
EAODroid: Android Malware Detection Based
on Enhanced API Order

HUANG Lu1, XUE Jingfeng1, WANG Yong1, QU Dacheng1,
CHEN Junbao1, ZHANG Nan1, and ZHANG Li2

(1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
(2. Department of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, China)

 Abstract — The development of smart mobile de-
vices brings convenience to people’s lives, but also pro-
vides a breeding ground for Android malware. The sharp
increasing malware poses a disastrous threat to personal
privacy in the information age. Based on the fact that
malware heavily resorts to system application program-
ming interfaces (APIs) to perform its malicious actions,
there has been a variety of API-based detection methods.
Most of them do not consider the relationship between
APIs. We contribute a new approach based on the en-
hanced API order for Android malware detection, named
EAODroid, which learns the similarity of system APIs
from a large number of API sequences and groups similar
APIs into clusters. The extracted API clusters are fur-
ther used to enhance the original API calls executed by
an app to characterize behaviors and perform classifica-
tion. We perform multi-dimensional experiments to evalu-
ate EAODroid on three datasets with ground truth. We
compare with many state-of-the-art works, showing that
EAODroid achieves effective performance in Android mal-
ware detection.

 Key words — Android malware, Malware detection,

Deep learning, Application programming interface.

 I. Introduction
Accompanied by the significant development of in-

telligence, human life has gradually been inseparable
from mobile devices. Various applications, including so-
cial, travel, payment and game, make human life more
convenient than ever. Unfortunately, as the main-
stream mobile operating system, the Android platform
is under more severe attacks. According to the latest re-
port of 360 Security Center that about 2.065 million
new mobile malware samples have been captured in the
first quarter of 2021 alone, increasing by 426.5% from

the first quarter of 2020. On average, about 23,000 new
samples have been captured per day. The newly added
samples are mainly tariff consumption, accounting for
91.5%, followed by privacy theft and rogue. Massive
malware pose the major threat to mobile security and
the considerable challenge to malware detection, result-
ing in economic losses for Android users.

Previous works have shown that it is an effective
detection method to extract application features based
on dynamic/static/hybrid methods and feed feature
vectors into machine learning (ML) or deep learning
(DL) model for classification. The static analysis does
not need to run the application but extracts interesting
features by checking the application’s manifest file or
executing code, which is relatively effective. But it is
unable to analyze the application behavior during exe-
cution. The dynamic analysis can learn the runtime
characteristic, but its low code coverage and high con-
sumption bring many limitations to detection. The hy-
brid method combines dynamic and static analysis to
extract various types of information from the applica-
tion, leading to large-scale feature sets (even hundreds
of thousands). Android platform provides an API
framework for developers to interact with the system,
applications, or hardware. It is an important detection
method to use system API call information due to mal-
ware usually cannot bypass system APIs to perform
malicious actions, which provides clues for detection.
So, many studies rely on analyzing APIs or combining
APIs with other features. However, most of these works
only use shallow features such as API binary, API fre-
quency, API N-gram, or malicious API patterns defined
by experts, which treat API as independent of each oth-

Manuscript Received Dec. 26, 2021; Accepted Mar. 10, 2022. This work was supported by the National Natural Science Foundation
of China (62172042), the National Key Research & Development Program of China (2020YFB1712104), and the Major Scientific and
Technological Innovation Projects of Shandong Province (2020CXGC010116)).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.451

Chinese Journal of Electronics
Vol.32, No.5, Sept. 2023

er and ignore the potential association between them.
Hence, the performance of classification will be affected
after the specific API is changed or replaced. Based on
previous observations [1] that different malware usually
keep the same behavior but switch to different imple-
mentations of system API to avoid similarity detection.
So, we propose to extract the relevance between APIs
to enhance API-based features. Our insight is that the
functional similarity of API will be reflected in the con-
text of API sequence. Therefore, we treat each API as a
word and convert them into embedding vectors using
natural language processing (NLP) method and gener-
ate API clusters with similar functions or usage to en-
hance the original API call sequence.

Specifically, our method extracts the complete se-
quence of system API calls from Dalvik code and uses
part of API sequences to train the API embedding
model, i.e., API2Vec, which generates dense vectors of
APIs. We expect related APIs should be gathered in
the feature space. Then the API vectors are grouped in-
to different clusters, which will be used to enhance the
original sequence of API. Moreover, we utilize the or-
der of API calls to abstract application behaviors, so we
adopt the Convolutional Neural Network (CNN) on ad-
jacency matrices generated from the API sequences.
The proposed method effectively reduces the feature di-
mension and be sensitive to different implementations
of similar behavior.

The contributions of this work are as follows.
1) We propose a new malware detection method by

mining functional similarity between APIs to produce
API clusters, and using adjacency matrices from en-
hanced sequences of API-cluster to abstract application
behaviors.

2) We implement an API embedding model trained
by sequences of API calls and obtain API clusters with
functional similarity through clustering, which sup-
ports resilience to change of the feature size.

3) We construct a detection model named EAO-
Droid and investigate its effectiveness through experi-
ments on three datasets. Experimental results show
that EAODroid outperforms the most advanced works
based on static analysis.

The rest of the paper is organized as follows. First,
Section II introduces related work. The new methodo-
logy will be described in Section III. Then, Section IV
details the dataset, experimental procedures, and res-
ults. Lastly, the summary and future work will be con-
cluded in Section V.

 II. Related Work
Previous researchers have proposed many novel

and efficient methods in the process of gaming with

malware producers. In this section, we divide different
methods into the following categories: based on dynam-
ic and static analysis, based on deep learning, and
based on the graph. It is worth mentioning that no
matter which category, there is no lack of researchers
who use APIs as feature.

 1. Dynamic and static analysis based mal-
ware detection

The static analysis method refers to extracting fea-
tures by analyzing the code, configuration or resources.
It has high efficiency and fast speed, but it is easily af-
fected by code confusion, packing, dynamic loading, etc.
Scalas et al. [2] used the frequency of occurrence of sys-
tem APIs to construct feature vectors to distinguish
ransomware, malware and goodware. MaMaDroid [3]
extracts the conversion probability between APIs from
the abstracted API sequences through Markov chain.
Their works abstract API to family/package/class to
reduce feature-dimension and impact of API changes,
but cannot represent the functional similarity between
APIs well. Other features, such as permissions [4]–[6],
opcode [7]–[10] and source code [11] are also widely used.
Many works combine API with other features for analy-
sis. Li et al. [12] mines the frequent pattern of Permis-
sion & API, assigns weights to items according to the
number of items, and constructs a weighted naive
Bayesian classifier based on the weight. RepassDroid [13]
believes that sensitive API triggering without user par-
ticipation is dangerous. All API trigger points are
traced from the code and used as additional attributes
of APIs to distinguish them. Meanwhile, PIKADroid [14]
constructs the set of all (entrypoint, target-API) pairs
and calculate the malicious scores of different pairs.
When there are too many malicious pairs in one An-
droid package (APK), there is reason to think it is sus-
picious. All of the works have selected APIs with cus-
tom rules, but the binary features are shallow and easy
to be affected by code obfuscation.

Different from static analysis, the dynamic analys-
is uses runtime behaviors, including system calls, net-
work and access behaviors, etc. SWORD [15] computes
typical paths of system-call traces to construct the fea-
ture space. Wang et al. [16] builds a platform to collect
HTTP traffic flow generated by the application and
analyzes the traffic data as text using NLP to identify
malicious traffic. Maybe we can consider the analysis of
covert VoIP (voice over Internet protocol) traffic [17] in
future. Many researchers will customize dynamic fea-
tures, which requires a sufficient understanding of mal-
ware. DroidCat [18] determines 70 indicators from
method calls and inter-component communication in-
tents, which can distinguish malware from goodware.
DroidSpan [19] defines 52 dynamic features based on

1170 Chinese Journal of Electronics 2023

sensitive access distribution from the dynamic call trace
and further studies the sustainability of features and
models. The combination of dynamic and static fea-
tures will enable researchers to analyze malicious beha-
vior further. CoDroid [20] is a hybrid method that uses
the mixed sequence of dynamic system call and static
opcode. DroidPortrait [21] builds static and dynamic
behavior databases from five dimension: configuration,
code, certification, network and system call, and real-
izes the correlation between different behaviors through
ML. Even though our method currently only uses stat-
ic features, our theory can also be applied to the sys-
tem call sequence extracted by dynamic analysis.

 2. Deep learning based malware detection
In order to combat the evolving malware and ad-

versarial samples for ML model [22], researchers use the
deep learning algorithm to improve detection perform-
ance. With help of the deep learning algorithm, fea-
tures can be learned automatically without manual se-
lection, which greatly improves efficiency. Multimodal
[23] uses five feature vectors and inputs each vector to
different initial deep neural networks (DNNs) separ-
ately. The five initial networks are not connected but
are merged into the final DNN. It turns out that train-
ing different networks with different features and mer-
ging is better than training a single model with merged
features. DeepRefiner [24] adopts a two-layer network
structure. The second layer network can further detect
the APK samples that cannot be determined in the first
layer network, which can reduce the false positive rate
effectively, but does not solve the problem of conflict
between two layers. TC-Droid [25] applies TextCNN to
mine the difference between analysis reports of samples,
which replace manual feature engineering effectively.
Andro-Simnet [26] builds a weighted network graph of
similarity samples and cluster samples into families
with an unsupervised model. To fight against the evolu-
tion of malware, DroidEvolver [27] updates the feature
sets and aging models if there is any drift. Specifically,
it trains five online learning models to build a model
pool. When an unknown sample is identified as drift,
the pseudo label will be generated according to the vot-
ing mechanism and used to update the aging models. In
addition, DroidFusion [28] studies the influence of the
combination of different initial machine learning mod-
els on the performance. Works based on deep learning
use a large number of features, or directly raw data,
which will lead to high computational complexity. Al-
though our method applies the deep learning algorithm
CNN, our feature dimensions are adjustable.

 3. Graph based malware detection
Methods based on raw features such as permission,

API, system call, etc., are easy to be escaped, and the
high-dimensional sparse feature vectors will also bring

unnecessary resource consumption. On the contrary, the
structural features generated based on graph (e.g., func-
tion call graph, FCG) are more robust. Considering
that the implementation of malicious behaviors cannot
bypass API calls, there have been many works using API-
related graphs. FalDroid [29] performs graph matching
and clustering according to the structural similarity
between sensitive API nodes in graph. The frequent
graphs in malicious families will be identified as fea-
tures and assigned weighted scores as evidence for fam-
ily classification. GefDroid [30] also uses structural role
of API nodes, but the similarity calculation of API is
based on the API node embedding through struc2vec.
In addition, they construct a malware link network and
applied and community detection algorithms to cluster
malware into families. AndrEnsemble [31] computes
fuzzy hash value of function nodes in call graphs and
aggregates all hash graphs of one malicious family to
extract the frequent API set. GDroid [32] maps APIs
and apps into a heterogeneous graph and uses graph
convolutional network (GCN) model to obtain the node
embedding to represent samples. These works are based
on single API nodes, which is effective when using the
same API implementations between malware. When
switching to the different API implementations, the dia-
metrically opposite results will be computed. Using
functions including API calls as graph node is more
flexible. Cai et al. [33] and Feng et al. [34] both con-
vert the function nodes in FCG into vector form. The
former is based on word embedding, and the latter one
extracts internal attributes of function as features. The
final vector representations of applications are learned
through GCN or graph neural network (GNN) model.
GSDroid [35] combines dynamic analysis and graph sig-
nal to extract low dimensional feature vectors from sys-
tem call graph. Graph-based malware detection is one
of our interests, but larger applications will generate
larger-scale graphs to be difficult to analyze. The key is
how to construct a meaningful graph and extract mean-
ingful information.

 III. Methodology
In this section, we describe our approach in detail.

Fig.1 illustrates the architecture of EAODroid. There
are the following four main stages: 1) Extracting the
complete system API call sequences from applications.
2) Learning API embedding through the API2Vec mod-
el, and then using the K-means algorithm to group
APIs in clusters. 3) Enhancing the original API se-
quences according to the API clusters and constructing
the adjacency matrix. 4) Applying the CNN model on
the adjacency matrix to extract order information and
classify unknown applications.

EAODroid: Android Malware Detection Based on Enhanced API Order 1171

Android.content.Context:getSystemService
Android.n et.ConnectivityMan ager:getNetworkInfo
Android.n et.Networkln fo:isConnectedld
Android.n et.Co nnectivityMan ager:getNetworkInfo an
Droid.net.NetworkIn fo:isConnected
…

Recurison_based system API

sequences
Android apps

Adjacency matrix CNN model

0 1 0 1 0

1 0 0 0 0

1 0 1 1 0

0 1 0 0 1

0 0 0 1 1

API2Vec and K-means_based

cluster generation
Fig. 1. Illustrates the overall workflow of EAODroid.

 1. Recursion-based system API call sequence
extraction

∗

The first step of EAODroid is to extract system
API call sequences from APK files. An Android app is
normally written in Java and compiled to Dalvik code
stored in classes.dex file and the compiled code and oth-
er resources are packaged into an APK file. We first use
a decompile tool (ApkTool*1) to get the Dalvik code
from APK files. Each class and its methods are defined
in the corresponding smali file. Then, we identify the
invocation statements (“invoke- ”) to extract callees
from the Dalvik code in turn. Generally, the callee is
not necessarily a system API, it may be a user-defined
function. Compared with system API, user-defined
functions are easier to be modified and avoided by at-
tackers using code obfuscation technology, which not
only increases computational complexity but also de-
creases model performance. So, we only focus on sys-
tem API. We implement a recursion-based system API
extraction to eliminate user-defined functions while re-
taining the complete API call sequence. In short, when
the current callee is a user-defined function, all callee in
this function will be queried down until the final se-
quence does not contain another user-defined one. Fig.2
shows an example, the function “download()” invokes
another user-defined function “createFileF()”, so all sys-
tem callees in function “createFileF()” are used to re-
place itself when generate the sequence of “download()”.

 2. API cluster generation
To extract and utilize the functional similarity of

APIs, we implement an API embedding model, API2Vec,
trained by the sequences of system API, which con-
verts APIs into dense vectors. Then the clustering al-
gorithm K-means is used to group similar APIs into

clusters. Fig.3 illustrates this process.
1) API embedding. The API2Vec model is inspired

by the task of word embedding in NLP. It treats single
system APIs as words, and API sequences in one smali
file will be regarded as one row in the training corpus
for API2Vec. The inconsistent length of API sequences
extracted from smali files will not affect the embedding
process, because the API2Vec extracts API pairs in the
sliding window as model input in API sequences. For
example, given an API sequence “java.io.IOException.
printStackTrace java.net.HttpURLConnection.getInput-
Stream java.io. InputStream.Read java.io.FileOutput-
Stream.Close android.Util.Log.e”, the intermediate API
“java.io. InputStream.Read” is treated as the output
and its contexts as the input. The training object is
similar to the CBOW (continuous bag of words) model,
which learns dense vectors to represent each API. If
two different APIs have similar contexts, they will be
closer in the embedding space, and EAODroid can use
the similarity to capture more advanced semantic in-
formation.

2) API clustering. We apply the K-means to group
API embedding in clusters to obtain API clusters with
functional similarity. Furthermore, Android malware
usually invokes sensitive API calls to perform malicious
behaviors. To narrow the scope of analysis, we use a set
of sensitive APIs summarized by Susi [36] as the key
API for malware detection tasks, including 18044
sources and 8278 sinks. Note that the number of
clusters K is optional, and the appropriate number of
clusters can be considered by combining consumption
and detection performance.

 3. Feature matrix construction
Due to the different writing habits of malware de-

1172 Chinese Journal of Electronics 2023

*1
 https://ibotpeaches.github.io/Apktool/

velopers, or the update iteration of homologous mal-
ware, completely consistent API sequences often do not
appear. Luckily, when performing similar malicious be-
haviors, the order of key APIs usually does not change
much. Most of the time, the change is to add or delete
some API calls. So, in order to explore the correlation
between these incomplete sequences, we construct API
adjacency matrix from API sequences with API clusters
to extract order information. Another benefit is that
compared with methods that use graphs directly, using
the adjacency matrix can effectively reduce the high

complexity.
K ×K

S = {a1,a2, ...,an}
ai Cai

Define a matrix, where K is the number of
API clusters. Given that is an API
sequence, where just belong to only one cluster ,
The feature matrix is obtained by

Matrix[m][l] =

 1, ∃ (ai,aj , i < j ≤ n) in S,
ai ∈ Cm,aj ∈ Cl

0, elsewhere
(1)

 4. CNN based classification
The CNN model has translation and scale invari-

Fig. 2. Instance of the recursion-based system API sequences.

Java.io.lOException.printStackTrace

Java.net.Htt pURLConnection.getlnputStream

Java.io.InputStream.Read

Java.io.FileOutputStream.Close

Android.Util.Log.e

java.io.InputStream.Read

Normal APl

Java.io.IOException.

printSta ckTrace
Java.net.HttpURLConnection.

getInputStream
Android.Util.Log.e

21

2W×C-dim
…

2W

Sensitive APl

Output layer

Input layer

Hidden layer

W=Window Size

E=APl Embedding Vector Size

C=APl Vocabulary Size C-dim

E-dim

V′
E×C

V
C×E V

C×E V
C×E

Fig. 3. API embedding and clustering.

EAODroid: Android Malware Detection Based on Enhanced API Order 1173

ance, which can capture the feature block in the adja-
cency [37]. So, We use the CNN model to perform clas-
sification in the proposed method. The architecture of
the CNN model used in this paper is shown in Table 1.
It includes an input layer, four convolutional layers, a
maximum pooling layer, a fully connected layer, and a
softmax layer. The input of the CNN model is the adja-
cency matrix generated in the previous stage, and the
output is a two-dimensional vector representing the
probability of being benign and malicious. To prevent
the gradient from exploding, we perform batch nor-
malization on the feature map of each convolutional
layer.

Table 1. CNN Structure

Model Structure

CNN

Input Layer(64, 64, 1)
×Conv2D(3, 3 3)

BatchNormalization()
×Conv2D(32, 3 3)

BatchNormalization()
×Conv2D(64, 3 3)

BatchNormalization()
×Conv2D(128, 3 3)

BatchNormalization()
GlobalMaxPool2D()

Linear(2)
Softmax()

 IV. Evaluation
In this section, we first introduce the dataset and

experimental settings, and then we conduct extensive
experiments to evaluate the effectiveness of the pro-
posed EAODroid.

 1. Dataset
We obtain malware samples from the two malware

datasets: 1) Drebin [38]; 2) AMD [39]. Both two data-
sets have been widely used in previous researches. The
benign samples are collected from the two sources: 1)
Xiaomi application market*2, a popular third-party An-
droid app market in China, 2) PlayDrone [40]. We ran-
domly select a part of samples to compose our experi-
mental datasets. Samples that failed to be analyzed by
Apktool have been deleted. Besides, since the baseline
method compared in our paper uses FlowDroid [41] to
extract call graphs, we also delete samples that cannot
be analyzed by FlowDroid. Finally, we compose three
different experimental datasets as shown in Table 2.

 2. Experimental environment
The experiments of EAODroid are conducted on a

computer with Intel i7-6700 CPU(3.4 GHz) and 32G of

RAM. And the proposed EAODroid is implemented us-
ing Python with several packages: Scikit-learn, Tensor-
Flow, and Matplotlib.

 3. Parameter settings
The number of API call sentences are used to train

the API2Vec model accounted for 25% of each dataset.
The embedding and window size of API2Vec are set in
such a way to take a balance between efficiency and
performance. We selected different parameter sets ac-
cording to the experience of previous researchers. The
API embedded dimension is selected in {64,128,256},
and the window size is determined in {5,10}. Through
experiments, it is found that the larger embedding di-
mension and window size do not significantly improve
the final detection performance. In order to improve ef-
ficiency, the output embedding representation for each
API is set to 64-dimension and the window size is 5.
The influence of different cluster numbers K on detec-
tion performance will be detailed in the rest of the pa-
per. According to the experiment, the final K value of
the K-means algorithm is set to 64 and the feature mat-
rix used by EAODroid is set to (64,64) in experiments
of detection performance. The batch size is 256 and the
learning rate is 0.001. The parameters of the CNN mod-
el are shown in the next subsection.

 4. Parameter settings
We conduct tenfold cross-validation to measure the

performance of EAODroid and each dataset is split in-
to 90% for training and 10% for testing. We evaluate
the performance of EAODroid using four indicators: F1-
measure, Accuracy, Recall, and Precision. Like most re-
searches, true positive (TP) indicates that malicious ap-
plications are correctly classified as malicious, false pos-
itive (FP) indicates that benign applications are incor-
rectly classified as malicious, while correctly classified
benign applications are labeled as true negative (TN)
and incorrectly classified benign applications are labeled
as false negative (FN). Depending on these basic met-
rics, the four indicators can be generated as follows:

Acc
The ratio of the number of samples correctly classi-

fied to the number of all samples is defined as .

Acc =
TN + TP

TN + TP + FN + FP

The ratio of the number of correctly classified mali-

Table 2. Summary statistics of the experimental dataset

Dataset Benign Drebin AMD Total
D1 5643 5532 0 11175
D2 5643 0 5619 11262
D3 5643 2800 2800 11243

1174 Chinese Journal of Electronics 2023

*2
 http://app.mi.com/

Precision
cious samples to the number of all samples identified as
malicious is defined as :

Precision =
TP

TP + FP

Recall

The ratio of the number of correctly classified mali-
cious samples to the number of all malicious samples is
defined as :

Recall =
TP

TP + FN

F1-measureThe definition of is as follows:

F1-measure = 2× Recall× Precision
Recall+ Precision

 5. Performance evaluation
1) Detection performance. In this experiment, we

evaluated the general performance of EAODroid on the
malware detection task under dataset D1. Simultan-
eously we compare EAODroid with traditional machine
learning such as K-nearest neighbor (KNN), Random
forest (RF), support vector machine (SVM), naive
Bayes (NB), logistic regression (LR). Table 3 shows the
comprehensive results of different algorithms. The pro-
posed EAODroid exceeds common machine learning
methods in most of the performance metrics and
achieves the highest F1-measure reaching 99.5%.

Table 3. Detection performance of EAODroid and com-

mon ML algorithm

Method Acc Precision Recall F1-measure
EAODroid 0.995 0.994 0.996 0.995

RF 0.992 0.986 0.998 0.992
SVM 0.991 0.989 0.993 0.991
KNN 0.986 0.977 0.996 0.986
NB 0.913 0.859 0.985 0.918
LR 0.993 0.991 0.995 0.993

K

2) Different feature dimensions. In this experiment,
we discuss the performance results with different fea-
ture dimensions under dataset D1. The feature dimen-
sion is according to the number of API clusters,
which should be built based on the same API2Vec mod-
el to avoid other variables. As shown in Fig.4, we ad-

Kjust to (8, 16, 32, 64,128) and experimental results
show that our model can still achieve satisfactory res-
ults despite the use of the lower-dimensional feature.
When the dimension rises to 128, the performance drops
in a small range, which shows that too many features
introduce useless information and even interfere with
model learning.

1.00

0.98

M
et

er
ic

 (
%

)

0.96

0.94

0.92

0.90
8 16 32

Number of cluster

64

Acc

Recall

Precision

F-measure

128

Fig. 4. Performance comparison of different feature dimen-

sion.

3) Comparison with other detection methods using
Drebin dataset. To compare with other state-of-art
works, we investigate previously proposed detection ap-
proaches. All works use different types of features to
build their models. Unfortunately, most of them are not
publicly available and difficult to reproduce with the
same parameters. So we select works that utilize the
malware samples from Drebin and compare the per-
formance under the Drebin dataset. As shown in Table 4,
compared with detection approaches based on other fea-
tures, EAODroid is superior to others in terms of accur-
acy and F1-measure.

In addition, we consider MaMaDroid as the
baseline and compare detection results under the same
dataset D1. MaMaDroid abstracts API calls into Fam-
ily or Package and computes the conversion frequency
between abstracted API calls through Markov chains. It
trains an RF classifier and achieves high performance.
To reproduce MaMaDroid, we obtain the API family
list (number is 11) and the latest API package list
(number is 357, MaMaDroid is 340) according to the

Table 4. Performance comparison with previous works under Drebin (paper survey)

System Dataset (Malware, Benign) Features Classification algorithm Precision/F1-measure
EAODroid (5534,5643) API CNN 0.994/0.995
ProDroid [42] (5000,500) API PHMM 0.930/0.939
CoDroid [20] (2978,2707) Opc + Sys CNN-BiLSTM 0.954/0.986
TinyDroid [8] (2400,2400) Opc RF 0.921/NA
FAMD [43] (5560,5666) Per + Opc Catboost 0.980/0.973

Frenklach et al. [44] (5500,5500) Source Code RF NA/0.976
Note: API: API call; Opc: Opcode; Per: Permission.

EAODroid: Android Malware Detection Based on Enhanced API Order 1175

description in their paper. As shown in Table 5, we can
see that EAODroid has improved almost every indicat-
or. The results clearly illustrate that our method has
better performance on malware detection. MaMaDroid
has very different feature dimensions in two different
modes, ranging from one hundred to hundreds of thou-
sands. The proposed method is more flexible to sup-
port any dimension of the feature under the premise of
ensuring accuracy.

Table 5. Performance comparison with MaMaDroid

Method Feature
dimension Acc PrecisionRecallF1-measure

EAODroid (11,11) 0.986 0.979 0.994 0.986
EAODroid (64,64) 0.995 0.994 0.996 0.995

MaMaDroid(family) 11 × 11 0.946 0.953 0.933 0.943
MaMaDroid(package) 357 × 357 0.977 0.968 0.964 0.966

4) Generalization ability. In this experiment, we
use three different datasets in Table 1 to verify the gen-
eralization ability of EAODroid. We use a ten-fold
cross-validation method to train and test these three
datasets. As shown in Table 6, our model achieves high
classification results in three different datasets, but the
classification with Drebin is better than AMD. Samples
of AMD dataset have a larger span (2010–2016) and
greater diversity. Malware based on different levels of
API framework will have large differences in the use of
sensitive APIs, which will affect model performance.
How to further eliminate the false positives caused by
API updates is also one of our next tasks.

Table 6. Performance under different datasets

Dataset Acc Precision Recall F1-measure
D1 0.995 0.994 0.996 0.995
D2 0.972 0.975 0.967 0.970
D3 0.966 0.963 0.973 0.968

5) Runtime performance. In this section, we evalu-
ate the time consumption of EAODroid to demonstrate
its effectiveness. The first phase of EAODroid involves
extracting API sequences from APKs and the time con-
sumption of this phase depends on the size of analyzing
APKs. For example, 113 KB malware requires 0.68 s,
while 21.3 MB malware requires 53.52 s to complete.
Next, we discuss the time spent in the API cluster gen-
eration, which includes two parts: API embedding and
API clustering. In the embedding phase, API2Vec takes
about 108 s to complete the embedding process by tak-
ing the sequences extracted from about 2800 samples as
the corpus. The API clustering phase completes in
about 2 s when K is set to 64. Due to the low feature
dimension, the phase of feature matrix generation is fast
and takes less than 0.2 s per sample. Another crucial

phase is detection model training. Our training set D1
contains more than 10000 samples and the CNN model
takes approximately 177.2 s with 50 epochs to exceed
the performance shown Table 3. In summary, our ex-
periments show that the time consumption of EAO-
Droid is acceptable in real word.

 V. Conclusion and Discussion
In this paper, we propose a new Android malware

detection method based on enhanced API order, named
EAODroid. It collects callees from invoke statements to
form system API sequences and constructs adjacency
matrix, replacing use API call graph. EAODroid needs
to disassemble Android applications to get enough
Dalvik code. However, some applications apply tech-
niques such as shelling and dynamic loading to avoid
analysis or protect copyright, which makes it unable to
extract features. But, if we can get the true execution
entry of these applications and find hidden executable
code, it will be still effective.

In the future, we will further perform dynamic ana-
lysis to extend the existing method. At the same time,
with continuous malware evolution, the aging of detec-
tion models has become an urgent issue. Recent effort
been contributed to updating models and evolving fea-
ture set. However, the issue has not been fully ad-
dressed. We can start from the malware itself and study
how malware of the same family evolves and what un-
changed characteristics will be maintained. We believe
it will be of great help for us to define new immutable
characteristics.

References
 X. H. Zhang, Y. Zhang, M. Zhong, et al., “Enhancing state-
of-the-art classifiers with API semantics to detect evolved
Android malware,” in Proceedings of ACM SIGSAC Con-
ference on Computer and Communications Security, New
York, NY, USA, pp.757–770, 2020.

[1]

 M. Scalas, D. Maiorca, F. Mercaldo, et al., “On the effect-
iveness of system API-related information for Android
ransomware detection,” Computers & Security, vol.86,
pp.168–182, 2019.

[2]

 L. Onwuzurike, E. Mariconti, P. Andriotis, et al., “Ma-
MaDroid: Detecting Android malware by building Markov
chains of behavioral models (Extended Version),” ACM
Transactions on Privacy and Security, vol.22, no.2, article
no.14, 2019.

[3]

 A. Arora, S. K. Peddoju, and M. Conti, “PermPair: An-
droid malware detection using permission pairs,” IEEE
Transactions on Information Forensics and Security,
vol.15, pp.1968–1982, 2020.

[4]

 X. Jiang, B. L. Mao, J. Guan, et al., “Android malware de-
tection using fine-grained features,” Scientific Program-
ming, vol.2020, article no.5190138, 2020.

[5]

 J. Li, L. C. Sun, Q. B. Yan, et al., “Significant permission
identification for machine-learning-based Android malware

[6]

1176 Chinese Journal of Electronics 2023

detection,” IEEE Transactions on Industrial Informatics,
vol.14, no.7, pp.3216–3225, 2018.
 A. Pektaş and T. Acarman, “Learning to detect Android
malware via opcode sequences,” Neurocomputing, vol.396,
pp.599–608, 2020.

[7]

 T. M. Chen, Q. Y. Mao, Y. M. Yang, et al., “TinyDroid: A
lightweight and efficient model for Android malware detec-
tion and classification,” Mobile Information Systems,
vol.2018, article no.4157156, 2018.

[8]

 N. McLaughlin, J. M. del Rincon, B. Kang, et al., “Deep
Android malware detection,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and
Privacy, Scottsdale, AZ, USA, pp.301–308, 2017.

[9]

 W. N. Niu, R. Cao, X. S. Zhang, et al., “OpCode-level func-
tion call graph based Android malware classification using
deep learning,” Sensors, vol.20, no.13, article no.3645, 2020.

[10]

 R. Mateless, D. Rejabek, O. Margalit, et al., “Decompiled
APK based malicious code classification,” Future Genera-
tion Computer Systems, vol.110, pp.135–147, 2020.

[11]

 J. W. Li, B. Z. Wu, and W. P. Wen, “Android malware de-
tection method based on frequent pattern and weighted na-
ive Bayes,” in Proceedings of the 15th International Annu-
al Conference, Beijing, China, pp.36–51, 2018.

[12]

 N. N. Xie, F. P. Zeng, X. X. Qin, et al., “RepassDroid:
Automatic detection of Android malware based on essential
permissions and semantic features of sensitive APIs,” in
Proceedings of 2018 International Symposium on Theoret-
ical Aspects of Software Engineering, Guangzhou, China,
pp.52–59, 2018.

[13]

 J. Allen, M. Landen, S. Chaba, et al., “Improving accuracy
of Android malware detection with lightweight contextual
awareness,” in Proceedings of the 34th Annual Computer
Security Applications Conference, San Juan, PR, USA,
pp.210–221, 2018.

[14]

 S. Bhandari, R. Panihar, S. Naval, et al., “SWORD: se-
mantic aWare andrOid malwaRe detector,” Journal of in-
formation Security and Applications, vol.42, pp.46–56,
2018.

[15]

 S. S. Wang, Q. B. Yan, Z. X. Chen, et al., “Detecting An-
droid malware leveraging text semantics of network flows,”
IEEE Transactions on Information Forensics and Security,
vol.13, no.5, pp.1096–1109, 2018.

[16]

 C. Liang, X. M. Wang, X. S. Zhang, et al., “A payload-de-
pendent packet rearranging covert channel for mobile VoIP
traffic,” Information Sciences, vol.465, pp.162–173, 2018.

[17]

 H. P. Cai, N. Meng, B. Ryder, et al., “DroidCat: effective
Android malware detection and categorization via app-level
profiling,” IEEE Transactions on Information Forensics
and Security, vol.14, no.6, pp.1455–1470, 2019.

[18]

 H. P. Cai, “Assessing and improving malware detection sus-
tainability through app evolution studies,” ACM Transac-
tions on Software Engineering and Methodology, vol.29,
no.2, article no.8, 2020.

[19]

 N. Zhang, J. F. Xue, Y. X. Ma, et al., “Hybrid sequence-
based Android malware detection using natural language
processing,” International Journal of Intelligent Systems,
vol.36, no.10, pp.5770–5784, 2021.

[20]

 X. Su, L. J. Xiao, W. J. Li, et al., “DroidPortrait: Android
malware portrait construction based on multidimensional
behavior analysis,” Applied Sciences, vol.10, no.11, article
no.3978, 2020.

[21]

 X. M. Wang, J. Li, X. H. Kuang, et al., “The security of
machine learning in an adversarial setting: a survey,”
Journal of Parallel and Distributed Computing, vol.130,

[22]

pp.12–23, 2019.
 T. Kim, B. Kang, M. Rho, et al., “A multimodal deep learn-
ing method for Android malware detection using various
features,” IEEE Transactions on Information Forensics
and Security, vol.14, no.3, pp.773–788, 2019.

[23]

 K. Xu, Y. J. Li, R. H. Deng, et al., “DeepRefiner: Multi-lay-
er Android malware detection system applying deep neural
networks,” in Proceedings of 2018 IEEE European Sym-
posium on Security and Privacy, London, UK, pp.473–487,
2018.

[24]

 N. Zhang, Y. A. Tan, C. Yang, et al., “Deep learning fea-
ture exploration for Android malware detection,” Applied
Soft Computing, vol.102, article no.107069, 2021.

[25]

 H. M. Kim, H. M. Song, J. W. Seo, et al., “Andro-Simnet:
Android malware family classification using social network
analysis,” in Proceedings of the 2018 16th Annual Confer-
ence on Privacy, Security and Trust, Belfast, Ireland,
pp.1–8, 2018.

[26]

 K. Xu, Y. J. Li, R. Deng, et al., “DroidEvolver: Self-
evolving Android malware detection system,” in Proceed-
ings of 2019 IEEE European Symposium on Security and
Privacy, Stockholm, Sweden, pp.47–62, 2019.

[27]

 S. Y. Yerima and S. Sezer, “DroidFusion: A novel multi-
level classifier fusion approach for Android malware detec-
tion,” IEEE Transactions on Cybernetics, vol.49, no.2,
pp.453–466, 2019.

[28]

 M. Fan, J. Liu, X. P. Luo, et al., “Android malware famili-
al classification and representative sample selection via fre-
quent subgraph analysis,” IEEE Transactions on Informa-
tion Forensics and Security, vol.13, pp.1890–1905, 2018.

[29]

 M. Fan, X. P. Luo, J. Liu, et al., “Graph embedding based
familial analysis of Android malware using unsupervised
learning,” in Proceedings of the 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering, Montreal,
QC, Canada, pp.771–782, 2019.

[30]

 O. Mirzaei, G. Suarez-Tangil, J. M. de Fuentes, et al., “An-
drEnsemble: Leveraging API ensembles to characterize An-
droid malware families,” in Proceedings of 2019 ACM Asia
Conference on Computer and Communications Security,
Auckland, New Zealand, pp.307–314, 2019.

[31]

 H. Gao, S. Y. Cheng, and W. M. Zhang, “GDroid: Android
malware detection and classification with graph convolu-
tional network,” Computers & Security, vol.106, article
no.102264, 2021.

[32]

 M. H. Cai, Y. Jiang, C. Y. Gao, et al., “Learning features
from enhanced function call graphs for Android malware de-
tection,” Neurocomputing, vol.423, pp.301–307, 2021.

[33]

 P. B. Feng, J. F. Ma, T. Li, et al., “Android malware detec-
tion via graph representation learning,” Mobile Information
Systems, vol.2021, article no.5538841, 2021.

[34]

 R. Surendran, T. Thomas, and S. Emmanuel, “GSDroid:
Graph signal based compact feature representation for An-
droid malware detection,” Expert Systems with Applica-
tions, vol.159, article no.113581, 2020.

[35]

 S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning
approach for classifying and categorizing Android sources
and sinks,” in Proceedings of the 21st Annual Network and
Distributed System Security Symposium, San Diego, CA,
USA, pp.1–15, 2014.

[36]

 Z. P. Yu, R. Cao, Q. Y. Tang, et al., “Order matters: Se-
mantic-aware neural networks for binary code similarity de-
tection,” in Proceedings of the 34th AAAI Conference on
Artificial Intelligence, New York, NY, USA, pp.1145–1152,
2020.

[37]

EAODroid: Android Malware Detection Based on Enhanced API Order 1177

 D. Arp, M. Spreitzenbarth, M. Hübner, et al., “DREBIN:
Effective and explainable detection of Android malware in
your pocket,” in Proceedings of the 21st Annual Network
and Distributed System Security Symposium, San Diego,
CA, USA, pp.23–26, 2014.

[38]

 F. g. Wei, Y. p. Li, S. Roy, et al., “Deep ground truth ana-
lysis of current Android malware,” in Proceedings of the
14th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Bonn, Ger-
many, pp.252–276, 2017.

[39]

 N. Viennot, E. Garcia, and J. Nieh, “A measurement study
of Google play,” in Proceedings of 2014 ACM Internation-
al Conference on Measurement and Modeling of Computer
Systems, Austin, TX, USA, pp.221–233, 2014.

[40]

 S. Arzt, S. Rasthofer, C. Fritz, et al., “FlowDroid: precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps,” ACM SIGPLAN Notices,
vol.49, no.6, pp.259–269, 2014.

[41]

 S. K. Sasidharan and C. Thomas, “Prodroid—an Android
malware detection framework based on profile hidden
Markov model,” Pervasive and Mobile Computing, vol.72,
article no.101336, 2021.

[42]

 H. P. Bai, N. N. Xie, X. Q. Di, et al., “FAMD: A fast multi-
feature Android malware detection framework, design, and
implementation,” IEEE Access, vol.8, pp.194729–194740,
2020.

[43]

 T. Frenklach, D. Cohen, A. Shabtai, et al., “Android mal-
ware detection via an app similarity graph,” Computers &
Security, vol.109, article no.102386, 2021.

[44]

HUANG Lu was born in 1997.
She received the B.E. degree in software
engineering from the Central South Uni-
versity. She is now a Ph.D. candidate of
Beijing Institute of Technology. Her re-
search interests include Android mal-
ware detection and software security.
(Email: hhuangluu@163.com)

XUE Jingfeng was born in 1975.
He is a Professor and Ph.D. Supervisor in
Beijing Institute of Technology. His main
research interests focus on network secur-
ity, data security, and software security.
(Email: xuejf@bit.edu.cn)

WANG Yong was born in 1975.
She received the Ph.D. degree in com-
puter science from Beijing Institute of
Technology. She is an Associate Profess-
or of Beijing Institute of Technology. Her
research interests include cyber security
and machine learning, and software se-
curity. (Email: wangyong@bit.edu.cn)

QU Dacheng was born in 1974.
He is a Professor in Beijing Institute of
Technology. His main research interests
focus on social network, recommender
systems, and bioinformatics.
(Email: qudc@bit.edu.cn)

CHEN Junbao was born in 1999.
He received the B.E. degree in software
engineering from Beijing Institute of
Technology. He is currently pursuing the
master’s degree with School of Computer
Science and Technology, Beijing Insti-
tute of Technology. His research inter-
ests include federated learning and AI se-
curity.

(Email: chen.junbao@outlook.com)

ZHANG Nan was born in 1991.
He received the B.E. degree in computer
application technology from Anyang Nor-
mal University. He is a Ph.D. candidate
of Beijing Institute of Technology. His re-
search interests include machine learning,
malware detection, and information se-
curity. (Email: nanzhang611@bit.edu.cn)

ZHANG Li (corresponding au-
thor) received the Ph.D. degree in com-
puter application technology from Beijing
Institute of Technology, Beijing, China.
She is currently an Associate Professor of
the Communication University of Zheji-
ang. Her current research interests in-
clude digital forensics, machine learning,
and information security.

(Email: nythhsg@sina.com)

1178 Chinese Journal of Electronics 2023

