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   Abstract — Boost  converters  with  one  cycle  control
(OCC) are  prone  to  exhibit  oscillations  as  the  Hopf  bi-
furcation, which may degrade performances and limit the
parameter stable  region  of  converters.  This  work  pro-
posed a novel control strategy for suppressing such bifurc-
ations and enlarging the parameter stability region of the
boost system on the basis  of  the principle of  energy bal-
ance in the circuit. Through analyzing of the stability and
bifurcation condition, the results reflect that, the energy-
based  OCC  can  adjust  the  poles  of  the  system  transfer
function, which  ensures  the  stable  operation  of  the  sys-
tem in an extended range of circuit parameters. Moreover,
the  orders  of  the  transfer  function  will  not  be  increased
by  such  adjustments,  thus  the  computational  complexity
of the transfer function will be increased. The theoretical
analysis  demonstrates  the  ability  of  the  energy-based
OCC  for  suppressing  the  bifurcations  and  enlarging  the
stable  region  of  the  system  parameters.  The  results  by
simulation and experiment further prove the effectiveness
of the proposed control strategy.

   Key words — Boost  converter, Dynamic  average-

value model, Bifurcation, Energy balance.

 I. Introduction
As  a  typical  control  method,  one  cycle  control

(OCC) has  great  developed  because  of  its  simple  con-
trol structure, fast dynamic responses and other advant-
ages [1]–[4]. However, as intrinsic nonlinearity of switch-
ing converters, abundant nonlinear phenomena has been
introduced within this family of converters, such as Nei-
mark-Sacker  bifurcation,  secondary  bifurcation,  even
chaos, etc. [5]–[9]. Thus, it is prone to exhibit such non-
linear  phenomena  in  converters  using  the  OCC.  An

OCC  controlled  Cuk  converter  was  analyzed  using  a
model based on the sampled data, and Neimark-Sacker
bifurcation were  observed  with  some  parameters  vary-
ing [10]. Studies in [11] on a OCC boost converter illus-
trated that it could work stably in period I state in the
discontinuous current mode (DCM), but it could not re-
main  stable  in  continuous  current  mode  (CCM),  and
low-frequency  oscillations  may  occur.  In  [12],  low-fre-
quency oscillation was presented in boost converters us-
ing a  constant-on-time  (COT)  OCC,  and  the  bifurca-
tion was observed as the COT value increased.

These nonlinear  phenomenas cause  an adverse  im-
pact on  the  normal  running  and  damages  to  the  con-
verters.  Hence,  suppressing  such  nonlinear  phenomena
is  essential.  Two  types  of  methods  for  controlling  and
suppressing such  nonlinear  phenomenas  have  been  ad-
opted widely, i.e.,  feedback and non-feedback methods.
For  feedback  control  strategies,  the  Ott-Grelogi-Yorke
(OGY),  the  occasional  proportional  feedback  (OPF),
the  time  delay  feedback  (TDF)  are  typical  ones.  The
adaptive  strategy,  the  resonant  parametric  is  common
non-feedback method. Since the OGY is difficultly real-
ized [13], the TDF becomes a useful and common meth-
od. But researchers showed that it is always hard to ob-
tain the delayed feedback signals [14], [15]. Thus as an
alternative  method,  a  notch  or  second-order  filter  was
introduced,  but  there  are  three  parameters  which  we
need  to  measure,  i.e.  the  feedback  gain,  the  quality
factor and the selective frequency [16], [17]. In compar-
ison,  only  two  parameters,  the  feedback  gain  and  the
delayed time, needs to be determined by using the TDF. 
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A washout filter was implemented to suppress such bi-
furcation,  where  the  required  measurement  parameters
are reduced to be two. So far, however, no detained cal-
culation  methods  are  introduced.  To  eliminate  such
nonlinear  phenomena,  a  TDF  controller  based  on  a
first-order-filter was proposed. Compared with the con-
ventional second-filter-based  TDF,  only  two  paramet-
ers must be determined. By contrast, the non-feedback
control strategies, which are simpler, appear to be more
functional for  applying in practice.  The resonant para-
metric  strategy  is  one  of  typical  representative,  which
was  proved  that,  without  extra  devices,  it  can  control
some nonlinear phenomena in converters effectively [18],
[19].  But  some  parameters  must  be  perturbed  within
appropriate amplitudes and frequencies, only then can a
chaotic be converted to be a regular operation.

Recently, it has been verified that memristive loads
can broaden the stable region without affecting bifurca-
tion structures [20]. Compared to conventional capacit-
or current ripple (CCR) control method, a novel capa-
citor  current  and  capacitor  voltage  ripple  (CCVR)
method has been introduced for a single-inductor dual-
output (SIDO) CCM buck converter to extend the load
range  [21].  The  paper  presents  an  energy-based  OCC
strategy for  the  conventional  OCC  converters  to  sup-
press  the  oscillation phenomena and enlarge  the  stable
parameter  domains.  Compared to the previous studies,
there is  no  parameters  need  to  be  defined  and  no  in-
crease in the system order number.

This  paper  is  organized  as  follows:  In  Section  II,
the design and implementation, as well as the stability
analysis  of  the  energy-based  OCC,  are  described;  The
conventional  OCC  converter  is  analyzed  based  on  its
average model  and  Hopf  bifurcation  is  found  and  ana-
lyzed in Section III; Section IV gives the results of the
simulation and experiment; And Section V summarizes
achievements in the work.

 II. Stability Analyzing of Boost Convert-
ers Based on Energy Balance Principle

The OCC boost converters are prone to exhibit os-
cillations  as  the  Hopf  bifurcation,  which  may  degrade
performances of  converters.  For  the  purpose  of  sup-
pressing  the  bifurcations  and  stabilising  such  unstable
system,  the  energy  balance  principle  in  the  circuit  is
used  for  designing  the  strategy.  The  implementation
and  analysis  of  a  boost  converter  implemented  by  the
energy-based OCC is depicted as below.

 1. The design of the energy-based OCC and
its implementation

uin

i

Fig.1 illustrates  the  diagram  of  an  energy-based
OCC boost converter. In Fig.1,  is the voltage flow-
ing into the converter,  represents the current flowing
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through ,  denotes the current flowing through , 
represents the current across ,  denotes the refer-
ence voltage and  denotes the switching cycle.
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Fig. 1. Block diagram of a boost with the proposed control

strategy.
 

Such a converter in CCM can be described as
 

di
dt

=
1

L
uin −

1− s

L
u,

du
dt

= − 1

RC
u+

1− s

C
i (1)

s = 0 S s = 1 Swhere  means switch  is off, and  means 
is on.

nth
In  addition,  the  state  analysis  shows  that,  during

the  switching period, there are two operating states
of the CCM boost converter:

S ton(n)

L C

State 1:  is on for duration , in this operat-
ing  state,  absorbed  energy  and  the  capacitor  of-
fers the energy that the load consumed,
 

WLin = uiniton (2)
 

WCout = uioton (3)

S toff(n)

L C

State 2:  is off for duration , in this operat-
ing  state,  releases  energy,  and  the  capacitor  is
charged,
 

WLout = (u− uin)itoff (4)
 

WCin = u(i− io)toff (5)

L C

The principle of the energy-based OCC boost con-
verter  is  rooted  on  the  energy  balance  of  and .
What  it  means  is  that  the  inductor  and  the  capacitor
absorb and  release  an  equal  amount  of  energy  separ-
ately in a switching cycle. According to the above ana-
lysis,  the  average  model  of  the  energy  balance  can  be
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obtained as 

uiniton = (u− uin) itoff (6)
 

uioton = u(i− io)toff (7)

iBy  rearranging  equation  (7),  can  be  derived  as
the following:
 

itoff = ioTs (8)

Then substituting  (8)  into  (6),  equation  (6)  is  re-
written as
 

uiniton = (u− uin)ioTs (9)

u uref

u uref d

Replace  in the right of (9) by  since the goal
is to make  equal to , and the duty ratio  is ob-
tained as
 

d =
(uref − uin)io

uini
(10)

nthAccording to (10), during the  switching period,
the control equation can be acquired as
  ˆ (n−1)Ts+ton(n)

(n−1)Ts

uinidt = (uref − uin)ioTs (11)

Equation (11) is achieved through a reset integrat-
or, a comparator and a RS trigger.

nth
S Wint

Wint

S Wint

S
(n+ 1)th

From Fig.1,  it  can  be  seen  that  the  integrator
starts operation at the start of the  switching cycle,
then  is  turned  on,  at  the  same  time  increases
and is  compared  instantaneously  to  the  control  refer-
ence.  Once  reaches  the  control  reference,  a  pulse
for  resetting  is  sent  from  the  comparator,  which  reset
the RS trigger. Then  shutdown and  is reseted to
zero.  remains off until the next clock pulse, then the

 cycle starts.
 2. The analysis of the stability

d sSubstituting  in  (10)  for  in  (1),  the  average
model of  the  proposed  energy-based  OCC  boost  con-
verter can be got as following [5]:
 

di
dt

=
1

L
uin −

1

L

[
1− (uref − uin)u

uiniR

]
u,

du
dt

= − 1

RC
u+

1

C

[
1− (uref − uin)u

uiniR

]
i (12)

di
dt

du
dt 0Setting  the  values  of  and  of  (12)  to  be ,

then the system equilibrium point is found as
 

V = Vref

I =
V 2
ref

VinR

D =
Vref − Vin

Vref
(13)

Vref Vinwhere  is the value of the output reference, and 

is the value of the input voltage.
Neglecting  the  input  voltage  perturbation,  the

small-signal model of the CCM boost converter around
this equilibrium point is expressed as
 

dî
dt

=
V

L
d̂− 1−D

L
û

dû
dt

= − 1

RC
û+

1−D

C
î− I

C
d̂ (14)

î û d̂

i u d

where , ,  represent the small-signal perturbations of
,  and , respectively.

î

Transform  (14)  into  the  frequency  domain  and
eliminate , the linearized small-signal transfer function
is derived:
 

û(s)

d̂(s)
= Kv

− s

Qvω0
+ 1

s2

ω2
0

+
s

Qvω0
+ 1

= Kv
Dvd(s)

Nvd(s)
(15)

Kv =
V

1−D Qv = (1−D)R
√

C
L ω0 = 1−D√

LC

Dvd(s) = − s
Qvω0

+ 1 Nvd(s) =
s2

ω2
0
+ s

Qvω0
+ 1

where , , ,

 and .
Based  on  (10),  at  this  system  equilibrium  point,

the linearized small-signal model is given as follows:
 

d̂ =
1

V
ûref +

D

V
û− D

I
î (16)

He(s)

According to [22],  [23],  the sample and hold effect
 should be considered, which is simplified as

 

He(s) = 1 +
s

Qzωn
+

s2

ω2
n

(17)

ωn = π
Ts

Qz = − 2
πwhere , .

î He(s)

Transform (16) into the frequency domain by elim-
inating  and considering :
 

d̂(s) = He(s)
1

Kv

sûref(s) +B(s)û(s)

A(s)
(18)

A(s) = (1−D)s+DQvω0 B(s) = D +DQvω0where , .
Substitute  (15)  into  (18),  the  linearized  small-sig-

nal function of the energy-based OCC is formed as be-
low:
 

û(s)

ûref(s)
=

sHe(s)Dvd(s)

A(s)Nvd(s)−B(s)He(s)Dvd(s)
(19)

After obtaining the transfer function of the energy-
based OCC boost converter, the following part gives the
derivation of the sufficient conditions, under which the
system is stable by studying the properties of roots for
the corresponding characteristic equation.

First, setting the value of the denominator in (19)
to zero, then the characteristic equation in the equilibri-
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um point of (13) is found as
 

A(s)Nvd(s)−B(s)He(s)Dvd(s) = 0 (20)

Then  third-order  Pade  approximation  is  used  to
get  a  closed-form  expression  to  analyze  the  converter
stability. By using the third-order Pade approximation,
equation (20) can be written as follows:
 

N(s) = a3s
3 + a2s

2 + a1s+ a0

a3 =
D

Qvω0ω2
n

a2 =
1−D

ω2
0

+
D

Qvω0Qzωn

a1 =
1

Qvω0
+

DQv

ω0
− DQvω0

ω2
n

a0 = 1− DQvω0

Qzωn
(21)

ai

a3 > 0 a0 > 0

The  Routh  array  of  this  third-order  system  is
shown as Table 1. According to the Routh stability cri-
terion, all the roots are on the left-half plane, which is
condition for stability. And that  are all positive and
the  coefficients  in  the  first  column  are  all  positive  are
the sufficient and prerequisite conditions to ensure that
the roots are all on the left-half plane. And the number
of the  roots  with  positive  real  part  and  times  the  ele-
ment  symbols  in  the  first  column  changes  are  equal.
Observing  the  Routh  array  of  this  third-order  system
shown  in Table  1,  it  is  clear  that  and .
According to  the  Routh  criterion,  the  condition  ensur-
ing the stability of the energy-base OCC are listed as
  

a1 > 0
a2 > 0

A1 =
a2a1 − a3a0

a2
> 0

(22)

 
 

Table 1. The Routh array of third-order system

s3 a3 a1

s2 a2 a0

s1 A1 0

s0 a0 0

A1 = a2a1−a3a0
a2

Note: .
 

By solving (22), the condition ensuring stability by
the duty ratio is calculated as the following:
 

Dc =
2RC

Ts + 2RC
(23)

Subsequently,  the  analysis  results  of  the  system is
summarized in the following:

D < DcCase  1: ,  the  converter  system  operates
stably, which works at the damped oscillation mode.

D > Dc

D

Dc

Case 2: , the converter system loses stable,
which  working  at  the  increased  oscillation  mode.  As  a
result, Hopf bifurcation occurs, as  crosses the stable
boundary .

Dc

Dc

The analysis demonstrates that  depends on cir-
cuit parameters listed in Table 2. Based on such para-
meters,  of  the  energy-based  OCC  boost  converter
can be calculated to be 0.993 according to (23), which is
close to 1. It is observed that the stable parameter do-
mains of the boost system using the energy-based OCC
is enlarged. Thus there is no Hopf bifurcation and oth-
er nonlinear phenomenons in almost the entire paramet-
er region.
 
 

Table 2. The circuit parameters

uin (V) L (µH) C (µF) R (Ω) fs (Hz)

5 3000 460 30 5000
 

 III. Stability Analyzing of Boost
Converters with OCC

L

In  fact,  the  conventional  OCC  is  on  the  basis  of
volt-second  balance  principle  of  the  inductor ,  which
is
 

d =
ton
Ts

=
uref − uin

u
(24)

d sSubstituting  for  in  (1),  the  average  model  of
the conventional OCC is calculated as
 

di
dt

=
1

L
uin −

1

L

(
1− uref − uin

u

)
u,

du
dt

= − 1

RC
u+

1

C

(
1− uref − uin

u

)
i (25)

di
dt

du
dt 0Let the values of  and  in (25) equal to be ,

then the system equilibrium point is calculated:
 

V = Vref

I =
V 2
ref

VinR

D =
Vref − Vin

Vref
(26)

Using (24), the linearized small-signal model is de-
rived as
 

d̂ =
1

V
ûref −

D

V
û (27)

Transform (27) into the frequency domain, the lin-
earized small-signal model can be derived as
 

d̂(s) = He(s)
ûref(s)−Dû(s)

V
(28)
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Substitute  (15)  into  (28),  the  linearized  small-sig-
nal function of the OCC boost is obtained:
 

û(s)

ûref(s)
=

He(s)Dvd(s)

(1−D)Nvd(s) +DHe(s)Dvd(s)
(29)

Setting  the  value  of  the  denominator  in  (29)  as
zero,  the  characteristic  equation  in  the  equilibrium
point of (26) is obtained as
 

(1−D)Nvd(s) +DHe(s)Dvd(s) = 0 (30)

By  using  such  a  third-order  Pade  approximation,
(30) is written as follows:
 

N(s) = a3s
3 + a2s

2 + a1s+ a0

a3 = − D

Qvω0ω2
n

a2 =
(1−D)

ω2
0

+
D

ω2
n
− D

Qvω0Qzωn

a1 =
1− 2D

Qvω0
+

D

Qzωn

a0 = 1 (31)

a3 < 0

a0 > 0 a3 < 0 a1 > 0 a2 > 0 A1 > 0

N(s) = 0

a1 > 0

a2 > 0 A1 > 0

Observing the Routh array of this third-order sys-
tem  shown  in Table  1,  it  is  clear  that  and

. Since , even if ,  and 
are  satisfied,  the  symbols  change  once  in  the  first
column,  so  the  polynomial  equation  has  one
root  with  positive  real  parts.  Thus,  the  system  is  not
stable.  However,  since  this  pole  is  the  non-dominant
pole, the dynamic performance of the system is mainly
determined  by  the  other  two  poles.  Thus,  if ,

 and  are  satisfied,  these  two  poles  are
conjugate complex poles with negative real parts. Then
the conditions should be met for stability requirements
as follows:
  

a1 > 0
a2 > 0

A1 =
a2a1 − a3a0

a2
> 0

(32)

By solving (32), the condition to ensure the stabil-
ity for the duty ratio is
 

Dc =
3

√
−q

2
+
√
∆+ 3

√
−q

2
−

√
∆+

2

3
(33)

∆=
(
q
2

)2
+
(
p
3

)3
p=− 1

3+
4L
RTs

q= 2
27+

2L
3RTs

where ,  and .
Dc

0.43

D > 0.43

uref R L

With  the  parameters  in Table  2,  of  the  OCC
boost converter can be calculated to be  according
to  (33).  Thus,  for  the  conventional  OCC,  when

 is met with the variation of the system para-
meters, for example, , , , etc., the system is un-
stable and the Hopf bifurcation occurs.

DcCompared with  of the energy-based OCC boost
converter  calculated  by  (23),  it  is  observed  that  the
stable parameter domains of the boost system using the
energy-based  OCC  are  enlarged.  The  Hopf  bifurcation
and  other  nonlinear  phenomenons  are  suppressed  and
the  system  can  operate  stably  in  most  of  the  entire
parameter region.

 IV. Simulation and Experiment

uref

In this  section,  a  simulation model  and an experi-
mental  CCM boost  converter  are  built  respectively.  In
the study,  is selected as the variable parameter. To
highlight  the  function  of  the  proposed  energy-based
OCC for  suppressing  the  Hopf  bifurcation  and  enlar-
ging the  stable  domains  of  the  parameters,  the  pro-
posed  energy-based  OCC  is  in  contrast  to  that  of  the
conventional OCC.

urefc

urefc=
uin

1−Dc
=8.774 V

uref

uref=8 V

uref uref

20 V

uref

uref 15 V

Based on such parameters,  the  threshold reference
voltage  of  the  conventional  OCC  boost  converter
can be calculated to be  according
to  (33). Table  3 provides the  domain  poles  of  the  en-
ergy-based OCC boost converter under varied . The
poles  are  obtained  from  (14).  In Table  3,  when

, the real parts of the system domain poles are
negative, the real parts of the domain poles are always
negative with the value increasing of .  Even as 
increases to , the real parts of the domain poles are
still  negative.  Such results  mean that  the roots  always
locate on the left-half  plane, which means the convert-
er work stably even though  varies widely. Bifurca-
tion diagram is shown in Fig.2. From Fig.2, it is found
that,  even when  increases  to  be ,  the  energy-
based OCC boost converter remains stable operation.
  

uref

Table 3. The domain poles of the energy-based OCC
boost converter under varied 

uref Poles (p1 p2) and State
8 V p1 = −2235, p2 = −233.4 Stable
9 V p1 = −2424, p2 = −190.1 Stable
10 V p1 = −2500, p2 = −164.4 Stable
11 V p1 = −2516, p2 = −147.1 Stable
...

...
...

15 V p1 = −2367, p2 = −111.4 Stable
...

...
...

20 V p1 = −2125, p2 = −91.39 Stable
 

uref

uref ≤ 8.7 V

uref

Table 4 lists the domain poles of  the conventional
OCC  boost  converter  by  varying , which  are  ob-
tained  from  (30).  From Table  4,  it  can  be  observed
that, when , the real component of the sys-
tem domain poles is negative. This illustrates that these
roots are located on the left-half plane. Apparently, the
converter keeps stable. However, with the increasing of

, the roots move towards the right-half plane gradu-
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uref ≥ 8.8 V
urefc

uref

8.774 V

ally.  As shown in Table 4, when ,  which is
greater  than ,  the  real  part  of  the  domain  poles
turns into positive,  meaning that the roots  are  located
in the right-half plane. Then the Hopf bifurcation hap-
pens  and  the  system  losses  its  stability.  From Fig.3,
such results  are observed from its  bifurcation diagram,
which  shows  that,  when  is  grater  than  about

,  the  Hopf  bifurcation  happens  in  the  OCC

boost converter.
u-i

uref = 8 V
20 V

uref = 8 V uref = 10 V

uref

Figs.4 and 5 are the  phase portrait of the boost
with the energy-based and conventional OCC. From the
results,  it  can  be  found,  when  even increas-
ing  to ,  the  energy-based  boost  converter  remains
stable throughout. In contrast, Fig.5 illustrates that, us-
ing  the  conventional  OCC,  the  converter  can  operate
stably  under .  However,  when ,
the phase orbital diagram becomes the torus, at the mo-
ment, the converter operates in the state of Hopf bifurc-
ation.  And  with  the  increasing  of , the  phase  por-
trait illustrates that other nonlinear phenomena occurs.

 

5 10 15
5

10

15

uref  (V)

u 
(V

)

 

uref

Fig. 2. Bifurcation  figures  of  the  energy-based  OCC  boost
with variation of .

 

uref

Table 4. The domain poles of the conventional OCC
boost converter under varied 

uref Poles (p1 p2) and State
8 V −6.010± j671.3 Stable
8.5 V −2.125± j651.0 Stable
8.7 V −0.606± j643.4 Stable
8.8 V 0.147± j639.7 Unstable
10 V 8.934± j599.5 Unstable
...

...
...

15 V 43.56± j485.9 Unstable
...

...
...

20 V 77.46± j413.8 Unstable
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 1. Simulation results

uref = 8 V
uref = 10 V

uref 15 V 20 V

Figs.6–9 display  the  results  of  the  energy-based
OCC  boost.  The  results  show  that,  under 
and , the system operates stable without bi-
furcations  or  other  nonlinear  phenomena.  However,
when  increases to  and even , the system
remain stable operations.

uref = 8 V

In  contrast, Figs.10–13 display the  simulation  res-
ults  with  the  conventional  OCC.  In Fig.10, it  is  ob-
served  that,  under ,  without  bifurcations  or
other  nonlinear  phenomena,  thus,  the  system  works
stably. Fig.11 shows the results  of  the converter under

uref = 10 V i

uref

.  From Fig.8,  it  is  observed  that  exhibits
Hopf bifurcation, leading to output voltage oscillations.
Clearly,  the  converter  is  no  longer  stable.  When 
continues to increase, the bifurcation still exists and the
oscillation is  more  severe,  even causing the  discontinu-
ous  operation  of  the  inductor  current,  as  shown  in
Figs.12 and 13.
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 2. Experimental results
For further  verifying  the  performances  of  the  en-

ergy-based  OCC method.  The  experimental  prototypes
are built according to the parameters in Table 2. In ex-

um up

periments,  SKM75GAL063D  and  Skyper32R  board  1
are  used to  build  the  circuit.  And the  StarSim is  used
to  implement  the  control  part.  The  sample  circuit  is
achieved by HALL sensors, where the HALL sensors are
used  to  measure  the  value  of  the  current  and  voltage.
The  voltage  conversion  ratio  between  the  value  of  the
measured voltage  and that of the practical value 
is as follows:
 

up

um
= 10 (34)

imThe current conversion ratio between the value 
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ipand the practical value  is as follows:
 

ip
im

=
ipRm

umc
= 1.16 (35)

Rm

116 Ω umc

im Rm

where  represents the resistor for sensing, the value
of which is , and  represents the voltage value
produced by the flowing of  through .

uref

Figs.14 and 15 provide the  results  from  experi-
ment  by  varying .  In Fig.14,  it  is  observed  that,

uref = 8 V
uref

uref 20 V

uref = 8 V
uref

10 V urefc

with the energy-based OCC, the converter can operate
in  the  stable  state  under . With  the  increas-
ing of , the converter is always operate stably. Even

 is increased to , it can still keep stable opera-
tion.  In  contrast,  using  the  conventional  OCC,  under

,  the  system  maintains  stable  operation
without  any  nonlinear  behavior.  But  when  is in-
creased  to  be ,  as  greatly  as ,  the  converter
loses stable and Hopf bifurcation occurs in the inductor
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Fig. 14. Results by experiment of the proposed strategy.
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urefcurrent. With the continuous increasing of , the bi-
furcation still  exists  and the  oscillation is  more  severe,
just  as Fig.15. The analysis  illustrates  that  the experi-
mental results are coincident with that of the theoretic-
al  analysis  and simulation,  which  demonstrate  that,  in
contrast to that of the OCC, the energy-based OCC can
suppress  the  oscillation  and  enlarge  the  system  stable
parameter domains.

 V. Conclusions
In the paper, for the purpose of enlarging the para-

meter  stable  region  of  the  system,  an  energy-based
OCC method is  proposed.  In  the  view of  control  prin-
ciple, in this study, the volt-second balance principle on
which the conventional OCC is based is replaced by the
energy  balance  of  the  circuit.  The  theoretical  analysis
results demonstrate  that  the  bifurcation  can  be  sup-
pressed and  the  stable  parameter  domains  of  the  sys-
tem is  extended.  Take  the  reference  output  voltage  as
an  example,  results  from  simulation  and  experiment
validate the  theoretical  analysis.  It  illustrates,  in  con-
trast  to  that  of  the  conventional  OCC,  the  proposed
strategy can suppress the bifurcations and possesses an
extended stable parameter domain. Besides, the system
this work  discussed  is  based  on  boost,  and  the  pro-
posed strategy can be applied to buck, buck-boost and
other types of converters.
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