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   Abstract — The  development  of  smart  mobile  de-
vices  brings  convenience  to  people’s  lives,  but  also  pro-
vides a breeding ground for Android malware. The sharp
increasing  malware  poses  a  disastrous  threat  to  personal
privacy  in  the  information  age.  Based  on  the  fact  that
malware heavily  resorts  to  system  application  program-
ming  interfaces  (APIs)  to  perform  its  malicious  actions,
there has been a variety of API-based detection methods.
Most  of  them  do  not  consider  the  relationship  between
APIs.  We  contribute  a  new  approach  based  on  the  en-
hanced API order for Android malware detection, named
EAODroid,  which  learns  the  similarity  of  system  APIs
from a large number of API sequences and groups similar
APIs into  clusters.  The  extracted  API  clusters  are  fur-
ther  used  to  enhance  the  original  API  calls  executed  by
an app  to  characterize  behaviors  and  perform  classifica-
tion. We perform multi-dimensional experiments to evalu-
ate  EAODroid  on  three  datasets  with  ground  truth.  We
compare  with  many  state-of-the-art  works,  showing  that
EAODroid achieves effective performance in Android mal-
ware detection.

   Key words — Android malware, Malware detection,

Deep learning, Application programming interface.

 I. Introduction
Accompanied by the significant development of in-

telligence,  human  life  has  gradually  been  inseparable
from mobile devices. Various applications, including so-
cial, travel, payment and game, make human life more
convenient than  ever.  Unfortunately,  as  the  main-
stream mobile  operating  system,  the  Android  platform
is under more severe attacks. According to the latest re-
port  of  360  Security  Center  that  about  2.065  million
new mobile malware samples have been captured in the
first  quarter  of  2021  alone,  increasing  by  426.5%  from

the first quarter of 2020. On average, about 23,000 new
samples have been captured per day. The newly added
samples  are  mainly  tariff  consumption,  accounting  for
91.5%,  followed  by  privacy  theft  and  rogue.  Massive
malware  pose  the  major  threat  to  mobile  security  and
the considerable challenge to malware detection, result-
ing in economic losses for Android users.

Previous  works  have  shown  that  it  is  an  effective
detection  method  to  extract  application  features  based
on  dynamic/static/hybrid  methods  and  feed  feature
vectors  into  machine  learning  (ML)  or  deep  learning
(DL)  model  for  classification.  The  static  analysis  does
not need to run the application but extracts interesting
features  by  checking  the  application’s  manifest  file  or
executing  code,  which  is  relatively  effective.  But  it  is
unable to  analyze  the  application behavior  during exe-
cution.  The  dynamic  analysis  can  learn  the  runtime
characteristic, but its  low code coverage and high con-
sumption bring many limitations to detection. The hy-
brid  method  combines  dynamic  and  static  analysis  to
extract various  types  of  information  from  the  applica-
tion,  leading  to  large-scale  feature  sets  (even  hundreds
of  thousands).  Android  platform  provides  an  API
framework  for  developers  to  interact  with  the  system,
applications,  or  hardware.  It  is  an important detection
method to use system API call information due to mal-
ware  usually  cannot  bypass  system  APIs  to  perform
malicious  actions,  which  provides  clues  for  detection.
So,  many studies  rely on analyzing APIs or  combining
APIs with other features. However, most of these works
only use shallow features such as API binary, API fre-
quency, API N-gram, or malicious API patterns defined
by experts, which treat API as independent of each oth- 

Manuscript Received Dec. 26, 2021; Accepted Mar. 10, 2022. This work was supported by the National Natural Science Foundation
of China (62172042), the National Key Research & Development Program of China (2020YFB1712104), and the Major Scientific and
Technological Innovation Projects of Shandong Province (2020CXGC010116)).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.451

Chinese Journal of Electronics
Vol.32, No.5, Sept. 2023



er  and  ignore  the  potential  association  between  them.
Hence, the performance of classification will be affected
after the specific API is changed or replaced. Based on
previous observations [1] that different malware usually
keep the  same  behavior  but  switch  to  different  imple-
mentations of system API to avoid similarity detection.
So,  we  propose  to  extract  the  relevance  between  APIs
to enhance API-based features.  Our insight is  that the
functional similarity of API will be reflected in the con-
text of API sequence. Therefore, we treat each API as a
word  and  convert  them  into  embedding  vectors  using
natural language  processing  (NLP)  method  and  gener-
ate API clusters with similar functions or usage to en-
hance the original API call sequence.

Specifically, our  method  extracts  the  complete  se-
quence of  system API calls  from Dalvik  code and uses
part  of  API  sequences  to  train  the  API  embedding
model,  i.e.,  API2Vec,  which generates  dense  vectors  of
APIs.  We  expect  related  APIs  should  be  gathered  in
the feature space. Then the API vectors are grouped in-
to different clusters, which will be used to enhance the
original sequence  of  API.  Moreover,  we  utilize  the  or-
der of API calls to abstract application behaviors, so we
adopt the Convolutional Neural Network (CNN) on ad-
jacency  matrices  generated  from  the  API  sequences.
The proposed method effectively reduces the feature di-
mension  and  be  sensitive  to  different  implementations
of similar behavior.

The contributions of this work are as follows.
1) We propose a new malware detection method by

mining  functional  similarity  between  APIs  to  produce
API clusters,  and  using  adjacency  matrices  from  en-
hanced sequences of API-cluster to abstract application
behaviors.

2) We implement an API embedding model trained
by sequences of API calls and obtain API clusters with
functional similarity  through  clustering,  which  sup-
ports resilience to change of the feature size.

3) We  construct  a  detection  model  named  EAO-
Droid and  investigate  its  effectiveness  through  experi-
ments  on  three  datasets.  Experimental  results  show
that  EAODroid  outperforms  the  most  advanced  works
based on static analysis.

The rest of the paper is organized as follows. First,
Section II  introduces  related  work.  The  new  methodo-
logy  will  be  described  in  Section  III.  Then,  Section  IV
details the  dataset,  experimental  procedures,  and  res-
ults. Lastly, the summary and future work will be con-
cluded in Section V.

 II. Related Work
Previous  researchers  have  proposed  many  novel

and  efficient  methods  in  the  process  of  gaming  with

malware  producers.  In  this  section,  we  divide  different
methods into the following categories: based on dynam-
ic  and  static  analysis,  based  on  deep  learning,  and
based  on  the  graph.  It  is  worth  mentioning  that  no
matter  which  category,  there  is  no  lack  of  researchers
who use APIs as feature.

 1. Dynamic and  static  analysis  based  mal-
ware detection

The static analysis method refers to extracting fea-
tures by analyzing the code, configuration or resources.
It has high efficiency and fast speed, but it is easily af-
fected by code confusion, packing, dynamic loading, etc.
Scalas et al. [2] used the frequency of occurrence of sys-
tem  APIs  to  construct  feature  vectors  to  distinguish
ransomware,  malware  and  goodware.  MaMaDroid  [3]
extracts  the  conversion probability  between APIs  from
the  abstracted  API  sequences  through  Markov  chain.
Their  works  abstract  API  to  family/package/class  to
reduce  feature-dimension  and  impact  of  API  changes,
but  cannot  represent  the  functional  similarity  between
APIs  well.  Other  features,  such  as  permissions  [4]–[6],
opcode [7]–[10] and source code [11] are also widely used.
Many works combine API with other features for analy-
sis. Li et al. [12] mines the frequent pattern of Permis-
sion  & API,  assigns  weights  to  items  according  to  the
number  of  items,  and  constructs  a  weighted  naive
Bayesian classifier based on the weight. RepassDroid [13]
believes that sensitive API triggering without user par-
ticipation  is  dangerous.  All  API  trigger  points  are
traced from the code and used as additional  attributes
of APIs to distinguish them. Meanwhile, PIKADroid [14]
constructs  the  set  of  all  (entrypoint,  target-API)  pairs
and  calculate  the  malicious  scores  of  different  pairs.
When there  are  too  many  malicious  pairs  in  one  An-
droid package (APK), there is reason to think it is sus-
picious. All  of  the  works  have  selected  APIs  with  cus-
tom rules, but the binary features are shallow and easy
to be affected by code obfuscation.

Different from static analysis, the dynamic analys-
is uses  runtime  behaviors,  including  system  calls,  net-
work and access behaviors, etc. SWORD [15] computes
typical paths of system-call traces to construct the fea-
ture space. Wang et al. [16] builds a platform to collect
HTTP  traffic  flow  generated  by  the  application  and
analyzes the traffic  data as text using NLP to identify
malicious traffic. Maybe we can consider the analysis of
covert VoIP (voice over Internet protocol) traffic [17] in
future. Many  researchers  will  customize  dynamic  fea-
tures, which requires a sufficient understanding of mal-
ware.  DroidCat  [18]  determines  70  indicators  from
method calls  and  inter-component  communication  in-
tents,  which  can  distinguish  malware  from  goodware.
DroidSpan  [19]  defines  52  dynamic  features  based  on
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sensitive access distribution from the dynamic call trace
and  further  studies  the  sustainability  of  features  and
models. The  combination  of  dynamic  and  static  fea-
tures will enable researchers to analyze malicious beha-
vior further. CoDroid [20] is a hybrid method that uses
the  mixed  sequence  of  dynamic  system  call  and  static
opcode.  DroidPortrait  [21]  builds  static  and  dynamic
behavior  databases  from  five  dimension:  configuration,
code, certification,  network  and  system  call,  and  real-
izes the correlation between different behaviors through
ML. Even though our method currently only uses stat-
ic features,  our  theory  can  also  be  applied  to  the  sys-
tem call sequence extracted by dynamic analysis.

 2. Deep learning based malware detection
In order  to  combat  the  evolving  malware  and  ad-

versarial samples for ML model [22], researchers use the
deep learning  algorithm to  improve  detection  perform-
ance. With  help  of  the  deep  learning  algorithm,  fea-
tures can be learned automatically  without manual  se-
lection,  which  greatly  improves  efficiency.  Multimodal
[23] uses five feature vectors and inputs each vector to
different  initial  deep  neural  networks  (DNNs)  separ-
ately.  The  five  initial  networks  are  not  connected  but
are merged into the final DNN. It turns out that train-
ing different  networks  with different  features  and mer-
ging is better than training a single model with merged
features.  DeepRefiner  [24]  adopts  a  two-layer  network
structure. The second layer network can further detect
the APK samples that cannot be determined in the first
layer network, which can reduce the false positive rate
effectively,  but  does  not  solve  the  problem  of  conflict
between two layers. TC-Droid [25] applies TextCNN to
mine the difference between analysis reports of samples,
which  replace  manual  feature  engineering  effectively.
Andro-Simnet  [26]  builds  a  weighted  network  graph of
similarity  samples  and  cluster  samples  into  families
with an unsupervised model. To fight against the evolu-
tion of malware,  DroidEvolver [27]  updates the feature
sets and aging models if there is any drift. Specifically,
it  trains  five  online  learning  models  to  build  a  model
pool.  When  an  unknown  sample  is  identified  as  drift,
the pseudo label will be generated according to the vot-
ing mechanism and used to update the aging models. In
addition,  DroidFusion  [28]  studies  the  influence  of  the
combination of  different  initial  machine  learning  mod-
els  on  the  performance.  Works  based  on  deep  learning
use  a  large  number  of  features,  or  directly  raw  data,
which will  lead  to  high  computational  complexity.  Al-
though our method applies the deep learning algorithm
CNN, our feature dimensions are adjustable.

 3. Graph based malware detection
Methods based on raw features such as permission,

API, system call,  etc.,  are easy to be escaped, and the
high-dimensional  sparse  feature  vectors  will  also  bring

unnecessary resource consumption. On the contrary, the
structural features generated based on graph (e.g., func-
tion  call  graph,  FCG)  are  more  robust.  Considering
that  the  implementation of  malicious  behaviors  cannot
bypass API calls, there have been many works using API-
related graphs.  FalDroid  [29]  performs graph matching
and  clustering  according  to  the  structural  similarity
between  sensitive  API  nodes  in  graph.  The  frequent
graphs in  malicious  families  will  be  identified  as  fea-
tures and assigned weighted scores as evidence for fam-
ily classification. GefDroid [30] also uses structural role
of  API  nodes,  but  the  similarity  calculation  of  API  is
based  on  the  API  node  embedding  through  struc2vec.
In addition, they construct a malware link network and
applied and community detection algorithms to cluster
malware  into  families.  AndrEnsemble  [31]  computes
fuzzy  hash  value  of  function  nodes  in  call  graphs  and
aggregates  all  hash  graphs  of  one  malicious  family  to
extract  the  frequent  API  set.  GDroid  [32]  maps  APIs
and  apps  into  a  heterogeneous  graph  and  uses  graph
convolutional network (GCN) model to obtain the node
embedding to represent samples. These works are based
on single API nodes,  which is  effective when using the
same  API  implementations  between  malware.  When
switching to the different API implementations, the dia-
metrically  opposite  results  will  be  computed.  Using
functions  including  API  calls  as  graph  node  is  more
flexible.  Cai et  al. [33]  and  Feng et  al. [34] both  con-
vert  the  function  nodes  in  FCG into  vector  form.  The
former is based on word embedding, and the latter one
extracts internal attributes of function as features. The
final  vector  representations  of  applications  are  learned
through  GCN  or  graph  neural  network  (GNN)  model.
GSDroid [35] combines dynamic analysis and graph sig-
nal to extract low dimensional feature vectors from sys-
tem  call  graph.  Graph-based  malware  detection  is  one
of  our  interests,  but  larger  applications  will  generate
larger-scale graphs to be difficult to analyze. The key is
how to construct a meaningful graph and extract mean-
ingful information.

 III. Methodology
In this section, we describe our approach in detail.

Fig.1 illustrates  the  architecture  of  EAODroid.  There
are  the  following  four  main  stages:  1)  Extracting  the
complete  system API  call  sequences  from applications.
2) Learning API embedding through the API2Vec mod-
el,  and  then  using  the  K-means  algorithm  to  group
APIs in  clusters.  3)  Enhancing  the  original  API  se-
quences according to the API clusters and constructing
the  adjacency  matrix.  4)  Applying  the  CNN model  on
the  adjacency  matrix  to  extract  order  information  and
classify unknown applications.
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Fig. 1. Illustrates the overall workflow of EAODroid.

 

 1. Recursion-based system API call sequence
extraction

∗

The  first  step  of  EAODroid  is  to  extract  system
API call sequences from APK files. An Android app is
normally  written in  Java and compiled to  Dalvik  code
stored in classes.dex file and the compiled code and oth-
er resources are packaged into an APK file. We first use
a  decompile  tool  (ApkTool*1)  to  get  the  Dalvik  code
from APK files. Each class and its methods are defined
in  the  corresponding  smali  file.  Then,  we  identify  the
invocation  statements  (“invoke- ”)  to  extract  callees
from  the  Dalvik  code  in  turn.  Generally,  the  callee  is
not necessarily a system API, it may be a user-defined
function.  Compared  with  system  API,  user-defined
functions are  easier  to  be  modified and avoided by at-
tackers  using  code  obfuscation  technology,  which  not
only increases  computational  complexity  but  also  de-
creases model  performance.  So,  we  only  focus  on  sys-
tem API. We implement a recursion-based system API
extraction to  eliminate  user-defined  functions  while  re-
taining the complete API call sequence. In short, when
the current callee is a user-defined function, all callee in
this function  will  be  queried  down  until  the  final  se-
quence does not contain another user-defined one. Fig.2
shows  an  example,  the  function “download()” invokes
another user-defined function “createFileF()”, so all sys-
tem  callees  in  function “createFileF()” are used  to  re-
place itself when generate the sequence of “download()”.

 2. API cluster generation
To  extract  and  utilize  the  functional  similarity  of

APIs, we implement an API embedding model, API2Vec,
trained by  the  sequences  of  system  API,  which  con-
verts APIs  into  dense  vectors.  Then  the  clustering  al-
gorithm K-means  is  used  to  group  similar  APIs  into

clusters. Fig.3 illustrates this process.
1) API embedding. The API2Vec model is inspired

by the task of word embedding in NLP. It treats single
system APIs as words, and API sequences in one smali
file  will  be  regarded as  one  row in  the  training  corpus
for API2Vec. The inconsistent length of API sequences
extracted from smali files will not affect the embedding
process, because the API2Vec extracts API pairs in the
sliding  window  as  model  input  in  API  sequences.  For
example,  given  an  API  sequence “java.io.IOException.
printStackTrace java.net.HttpURLConnection.getInput-
Stream  java.io.  InputStream.Read  java.io.FileOutput-
Stream.Close android.Util.Log.e”, the intermediate API
“java.io.  InputStream.Read” is  treated  as  the  output
and  its  contexts  as  the  input.  The  training  object  is
similar to the CBOW (continuous bag of words) model,
which  learns  dense  vectors  to  represent  each  API.  If
two  different  APIs  have  similar  contexts,  they  will  be
closer in the embedding space,  and EAODroid can use
the similarity  to  capture  more  advanced  semantic  in-
formation.

2) API clustering. We apply the K-means to group
API embedding in clusters to obtain API clusters with
functional  similarity.  Furthermore,  Android  malware
usually invokes sensitive API calls to perform malicious
behaviors. To narrow the scope of analysis, we use a set
of  sensitive  APIs  summarized  by  Susi  [36]  as  the  key
API  for  malware  detection  tasks,  including 18044
sources  and 8278 sinks.  Note  that  the  number  of
clusters K is  optional,  and  the  appropriate  number  of
clusters  can  be  considered  by  combining  consumption
and detection performance.

 3. Feature matrix construction
Due to the different writing habits of malware de-
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velopers, or  the  update  iteration  of  homologous  mal-
ware, completely consistent API sequences often do not
appear. Luckily,  when performing similar malicious be-
haviors, the order of key APIs usually does not change
much. Most of the time, the change is to add or delete
some API calls.  So,  in  order  to  explore  the  correlation
between these  incomplete  sequences,  we  construct  API
adjacency matrix from API sequences with API clusters
to  extract  order  information.  Another  benefit  is  that
compared with methods that use graphs directly, using
the  adjacency  matrix  can  effectively  reduce  the  high

complexity.
K ×K

S = {a1,a2, ...,an}
ai Cai

Define  a matrix,  where K is  the  number  of
API clusters. Given that  is an API
sequence,  where  just  belong to only one cluster ,
The feature matrix is obtained by
 

Matrix[m][l] =

 1, ∃ (ai,aj , i < j ≤ n) in S,
ai ∈ Cm,aj ∈ Cl

0, elsewhere
(1)

 4. CNN based classification
The CNN  model  has  translation  and  scale  invari-

 

 
Fig. 2. Instance of the recursion-based system API sequences.
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Fig. 3. API embedding and clustering.
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ance, which can capture  the feature  block in the adja-
cency [37]. So, We use the CNN model to perform clas-
sification  in  the  proposed  method.  The  architecture  of
the CNN model used in this paper is shown in Table 1.
It  includes  an  input  layer,  four  convolutional  layers,  a
maximum pooling layer,  a fully connected layer,  and a
softmax layer. The input of the CNN model is the adja-
cency  matrix  generated  in  the  previous  stage,  and  the
output  is  a  two-dimensional  vector  representing  the
probability  of  being  benign  and  malicious.  To  prevent
the  gradient  from  exploding,  we  perform  batch  nor-
malization  on  the  feature  map  of  each  convolutional
layer.
  

Table 1. CNN Structure

Model Structure

CNN

Input Layer(64, 64, 1)
×Conv2D(3, 3  3)

BatchNormalization()
×Conv2D(32, 3  3)

BatchNormalization()
×Conv2D(64, 3  3)

BatchNormalization()
×Conv2D(128, 3  3)

BatchNormalization()
GlobalMaxPool2D()

Linear(2)
Softmax()

 
 

 IV. Evaluation
In  this  section,  we  first  introduce  the  dataset  and

experimental  settings,  and  then  we  conduct  extensive
experiments to  evaluate  the  effectiveness  of  the  pro-
posed EAODroid.

 1. Dataset
We obtain malware samples from the two malware

datasets:  1)  Drebin [38];  2)  AMD [39]. Both two data-
sets have been widely used in previous researches. The
benign  samples  are  collected  from  the  two  sources:  1)
Xiaomi application market*2, a popular third-party An-
droid app market in China, 2) PlayDrone [40]. We ran-
domly select  a  part  of  samples  to  compose  our  experi-
mental datasets. Samples that failed to be analyzed by
Apktool  have  been  deleted.  Besides,  since  the  baseline
method compared in  our  paper  uses  FlowDroid  [41]  to
extract call graphs, we also delete samples that cannot
be  analyzed  by  FlowDroid.  Finally,  we  compose  three
different experimental datasets as shown in Table 2.

 2. Experimental environment
The experiments of EAODroid are conducted on a

computer with Intel i7-6700 CPU(3.4 GHz) and 32G of

RAM. And the proposed EAODroid is implemented us-
ing Python with several packages: Scikit-learn, Tensor-
Flow, and Matplotlib.

 3. Parameter settings
The number of API call sentences are used to train

the API2Vec model accounted for 25% of each dataset.
The embedding and window size of API2Vec are set in
such  a  way  to  take  a  balance  between  efficiency  and
performance. We  selected  different  parameter  sets  ac-
cording  to  the  experience  of  previous  researchers.  The
API  embedded  dimension  is  selected  in  {64,128,256},
and the  window size  is  determined in  {5,10}.  Through
experiments, it  is  found  that  the  larger  embedding  di-
mension  and  window  size  do  not  significantly  improve
the final detection performance. In order to improve ef-
ficiency,  the  output  embedding  representation  for  each
API  is  set  to  64-dimension  and  the  window  size  is  5.
The influence  of  different  cluster  numbers  K on detec-
tion performance will be detailed in the rest of the pa-
per.  According to  the experiment,  the final K value of
the K-means algorithm is set to 64 and the feature mat-
rix used by EAODroid is set to (64,64) in experiments
of detection performance. The batch size is 256 and the
learning rate is 0.001. The parameters of the CNN mod-
el are shown in the next subsection.

 4. Parameter settings
We conduct tenfold cross-validation to measure the

performance of EAODroid and each dataset is split in-
to  90%  for  training  and  10%  for  testing.  We  evaluate
the performance of EAODroid using four indicators: F1-
measure, Accuracy, Recall, and Precision. Like most re-
searches, true positive (TP) indicates that malicious ap-
plications are correctly classified as malicious, false pos-
itive (FP) indicates that benign applications are incor-
rectly  classified  as  malicious,  while  correctly  classified
benign  applications  are  labeled  as  true  negative  (TN)
and incorrectly classified benign applications are labeled
as false  negative  (FN).  Depending  on  these  basic  met-
rics, the four indicators can be generated as follows:

Acc
The ratio of the number of samples correctly classi-

fied to the number of all samples is defined as .
 

Acc =
TN + TP

TN + TP + FN + FP

The ratio of the number of correctly classified mali-

   
Table 2. Summary statistics of the experimental dataset

Dataset Benign Drebin AMD Total
D1 5643 5532 0 11175
D2 5643 0 5619 11262
D3 5643 2800 2800 11243
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Precision
cious samples to the number of all samples identified as
malicious is defined as :
 

Precision =
TP

TP + FP

Recall

The ratio of the number of correctly classified mali-
cious samples to the number of all malicious samples is
defined as :
 

Recall =
TP

TP + FN

F1-measureThe definition of  is as follows:
 

F1-measure = 2× Recall× Precision
Recall+ Precision

 5. Performance evaluation
1)  Detection  performance.  In  this  experiment,  we

evaluated the general performance of EAODroid on the
malware detection  task  under  dataset  D1.  Simultan-
eously we compare EAODroid with traditional machine
learning  such  as K-nearest  neighbor  (KNN),  Random
forest  (RF),  support  vector  machine  (SVM),  naive
Bayes (NB), logistic regression (LR). Table 3 shows the
comprehensive results  of  different algorithms.  The pro-
posed  EAODroid  exceeds  common  machine  learning
methods  in  most  of  the  performance  metrics  and
achieves the highest F1-measure reaching 99.5%.
  
Table 3. Detection performance of EAODroid and com-

mon ML algorithm

Method Acc Precision Recall F1-measure
EAODroid 0.995 0.994 0.996 0.995

RF 0.992 0.986 0.998 0.992
SVM 0.991 0.989 0.993 0.991
KNN 0.986 0.977 0.996 0.986
NB 0.913 0.859 0.985 0.918
LR 0.993 0.991 0.995 0.993

 
 

K

2) Different feature dimensions. In this experiment,
we discuss  the  performance  results  with  different  fea-
ture dimensions  under  dataset  D1.  The  feature  dimen-
sion  is  according  to  the  number  of  API  clusters,
which should be built based on the same API2Vec mod-
el  to  avoid  other  variables.  As  shown in Fig.4, we  ad-

Kjust  to  (8,  16,  32,  64,128)  and  experimental  results
show that  our  model  can  still  achieve  satisfactory  res-
ults  despite  the  use  of  the  lower-dimensional  feature.
When the dimension rises to 128, the performance drops
in  a  small  range,  which  shows  that  too  many  features
introduce  useless  information  and  even  interfere  with
model learning.
 

1.00

0.98

M
et

er
ic

 (
%

)

0.96

0.94

0.92

0.90
8 16 32

Number of cluster

64

Acc

Recall

Precision

F-measure

128

 
Fig. 4. Performance comparison  of  different  feature  dimen-

sion.        
 

3) Comparison with other detection methods using
Drebin  dataset.  To  compare  with  other  state-of-art
works, we investigate previously proposed detection ap-
proaches.  All  works  use  different  types  of  features  to
build their models. Unfortunately, most of them are not
publicly  available  and  difficult  to  reproduce  with  the
same  parameters.  So  we  select  works  that  utilize  the
malware samples  from  Drebin  and  compare  the  per-
formance under the Drebin dataset. As shown in Table 4,
compared with detection approaches based on other fea-
tures, EAODroid is superior to others in terms of accur-
acy and F1-measure.

In  addition,  we  consider  MaMaDroid  as  the
baseline and compare detection results  under the same
dataset D1. MaMaDroid abstracts API calls into Fam-
ily  or  Package  and  computes  the  conversion  frequency
between abstracted API calls through Markov chains. It
trains  an  RF  classifier  and  achieves  high  performance.
To  reproduce  MaMaDroid,  we  obtain  the  API  family
list  (number  is  11)  and  the  latest  API  package  list
(number  is  357,  MaMaDroid  is  340)  according  to  the

   
Table 4. Performance comparison with previous works under Drebin (paper survey)

System Dataset (Malware, Benign) Features Classification algorithm Precision/F1-measure
EAODroid (5534,5643) API CNN 0.994/0.995
ProDroid [42] (5000,500) API PHMM 0.930/0.939
CoDroid [20] (2978,2707) Opc + Sys CNN-BiLSTM 0.954/0.986
TinyDroid [8] (2400,2400) Opc RF 0.921/NA
FAMD [43] (5560,5666) Per + Opc Catboost 0.980/0.973

Frenklach et al. [44] (5500,5500) Source Code RF NA/0.976
Note: API: API call; Opc: Opcode; Per: Permission.
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description in their paper. As shown in Table 5, we can
see that EAODroid has improved almost every indicat-
or.  The  results  clearly  illustrate  that  our  method  has
better  performance  on  malware  detection.  MaMaDroid
has  very  different  feature  dimensions  in  two  different
modes, ranging from one hundred to hundreds of thou-
sands. The  proposed  method  is  more  flexible  to  sup-
port any dimension of the feature under the premise of
ensuring accuracy.
  

Table 5. Performance comparison with MaMaDroid

Method Feature
dimension Acc PrecisionRecallF1-measure

EAODroid (11,11) 0.986 0.979 0.994 0.986
EAODroid (64,64) 0.995 0.994 0.996 0.995

MaMaDroid(family) 11 × 11 0.946 0.953 0.933 0.943
MaMaDroid(package) 357 × 357 0.977 0.968 0.964 0.966
 
 

4)  Generalization  ability.  In  this  experiment,  we
use three different datasets in Table 1 to verify the gen-
eralization  ability  of  EAODroid.  We  use  a  ten-fold
cross-validation  method  to  train  and  test  these  three
datasets. As shown in Table 6, our model achieves high
classification results in three different datasets, but the
classification with Drebin is better than AMD. Samples
of  AMD  dataset  have  a  larger  span  (2010–2016)  and
greater  diversity.  Malware  based  on  different  levels  of
API framework will have large differences in the use of
sensitive  APIs,  which  will  affect  model  performance.
How to  further  eliminate  the  false  positives  caused  by
API updates is also one of our next tasks.
  

Table 6. Performance under different datasets

Dataset Acc Precision Recall F1-measure
D1 0.995 0.994 0.996 0.995
D2 0.972 0.975 0.967 0.970
D3 0.966 0.963 0.973 0.968

 
 

5) Runtime performance. In this section, we evalu-
ate the time consumption of EAODroid to demonstrate
its  effectiveness.  The first  phase of  EAODroid involves
extracting API sequences from APKs and the time con-
sumption of this phase depends on the size of analyzing
APKs.  For  example,  113  KB  malware  requires  0.68  s,
while  21.3  MB  malware  requires  53.52  s  to  complete.
Next, we discuss the time spent in the API cluster gen-
eration,  which includes two parts:  API embedding and
API clustering. In the embedding phase, API2Vec takes
about 108 s to complete the embedding process by tak-
ing the sequences extracted from about 2800 samples as
the  corpus.  The  API  clustering  phase  completes  in
about 2 s when K is set to 64. Due to the low feature
dimension, the phase of feature matrix generation is fast
and  takes  less  than  0.2  s  per  sample.  Another  crucial

phase  is  detection model  training.  Our training set  D1
contains more than 10000 samples and the CNN model
takes  approximately  177.2  s  with  50  epochs  to  exceed
the  performance  shown Table  3. In  summary,  our  ex-
periments show  that  the  time  consumption  of  EAO-
Droid is acceptable in real word.

 V. Conclusion and Discussion
In this paper,  we propose a new Android malware

detection method based on enhanced API order, named
EAODroid. It collects callees from invoke statements to
form  system  API  sequences  and  constructs  adjacency
matrix, replacing use API call  graph. EAODroid needs
to  disassemble  Android  applications  to  get  enough
Dalvik code.  However,  some  applications  apply  tech-
niques  such  as  shelling  and  dynamic  loading  to  avoid
analysis or protect copyright, which makes it unable to
extract  features.  But,  if  we  can  get  the  true  execution
entry  of  these  applications  and  find  hidden  executable
code, it will be still effective.

In the future, we will further perform dynamic ana-
lysis to extend the existing method. At the same time,
with continuous malware evolution, the aging of detec-
tion  models  has  become  an  urgent  issue.  Recent  effort
been contributed to updating models  and evolving fea-
ture set.  However,  the  issue  has  not  been  fully  ad-
dressed. We can start from the malware itself and study
how malware of the same family evolves and what un-
changed  characteristics  will  be  maintained.  We believe
it will be of great help for us to define new immutable
characteristics.
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