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   Abstract — Clustering  by  fast  search  and  find  of
density  peaks  (CFSFDP)  has  the  advantages  of  a  novel
idea, easy implementation, and efficient clustering. It has
been widely recognized in various fields since it was pro-
posed in Science in 2014. The CFSFDP algorithm also has
certain  limitations,  such  as  non-unified  sample  density
metrics  defined  by  cutoff  distance,  the  domino  effect  for
the assignment  of  remaining  samples  triggered  by  un-
stable assignment strategy, and the phenomenon of pick-
ing  wrong  density  peaks  as  cluster  centers.  We  propose
reverse-nearest-neighbor-based  clustering  by  fast  search
and find of density peaks (RNN-CFSFDP) to avoid these
shortcomings.  We redesign  and unify  the  sample  density
metric  by  introducing  reverse  nearest  neighbor.  The
newly  defined  local  density  metric  and  the  K-nearest
neighbors of  each  sample  are  combined  to  make  the  as-
signment  process  more  robust  and  alleviate  the  domino
effect. A cluster  fusion algorithm is  proposed,  which fur-
ther alleviates the domino effect and effectively avoids the
phenomenon  of  picking  wrong  density  peaks  as  cluster
centers. Experimental  results  on  publicly  available  syn-
thetic  data  sets  and  real-world  data  sets  show  that  in
most  cases,  the  proposed  algorithm  is  superior  to  or  at
least equivalent to the comparative methods in clustering
performance.  The  proposed  algorithm  works  better  on
manifold data sets and uneven density data sets.

   Key words — Density peaks, Reverse nearest neigh-

bor, Clustering, Cluster fusion.

 I. Introduction
In  data  mining,  the  unsupervised  learning  method

is  represented  by  clustering.  Its  training  set  does  not
need to be labeled in advance, and the samples can be

grouped by comparing the similarity between samples [1],
which has  better  generalization.  Therefore,  it  has  at-
tracted  more  and  more  attention  from researchers  and
has been widely used in search engines, social networks,
image  segmentation,  and  multi-modal  data  analytics
[2]–[5].

Researchers  have  proposed  a  variety  of  clustering
algorithms based on different ideas, which can be broadly
classified as partition-based [6], [7], grid-based [8], hier-
archy-based [9]–[11], density-based [12], [13], and graph-
based  [14].  Specifically,  the  algorithm  of  clustering  by
fast  search  and  find  of  density  peaks  (CFSFDP)  [15],
proposed in Science in 2014, is a density-based cluster-
ing  algorithm.  It  is  widely  recognized  in  various  fields
among researchers  due  to  its  novel  idea,  easy  imple-
mentation, and efficient clustering.

As  with  other  clustering  algorithms,  the  CFSFDP
algorithm  also  has  some  stand-out  limitations  in  the
clustering process. In detail, the CFSFDP algorithm ad-
opts  different  metrics  for  data sets  of  different  sizes  in
calculating sample density, but there is no criterion for
distinguishing the size of data sets [16].  The remaining
sample  assignment  is  prone  to  the  domino  effect  on
some manifold data sets because of the poor fault toler-
ance [17]. In the process of density peaks selection, the
selection  of  cluster  centers  may  all  be  in  high-density
clusters, resulting in poor cluster results [18].

The critical  issue  is  improving  its  clustering  per-
formance and  generalization  ability  over  various  data-
sets by  optimizing  the  process  of  the  CFSFDP  al-
gorithm.  Researchers  have  proposed  various  improved 
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CFSFDP algorithms to address  these  stand-out limita-
tions. Combining sample K-nearest neighbors is a prac-
tical improvement direction. Xie et al. [19] proposed the
FKNN-DPC algorithm,  which  unifies  the  sample  dens-
ity  metric  by  combining  the  K-nearest  neighbors,  and
gives two assignment strategies to detect the real distri-
bution  of  data  sets.  However,  the  density  peaks  are
manually  found  only  by  analyzing  the  decision  graph,
which still  leads  to  the  wrong  selection  of  cluster  cen-
ters. In [20], the DPC-KNN algorithm was proposed to
address  the shortcomings of  the CFSFDP algorithm in
dealing with some non-spherical data sets, which easily
triggers  the domino effect  and incorporates  the idea of
K-nearest  neighbors  into  the  distance  calculation  and
assignment  process.  However,  the  relationship  between
the cutoff distance  and K does not address. Not only
the new parameter K is introduced, but the cutoff dis-
tance  still needs to be taken manually. Zhang et al.
[21]  proposed  the  DC-SKCG  algorithm  based  on  the
shared K-nearest  neighbors  between samples.  An auto-
matic fusion mechanism of redundant high-density core
regions is  designed  to  reduce  the  sensitivity  of  the  al-
gorithm  to  parameters.  However,  new  parameters  are
introduced, and the complexity of the algorithm is im-
proved.  Liu et  al. [22]  proposed an adaptive  clustering
algorithm ADPC-KNN, which introduces the concept of
K-nearest  neighbors  to  calculate  the  global  parameter

 and the local density  of each sample. Finally, the
clusters  with  reachable  density  are  aggregated.
However, the defect of the domino effect in the assign-
ment  process  is  still  not  effectively  solved  because  the
assignment method  in  the  CFSFDP  algorithm  is  fol-
lowed. Bai et al. [23] proposed an accelerated algorithm,
CFSFDP+A,  involving  less  calculation  about  distance,
which can obtain the same clustering results as the CF-
SFDP algorithm and improve the running speed of the
CFSFDP algorithm. However, problems such as the in-
consistent  sample  density  metric  and  the  assignment
method prone to joint errors still exist. Bryant et al. [24]
proposed  the  RNN-DBSCAN algorithm,  which  verified
the advantage of the reverse nearest neighbor reflecting
the  local  distribution  of  the  sample.  Therefore,  in  this
paper, to  address  these  limitations  of  the  CFSFDP al-
gorithm, we combine reverse nearest neighbor with the
CFSFDP algorithm  and  design  an  RNN-CFSFDP  al-
gorithm. The clustering performance and generalization
ability of the CFSFDP algorithm are further improved.

dc

Contributions  of  this  paper  can be  summarized as
follows: 1) To unify the local density metric of the CF-
SFDP  algorithm  on  different  size  data  sets  and  avoid
the  artificial  value  of  the  cutoff  distance , we  re-
define the  local  density  metric  of  the  samples  by com-
bining  the  reverse  nearest  neighbor  of  the  samples;

2)  To  alleviate  the  CFSFDP  algorithm’s  shortcoming,
which  is  prone  to  the  domino  effect  in  the  remaining
sample assignment, we improve the assignment strategy
by taking advantage of the nearest neighbor sample to
detect the local distribution of samples; 3) We propose
a cluster fusion algorithm to prevent density peaks from
the wrong selection and further alleviate the domino ef-
fect;  4)  Extensive  experiments  are  conducted  to  verify
the  effectiveness  of  our  techniques  over  both  publicly
available  synthetic  data  sets  and  UCI  real-world  data
sets.

The remainder of this paper is organized as follows.
The related works are presented in Section II.  The de-
fects  of  the  CFSFDP algorithm and  the  corresponding
improvement  strategies  are  analyzed  in  Section  III.  In
Section IV, the further details of the RNN-CFSFDP al-
gorithm proposed in this paper are introduced based on
Section III.  The experimental results on publicly avail-
able  synthetic  data  sets  and  UCI  real-world  data  sets
are analyzed in Section V. The current works and pro-
spect research are summarized in Section VI.

 II. Related Works
 1. K-nearest  neighbors  and  reverse  nearest

neighbor

x

(x) = S S

Definition 1 (K-nearest neighbors [24])　The set of
K-nearest neighbors of sample  is defined by the func-
tion KNN , where  satisfies the following con-
ditions:
 

∀y ∈ S, z ∈ X/(S + {x}) : dist(x,y) ≤ dist(x, z) (1)

X S ⊆ X/{x}
x |S| = K

dist(x,y) x

y

where  is the set of samples,  is the set of
K-nearest  neighbors  of  sample , ,  and

 is  the  Euclidean  distance  of  sample  and
sample .

x

K x

X

K K

x

The K-nearest neighbors (KNN) algorithm is one of
the most fundamental, robust, and versatile algorithms
[25]. As shown in Definition 1, the KNN of sample  is
the set consisting of the  samples nearest to sample 
in the data set . The method requires only the choice
of , the neighbors to be considered. Small values of 
will select the closest samples that can best estimate the
correct classification at sample . However, the estima-
tion  will  be  prone  to  large  fluctuations  due  to  density
because  of  the  small  numbers.  Further,  a  reverse
nearest neighbor (RNN) method is proposed.

x

(x) = R R

Definition  2 (Reverse  nearest  neighbor  [24])　The
reverse nearest neighbor of  sample  is  defined by the
function RNN , where  satisfies  the  following
conditions:
 

∀y ∈ R : x ∈ KNN(y) (2)
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R ⊆ X/{x}
x

where  is the  set  of  reverse  nearest  neigh-
bor of sample .

x

X

x

K = 3

K

The  RNN can  not  only  be  obtained  directly  from
KNN but also better reflect the local distribution of the
data. As shown in Definition 2, the RNN of a sample 
is the set consisting of samples in the data set  that
takes  as  its  KNN. Fig.1 shows  the  distribution  of
KNN and RNN for sample 1 and sample 2 in the ran-
domly generated data set when . By comparison,
it  is  found  that  KNN  reflects  the  local  density  of  the
samples  more  rigidly  because  KNN  does  not  consider
the  local  distribution  of  the  samples  and requires  each
sample to find  neighbors. In contrast, RNN can ad-
aptively adjust the number of nearest neighbors accord-
ing  to  the  local  distribution  of  the  samples  so  that  it
can reflect the local density of the samples better.
  

KNN K=3

(a)

RNN K=3

(b) 
Fig. 1. Comparison of  (a)  K-nearest  neighbors and (b) Re-

verse nearest neighbor.
 

 2. Clustering  by  fast  search  and  find  of
density peaks [15]

The CFSFDP  algorithm  relies  on  two  crucial  as-
sumptions  [26]:  1)  The  density  of  the  sample  at  the
cluster centers  is  higher than the density of  the neigh-
boring samples surrounding it. 2) The distance between
the centers of different clusters is relatively far.

ρi xiThe density  of sample  is defined as
 

ρi =
∑
j

χ (dij − dc) (3)

 

χ (dij − dc) =

1, dij < dc

0, otherwise
(4)

dij xi

xj dc

dc

where  is the Euclidean distance between sample 
and sample , and the cutoff distance  needs to be
given by the user depending on the specific details. The
CFSFDP algorithm provides that one can choose  to
make  the  average  number  of  neighbors  of  a  sample
between 1% and 2% of the total number of samples.

In  addition,  for  the  case  of  insignificant  density
changes  when  dealing  with  small  sample  data,  the
Gaussian  kernel  function  distance  method  is  usually
used to calculate the sample density by the formula 

ρi =
∑
j ̸=i

exp

(
−
(
dij
dc

)2
)

(5)

δi xiThe relative distance  of sample  is defined as
 

δi = min
j:ρj>ρi

(dij) (6)

xi

δi

If the sample  is the maximum density point, the
relative distance  is defined as
 

δi = max (dij) (7)

ρi
δi

ρi δi

γi = ρi × δi
γ

γi

By drawing the decision graph with  as the hori-
zontal coordinate and  as the vertical coordinate, the
points from the decision graph where both  and  are
relatively large are selected as the density peak points.
If  the  decision  graph  is  not  apparent,  can
be calculated for each sample, and the -decision graph
can be  drawn  by  arranging  them  in  ascending  or  des-
cending  order  as  the  vertical  coordinate.  The  points
with relatively larger  are selected as the density peak
points.  Finally,  the  remaining  samples  other  than  the
density  peak  points  are  assigned  to  the  cluster  where
the nearest neighboring sample with a larger density is
located.

 III. Defect Analysis of the CFSFDP
Algorithm

Although the experimental results [15] obtained for
the  CFSFDP  algorithm  show  that  it  performs  well  in
many cases, it still has some defects. In this section, the
defects  of  the  CFSFDP  algorithm  will  be  analyzed  in
detail, and solution strategies will be given.

 1. Sample density metric

dc

dc

dc

The CFSFDP algorithm is vulnerable to human in-
tervention  in  calculating  sample  density.  As  suggested
in [15],  the cutoff  distance method is  used to calculate
the sample density in data sets with larger sample sizes,
and  the  Gaussian  kernel  function  distance  method  is
used  to  calculate  the  sample  density  in  data  sets  with
smaller sample sizes. However, since there are no stand-
ardized criteria for measuring the size of a dataset dur-
ing  the  application,  it  becomes  difficult  for  researchers
to  choose  which  sample  density  metric  to  use  when
faced with  a  real  problem.  In  addition,  even  if  a  suit-
able density metric is chosen, the cutoff distance  still
needs  to  be  set  artificially.  Although  the  number  of
neighbors  of  a  sample  within  the  cutoff  distance  is
considered 1% to 2% of the total number of samples to
achieve good results as suggested in [15], the way  is
taken lacks theoretical proof. It does not yield good res-
ults  on some data  sets. Fig.2 shows the  clustering  res-
ults  on  the  Flame  dataset  [27] using  two  cutoff  meth-
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dc = 3%
ods  and  different  cutoff  distances.  Among  them,  the
best clustering result occurs when the  exceeds
the values range between 1% and 2%. It  can be found
that different  cutoff  methods  and  different  cutoff  dis-
tances lead to different clustering results. This paper re-

defines  the  sample  local  density  metric  in  combination
with  the  reverse  nearest  neighbor  of  the  sample.  The
local density  of  the  sample  can  be  calculated  adapt-
ively  without  considering  the  selection  of  the  cutoff
method and cutoff distance.

 
 

Flame, Gaussian, d
c
=2%

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

28
Flame, Gaussian, d

c
=3%

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

28
Flame, Gaussian, d

c
=1%

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

28

Flame, Cutoff, d
c
=2%

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

28
Flame, Cutoff, d

c
=3%

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

28
Flame, Cutoff, d

c
=1%

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

28

 
Fig. 2. Comparison of clustering results on Flame dataset using two cutoff methods and different cutoff distances.

 

 2. Remaining samples assignment
The CFSFDP algorithm requires no iteration in the

clustering  process  but  only  one  assignment  process.  In
the assignment  process,  the  samples  are  sorted  in  des-
cending  order  of  density.  Then  the  remaining  samples
are  sequentially  assigned  to  the  cluster  where  the
nearest neighbor  sample  with  a  larger  density  than  it-
self is located. This also means that a wrong sample as-
signment  during  the  assignment  process  will  cause  the
neighbor samples  with  a  smaller  density  to  be  incor-
rectly assigned, resulting in the wrong joint assignment,
often referred to as the domino effect.  This  problem is
particularly prone to occur on manifold data sets. Fig.3
shows  the  visualization  of  the  Spiral  dataset  [28]  and
the  clustering  results  of  the  Spiral  dataset  using  the
CFSFDP  algorithm.  By  comparing  and  analyzing  the
experimental results,  it  is  found  that  those  wrong  as-
signments  from  sample  1  to  sample  13  are  caused  by
the wrong assignment of sample 12. Since the density of
sample  12  is  relatively  larger  among  the  surrounding
neighbors, sample 12 is assigned earlier than sample 13.
Since  the  same-cluster  sample  with  a  greater  density
than  sample  12  and  the  closest  relative  distance  is
sample 18, the correct assignment is to assign sample 12
to the  cluster  in  which sample  18 is  located.  However,
since  sample  12  is  closer  to  sample  150,  a  sample  of  a
heterogeneous cluster with a greater density than it,  it
leads  to  the  wrong  assignment  of  sample  12  to  the
cluster  where  sample  150  is  located.  This  eventually
leads to the wrong assignment of  all  the near-neighbor

samples  that  are  smaller  dense  than  sample  12,  and
thus the wrong joint assignment of sample 1 to sample
13 occurs.
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Fig. 3. The process of sample wrong assignment.

 

In this paper, we optimize the assignment strategy
in combination with sample nearest neighbors to allevi-
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ate the shortcomings of the CFSFDP algorithm, which
is prone to the domino effect on manifold datasets.

 3. Density peaks selection
Although the  decision  graph  of  the  CFSFDP  al-

gorithm provides a good heuristic method for the selec-
tion  of  cluster  centers,  there  are  still  cases  where  it  is
difficult  to  select  or  incorrectly  selected.  These  cases
weaken  the  clustering  performance  and  are  caused  by
two main reasons as follows:

γ

1) Due to the difference in the size of the clusters
in  the  dataset,  there  are  multiple  samples  with  higher
density and greater relative distance, resulting in the in-
ability to  select  the  density  peak  points  from  the  de-
cision  graph  intuitively.  As  shown  in  the -decision
graph of Aggregation dataset [29] in Fig.4(a), the relat-
ively greater points from the decision graph are manu-
ally  selected  as  the  cluster  centers  according  to  the
principle  of  cluster  centers  selection.  As  shown  in
Fig.4(b), the  Aggregation  dataset  is  a  dataset  consist-

ing of seven clusters. However, it is difficult to directly
select  the  seven  density  peak  points  just  by  observing
its decision graph, which may be incorrectly selected as
three or eight.

2)  The  density  differences  between  different
clusters influence the selection of cluster centers. There
is a significant difference in the density and relative dis-
tance  between  the  cluster  center  of  the  low-density
cluster  and  the  cluster  center  of  the  high-density
cluster. This situation suggests that the selected cluster
centers are all located in high-density clusters, while no
cluster  centers  are  found  in  low-density  clusters.  As
shown  in Fig.4(c)  and  (d),  the  Jain  dataset  [30] con-
sists  of  two  clusters  with  a  significant  difference  in
density. Although two density peak points can be selec-
ted from  the  decision  graph  intuitively,  both  are  loc-
ated in  high-density  clusters,  thus  leading  to  unsatis-
factory clustering results.
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Fig. 4. Clustering results for (a) and (b) Aggregation dataset; (c) and (d) Jain datasets.

 

γ

We re-specifies  the  rule  for  selecting  density  peak
points from the -decision graph and propose a cluster
fusion  algorithm.  The  proposed  method  effectively
solves  the  problem  of  the  wrong  selection  of  density
peaks  in  the  CFSFDP algorithm and  further  improves
the clustering performance of the algorithm.

 IV. The RNN-CFSFDP Algorithm
In order to address the CFSFDP algorithm’s short-

comings,  we  propose  a  reverse-nearest-neighbor-based
clustering  by  fast  search  and  find  of  density  peaks
(RNN-CFSFDP). First, we define and unify the sample
local  density  metric  with  the  reverse  nearest  neighbor.
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Then, we optimize the assignment strategy by combin-
ing  the  nearest  neighbor  samples.  Finally,  we  propose
that  the  cluster  fusion  algorithm further  optimizes  the
clustering process by fusing similar clusters.

 1. Sample  local  density  metric  combining
reverse nearest neighbor

dc

ρi
xi

The new definition method uses the same metric of
local  density  for  different  size  data  sets.  It  does  not
need  to  manually  select  the  cutoff  distance ,  which
improves the  generalization,  practicality,  and  operabil-
ity  of  the  CFSFDP algorithm.  The  local  density  of
sample  is defined as
 

ρi =
∑

j∈RNN(xi)

exp (−dij) (8)

dij xi

xj

xi ρi = 0

where  is  the  similarity  between  sample  and
sample ,  and  the  Euclidean  distance  is  used  in  this
paper. When RNN( ) is the empty set, .

ρi xi

K

xi xi

K

xi

xi

The local density  of a sample  has the follow-
ing  property:  as  the  value  of  increases,  the  number
of reverse nearest neighbor RNN( ) of each sample 
increases  accordingly.  After  fixing  the  value  of ,  the
set of reverse nearest neighbor RNN( ) of each sample

 also varies. The sample in denser locations has a lar-
ger  number  of  reverse  neighbors,  and the  local  density
of  the sample is  larger.  The sample in sparse locations
has fewer reverse neighbors, and the local density of the
sample is  smaller.  The  definition  method  fully  con-
siders the local information of the samples and can bet-
ter reflect the local distribution of the samples.

 2. Sample  assignment  strategy  combining
K-nearest neighbors

xi

ρi xi

xi

Combined  with  the  analysis  in  Section  III.2,  it  is
found  that  considering  only  one  sample  is  less  fault-
tolerant, so  the  assignment  strategy  is  adjusted  to  as-
sign sample  to the cluster  which has a larger  dens-
ity  than  and  is  closest  to  the  sample  and  its
KNN( ). The relative distance is defined as
 

δi =

{
min (djk) ,xj ∈ Mi,xk ∈ Hi

max (dit) , ρi = max(ρ),xt ∈ X
(9)

Mi = KNN (xi) ∪ {xi} xi

Hi = {xk | ρk > ρi,xk ∈ X,

xk ̸= xi}
ρi ρ

where  is the union of sample 
and its K-nearest neighbors. 

 is the set of samples with local density great-
er  than .  max( )  is  the  maximum value of  the  local
density  of  samples  in  the  data  set.  The  sample  local
density metric uses equation (8).

 3. Cluster  fusion  combining  shared  reverse
nearest neighbor

In this  part,  we  define  the  concept  of  shared  re-
verse nearest neighbors between samples and shared re-
verse  nearest  neighbors  between  clusters  combing  with

reverse  K-nearest  neighbors,  design  similarity  between
clusters based on this concept, and propose a cluster fu-
sion algorithm to merge the clusters with high similar-
ity in turn.

xi xj

xk xk ̸=xi xk ̸=xj xk∈RNN(xi)

xk∈RNN(xj) SRNN (xi,xj)

xk

xi xj SRNN (xi,xj)

Definition 3 (Sample shared reverse  nearest  neigh-
bor  set)　For  two  samples  and ,  if  there  exists
sample ,  and , so that 
and ,  then  the  consisting
of sample  is called the sample shared reverse nearest
neighbor set of sample  and . The  is
defined as
 

SRNN (xi,xj)={xk |xk∈RNN(xi) and xk∈RNN(xj)}
(10)

SRNN (xi,xj) xi xj

K

xi

xj

xi xj

xi

xj

xi xj

The  of samples  and  have the
following properties: When fixing the value of , if the
number of shared reverse neighbors between samples 
and  is  few,  it  means  that  the  distance  between
samples  to  is far and the similarity is low. If the
number of shared reverse neighbors between samples 
and  is  many,  it  means  that  the  distance  between
samples  to  is close, and the similarity is high.

xi xj

xi xj

xi xj

xi xj

K

Unlike KNN, the RNN of samples  and  is re-
lated to the density of the samples’ location. Therefore,
under  the  same  conditions,  if  the  location  where  the
samples  and  are located is denser, the similarity
between samples  and  is higher. On the contrary,
the similarity between the samples  and  is lower.
This  gap  can  be  further  increased  by  adjusting  the
value of .

Cm Cn xi ∈
Cm xj ∈ Cn xk∈SRNN (xi,xj)

xk ∈ Cm∪Cn SRNN (Cm,Cn) xk

Cm Cn SRNN (Cm,Cn)

Definition 4 (Cluster shared reverse nearest  neigh-
bor  set)　For  two  clusters  and ,  for  any 

 and ,  if  there  exists 
and , the  consisting of 
is called to be the cluster shared reverse nearest neigh-
bor set of cluster  and . The  is
defined as
 

SRNN (Cm,Cn)={xk | xk∈(Cm∪Cn)∩SRNN (xi,xj) ,

xi ∈ Cm,xj ∈ Cn}
(11)

SRNN (Cm,Cn) Cm Cn

K

Cm Cn

Cm Cn

Cm Cn

Cm Cn

K

The  of clusters  and  have
the following properties: When fixing the value of , if
the  number  of  shared  reverse  neighbors  between
clusters  and  is few, it means that the distance
between clusters  to  is far and the similarity is
low. If the number of shared reverse neighbors between
clusters  and  is many,  it  means  that  the  dis-
tance between clusters  to  is close, and the sim-
ilarity is high. This gap can be further increased by ad-
justing the value of .
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Sim(Cm,Cn) Cm Cn

Definition  5 (Cluster  similarity)　 The  similarity
 of clusters  and  is defined as

 

Sim (Cm,Cn)

=
|Cn| |SRNN (Cm,Cn)m|+ |Cm| |SRNN (Cm,Cn)n|

2 |Cm| |Cn|
(12)

|Cm| Cm

|Cn| Cn

|SRNN (Cm,Cn)m|
Cm

Cm Cn |SRNN (Cm,Cn)n|
Cn

Cm Cn

where  is  the  number  of  samples  in  cluster ,
and  is  the  number  of  samples  in  cluster ;

 is the number of samples belonging
to  in the cluster shared reverse nearest neighbors of
cluster  and ;  is  the  number
of  samples  belonging  to  in the  cluster  shared  re-
verse  nearest  neighbors  of  cluster  and .  The
equation (12) can be expressed in the form of (13), from
which  the  meaning  of  cluster  similarity  can  be  clearly
observed.
 

Sim (Cm,Cn)

=
1

2

(
|SRNN (Cm,Cn)m|

|Cm|
+

|SRNN (Cm,Cn)n|
|Cn|

)
=

|Cn| |SRNN (Cm,Cn)m|+ |Cm| |SRNN (Cm,Cn)n|
2 |Cm| |Cn|

(13)

Sim(Cm,Cn)

Cm Cn

In  the  design  process  of  the  clusters  similarity
,  in  order  to  prevent  the  situation  that

cluster  and  cluster  have  inaccurate  similarity
measures  due  to  too  disparate  sizes,  equation  (13)  is
used to calculate the number of  shared reverse nearest
neighbors  by  calculating  the  arithmetic  average  of  the
number  of  shared  reverse  nearest  neighbors  located  in
the two clusters separately instead of  directly calculat-
ing  the  number  of  shared  reverse  nearest  neighbors  of
the two clusters similarity.

The  process  of  the  cluster  fusion  algorithm  is
shown in Algorithm 1.

Algorithm 1　The cluster fusion algorithm

L = {Cj}lj=1 , l ≥ k
k

Input: The initial clustering result , the
number of clusters .

C = {Cj}kj=1Output: Final clustering result .
SM l×l = {Sim(Ci,Cj)}l×l1: The similarity matrix  is cal-

culated according to equation (13);
l > k2: while ;

Ci

Cj Ci,j i < j i
Ci,j

3: Merge  the  two  clusters  with  the  highest  similarity 
and  into cluster , ,  let  be the cluster la-
bel for the cluster ;

Cm∈L/ {Ci,Cj} Ci,j Sim (Cm,Ci,j) =
max (Sim (Cm,Ci) , Sim (Cm,Cj))

4: Update  the  similarity  between  the  remaining  cluster
 and  cluster  as 

;
5: end while;
6: Update the cluster labels as 1 to k.

 4. The process  of  the  RNN-CFSFDP  al-
gorithm

ρi
δi

γ

γ

xi

ρi xi

xi

The RNN-CFSFDP  algorithm  still  adopts  the  ba-
sic  idea  of  the  CFSFDP algorithm to  quickly  find  the
points with larger local density and relative distance as
the clustering centers. Further, the metric of local dens-
ity and relative distance is improved, and the final clus-
tering  results  are  fused.  First,  we  find  the  KNN  and
RNN of each sample according to equations (1) and (2),
calculate the  of each sample according to (8), calcu-
late  the  of  each  sample  according  to  (9),  calculate
the  of  each sample,  and arrange them in descending
order, and draw the -decision graph. In the process of
selecting the density peak points in the decision graph,
in order to prevent the case of wrong selection, we dir-
ectly  select  all  the  points “floating” in  the  decision
graph  as  potential  density  peak  points  and  assign  the
remaining  sample  to  the  cluster  which  has  a  larger
density than  and is closest to the sample  and its
KNN( ). Finally,  cluster  fusion  is  performed  accord-
ing to Algorithm 1 to obtain the final clustering results.

The  process  of  the  RNN-CFSFDP  algorithm  is
shown  in  Algorithm 2. Fig.5 shows the  clustering  pro-
cess  for  the  Flame  dataset,  where  the  density  peak
points are selected as shown in Fig.5(a), the initial clus-
tering  results  are  generated  as  shown  in Fig.5(b),  and
the similarity matrix is calculated as shown in Fig.5(c),
and the final  clustering results  are generated as  shown
in Fig.5(d).

Algorithm 2　The RNN-CFSFDP algorithm
K

k
Input: The  for the reverse  nearest  neighbor,  the num-

ber of clusters .
C = {Cj}kj=1Output: Final clustering result .

ρi1: Calculate  of each sample according to equation (8);
δi2: Calculate  of each sample according to equation (9);

γi = ρi × δi
γ

3: Calculate the  of each sample, arrange them
in descending order, and plot -decision graph;

4: Select the density peak points;
5: Assign the  remaining  samples  according  to  the  assign-

ment strategy in Section IV.2;
6: Perform cluster fusion according to Algorithm 1.

 V. Experiment
This  section  compares  the  proposed  RNN-CFSF-

DP algorithm with five clustering algorithms, k-means,
FCM, AGNES,  CFSFDP,  and  DPC-KNN,  on  seven-
teen data  sets.  Five  commonly  used  clustering  evalu-
ation indexes verify the effectiveness of the RNN-CFSF-
DP  algorithm.  To  further  verify  the  effectiveness  of
each  improved  part,  we  design  ablation  experiments.
The  experimental  environment  for  all  algorithms  is
Windows 10  64bit  operating  system,  PyCharm  Com-
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munity 2020.3.2, 12 GB RAM, and Intel(R) Core(TM)
i5-4210H CPU@2.90 GHz.

 1. Data sets
The data sets used in the experiments are selected

from  publicly  available  synthetic  data  sets  and  UCI
real-world data sets with different numbers of  clusters,
different  sizes,  different  shapes,  and different  densities.
For  example,  the  Flame  dataset  is  a  semi-enveloped
structure consisting of two clusters, one tightly surroun-
ded by the other, and the two clusters are closely con-
nected.  The  Aggregation  dataset  consists  of  seven
clusters  with  a  relatively  uniform  density  distribution,
in  which  two  pairs  of  clusters  are  slightly  connected.
The  Spiral  dataset  consists  of  three  clusters,  each  of
which  is  toroidal.  The  Jain  dataset  and  the  Banana
dataset are  two  crescent-shaped  clusters  connected  al-
ternately.  The  Jain  dataset  has  a  large  difference  in
density between the two clusters, and the Banana data-
set has a more uniform density between the two clusters
but  a  larger  number  of  samples.  The  R15  dataset  and
the  D31  dataset  belong  to  the  data  sets  with  a  larger
number of samples and clusters.

The details and sources of the data sets used in the
comparison  experiments  are  shown  in Table  1 [21],
[27]–[33].

 2. Evaluation indicators
The  experimental  results  were  evaluated  by  using

the commonly used clustering evaluation indexes accur-
acy  (Acc),  adjusted  mutual  information  (AMI)  [17],
normalized  mutual  information  (NMI)  [34],  adjusted
rand index (ARI) [35] and fowlkes-mallows index (FMI)
[36].

as

Acc  represents  the  number  of  correctly  clustered
samples among all samples as a percentage of the total.
Acc is calculated  
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Fig. 5. Clustering process for the Flame dataset. (a) Decision graph; (b) Distribution results; (c) Similarity matrix; (d) Final clus-

tering results.

 

Table 1. Datasets

Datasets Instances Attributes Clusters Source
Flame 240 2 2 [27]

Aggregation 788 2 7 [29]
Spiral 312 2 3 [28]
Jain 373 2 2 [30]

4k2_far 400 2 4 [21]
R15 600 2 15 [31]
D31 3100 2 31 [31]

Banana 4811 2 2 UCI
Spiral3D 318 3 3 [32]

Iris 150 4 3 UCI
Wine 178 13 3 UCI
Sonar 208 60 2 UCI

Movement_libras 360 90 15 UCI
Ionosphere 351 34 2 UCI

Ecoli 336 8 8 UCI
Leuk72_3k 72 39 3 [21]
Compound 399 2 6 [33]
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Acc =

∑N

i=1
δ (cli, ri)

N
(14)

cli ri

δ(·)

where N denotes  the  total  number  of  samples  in  the
dataset,  and  denote  the  labels  obtained  by  the
clustering  algorithm  and  the  true  labels,  respectively,
and  is the indicator function, which is calculated as
 

δ(x, y) =

{
1, x = y
0, otherwise

(15)

The value  of  Acc  is  in  the  range [0,  1],  the  larger
value, the better clustering effect.

U V a

U V b

U

V c

U V d

U V

ARI is commonly used in the evaluation of cluster-
ing  algorithms,  and  its  predecessor  is  the  Rand  Index
(RI). Calculating the RI requires the true label informa-
tion of dataset. Suppose the true label of the dataset is

 and the predicted label after clustering is . Then 
is expressed as the number of pairs of the data objects
that  belong  to  the  same  class  in  and .  is ex-
pressed as the number of pairs of the data objects that
belong  to  the  same class  in  and belong  to  different
classes  in .  is  expressed  as  the  number  of  pairs  of
the  data  objects  that  belong to  the  different  classes  in

 and belong to the same class in .  is expressed as
the number of pairs of the data objects that belong to
different classes in  and . Then the formula for RI
is defined as
 

RI =
a+ b

a+ b+ c+ d
(16)

where RI is a real number in [0, 1], the larger the RI is,
the  better  the  clustering  effect  is.  The  defect  of  RI  is
that  for  two  random divisions,  it  is  not  guaranteed  to
make RI close to 0. To overcome this shortcoming, ARI
is proposed. The formula for ARI is defined as
 

ARI =
RI− E(RI)

max(RI)− E(RI)
(17)

where the value of ARI is in the range [−1, 1], and the
closer ARI to 1, the better clustering quality.

The formula for FMI is defined as
 

FMI =
a√

(a+ b)(a+ d)
(18)

where the value of FMI is in the range [−1, 1], and the
closer FMI to 1, the better clustering quality.

AMI  is  an  improvement  of  mutual  information
(MI). MI takes values in [0, 1], but for random results,
there is no guarantee that the MI value is close to 0. To
solve this problem, it  is  proposed that AMI can better
reflect the data distribution, and the formula is defined
as 

AMI =
MI− E|MI|

max(H(U),H(V ))− E|MI| (19)

H(U)

E|MI|
where  is  the  edge  entropy  value  of  the  sample
and  is  the  mathematical  expectation  of  mutual
information. The value of AMI is in the range [−1, 1],
and the larger value, the better clustering result.

The  value  of  NMI  is  in  the  range  [0,  1],  and  the
larger value of NMI is, the better clustering result. The
formula is defined as
 

NMI =
2MI

H(U) +H(V )
(20)

 3. Experimental results and analysis
Table  2 shows  the  settings  of  the  experimental

parameters. Table  3 shows  the  results  of  k-means,
FCM,  AGNES,  CFSFDP,  and  DPC-KNN  algorithms
compared  with  the  RNN-CFSFDP  algorithm  on  Acc,
AMI, NMI, ARI, and FMI evaluation indexes. The ex-
perimental results  show  that  the  RNN-CFSFDP  al-
gorithm obtained the best results for all five evaluation
indexes  on  the  eight  data  sets.  More  than  half  of  the
evaluation indexes achieved the best results on the Spir-
al3D,  Sonar,  Ionosphere,  and  Leuk72_3k  datasets.
While  only  two  evaluation  indexes  achieved  the  best
results on the Movement_libras, Ecoli,  and Compound
datasets, they were the second to the best results on the
other three. The evaluation results on the D31 dataset
are  lower  than the  k-means  algorithm but  higher  than
several other clustering algorithms. The main reason is
that  the  D31  dataset  consists  of  spherical  clusters,
which makes the k-means algorithm work better  to  its
advantage.

The experimental results show that RNN-CFSFDP
algorithm outperforms the commonly used clustering al-
gorithms overall.  It  can  weaken  the  manual  interven-
tion  and  enhances  the  robustness  compared  with  the
CFSFDP algorithm and its improvement algorithms. In
most  cases,  the  algorithm  outperforms  or  is  at  least
comparable to comparative methods in terms of cluster-
ing performance.  In  particular,  it  optimizes  the  assign-
ment  strategy  of  remaining  samples  by  considering
sample  neighbors  and  cluster  fusion.  Furthermore,  it
shows better  results  on  manifold  and  density  inhomo-
geneous data sets. For a more visual presentation, Fig.6
visualizes  the  clustering  results  of  the  RNN-CFSFDP
algorithm on manifold data sets.

 4. Ablation experiment
To further verify the effectiveness of each improve-

ment module, this section proposes three variants of the
CFSFDP algorithm:  1)  CFSFDP_1.  The  sample  dens-
ity  metric  of  the  CFSFDP  algorithm  is  improved  to
equation (8). 2) CFSFDP_2. The relative distance cal-
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Table 2. Experimental parameter setting situation

Data sets k-means FCM AGNES CFSFDP DPC-KNN RNN-CFSFDP
Flame k=2 k=2, m=2 average, k=2 dc=1.4, k=2 dc=1.6008, K=4, k=2 K=20, k=2

Aggregation k=7 k=7, m=2 average, k=7 dc=1.1, k=7 dc=3.1185, K=7, k=7 K=4, k=7
Spiral k=3 k=3, m=2 complete, k=3 dc=1.5, k=3 dc=13.6041, K=7, k=3 K=6, k=3
Jain k=2 k=2, m=2 complete, k=2 dc=14, k=2 dc=13.0124, K=9, k=2 K=8, k=2

4k2_far k=4 k=4, m=2 ward, k=4 dc=1, k=4 dc=0.2170, K=10, k=4 K=1, k=4
R15 k=15 k=15, m=2 average, k=15 dc=0.4, k=15 dc=0.6551, K=8, k=15 K=15, k=15
D31 k=31 k=31, m=2 complete, k=31 dc=0.6, k=31 dc=1.4312, K=28, k=31 K=17, k=31

Banana k=2 k=2, m=2 complete, k=2 dc=0.03, k=2 dc=0.0206, K=2, k=2 K=8, k=2
Spiral3D k=3 k=3, m=2 ward, k=3 dc=0.05, k=3 dc=0.0511, K=21, k=3 K=22, k=3

Iris k=3 k=3, m=2 average, k=3 dc=0.3, k=3 dc=0.3162, K=7, k=3 K=5, k=3
Wine k=3 k=3, m=2 ward, k=3 dc=0.5, k=3 dc=96.4202, K=5, k=3 K=17, k=3
Sonar k=2 k=2, m=2 average, k=2 dc=0.2, k=2 dc=0.7446, K=3, k=2 K=6, k=2

Movement_libras k=15 k=15, m=2 ward, k=15 dc=0.5, k=15 dc=0.9406, K=3, k=15 K=8, k=15
Ionosphere k=2 k=2, m=2 ward, k=2 dc=0.5, k=2 dc=0.6817, K=9, k=2 K=5, k=2

Ecoli k=8 k=8, m=2 average, k=8 dc=0.4, k=8 dc=0.1300, K=14, k=8 K=2, k=8
Leuk72_3k k=3 k=3, m=2 ward, k=3 dc=1.6, k=3 dc=4.2868, K=12, k=3 K=1, k=3
Compound k=6 k=6, m=2 average, k=6 dc=1.2, k=6 dc=1.2500, K=8, k=6 K=12, k=6

 

Table 3. Comparison of experimental results of different algorithms on different data sets

Data sets Evaluation
indexes

Algorithms
k-means FCM AGNES CFSFDP DPC-KNN RNN-CFSFDP

Flame

Acc 0.8375 0.8500 0.8333 1.0000 0.7830 1.0000
AMI 0.3969 0.4403 0.4814 1.0000 0.8807 1.0000
NMI 0.3988 0.4420 0.4831 1.0000 0.8824 1.0000
ARI 0.4534 0.4880 0.4422 1.0000 0.7390 1.0000
FMI 0.7364 0.7530 0.7311 1.0000 0.7952 1.0000

Aggregation

Acc 0.7843 0.6332 0.9962 0.7513 0.8503 0.9962
AMI 0.8776 0.7598 0.9894 0.8736 0.9026 0.9894
NMI 0.8792 0.7629 0.9896 0.8754 0.9039 0.9896
ARI 0.7622 0.6113 0.9935 0.7084 0.7766 0.9935
FMI 0.8158 0.6917 0.9949 0.7701 0.8237 0.9949

Spiral

Acc 0.3429 0.3397 0.3814 0.9487 1.0000 1.0000
AMI −0.0052 −0.0057 0.0071 0.8641 1.0000 1.0000
NMI 0.0007 0.0002 0.0130 0.8649 1.0000 1.0000
ARI −0.0057 −0.0062 0.0046 0.8555 1.0000 1.0000
FMI 0.3279 0.3272 0.3499 0.9038 1.0000 1.0000

Jain

Acc 0.7855 0.7748 0.9464 1.0000 1.0000 1.0000
AMI 0.3677 0.3541 0.6956 1.0000 1.0000 1.0000
NMI 0.3690 0.3555 0.6964 1.0000 1.0000 1.0000
ARI 0.3241 0.3004 0.7792 1.0000 1.0000 1.0000
FMI 0.7005 0.6894 0.9218 1.0000 1.0000 1.0000

4k2_far

Acc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
AMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
NMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ARI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FMI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R15

Acc 0.9967 0.9967 0.9950 0.9967 0.9967 0.9967
AMI 0.9938 0.9938 0.9916 0.9938 0.9938 0.9938
NMI 0.9942 0.9942 0.9922 0.9942 0.9942 0.9942
ARI 0.9928 0.9928 0.9893 0.9928 0.9928 0.9928
FMI 0.9932 0.9932 0.9900 0.9932 0.9932 0.9932

D31

Acc 0.9771 0.8468 0.9619 0.9681 0.9687 0.9710
AMI 0.9660 0.9196 0.9495 0.9548 0.9567 0.9589
NMI 0.9675 0.9234 0.9519 0.9569 0.9587 0.9608
ARI 0.9535 0.8236 0.9238 0.9358 0.9372 0.9414
FMI 0.9550 0.8304 0.9262 0.9378 0.9392 0.9433
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culation of the CFSFDP_1 algorithm is improved to (9)
to optimize the assignment strategy. 3) CFSFDP_3. It
introduces  the  cluster  fusion  algorithm  based  on  the
CFSFDP_2  algorithm.  The  parameters  of  the  three
variants  of  the  algorithm  take  the  same  values.  Since

the experimental results were similar on the five evalu-
ation metrics, we show the results of the ablation exper-
iment with Acc as a representative. The Acc of the CF-
SFDP algorithm  and  the  three  variants  of  the  al-
gorithm  are  shown  in Table  4. The  experimental  res-

Table 3 (Continued)

Data sets Evaluation
indexes

Algorithms
k-means FCM AGNES CFSFDP DPC-KNN RNN-CFSFDP

Banana

Acc 0.8285 0.8314 0.7774 0.6086 0.6142 1.0000
AMI 0.3398 0.3470 0.2340 0.0330 0.0367 1.0000
NMI 0.3399 0.3471 0.2342 0.0331 0.0368 1.0000
ARI 0.4316 0.4392 0.3076 0.0469 0.0519 1.0000
FMI 0.7178 0.7218 0.6551 0.5303 0.5333 1.0000

Spiral3D

Acc 0.3522 0.3522 0.3616 0.3648 0.3994 0.4025
AMI −0.0038 −0.0040 −0.0013 0.0046 0.0560 0.0571
NMI 0.0021 0.0019 0.0046 0.0109 0.0619 0.0643
ARI −0.0042 −0.0044 −0.0023 −0.0009 0.0218 0.0091
FMI 0.3385 0.3360 0.3409 0.3773 0.3853 0.4771

Iris

Acc 0.8933 0.8933 0.9067 0.9067 0.9067 0.9600
AMI 0.7551 0.7465 0.8032 0.8032 0.8032 0.8689
NMI 0.7582 0.7496 0.8057 0.8057 0.8057 0.8705
ARI 0.7302 0.7294 0.7592 0.7592 0.7592 0.8858
FMI 0.8208 0.8197 0.8407 0.8407 0.8407 0.9234

Wine

Acc 0.7022 0.6854 0.6966 0.7416 0.7135 0.6910
AMI 0.4227 0.4106 0.4099 0.4181 0.4138 0.4247
NMI 0.4288 0.4168 0.4161 0.4242 0.4199 0.4308
ARI 0.3711 0.3539 0.3684 0.4144 0.3591 0.3910
FMI 0.5835 0.5728 0.5821 0.6127 0.5762 0.6024

Sonar

Acc 0.5529 0.5529 0.5529 0.5625 0.5288 0.6490
AMI 0.0053 0.0053 0.0031 0.0090 −0.0050 0.0678
NMI 0.0088 0.0088 0.0081 0.0124 0.0000 0.0713
ARI 0.0064 0.0064 0.0066 0.0109 −0.0013 0.0845
FMI 0.5028 0.5028 0.6510 0.5056 0.6269 0.5845

Movement_libras

Acc 0.4583 – 0.4472 0.4361 0.5139 0.4917
AMI 0.5583 – 0.5634 0.5400 0.6008 0.6061
NMI 0.6112 – 0.6157 0.5949 0.6479 0.6528
ARI 0.3204 – 0.3154 0.2989 0.3957 0.3647
FMI 0.3689 – 0.3654 0.3500 0.4426 0.4144

Ionosphere

Acc 0.7123 0.7094 0.7179 0.6895 0.7236 0.7350
AMI 0.1330 0.1280 0.1368 0.0873 0.1142 0.1319
NMI 0.1349 0.1299 0.1386 0.0893 0.1161 0.1339
ARI 0.1776 0.1727 0.1872 0.1388 0.1905 0.2126
FMI 0.6053 0.6031 0.6108 0.5936 0.6343 0.6413

Ecoli

Acc 0.6012 0.4970 0.7649 0.6101 0.8006 0.7857
AMI 0.5977 0.5322 0.7074 0.4166 0.6607 0.6772
NMI 0.6144 0.5514 0.7193 0.4394 0.6740 0.6911
ARI 0.4276 0.3682 0.7449 0.4203 0.7302 0.7626
FMI 0.5617 0.5118 0.8210 0.6423 0.8119 0.8264

Leuk72_3k

Acc 0.9583 0.9583 0.9583 0.9583 0.9583 0.9583
AMI 0.8558 0.8558 0.8381 0.8555 0.8555 0.8555
NMI 0.8596 0.8596 0.8424 0.8593 0.8593 0.8593
ARI 0.8803 0.8803 0.8805 0.8809 0.8809 0.8809
FMI 0.9197 0.9197 0.9199 0.9205 0.9205 0.9205

Compound

Acc 0.6566 0.6566 0.8622 0.6316 0.6441 0.7218
AMI 0.7135 0.7044 0.8314 0.7539 0.7308 0.8327
NMI 0.7192 0.7103 0.8353 0.7589 0.7362 0.8363
ARI 0.5379 0.5357 0.8030 0.5116 0.5435 0.6346
FMI 0.6422 0.6404 0.8616 0.6251 0.6473 0.7223
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dc

ults show  that  the  CFSFDP_1  algorithm  further  im-
proves  the  accuracy  of  some  data  sets  and  avoids  the
artificial  value  of  cutoff  distance ,  which verifies  the
effectiveness  of  the  improved  sample  density  metric.

The CFSFDP_2 algorithm improves  the clustering ac-
curacy  on  some  data  sets  again  based  on  the
CFSFDP_1  algorithm,  which  verifies  the  effectiveness
of  the  improved  remaining  sample  assignment  method
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Fig. 6. Cluster fusion results of manifold dataset. (a) and (b) Flame dataset; (c) and (d) Jain dataset; (e) and (f) Spiral dataset;

(g) and (h) Banana dataset.
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by combining the nearest neighbor samples. The CFSF-
DP_3 algorithm further improves the accuracy on only
two  manifold  data  sets,  Jain  and  Banana.  However,  it
also  meets  the  target  expectation  considering  that  the
purpose of introducing the cluster fusion algorithm is to
prevent density peaks misselection and improve the al-
gorithm’s effectiveness on manifold data sets.
 
 

Table 4. Acc of CFSFDP and three variant algorithms

Data sets CFSFDP CFSFDP_1 CFSFDP_2 CFSFDP_3
Flame 1.0000 1.0000 1.0000 1.0000

Aggregation 0.7513 0.9962 0.9962 0.9962
Spiral 0.9487 0.9679 1.0000 1.0000
Jain 1.0000 0.5657 0.5657 1.0000

4k2_far 1.0000 1.0000 1.0000 1.0000
R15 0.9967 0.9967 0.9967 0.9967
D31 0.9681 0.9710 0.9710 0.9710

Banana 0.6086 0.6306 0.6333 1.0000
Spiral3D 0.3648 0.4025 0.4025 0.4025

Iris 0.9067 0.9133 0.9600 0.9600
Wine 0.7416 0.5281 0.6910 0.6910
Sonar 0.5625 0.6202 0.6490 0.6490

Movement_libras 0.4361 0.4861 0.4917 0.4917
Ionosphere 0.6895 0.7350 0.7350 0.7350

Ecoli 0.6101 0.8214 0.7857 0.7857
Leuk72_3k 0.9583 0.9583 0.9583 0.9583
Compound 0.6316 0.6266 0.7218 0.7218

 

 VI. Conclusions

ρi
xi

dc

In this paper, we propose reverse-nearest-neighbor-
based  clustering  by  fast  search  and  find  of  density
peaks (RNN-CFSFDP) by optimizing  the  CFSFDP al-
gorithm.  The  RNN-CFSFDP  algorithm  redesigns  and
unifies the metric of sample density on data sets of dif-
ferent sizes by combining the reverse nearest neighbors
of samples. Therefore, the  can reflect the local dens-
ity of  sample  more objectively and avoid the artifi-
cial  value of  cutoff  distance .  In addition,  the RNN-
CFSFDP  algorithm  also  improves  the  assignment
strategy  by  using  the  advantage  of  nearest  neighbor
samples to detect the local distribution of samples. The
method  proposed  effectively  reduces  the  problem  that
the domino effect is prone to occur in the CFSFDP al-
gorithm  for  manifold  data  sets.  Finally,  we  propose  a
cluster fusion  algorithm to  solve  when the  cluster  cen-
ter is manually selected, the sparse cluster may not be
selected to the density peak, and it may lead to cluster
center wrong  selection.  Experimental  results  on  pub-
licly  available  synthetic  data  sets  and  UCI  real-world
data  sets  show  that  the  RNN-CFSFDP  algorithm  can
effectively reduce subjective intervention. In most cases,
the algorithm outperforms or is  at least comparable to
comparative methods  in  terms  of  clustering  perform-
ance.  The  RNN-CFSFDP  algorithm  is  applicable  to

data sets of any dimension and size and is particularly
robust to cluster shape and density differences.

K

K

However, the  for the reverse nearest neighbor in
the  RNN-CFSFDP  algorithm  still  cannot  be  selected
adaptively.  For  further  research,  we  will  focus  on  two
points. One is to explore the local neighbor-based clus-
tering algorithm  and  find  a  way  to  automatically  de-
termine  the  value  of  to  simplify  the  algorithm’s
parameters. The other is to combine the algorithm’s ad-
vantages with those of other clustering algorithms.
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