-GAN is  able  to  synthesize  high-qual-
ity pictures with multiple complex sub-objects in highly
realistic.

 3. Qualitative results
1) Subjective visual comparisions
In order  to  qualitatively  evaluate  the  visual  qual-

ity of our proposed FF-GAN, we compare our qualitat-
ive results  with  the  most  advanced  approaches  includ-
ing Attn-GAN [20] and DM-GAN [22]. As Fig.4(a) and
Fig.4(b)  shows,  the  images  synthesized  by  FF-GAN
contain more  fine-grained  details  and  are  more  se-

mantically alignment  with  the  given  textual  descrip-
tions.

Observing the visual results on the CUB-200 data-
set in Fig.4(a), our method provides more authentic res-
ults than other models. Benefitting from the FF-Block,
our model is able to take full  advantage of the textual
descriptions  and  mine  more  information.  For  instance,
as can be seen in the 4th column of Fig.4(a), the given
text “this small bird has a yellow breast, brown crown,
and  white  superciliary”,  the  image  generated  by  our
method  contains  all  attributes,  especially  the  attribute
“white superciliary” which is neglected by others. In the
5th column, the detailed attribute “short,  roundish” in
the text  is  perfectly  represented  by  our  generated  im-
age. However, Attn-GAN [20] and DM-GAN [22] failed
to  reflect  the “roundish” and  generate  a  slender  bird.
We could also observe some weakness of these methods
in some cases. DM-GAN [22] generates an image in the
6th  column  that  mismatched  the  attribution “specked
chest  of  brown  and  white” and  the  bird  generated  by
Attn-GAN [20] in the 6th column is not photo-realistic.
The qualitative results indicate that our FF-GAN fuses
the visual and linguistic features in a more effective and
sufficient  manner,  which  helps  synthesize  high-quality
images that  are  semantically  matched  with  the  condi-
tioned texts.

The  results  on  the  COCO  dataset  are  shown  in
Fig.4(b).  In  the  1st  column,  cows  generated  by  our
method are clearly recognized and separated, while the
ones synthesized by Attn-GAN [20] and DM-GAN [22]
are  mixed  together  and  difficult  to  distinguish.  These
qualitative  results  on  COCO dataset  demonstrate  that
our  FF-GAN  could  synthesize  visual-realistic  pictures
containing multiple complicated objects.

2) Low-to-high resolution synthesis

64× 64

Fig.5 shows the images generated by our model in
different stages. It can be seen that the pictures gener-
ated in the initial stage are very fuzzy and lose a lot of
textual  information.  In  the  refinement  progress,  our
model fully  excavates  the  detailed  linguistic  informa-
tion  and fuses  it  into  the  visual  features  by  FF-Block.
So that the refined images can be matched with the in-
put texts and generate more visual-realistic images. For
example,  as  can be seen from the 1st  column in Fig.5,
the initial image with  resolution is a mass of a
yellow  body,  which  merely  capture  the  attribute “yel-
low”. The refinement process helps to encode the attrib-
utes “black bill”, “white belly” and generate high-resol-
ution images containing missed linguistic information.

3) Visual analysis on multi-stage refinement
In order to understand how our proposed FF-GAN

utilizes word-level  linguistic  features  to  refine  the  ini-
tial images, we compute the attention weights between

 

Table 1. R-precision (higher is better) on the test set of
CUB-200 and COCO

Method CUB-200 COCO
Attn-GAN [20] 67.82 ± 4.43 72.31 ± 0.91

Mirror-GAN [19] 57.67 74.52
RiFe-GAN [11] 23.80 ± 1.5 –

Control-GAN [43] 69.33 ± 3.23 82.43 ± 2.43
DM-GAN [22] 72.31 ± 0.91 88.56 ± 0.28
KT-GAN* [44] 32.90 24.50

Huang et al. [45] – 89.69 ± 4.34
TIME* [46] 71.57 ± 1.2 89.57 ± 0.9

Ours 80.49 ± 0.50 91.28 ± 0.51
Note: The two best scores are marked with red and blue color.

* means using extra supervisions.

 

Table 2. FID scores (lower is better) on the test set of
CUB-200 and COCO

Method CUB-200 COCO
HD-GAN [23] 18.23 75.34
Attn-GAN [20] 23.98 35.49

Mirror-GAN [19] 18.34 34.71
DM-GAN [22] 16.09 32.64
KT-GAN* [44] 17.32 30.73

Huang et al. [45] – 34.52
TIME* [46] 14.30 31.14

Ours 15.13 29.44
Note: The two best scores are marked with red and blue color.

* means using extra supervisions.
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word-level textual features and the image features, and
visualize  the  intermediate  attention maps  of  the  word-
level features in Fig.6. The 2nd and 3rd columns are the
attention maps of some representative words at the first
and  second  refinement  stage  respectively  (stage  1  and
stage 2 in Fig.6).

As  can  be  seen  from Fig.6,  attention  weights  will

be more allocated to words related to the generated im-
ages  (the  bright  area  in Fig.6),  such  as “white”,
“throat”, and other attributes that describe body parts
and colors. By contrast, the irrelevant words will be as-
signed with less attention and displayed in black on the
attention maps, such as the word “has”. In this way, by
guiding  the  generator  to  focus  on  the  most  relevant

 

A
tt

n
G

A
N

G
ro

u
n
d
 t

ru
th

D
M

-G
A

N
O

u
rs

A
tt

n
G

A
N

G
ro

u
n
d
 t

ru
th

D
M

-G
A

N
O

u
rs

This small bird has

short, pointed bill.
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yellow breast,
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Small bird with a
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Different colored
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various toppings.
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containing a

sandwich and a

salad.

A plate with samples

of different types of

dishes.

A couple of people

with skis standing in

the snow.

A fleet of ships

docked at the dock.

(a) The CUB-200 dataset

(b) The COCO dataset 
Fig. 4. Qualitative comparison between our method and advanced Attn-GAN, DM-GAN on (a) CUB-200 dataset and (b) COCO

datasets.
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words in the given texts during the refinement process,
it helps  the  generative  model  refine  the  generated  im-
ages with more fine-grained details.

At  the  same  time,  by  comparing  the  attention
maps in the 2nd column and the 3rd column, we could
find that our model can refine the images of the previ-
ous  stage  to  be  more  consistent  with  the  given  texts.
For example, the attention map of the attribute “black”
incorrectly  highlights  the  whole  head  of  the  bird  at
stage  1,  which  results  in  generating  the  bad  shape  of
the “bill” in  the  generated  image.  In  stage  2  (the  3rd
column),  the  attention  map  of  the  word “black” high-
lights  the  area  corresponding  to  the  bill  of  the  bird,
which indicates that our model successfully learned this
attribute at the 2nd refinement stage and refine the im-
age  finely,  while  the  generated  image  also  proves  that
our model  learns  the  above  detailed  information  cor-
rectly.

 4. Ablation studies
1) Ablation studies on key components
We perform a series of ablation experiments on the

CUB-200  dataset  to  evaluate  the  contribution  of  the
key components  of  our  FF-GAN. We define  a  baseline
that  removes  FF-Block  and  GSR  from  FF-GAN,  and
some variants of  baseline,  such as “baseline+FF-Block”
and “baseline+GSR”.  The  performance  of  the  baseline
and its variants is reported in Fig.7.

Comparing  the  yellow  curve  (baseline)  and  green
curve  (baseline+FF-Block)  in Fig.7,  we  could  draw  a
conclusion that FF-Block is able to ensure the textual-
visual  alignment  and  synthesize  more  visual-authentic
pictures that  more  semantically  match  the  given  de-
scriptions.  FF-Block  decreases  the  FID  from  23.32  to
17.06 and increases R-precision by a large margin, from
67.82 to 78.52.  The  great  promotion  in  R-precision  in-
dicates that FF-Block is able to fully integrate the fine-
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Fig. 5. Images of different stages generated by our FF-GAN on CUB and COCO datasets.
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Fig. 6. Visualization of the multi-stage generation process on the CUB-200. Our FF-GAN first generates a low-resolution image

by  sentence-level  features  (stage  0),  and  exploits  word-level  features  and  additional  sentence-level  features  to  obtain  a
high-resolution image with more detailed information by two refinement stages (stage 1 and 2).
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grained  linguistic  information  into  the  visual  features.
Note  that  the  R-precision  of “baseline+FF-Block” is
higher  than R-precision  of  DM-GAN [22]  and the  FID
exceeded  most  advanced  methods,  which  indicate  that
the  FF  block  is  of  great  help  in  generating  authentic
and text-matched images.

The  proposed  GSR  provides  attentive  sentence-
level information to our FF-GAN in the refinement pro-
cess. As can be seen from Fig.7, the baseline combined
with GSR  achieves  2.90  and  4.85  numerical  improve-
ments  in  FID  and  R-precision,  respectively,  which
demonstrates that  GSR  is  of  great  significance  in  im-
proving  the  global  semantic  consistency  between  the
synthesis  images  and  the  given  texts.  Moreover,  the
combination  of  GSR  and  FF-Block  indicates  that  the
two components can significantly reinforce the perform-
ance of the generative model.

2) Parameter studies
λ1 λ2

λ1

λ2

λ2 λ2

The  hyperparameters  and  in  equation  (10)
are used  to  balance  each  loss,  and  the  parameter  set-
ting makes no difference on the specific methods, so we
adopted  the  typical  setting  following  Attn-GAN  [20]
and  DM-GAN  [22].  Specifically,  the  parameter  is
used  to  balance  the  augmented  data  and  real  data,
which  is  set  to  1  by  convention.  The  parameter  is
used  to  control  the  text-image  consistency  and  we  set

 to  5  on  CUB-200  and  50  on  COCO  since  in-
creases as the dataset becomes more complex.

λ2

λ1 λ2

To further verify the effectiveness of our paramet-
er setting, we also conduct a series of verification exper-
iments.  Taking  on the  CUB-200  dataset  as  an  ex-
ample, we set  to 1 by convention and set  from 1
to 10, with an interval of 1, and compare the results of

λ2

λ2

FID  and  R-precision.  As  can  be  seen  from Fig.8,  the
FID score  decreases  first  and  then  increases  as  the 
becomes larger,  while  the  R-precision  is  opposite.  Set-
ting  to  5  can  achieve  the  minimal  FID  score  and
maximal R-precision, where our model achieves the best
performance.  To sum up,  the above experiments prove
the effectiveness of our parameter setting.
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an interval of 1) on CUB-200 test sets..
 

 V. Conclusions
In this paper, we develop a novel fine-grained text-

image  fusion  based  generative  adversarial  networks
(FF-GAN) to synthesize images conditioned on textual
descriptions.  We  design  an  effective  fine-grained  text-
image  fusion  block  (FF-Block)  to  fully  fuse  visual  and
linguistic features,  which helps  synthesize  more  realist-
ic  and  semantic  consistent  images  based  on  the  given
linguistic  descriptions.  A  global  semantic  refinement
(GSR) is employed to strengthen the semantic consist-
ency of  texts  and pictures  from a global  semantic  per-
spective. Both  qualitative  and  quantitative  experi-
ments  on  two  real-world  benchmark  datasets  indicate
that our  proposed  FF-GAN  is  superior  to  other  ad-
vanced approaches  in  synthesizing  visual-authentic  im-
ages that match the texts.
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