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   Abstract — Fault detection  (FD)  for  traction  sys-
tems is  one  of  the  active  topics  in  the  railway  and  aca-
demia because it is the initial step for the running reliab-
ility and safety of high-speed trains. Heterogeneity of data
and  complexity  of  systems  have  brought  new  challenges
to the traditional FD methods. For addressing these chal-
lenges,  this  paper designs an FD algorithm based on the
improved unscented Kalman filter (UKF) with considera-
tion of  performance  degradation.  It  is  derived  by  incor-
porating a degradation process into the state-space model.
The  network  topology  of  traction  systems  is  taken  into
consideration for  improving  the  performance  of  state  es-
timation. We first obtain the mixture distribution by the
mixture of sigma points in UKF. Then, the Lévy process
with jump points is introduced to construct the degrada-
tion model. Finally, the moving average interstate stand-
ard  deviation  (MAISD)  is  designed  for  detecting  faults.
Verifying the proposed methods via a traction systems in
a certain type of trains obtains satisfactory results.

   Key words — Fault  detection, Unscented  Kalman

filter, Traction systems, State degradation.

 I. Introduction
The  emergence  of  high-speed  trains  has  brought

great convenience to our life. It not only reduces travel
time for passengers, but also contributes to the growth
of social benefits [1]–[3]. Meanwhile, the safety of high-
speed trains  has  been  paid  much  attention  accompan-
ied  by  the  increasing  of  railway  industry.  Until  now,

railway  accidents  are  still  not  be  avoided  completely.
According to the records of cases, more than seven acci-
dents per year occur around the world, and the fault of
system units  is  the primary cause of  catastrophic  acci-
dents [4], [5]. In 2012, a severe rail disaster caused by a
circuit  fault  took  place  in  Buenos  Aires.  Fifty-one
people  were  killed  and  more  than  700  were  injured  in
this  accident.  In  addition,  the  train  collision  occurred
on the Yongtaiwen railway line in the suburbs of Wen-
zhou.  It  is  a  fatal  crash  caused  by  Chinese  high-speed
trains, and is  the  third-deadliest  high-speed  train  acci-
dent in history. Therefore, the railway is faced with the
pressure of  rapid  transit  that  calls  for  significant  im-
provements  in  reliability  and  rail  safety  [6]–[8].  Fault
detection (FD), as the primary study for system reliab-
ility, is  becoming  increasingly  important  in  current  re-
searches.

As a powerful tool for FD in high-speed trains, the
model-based method improves the system reliability by
utilizing redundancy information [9]–[11]. It differs from
the  signal  analysis-based  methods,  which  have  limited
efficiency for  FD tasks  in  dynamic  cases.  And  the  on-
line  implementation  is  also  a  challenging  problem.
Many improved methods cannot get satisfactory results
for real-time performance [12]. Another kind of method
favored by researchers is the data-driven method which
receives  significant  attention  in  recent  years  [13]–[15].
The  main  procedure  of  this  type  of  method  concludes 
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off-line modeling and online detection. Although the ex-
isting  methods  can  achieve  the  enhanced  performance,
some limitations  are  still  evident  in  practical  applica-
tions.  The  FD  performance  rely  on  both  the  quality
and  size  of  data  collected  from  sensors  unavoidably.
However, for  some  systems  with  high  safety  require-
ments,  the  results  will  be  affected when fault  data  are
not enough for analysis. Consequently, the model-based
method  shows  its  own  advantages  than  data-driven
ones.

A  preliminary  attempt  introduced  a  state-space
model of high-speed trains for detecting the faults [16].
For  improving  the  dynamic  performance,  it  considered
the nonlinear characteristics and the disturbance atten-
uation of models. Up to now, the state-space model has
been a favored solution for FD [17], [18], fault prognost-
ic  [19],  [20],  and  fault  isolation  [21],  [22].  For  traction
control systems, the improved methods based on state-
space models have been used such as the classical filter
[23],  the complementary filter  [24], event-driven frame-
works [25], [26], and the residual-based estimations [27].
Among them, particle  filter  and unscented Kalman fil-
ter (UKF) are adopted commonly due to the good tra-
cing performance  for  nonlinear  systems.  Their  advant-
ages lie in accuracy and efficiency of calculations. Con-
sidering  the  studies  above,  the  accurate  mathematical
model and statistics are critical for fault detection based
on the state-space model. In addition, few studies have
considered  the  multi-sensor  monitoring  of  the  traction
systems. It  may be attributed to the fact that there is
no communication between nodes in this scene. It is not
appropriate  to  force  a  distributed  approach  to  detect
faults. Different from the electrical parameters, the tem-
perature of target point will be affected by the environ-
ment and other  measured  points  in  the  same monitor-
ing system, even if there is no node interconnection. It
will  result  in  the  complex  distribution  of  states  as
shown in Fig.1.
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Fig. 1. The complex distribution of systems in actual scenarios.

 

Besides,  state  degradation  commonly  occurs  in
traction systems. As given in studies of prognostics and
health  management,  the  degradation  model  based  on

Wiener process  is  highly  focused.  It  is  usually  con-
sidered to be applicable to systems with random initial
values.  In  fact,  most  existing  stochastics  models,  such
as  Gamma  process  [28],  inverse  Gaussian  process  [29],
and Lévy process [30], [31], are also useful to avoid the
initial unpredictability  by  addressing  deterioration  in-
crements or  percentage  drops  in  performance.  Regret-
tably, for  traction  systems,  all  these  models  are  diffi-
cult to apply directly, because of the existence of jump
points.

Motivated by the above discussions, this study are
exploiting the state estimation theory to finish the FD
task of traction systems. Considering the real-time per-
formance of systems with high sampling frequency, this
paper  focuses  on  the  improvement  strategy  of  UKF.
The contributions  of  the  work  are  summarized  as  fol-
lows.

1)  A sigma-mixed UKF is  proposed for  estimating
the states with coupling distribution. The parameters in
a mixture model are estimated by the expectation-max-
imization algorithm.

2) A degradation model with jumps is constructed
based  on  the  Lévy  process  that  is  a  general  form  for
most  stochastic  processes.  The  decomposability  of  the
degradation model is given by two lemmas and realized
via wavelet transform.

3) A test  statistic  based on moving average  inter-
state  standard  deviation  (MAISD)  is  put  forward  for
FD.  The  sufficiency  and  completeness  of  statistics  are
considered  based  on  the  factorization  theorem and  the
properties of exponential families.

The  remaining  part  of  this  article  is  organized  as
follows: Section  II  introduces  the  mechanism  of  trac-
tion  systems,  the  general  degradation  model,  and  the
important steps  of  linear  filtering  in  statistical  deriva-
tion.  Section  III  proposes  the  improved  UKF  and  the
degradation  model  based  on  Lévy  process  with  jumps,
followed  by  the  proposed  FD  method.  Section  IV
provides  the  verification  by  using  the  temperature  of
traction  systems  in  a  certain  type  of  high-speed  train.
Finally, Section V concludes the study.

 II. Preliminaries
In  this  section,  the  traction  systems  of  high-speed

trains, the general degradation model, and the statistic-
al  derivation  of  linear  filtering  are  introduced.  These
bases are the fundamental research of the following sec-
tions.

 1. Traction systems of high-speed trains
Different to DC motors driven systems, high-speed

trains are equipped with three-phase asynchronous mo-
tors  that  are  tiny  and  light.  It  has  a  straightforward
structure and strong tractability. The three-phase asyn-
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chronous motor is made up of two primary components.
The stator is the fixed part, and the rotor is the rotat-
ing  part,  and  a  little  gap  between  them known as  the
air gap. Three measuring points called the driving ter-

minal  point,  non-driving  terminal  point,  and  stator
point are installed on each traction motor. The specific
monitoring systems in traction systems are is shown in
Fig.2.

 

T2 M3 T4 M6 T7T5 M8M1

Driving terminal

Non-driving terminal
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Traction motor

Body of high-speed trains

Traction motor

 
Fig. 2. The structure of traction systems and multi-sensor monitoring.

 

Relying on the mechanism of traction systems, the
temperature  change  can  be  expressed  in  the  following
form:
 

Tk+1 = Tk +
(Ik − Ik−1)

2R+ξ · (Tk − Tout)

c ·m
(1)

T

I R

Tout
c

m

where  stands  for  the  temperature  collected  by
sensors.  The  and  represent the current and resist-
ance of traction motor, respectively.  is the external
temperature. In addition,  stands for the specific heat
capacity, and  represents the quality of the motor.

 2. General degradation process
Up  to  now,  the  most  commonly  used  degradation

model is constructed based on Wiener process which is
driven by brownian motion. The Wiener process can be
constructed  as  the  scaling  limit  of  a  random  walk,  or
other discrete-time stochastic  processes  with stationary
independent increments.  Therefore,  the  mechanical  de-
gradation with  stochastic  characteristic  can  be  de-
scribed by  this  special  Markov  process  whose  incre-
mental change obeys a normal distribution. The gener-
al form is shown as
 

Xt = µ′t+ σ′B(t) (2)

µ′ σ′where  and  are drift  and  diffusion  coefficient,  re-
spectively.

It is characterised by the following propoerties:
Xt t > 0

Xt+d −Xt, d≥0

Xs, s≤t

1)  has independent increments: for every ,
the increments , are independent of the
past values .

Xt Wt+d −Wt2)  has Gaussian increments:  is nor-

d

Wt+d −Wt ∼ N (0, d)

mally distributed with a mean of 0 and a variance of ,
.

Xt Xt t3)  has continuous paths:  is continuous in .
Considering  the  external  disturbance  of  systems,

this  study  uses  the  jump  points  to  describe  the  swift
changes in actual process. It should be noted that such
temperature  jumps  in  the  actual  environment  are  not
common in the laboratory equipment.

 3. Statistical  derivations  of  linear  Kalman
filter

k

The focus of linear filtering is to update a priori es-
timation using the measurement at the time instant .
Therefore, the  posterior  state  of  the  basic  linear  pro-
cess can be described by
 

x̂+(k) = Ky(k) + b (3)

bwhere  is unknown vector. The defect of unknown pri-
or  information  can  be  solved  by  calculating  the  mean
value  of  posteriori  estimation.  The unbiased constraint
can be expressed as
 

b = x̄−Kȳ (4)

Kwhere  stands  for  the  gain  parameter.  The  posterior
covariance is given as follows.
 

P+(k) = E{[x(k)− x̂+(k)][x(k)− x̂+(k)]T} (5)

e(k) = x(k)− x̂+(k)For  the  error  of  estimation ,
the trace of the error covariance is
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tr(P+(k)) = tr[P−(k)−KPyx − PxyK
T +KPyK

T]

+ tr[(x̄−Kȳ − b)(x̄−Kȳ − b)T] (6)

After minimizing the above equation, it can be ob-
tained respectively that
 

K = PxyP
−1
y

x̂+(k) = x̂−(k) +K[y(k)− ŷ(k)]

P+(k) = P−(k)−KPyK
T (7)

k

Different from the conventional derivation method,
this form focuses on updating the system state accord-
ing to the measurement value at the time instant .

Remark  1　The  traction  systems  are  monitored
by different type of sensors in high-speed trains. There-
fore,  the  traditional  data  mixture  method  connot  be
used for analysis and calculation. To solve this problem,
this study  achieves  state  estimation  of  nonlinear  sys-
tems through mixed the distribution of states in UKF.

 III. The Proposed Method
Based on UKF

In  this  section,  the  sigma-mixed  UKF  is  first
presented,  then  the  model  of  degradation  and  detailed
FD strategy will be followed.

 1. Generation of sigma points in UKF
The UKF has a good effect on state estimation of

nonlinear systems,  which  is  more  accurate  in  propaga-
tion  of  means  and covariance  than linearized  extended
Kalman filter (EKF). A set of sigma points to approx-
imate the  probability  distribution  are  required  in  un-
scented transformation. For traction systems with state
coupling  characteristics,  the  mean  of  the  sigma  points
cannot  be  calculated  through  a  single  distribution.
Therefore, this study mixes the sigma points by means
of mixed distributions for obtaining the reliable result.

Consider the  discrete-time  random  nonlinear  sys-
tem as follows:
 

x(k + 1) = f [x(k), u(k)] + w(k)

y(k) = h[x(k), u(k)] + v(k) (8)

x ∈ Rkx u ∈ Rku

y ∈ Rky

w ∈ Rkx v ∈ Rky

Q R

where  represents the state of systems. 
and  are  the  input  and  output  of  systems.

 and  are white noises with covariances
 and , respectively.

n

Assuming that the state distribution of the monit-
oring system is determined by  different distributions,
the probability density function is
 

p(x|θ) =
n∑

k=1

p(k)p(x |k, θ ) =
n∑

k=1

αkN (x |µk, Σk ) (9)

αkwhere  is the  mixing  coefficients.  The  condition  be-

low is required.
 

n∑
k=1

αk = 1 (10)

In (9), every single distribution can represented by
 

f(x|θ) = 1√
2πσ2

e−
(x−µ)2

2σ2 (11)

γ xs,

s = 1, 2, . . . , N

Define  implicit  variable  that  reflects  state 
 from the distribution. A likelihood func-

tion  that  combines  the  complete  data  of  the  hidden
variable is
 

p(x, γ|θ) =
N∏
s=1

p(xs, γs1, γs2, . . . , γsn|θ)

=

n∏
i=1

αγsi

i

N∏
s=1

[
1√
2πσ2

i

e
− (xs−µi)

2

2σ2
i

]γsi

(12)

γ s-th
i-th

where the value of  is 1 or 0, which represents the 
measurement from the  distribution. Then, the log-
arithmic likelihood  function  of  complete  data  is  ex-
pressed as
 

log p(x, γ|θ) =
n∑

i=1

{
γsi logαi +

N∑
s=1

γsi

[
log
(

1√
2π

)

− logσi −
1

2σ2
i

(xs − µi)
2

]}
(13)

The EM algorithm is used to estimate the paramet-
ers  of  the  mixed  distribution.  Establish Q function  as
follows:
 

Q(θ, θ(t)) = E[log p(x, γ|θ)|x, θ(t)]

= E

{
n∑

i=1

{
γsi logαi +

N∑
s=1

γsi

[
log
(

1√
2π

)

− logσi −
1

2σ2
i

(xs − µi)
2

]}}
(14)

s-th
i-th
Then the  probability  of  the  observation  from

the  distribution is calculated as
 

γ̂si = E(γsi|x, θ) =
αkϕ(xs|θi)
n∑

i=1

αkϕ(xs|θi)
(15)

The Q function below can be obtained via (14) and
(15) as
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Q
(
θ, θ(t)

)
=

n∑
i=1

{
γsi logαi +

N∑
s=1

⌢
γsi

[
log
(

1√
2π

)
− logσi −

1

2σ2
i

(xs − µi)
2

]}
(16)

θNext, the maximum value of  is sought in the new
round.
 

θ(t+1) = argmax
θ
Q(θ, θ(t)) (17)

Then, the parameters can be estimated via
 

α̂i =

N∑
s=1

γ̂si

N
, µ̂i =

N∑
s=1

γ̂sixs

N∑
s=1

γ̂si

, σ̂2
i =

N∑
s=1

γ̂si(xs−µi)
2

N∑
s=1

γ̂si

(18)

2n+ 1

The mean  value  of  mixed  distribution  can  be  re-
garded as  the  initial  priori  information  of  the  unscen-
ted  transformation,  and  sigma points  are  selec-
ted as follows.
 

x(0) =
⌢
x

x(i) =
⌢
x + x̃(i), i = 1, 2, . . . , 2n

ẋ(i) = (
√
(n+ κ)P )Ti , i = 1, 2, . . . , n

ẋ(n+i) = −(
√
(n+ κ)P )Ti , i = 1, 2, . . . , n (19)

The weighting factors are
 

W (0) =
κ

n+ κ

W (i) =
κ

2(n+ κ)
, i = 1, 2, . . . , 2n (20)

After the obtained local solution of EM, the statist-
ical property of the mixed distribution is
 

⌢
x = x̄ =

1

n
(x1 + x2 + · · ·+ xn) (21)

Remark 2　The sigma-mixed UKF is appropriate
for dynamic systems with a coupling distribution.  It  is
more convenient to obtain a consistent result in multi-
sensor monitoring systems.

 2. State degradation based on Lévy process
with jump points

The essence of a degradation model based on Wien-
er  process  is  to  simulate  the  randomness  through  the
drift  and  diffusion  coefficients.  However,  it  is  hard  to
describe  the  degradation  process  in  traction  systems
only  using  these  coefficient.  Based  on  the  temperature
data  collected  from sensors,  Brownian  motion  is  not  a
good description of how the system changes because of

the existence of  jump points.  Therefore,  this  study ad-
opts a jump diffusion model based on the Lévy process.

The degradation model constructed in this paper is
given as follows.
 

X(t) = X(0) + µ′t+ σ′Bt + Zt (22)

Zwhere  represents the jump property of a random pro-
cess. The  separability  of  the  jump points  in  Lévy pro-
cess is illustrated by the following lemmas.

β

X ∈ Rk

(µ,A, v) θ ∈ Rk

Lemma 1 [32]　The Borel  probability  measure 
of  the  random variable  is  infinitely  divisible  if
and only if there is a triplet  for all , its
characteristic function satisfies
 

E[eiθXt ] = exp

{
t

(
iµθ − 1

2
σ2θ2

+ intRk
(eiθx − 1− iθxI|x|≤1)v(dx)

)}
(23)

vwhere  is a Lévy measure, representing the number of
jumps in unit time.

(µ,A, v)

µ ∈ Rk A
k v Rk

Lemma 2 [33]　The triplet  is considered,
where ,  is a semi-positive definite matrix with
the order , and  is a Lévy measure of . According
to  the  characteristic  function,  the  Lévy process  can be
divided  into  four  parts:  constant  drift,  Brown  motion,
compound Poisson, and pure hop martingale. The char-
acteristic functions are denoted as
 

ψ1(θ) = exp(t · iµθ)

ψ2(θ) = exp
(
− t

2
σ2θ2

)

ψ3(θ) = exp

t · ˆ
|x|≥1

(eiθx − 1)v(dx)


ψ4(θ) = exp

t · ˆ
|x|<1

(eiθx − 1− iθx)v(dx)

 (24)

Lemma  1  suggests  that  each  Lévy  process  is  the
sum of Brownian motion with a drift and another inde-
pendent random variable. Lemma 2 describes the latter
as  a  (stochastic)  sum  of  independent  Poisson  random
variables. Based on them, this study consideres the de-
composition of the Lévy process into Gaussian and com-
pound Poisson  processes.  The  jump  points  are  extrac-
ted by discrete wavelet transform (DWT) [34] as
 

C(2j , b) =
1√
2j

ˆ
R

f(t)ψ
∗
(
t− b

2j

)
dt (25)

The parameters of stochastic process above can be
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estimated  by  the  maximum  likelihood.  Therefore,  the
difference vector of the measurements can be construc-
ted based on
 

ỹ1:k = [y1 − y0, y2 − y1, . . . , yk − yk−1] (26)

γ(ti) = τ m

µ′ · [γ(t1)γ(t2) · · · γ(tk)]T
C = V ar[(yi+1 − yi), (yj+1 − yj)] = E[(yi+1−

yi), (yj+1 − yj)]− E(yi+1 − yi)E(yj+1 − yj)

Considering ,  the  expectations  are
. Then, the covariance of the inc-

rement  is  
. The  estim-

ation result of parameters is
 

µ̂′ =
ỹ1:k
2m1:k

, σ̂′ =
ỹ1:k − µ′ ·m1:k√

C
(27)

Remark 3　The degradation model considered in
this  paper  is  a  common  form.  In  fact,  the  parameters
are difficult to estimate when the drift term is an expo-
nential  or  power  function.  The  Nelder-Mead  method
can  be  used  to  maximize  the  logarithmic  likelihood
function to obtain the estimation in this situation.

 3. State estimation  and  fault  detection  sys-
tems

The  classical  Kalman  filter  equations  are  used  to
complete the measurement-update phase for the system
states and the covariance matrix as follows:
 

K ′ = PxyP
−1
y

⌢
x
+
(k) = A

⌢
x
−
(k) +Bu(k) +K ′[y(k)− ⌢

y(k)]
⌢

P
+

(k) =
⌢

P
−
(k)−KPyK

T (28)

k

m

x̂i, i = 1, 2, . . . ,m

The  real  state  at  the  time  instant  is  calculated
based  on  the  estimated  state  and  the  degraded  state,
laying  the  groundwork  for  FD.  In  this  paper,  a  test
statistic called MAISD is presented for performing FD.
For  monitoring systems  in  actual  scenarios,  the  es-
timated states are . The moving aver-
age  technique  is  applied  for  monitoring  the  dynamic
characteristics of systems. The moving average vector is
defined as follows.
 

x̂s(k) =
x̂(k) + x̂(k + 1) + · · ·+ x̂(k + s− 1)

s
(29)

swhere  represents  the  size  of  the  sliding  window.
Therefore,  for  all  states  estimated  by  the  proposed
method, it has the following form
 

x̂is(k) =


x̂1s(1) x̂1s(2) · · · x̂1s(k)

x̂2s(1) x̂2s(2) · · · x̂2s(k)
...

...
. . .

...

x̂ms (1) x̂ms (2) · · · x̂ms (k)

 (30)

The proposed statistic index is 

T i
MAISD(k) =

√
[x1(k)− µi]

2
+ · · ·+ [xi(k)− µi]

2

i
(31)

Remark 4　According to the central  limit theor-
em,  the  samples  from  traction  systems  resemble  the
Gaussian  distribution  when  the  system  is  fault-free.
Based  on  the  factorization  theorem and  the  properties
of exponential  families,  MAISD  is  sufficient  and  com-
plete.　　

 4. Implementation of FD strategy
The  implementation  of  state  estimations  and  FD

for traction systems is shown as Algorithms 1 and 2.

Algorithm 1　State estimation through sigma-mixed un-
scented kalman filter

x

⌢
x

Input: The state of systems .
Output: The state of sigma-mixed unscented Kalman fil-
ter .

log p(x, γ|θ)1: Calculate the logarithmic likelihood function 
by (12);

Q Q(θ, θ(t))2: Establish  function  by (14);
γ̂si3: Calculate  by (15);

α̂i µ̂i σ̂i4: Estimate the parameters , , and  by (18);
⌢
x5: Obtain the mixed state  by (21).

Algorithm 2　Fault detection via statistic index MAISD
u yInput: The system input  and system output .

x̂s(k) T i
MAISD(k)Output: The estimated state  and statistic .

yi(k)1: Load the data  from actual systems;
ỹ1:k2: Calculate the difference vector  by (26);

µ′ σ′3: Estimate the parameters of degradation model  and 
by (27);

x̂(k)4: Obtain the estimated state  by (29);
x̂s(k)

T i
MAISD(k)

5: Calculate the moving average vector  and the stat-
istic index  by (30);

 IV. Experiments and Discussions
In this section, the results of the novel FD are veri-

fied  by  actual  scenarios.  All  of  the  experimental  data
are collected from the monitoring nodes in traction sys-
tems, as shown in Fig.3. The main object of this experi-
ment  is  the  traction  motor  which  plays  an  important
role  in  traction  systems.  The  parameters  involved  in
this method are shown in Table 1.

 1. State estimation of sigma-mixed UKF

x1 x2 x3

xsigma-mixed

For  illustrating  the  effectiveness  of  sigma-mixed
UKF, the  results  of  state  estimation  are  shown as  fol-
lows. The four sub-figures in Fig.4 represent the differ-
ent  states  which contain three  sets  of  measured values
and a set of mixed values. , ,  and  are the tem-
peratures  collected  from  the  stator,  driving  terminal,
and  the  non-driving  terminal  of  motors,  respectively.

 is  the  mixed  state  of  three  temperatures
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mentioned  above. Fig.5 shows  the  errors  of  estimation
of different states.
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Fig. 4. State  estimation  results , ,  of  three  sets  of
measured values of  the temperatures  collected from
the  stator,  the  driving  terminal,  and  the  non-driv-
ing terminal  of  motors,  respectively,  and the  mixed
state  of the three temperatures.

 

 2. Fault detection  results  of  traction  sys-
tems

The  high-speed  trains  considered  in  this  studies
feature a  complex  construction  that  includes  four  mo-
tor  coaches  and  four  trailer  coaches.  The  four  motor
coaches  are  equipped  with  traction  motors  to  provide
the  traction  power.  The  states  of  four  motors  are  the
same when the trains are running.

Fig.6 shows  the  detection  results  for  jump  points.
Fig.6(a) illustrates the relationship between scale para-
meters and time using the wavelet. Fig.6(b) shows the

detailed  signals  after  transformation.  The  jump  points
of the system state can be observed in Fig.6(b).
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Fig. 6. Detection of jump points.

 

Fig.7 illustrates  the  estimated  states  of  motors  in
different  coaches  and  results  of  FD  using  MAISD.  It
should be noticed that Fig.7(b) has three parts repres-
enting the MAISDs between different states of systems.
Different  from  others,  the  motor  in  Coach  No.4  has  a

 

 
Fig. 3. Traction motors of high-speed trains.
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Fig. 5. Estimation error of different states.
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Table 1. Parameters of traction motors

Parameter Description Value
P Rated power 350 kW
U Rated voltage 1443 V
I Rated current 170 A
F Rated frequency 140 Hz
m Weight 850 kg
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fault in 50th day (see Fig.7(a)). Observed from the res-
ults,  in Fig.7(b),  the  fault  can  be  detected  in  samples
from 180th to 270th.

 3. Discussions
For  demonstrating  the  better  performance  of  the

sigma-mixed UKF, comparison results using five meth-
ods are given in Fig.8 and Table 2. These methods are
representations of the mainstream approaches. The dy-
namic principal component analysis (DPCA), long short-
term  memory  (LSTM),  just-in-time  learning  (JITL),
deep slow feature  analysis  (DSFA),  and EKF are  used
to  detect  faults  in  traction  systems.  They  are  widely
considered as  representatives  to  detect  faults  in  differ-

ent  type  of  methods.  In  comparison  to  multivariate
statistical  analysis,  this  study  uses  different  statistical
indices to improve its persuasiveness of FD.

From the experimental results in Fig.8 and Table 2,
the proposed  method  can  effectively  deal  with  the  de-
tection task  of  traction  systems.  The  detecting  accur-
acy,  false  positive  rate  (FPR),  false  negative  rate
(FNR), and total computing time are considered in the
comparisons.  In  general,  the  method  proposed  in  this
paper is suitable for dynamic systems with complex dis-
tribution and nonlinear degradation. Model uncertainty
and design complexity are still challenges in current re-
search.
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Fig. 8. Detection results using six methods. (a) and (b) DPCA; (c) and (d) DSFA; (e) LSTM; (f) JITL; (g) EKF; (h) The pro-

posed method.

  
Table 2. Performance comparison using six methods

Method Detecting accuracy FPR FNR Total computing time
DPCA 71.7% 48% 31% 1.34 s
DSFA 66.7% 49% 37% 1.16 s
LSTM 90% 44% 4% 2.42 s
JITL 55% 42% 18% 3.28 s
EKF 77.5% 57% 13% 0.91 s

The proposed method 94.4% 2.75% 4.44% 1.24 s
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 V. Conclusions and Future Works
In this  paper,  a  novel  FD method,  which is  based

on the state estimation and state degradation, is intro-
duced. The main purpose of this study is to explore an
effective FD strategy, which can be used appropriately
in  traction  systems.  Based  on  the  sigma-mixed  UKF
and  Lévy  stochastic  process,  the  problems  of  complex
distribution  and  nonlinear  degradation  are  addressed
via a  state-space  model.  The  performance  of  the  pro-
posed  method  is  evaluated  by  an  actual  scenario  in  a
certain type of high-speed train. Benefiting from the es-
tablished framework in this study, possible research dir-
ections such  as  fault  isolation  and identification  in  de-
graded systems can be considered.
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