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   Abstract — In recent years, three similar versions of
time-domain  inverse  scattering  (TDIS)  algorithms  have
been proposed for the successful estimation of the dispers-
ive dielectric  properties  of  several  single-pole  Debye  me-
dia. For practical  applications in common biomedical  en-
gineering, an  improved  TDIS  algorithm  is  explicitly  de-
rived to  provide  a  more  versatile  algorithm  for  the  mi-
crowave  tomographic  imaging  of  biological  tissues.  Its
three  improvements  are  as  follows.  The  number  of  poles
for Debye  models  is  extended from one  to  a  positive  in-
teger W. The second improvement is the extension of un-
knowns from three to 2W+2 for each discretized cell. The
third improvement is the adoption of the first-order Tik-
honov regularization scheme. Based on the four classes of
2-dimensional  anatomically  realistic  numerical  phantoms
with  two-pole  Debye  dispersion  from  the  University  of
Wisconsin  Computational  Electromagnetics  Laboratory
(UWCEM)  database,  the  performance  of  the  developed
algorithm for the detection of a 3-mm-diameter tumor im-
planted in  the  four  types  of  breast  models  was  investig-
ated for three scenarios. The obtained results preliminar-
ily  indicate  that  the  modified  technique  is  feasible  and
promising  for  the  quantitative  reconstruction  of  sparse
breast tissues.

   Key words — Biological  tissues, Conjugate  gradient

methods, Finite-difference time-domain  (FDTD)  meth-

ods, Microwave imaging, Regulators.

 I. Introduction
Breast cancer is the second leading cause of cancer

death in America [1]. Accordingly, special attention has

been  given  to  advances  in  biomedical  imaging  [2]–[4].
Microwave imaging is of interest due to its advantages
in nonionizing radiation and relatively inexpensive cost
compared to conventional screening methods such as X-
ray  mammography  and  magnetic  resonance  imaging
(MRI), and thus is considered an alternative technique
for the near future [5].

Three  classes  of  microwave imaging methods,  viz.,
active, passive,  and hybrid approaches,  have been pro-
posed for a variety of application areas thus far [6]–[10].
Among them,  active  microwave  imaging  methods  have
been followed with close interest for several decades [5],
[10]–[12]. Usually,  ongoing  active  methods  may  be  di-
vided into two subclasses. One includes radar-based ap-
proaches [13],  [14],  and the other includes tomographic
approaches [4]. For both subclasses, some promising res-
ults  have  been  obtained  [4],  [9].  The  purpose  of  the
former is  to  generate  an  image  of  the  relative  backs-
cattered strength [15], [16], whereas that of the latter is
to  reconstruct  the  distribution  of  the  quantitative
dielectric parameters in its problem space [17], [18].

In microwave  tomography,  the  resulting  electro-
magnetic  (EM)  inverse  scattering  problems  must  be
solved.  Methodologically,  these problems can be solved
in the frequency domain [17],  or  the time domain [18].
To effectively detect small tumors in the early stage of
breast  cancer,  time-domain,  multifrequency,  frequency-
hopping,  or  wideband  techniques  are  preferred  in  the
case of limited-view configurations [19]–[21]. This paper
is  an  improved  version  of  several  similar  time-domain 
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algorithms  [18],  [22],  [23].  To  date,  a  few  algorithms
have been  proposed  in  the  time  domain  for  some  fre-
quency-independent media, such as the optimization ap-
proach  based  on  wave  splitting  by  Gustafsson et  al.
[24], the forward-backward time-stepping (FBTS) meth-
od  by  Takenaka et  al. [20],  the  Lagrange  multiplier-
based optimization technique by Rekanos [25],  and the
time-domain Born iterative method (BIM) by Ali et al.
[26]. In the first three algorithms above, a set of gradi-
ents was derived in closed form, which can be used con-
veniently  in  solving  inverse  problems  by  any  of  the
gradient methods.

It is well known, however, that the dielectric prop-
erties  of  biological  tissues  are  dispersive.  For  normal
and  malignant  breast  tissues,  dispersive  characteristics
have  been  accurately  described  by  one-  and  two-pole
Debye models in the frequency range of 0.5–20 GHz, a
single-pole Debye model from 3.1 to 10.6 GHz [27], and
a four-pole Cole–Cole model from 10 Hz to 100 GHz [28].
Unfortunately,  for  Cole–Cole dispersive  media,  few  ex-
isting inverse methods are directly available.

τ

τ

σs

Currently,  there  are  three  similar  versions  of  EM
inverse  scattering  algorithms  for  the  estimation  of  the
dispersion  properties  of  some  single-pole  Debye  media.
The  first  version  is  a  voxel-based  time-domain  inverse
scattering (TDIS) algorithm proposed by Winters et al.
(called TDIS-W) [22],  whereas the relaxation time  is
assumed  to  be  a  known  constant.  The  second  version
was improved by Fhager et al. (called TDIS-F) [18] and
is slightly different from the first  version in that it  in-
troduces corresponding  scaling  factors.  The  third  al-
gorithm  was  developed  by  Papadopoulos et  al.  (called
TDIS-P)  [23]  and  differs  from the  first  two  algorithms
in that the relaxation time  is reconstructed simultan-
eously  and  that  is  neglected.  Additionally,  the  first
algorithm obviously  differs  from  the  latter  two  al-
gorithms  in  the  addition  of  a  term  related  to  the
squared difference.

ε∞ ∆ε σs τ

As discussed above, with single-pole Debye models,
all three algorithms exhibit several obvious advantages,
compared  to  the  aforementioned  algorithms.  However,
they still suffer from three common imperfections. First,
there are no regularization terms, some classes of regu-
larization  schemes,  such  as  deterministic  edge-pre-
serving  regularization  [29]  and  Tikhonov  regularization
[30], should be incorporated to cope with their ill-posed-
ness. Second, none could reconstruct all four unknowns
( , , ,  and ) for each voxel  simultaneously.  Fi-
nally,  these  algorithms  cannot  be  directly  applied  to
multiple-pole Debye dispersive media.

In this paper, an improved version of the TDIS al-
gorithm is  explicitly  derived to  provide  a  more  versat-
ile tool for the microwave tomographic imaging of biolo-

gical  tissues.  Three improvements are given as  follows.
First, the number of poles in Debye models is extended
from one to a positive integer W. The second improve-
ment is the extension of unknowns from three to 2W+2
for each discretized cell.  The third improvement is  the
adoption  of  the  first-order  Tikhonov  regularization
scheme. Furthermore, based on four classes of anatom-
ically realistic numerical phantoms with two-pole Debye
dispersion from the  UWCEM (University  of  Wisconsin
Computational  Electromagnetics  Laboratory)  database
[31], the performance of the improved algorithm for the
detection of 3-mm-diameter tumors in breasts with dif-
ferent densities is systematically researched.

 II. Time-Domain Microwave Tomo-
graphy Algorithm for Biological Tissues

In this section, based on the derivation described in
[22] and [25], the author develops an improved TDIS al-
gorithm.

 1. Problem statement
Suppose  that  a  microwave  tomography  problem

space  with  a  known  boundary  shape  and  position  and
its background space are denoted V and D, respectively.
It  is  also  assumed  that  the  background  space  is  filled
with some media whose dielectric properties are known,
whereas  the  problem  space  contains  certain  biological
tissues  with  partially  unknown  dielectric  properties,
that all the media within V and D are nonmagnetic, lin-
ear,  time-invariant  and isotropic,  and that  the  relative
permittivity  with  a  complex  value,  for  each  biological
tissue located at point r within V is given by a W-pole
Debye equation as reference [27].

W = 1

W = 1 σs = 0

∆εw = 0

In addition, this versatile Debye model can be eas-
ily  simplified  into  several  special  cases  as  follows:  If

,  it  would  be  reduced  into  a  single-pole  Debye
model,  the  same  as  [22]  and  also  similar  to  [18];  If

 and , it would be turned into a single-pole
Debye  model  in  the  same  manner  as  [23];  However,  if

,  it  could  be  degraded  into  a  nondispersive
model similar to references [20], [24], [25].

i ri

According to an idea similar  to that of  [23],  when
the th  microwave-transmitting  antenna  located  at 
within D is  activated,  all  the  Debye model  parameters
are explicitly shown in the following time-domain Max-
well differential equations:
 

∇×Hi (r, t)−ε0ε∞ (r) ∂tEi (r, t)

−σs (r)Ei (r, t)−
W∑

w=1

Ji,w (r, t)−Ji (r, t) = 0 (1)

 

∇×Ei (r, t) + µ0∂tHi (r, t) = 0 (2)

(W )and a set of  auxiliary differential equations:
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Ji,w (r, t)+τw (r) ∂tJi,w (r, t)−ε0∆εw (r) ∂tEi (r, t)=0
(3)

r ∈ V ∪D t ∈ [0, T ]

∇
∂t

Hi(r, t)

Ei(r, t) Ji,w (r, t)

w

J s
i (r, t) = δDirac (r − ri) s(t) δDirac

s(t)

where , , T denotes the time interval
for  measurement,  represents  the  Hamilton  operator,

 represents 1st-order  temporal  partial  differential  op-
erator, μ0 is  the  free-space  permeability, ,

,  and  are the magnetic field intensity,
electric field intensity, and dispersion current density of
the th pole,  respectively,  and an imposed source cur-
rent density , where  is
the Dirac delta function and  is a time-domain sig-
nal.

2W+2

p = [ε∞, σs, ∆ε1, . . . ,∆εW , τ1, . . . , τW ]T

N(2W+2)

The imaging objective is hence to estimate 
Debye  model  parameters  using  measured  data  in  the
time domain. For this reason, a vector is predefined as

,  in  which  the
superscript  T is  a  transpose  operator.  Consequently,  if
N represents  the  total  number  of  cells  (voxels)  to  be
discretized  within  the  problem  space V,  then  we  have

 unknowns for the imaging problem.
 2. Constrained minimization problem
According  to  similar  common  practices  such  as

those presented in [20]–[25], the imaging problem can be
formulated  as  the  following  constrained  minimization
problem:
  {

p = argmin
p

{F [E (p)]}

s.t. Equations (1) to (3)
(4)

p

where  its  cost  functional F,  which  is  usually  nonlinear
with respect to the unknown vector , is given by
 

F [E (p)] =
1

2

I∑
i=1

J∑
j=1

ˆ T

0

∥∥Ei,j (p)−Em
i,j

∥∥2
2
dt

+
1

2

2W+2∑
l=1

γl

ˆ
V

∥∇pl∥22 dr (5)

Ei,j Ei,j(p)

p j

i

pl γl l p

γ γ = [γ1, γ2,

. . . , γ2W+2]
T

On the  right-hand  side  of  (5),  the  first  term  de-
scribes the squared residual between the measured elec-
tric  fields  and the computed electric  fields 
for current  at the th receiving antenna due to the ac-
tivation of the th transmitting antenna spanning from
0 to T,  where I and J are the total  numbers  of  trans-
mitters and receivers, respectively, and the second term
denotes  the  first-order  Tikhonov  regularization  [30],
[32], in which  and  are the th components of  and

, respectively, and the regularization vector 
.

Similar to references [18], [23], but different from [22],
[25], there is not an error term with respect to magnet-
ic fields; this can greatly reduce the difficulty in meas-

p

γ = 0

uring electric fields and magnetic fields simultaneously.
In  addition,  a  similar  regularization  scheme  has  been
adopted, as in [25], although it does not appear in refer-
ences [18],  [22],  [23].  Moreover,  similar  to [33],  because
each  component  of  can  make  different  contributions
to F,  the  author  applies  2W+2 separate  regularization
factors  in  this  paper,  whereas  only  a  single  factor  is
used in [25]. Additionally, it is challenging to find their
optimal  values  with  methods  such  as  the  L-curve  [34].
This  regularization  scheme  can  also  be  dropped  easily
by specifying .

 3. Unconstrained minimization problem
Using the augmented Lagrangian method [35],  the

author transforms the above problem into the following
unconstrained minimization problem:
 

p = argmin
p

{F a [E (p) , e (p)]} (6)

F awhere the augmented cost functional  is denoted
 

F a [E (p) , e (p)]

= F [E (p)] +

I∑
i=1

ˆ T

0

ˆ
V ∪D

[
ei ·

(
∇×Hi

− ε0ε∞∂tEi − σsEi −
W∑

w=1

Ji,w − Ji

)
+ hi · (∇×Ei + µ 0∂tHi)

+

W∑
w=1

qi,w · (Ji,w+τw∂tJi,w−ε0∆εw∂tEi)

]
drdt (7)

ei hi qi,w
Ei Hi Ji,w

where , , and  are the Lagrangian vector multi-
pliers corresponding to , , and , respectively.

 4. Gradients

δF a = 0 δ

ei hi

ji,w = −ε0∆εw∂tqi,w

Solving  the  resulting  unconstrained  minimization
problem  by  using  the  variational  method  [36], we  ob-
tain , where  is the first-order variation operat-
or. After some calculation procedures similar to [22], [23],
[25], one can determine that a set of multipliers, , ,
and ,  must  satisfy  the  adjoint
equations over the time interval [T, 0], shown as
 

∇×hi+ε0ε∞∂tei−σsei−
W∑

w=1

ji,w+

J∑
j=1

(
Ei,j−Em

i,j

)
= 0

(8)
 

∇× ei − µ0∂thi = 0 (9)
 

ji,w − τw∂tji,w + ε0∆εw∂tei = 0 (10)

F a pl

The 2W+2 analytic gradients, namely, Fréchet de-
rivatives  of  with  respect  to ,  at  every  position
within V are given by 
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gε∞ = −ε0

I∑
i=1

ˆ T

0

(ei · ∂tEi)dt− γ1∇2ε∞ (11)

 

gσs = −
I∑

i=1

ˆ T

0

(ei ·Ei)dt− γ2∇2σs (12)

 

g∆εw = −ε0

I∑
i=1

ˆ T

0

(ji,w · ∂tEi)dt− γw+2∇2∆εw, and

(13)
 

gτw =

I∑
i=1

ˆ T

0

(ji,w · ∂tJi,w)dt− γw+W+2∇2τw (14)

∇2where  is the Laplace operator. Then, one can easily
obtain the gradient vector g defined by
 

g = [gε∞ , gσs , g∆ε1 , . . . , g∆εW , gτ1 , . . . , gτW ]
T (15)

 5. Direct and inverse algorithms
With these closed-form gradients,  one can thus it-

eratively solve the original TDIS problem by any gradi-
ent  method  [37]. In  each  iteration  of  our  TDIS  al-
gorithm, there are two subproblems to address.  One is
the  direct  scattering  subproblem,  and  the  other  is  the
inverse scattering subproblem.

In  this  work,  the  finite-difference  time-domain
(FDTD) method is used as a direct solver [38], in which
its FDTD solution space is terminated by the convolu-
tional  perfectly  matched  layer  (CPML)  [39],  while  the
Polak–Ribière–Polyak  (PRP)  conjugate  gradient  (CG)
method is adopted as an inverse solver [37].

n rn

p=[p (r1),p (r2), . . . ,p (rn), . . . ,p (rN )]T g=[g (r1),

g (r2), . . . , g (rn), . . . , g (rN )]T

k

As mentioned above,  it  is  assumed that  the  prob-
lem  space V is  discretized  into N cells  and  that  the
dielectric properties within each individual cell are con-
stant.  Let  the  position  of  the th  cell  be  denoted ;
then, p and g are  rewritten  in  a  discrete  form  as

 and 
, respectively. Denoting the

index of iterations k, at the th iteration of the presen-
ted TDIS algorithm, the major  steps  of  the direct  and
inverse algorithms are then summarized as follows.

p p
k

Ei Hi Ei,w

Step  1　Given  the  current  estimations  of , ,
calculate  the  forward  fields  ( , ,  and )  by  the
FDTD method from equations (1)–(3).

ei hi

ji,w

Step 2　Compute the backward fields ( , , and
) by the FDTD method from equations (8)–(10).

g
k

Step  3　 Solve  equations  (11)–(15)  to  obtain  the
current gradient .

dkStep 4　Compute the current direction vector 
for the PRP CG method by the solution to the follow-
ing equation as [37].

λk

Step 5　Compute the current step-size parameter
 for  the  PRP CG method by  solving  the  line-search

minimization problem as [40].

p

Step  6　Update the  estimate  for  the  next  itera-
tion as [37], and if necessary, use the known a priori ac-
tual  parameter  to calculate the current relative root
mean squared error (RMSE) e, defined by
 

e(k) = ∥p
k
− p∥2/∥p∥2 (16)

kpre eth
k = k + 1

Step  7　 Stop  if  a  prespecified  iteration  number
 or  an  error  threshold  is  reached;  otherwise,

, and return to step 1.
The key steps of  the microwave tomographic  ima-

ging algorithm are illustrated in Fig.1.
 

Begin End

Input Output

Initialization k=kpre k=k+1

Direct (FDTD)

solver

Inverse (CG)

solver

No
Yes

 
Fig. 1. Basic flowchart of the proposed TDIS technology.

 

 III. Application in Breast Cancer
Detection

The FBTS algorithm was successfully applied first
in the detection of several tumors within a simple two-
dimensional (2-D) breast  model  from a synthetic  data-
set [20],  and then in the detection of a 5-mm-diameter
tumor, an anatomically realistic 2-D breast model from
a magnetic  resonance  imaging  (MRI)  dataset  was  ad-
ded  [11]. Unfortunately,  neither  breast  model  intro-
duced the dispersive properties of breast tissues.

By using a single-pole Debye model, a region-based
TDIS algorithm was developed to successfully estimate
the  spatially  averaged  Debye  parameters  within  an
MRI-derived  2-D  breast  phantom  [22],  while  a  pixel-
based TDIS algorithm was presented to reconstruct the
spatial distribution  of  Debye  parameters  from  a  syn-
thetic  2-D  numerical  breast  model  [18].  However,  in
both algorithms, the simulated measurement data were
not contaminated by any noise.

To  initially  test  the  feasibility  and  robustness  of
our improved algorithm for the early detection of breast
cancer,  we  applied  it  to  four  classes  of  2-D  numerical
breast  models  with  various  densities  and  structures,
which were all implanted into a 3 mm diameter tumor,
for three different scenarios.

 1. Breast models
To date, several numerical breast models, such as a

simple  2-D  model  [20],  the  anatomically  realistic  2-D
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phantoms [11], [22], a relatively simple three-dimension-
al  (3-D)  phantom  [41],  or  anatomically  realistic  3-D
phantoms [12], [31], [42], have been used in FDTD sim-
ulations.  Among  them,  a  set  of  3-D  numerical  breast
phantoms developed by Zastrow et al. are relatively ac-
curate and well-accepted. These phantoms can be found
from a free online repository provided by the UWCEM
research  group  [31]. They  are  realistic,  both  anatomic-
ally and dielectrically [31], [42]. Moreover, according to
the  definitions  of  the  American  College  of  Radiology
(ACR) [43], these models are classified into four classes:
1) ACR-I, which includes mostly fatty breast tissue; 2)
ACR-II,  which  includes  scattered  fibroglandular  (FG)
breast tissue;  3)  ACR-III,  which  includes  heterogen-
eously dense  breast  tissue;  and  4)  ACR-IV,  which  in-
cludes very dense breast tissue [31], [42]. These numer-
ical models, whose cubic cells are all 0.5 mm × 0.5 mm
× 0.5 mm in size,  include layers  of  skin,  subcutaneous
fat, and muscle chest wall,  with thicknesses of approx-
imately  1.5  mm,  1.5  cm,  and  0.5  cm,  respectively.  An
immersion medium was assigned to all voxels outside of
each breast.

τ1
τ2

ε∞ = 6.75 σs = 0.79 ∆ε1 = 25.61 ∆ε2 =

23.91

Usually,  the  larger  the  value  of W is,  the  smaller
the  modeling  error  but  the  higher  the  computational
cost.  A  good W candidate takes  the  value  that  bal-
ances  the  modeling  error  and  the  computational  cost.
Based on a two-pole (W = 2) model with fixed  and

 values of 7.22 ps and 15.30 ps, over the 0.5–20.0 GHz
band,  four  breast  phantoms,  with  identifiers  (IDs)  of
071904,  010204,  070604PA2,  and  012304,  from  ACR-I,
ACR-II, ACR-III,  and ACR-IV,  respectively,  are  selec-
ted first. Then a malignant spherical 3-mm-diameter tu-
mor is  implanted with two-pole Debye parameters giv-
en by ,  S/m, , and 

 [27]. Then, four individual coronal slices are taken
directly  as  the  first  group  of  corresponding 2-D ver-
sions  of  cancerous  numerical  breast  models  with  a
square cell  size of 0.5 mm × 0.5 mm, labeled E, F, G,
and  H.  Last,  this  group  of  models  is  extracted  as  the
second  group  of  models  with  a  square  cell  size  of  1.0
mm × 1.0 mm, labeled A, B, C, and D.

 2. Measurement setup

I = 4
J = 28

z

A  bistatic  measurement  system  consisting  of  a  4-
element  transmitting  antenna  array  ( )  and  a  28-
element receiving antenna array ( ) is adopted in
this  work.  It  is  assumed  that  all  the  elements  are
modeled  as  dipoles  located  uniformly  on  a  rectangle
that surrounds the problem space V. Each transmitting
antenna element takes turns to illuminate the problem
space by the incident transverse magnetic (TM) waves
generated by a -direction line current source, whose ul-
trawideband  (UWB)  sinusoidally  modulated  Gaussian
excitation pulse signal is given by

 

s (t) = sin (2πfct) exp[−(t− t2)
2
/(t1)

2
] (17)

t1 = 100.0 ps t2 = 4.0 t1
fc = 3.2 GHz
where , ,  the  center  frequency

.

∆t1 = 0.59 ps
We apply the FDTD method with a time step size

 to the first group of 2-D phantoms E, F,
G,  and  H,  forming  four  sets  of  numerical “measured”
total  electric  fields  within  2.83  ns.  Then,  suppose  that
the skin,  immersion medium, CPML, FG tissue,  trans-
itional  tissue,  fatty  tissue,  and  malignant  tumor  are
labeled by media numbers coded −2, −1, 0, 1, 2, 3, and
4,  respectively. Fig.2 shows  the  corresponding  spatial
distributions of our data acquisition systems related to
media numbers in the four 2-D phantoms. In each sub-
graph, an additional four pink dots, twenty-eight green
dots,  and  one  blue  rectangular  line  mark  the  locations
of transmitting antenna elements, receiving antenna ele-
ments, and  boundaries  of  imaging  spaces  for  later  in-
verse procedures, respectively.

For phantoms  E,  F,  G,  and  H,  the  position  co-
ordinates  of  the  tumor  center,  four  transmitting  array
elements, and twenty-eight receiving array elements are
summarized in Table 1. For each phantom, after all the
receiving  antenna  elements  record  total  electric  fields,
the acquisition of these fields can form 4 × 28 (= 112)
transmitter/receiver combinations  as  a  set  of  measure-
ment data.

 3. Reconstructions

ε∞ σs ∆ε1 ∆ε2

The step-by-step solution procedure shown in Fig.1
is  utilized  to  estimate  the  spatial  distributions  of  the
two-pole  Debye  parameters  ( , , ,  and )
from  the  second  group  of  2-D  cancerous  numerical
breast models (A, B, C, and D), based on the following
three specific scenarios.

γ = 0

ε∞ σs ∆ε1 ∆ε2

Scenario I　It is assumed that the thickness, loca-
tion,  and average  Debye parameters  of  the  skin  region
are  estimated  by  the  improved  skin-sensing  method
[44],  the  breast  surface  identification (BSID) technique
[45], and the region-based TDIS algorithm [22], respect-
ively, that the measured fields are not corrupted by any
noise,  that  the  regularization  scheme  is  not  adopted
(namely, ) and that the initial estimates of Debye
parameters  ( , , ,  and )  are  chosen  to  be
equal to 1+10% of their actual values [27] for the skin
region and the same as those in the immersion medium
for other regions [31], [42].

Scenario  II　Similar  to  Scenario  I,  suppose  that
the  measured  data  are  not  contaminated  by  any  noise
and that the regularization scheme is not applied. The
initial guesses for the Debye parameters in the entire re-
gion are set equal to those in the immersion medium.

Scenario III　The additive  white  Gaussian noise
(AWGN) with a signal-to-noise ratio (SNR) of 20 dB is
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incorporated into measurements,  and all  four  paramet-
ers  assumed  to  be  equal  are  chosen  by  the  L-curve
method [34] to be approximately equal to 0.001 is used.
Additionally,  we assume that all  the initial  guesses  for
the three parameters are the same as those in Scenario
II.

∆t2 = 1.18 ps
For breast phantoms A, B, C, and D, a time step

size  is  adopted  in  all  their  direct  FDTD
solvers with the solution spaces consisting of 127 × 178,
126 × 127, 124 × 183, and 106 × 164 cells, respectively,
while their problem spaces in their inverse solvers con-
sist of 107 × 148, 106 × 107, 104 × 149, and 84 × 130
cells,  respectively.  For  each  FDTD  simulation  in  this
work,  a  ten-cell  CPML absorber  is  applied to truncate
its solution space.

kpre = 300

In this paper, the selected criterion for stopping the
algorithm is , and imaging results are given in
the next section.

 IV. Results and Discussion
 1. Scenario I

ε∞ σs ∆ε1
∆ε2

x

The spatial distributions of , , and  (simil-
ar results for  are omitted due to limited space) for
the 2-D  cancerous  breast  phantom  A,  based  on  Scen-
ario I, are given in Figs.3, 4 and 5, respectively. Simil-
arly, Figs. 6–8, 9–11, and 12–14 give the corresponding
distributions for phantoms B, C, and D, respectively. In
these figures, the subgraphs (a), (b), (c), and (d) repres-
ent  the  actual  distribution,  initial  guess,  estimated
value  at  the  300th  iteration,  and  comparison  between
the  original  (black  solid  line)  and  reconstructed  (blue
dotted  line)  profiles  on  the -axis  through  its  tumor
center,  respectively.  In particular,  one additional  green
circle in each subgraph (c) marks the location and size
of the actual tumor to examine the performance of the
technique developed for breast cancer detection.
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Fig. 2. Spatial distributions of data acquisition systems related to medium numbers in 2-D cancerous numerical breast phantoms

(a)  E,  (b)  F,  (c)  G,  and (d)  H,  where  medium numbers  −2,  −1,  0,  1,  2,  3,  and 4  skin  denote  the  immersion  medium,
CPML, FG tissue,  transitional tissue,  fatty tissue,  and malignant tumor, respectively,  and an additional four pink dots,
twenty-eight green dots, and one blue rectangular line mark the locations of transmitting antenna elements, receiving an-
tenna elements, and boundaries of problem spaces, respectively.

 

   
Table 1. Position coordinates (unit: mm) of the tumor center, four transmitting array elements, and twenty-eight re-

ceiving array elements for four breast phantoms

Phantom
Tumor

center (x, y)
(mm)

Four transmitters (x, y)
(mm) Twenty-eight receivers (x, y) (mm)

E (78, 104) (13, 100), (75, 182),
(134, 100), (75, 15)

(13, 40), (13, 55), (13, 70), (13, 85), (13, 115), (13, 130), (13, 145), (13, 160), (30,
182), (45, 182), (60, 182), (90, 182), (105, 182), (120, 182), (134, 40), (134, 55),
(134, 70), (134, 85), (134, 115), (134, 130), (134, 145), (134, 160), (30, 15), (45,

15), (60, 15), (90, 15), (105, 15), (120, 15)

F (78, 72) (13, 75), (75, 134),
(134, 75), (75, 15)

(13, 15), (13, 30), (13, 45), (13, 60), (13, 90), (13, 105), (13, 120), (13, 135), (30,
134), (45, 134), (60, 134), (90, 134), (105, 134), (120, 134), (134, 15), (134, 30),
(134, 45), (134, 60), (134, 90), (134, 105), (134, 120), (134, 135), (30, 15), (45,

15), (60, 15), (90, 15), (105, 15), (120, 15)

G (67, 96) (14, 100), (75, 184),
(130, 100),(75, 18)

(14, 40), (14, 55), (14, 70), (14, 85),(14, 115), (14, 130), (14, 145), (14, 160), (30,
184), (45, 184), (60, 184), (90, 184), (105, 184), (120, 184), (130, 40), (130, 55),
(130, 70), (130, 85), (130, 115), (130, 130), (130, 145), (130, 160), (30, 18), (45,

18), (60, 18), (90, 18), (105, 18), (120, 18)

H (68, 97) (14, 93), (62, 164),
(112, 92),(62, 18)

(14, 33), (14, 48), (14, 63), (14, 78), (14, 108), (14, 123), (14, 138), (14, 153), (17,
164), (32, 164), (47, 164), (77, 164), (92, 164), (107, 164), (112, 32), (112, 47),
(112, 62), (112, 77), (112, 107), (112, 122), (112, 137), (112, 152), (17, 18), (32,

18), (47, 18), (77, 18), (92, 18), (107, 18)
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Fig. 3. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line) and
reconstructed (blue dotted line) profiles on the x-axis through the tumor center of  in 2-D cancerous breast phantom A
based on Scenario I.
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Fig. 4. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line) and
reconstructed (blue dotted line) profiles on the x-axis through the tumor center of  in 2-D cancerous breast phantom A
based on Scenario I.
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Fig. 5. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line) and
reconstructed (blue dotted line) profiles on the x-axis through the tumor center of  in 2-D cancerous breast phantom A
based on Scenario I.
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Fig. 6. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line) and
reconstructed (blue dotted line) profiles on the x-axis through the tumor center of  in 2-D cancerous breast phantom B
based on Scenario I.
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Fig. 7. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line) and
reconstructed (blue dotted line) profiles on the x-axis through the tumor center of  in 2-D cancerous breast phantom B
based on Scenario I.
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Fig. 8. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line) and
reconstructed (blue dotted line) profiles on the x-axis through the tumor center of  in 2-D cancerous breast phantom B
based on Scenario I.
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Fig. 9. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line) and
reconstructed (blue dotted line) profiles on the x-axis through the tumor center of  in 2-D cancerous breast phantom C
based on Scenario I.
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Fig. 10. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line)
and  reconstructed  (blue  dotted  line)  profiles  on  the x-axis  through  the  tumor  center  of  in  2-D  cancerous  breast
phantom C based on Scenario I.
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Fig. 11. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line)
and  reconstructed  (blue  dotted  line)  profiles  on  the x-axis  through  the  tumor  center  of  in  2-D  cancerous  breast
phantom C based on Scenario I.
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Fig. 12. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line)
and  reconstructed  (blue  dotted  line)  profiles  on  the x-axis  through  the  tumor  center  of  in  2-D  cancerous  breast
phantom D based on Scenario I.
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Fig. 13. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line)
and  reconstructed  (blue  dotted  line)  profiles  on  the x-axis  through  the  tumor  center  of  in  2-D  cancerous  breast
phantom D based on Scenario I.
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As  shown  in Figs.3–5,  the  spatial  distributions  of
the Debye  model  parameters  in  almost  all  of  2-D can-
cerous  numerical  breast  phantom  A  are  reconstructed
successfully  in  Scenario  I.  In  addition,  a  comparison
among Figs.3–5 indicates  that  the  estimation  accuracy
of  is the best, followed by , and  is the worst,
which is similar to the findings presented by Winters et
al. [22]. Breast phantom B is similar as breast phantom

A, as shown in Figs.6–8, but the imaging accuracy de-
creases  slightly. Figs.9–11 show that the imaging qual-
ity of  the skin is  the highest,  that the imaging quality
of normal tissues is the second highest, and that the tu-
mor  is  the  worst  for  breast  phantom  C.  For  breast
phantom D, the reconstructed images shown in Figs.12–
14 are  seemingly  poorer  than  those  obtained  by  any
other breast phantom.
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 2. Scenario II

∆ε2

Based on Scenario II, Figs.15, 16, 17, and 18 show
the spatial  distributions  of  three  two-pole  Debye para-
meters (similar  results are omitted) in 2-D cancer-
ous  breast  phantoms  A,  B,  C,  and  D,  respectively.  In
these figures, the subgraphs (a)–(c), (d)–(f), and (g)–(i)
give the initial guess, estimated value at the 300th iter-

x ε∞ σs ∆ε1

ation, and comparison between the original (black solid
line) and reconstructed (blue dotted line) profiles on the
-axis  through  its  tumor  center , ,  and , re-

spectively.
In particular,  each  additional  green  circle  in  sub-

graphs (b), (e),  and (h) marks the location and size of
the actual tumor.
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Fig. 15. Initial, reconstructed at the 300th iteration, and comparisons between original (black solid line) and reconstructed (blue
dots) profiles on the x-axis through the tumor center for 2-D cancerous breast phantom A based on Scenario II: (a)–(c) ,
(d)–(f) , and (g)–(i) .
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Fig. 14. (a) Original, (b) initial, (c) reconstructed at the 300th iteration, and (d) comparison between original (black solid line)
and  reconstructed  (blue  dotted  line)  profiles  on  the x-axis  through  the  tumor  center  of  in  2-D  cancerous  breast
phantom D based on Scenario I.
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Fig. 16. Initial, reconstructed at the 300th iteration, and comparisons between original (black solid line) and reconstructed (blue
dots) profiles on the x-axis through the tumor center for 2-D cancerous breast phantom B based on Scenario II: (a)–(c) ,
(d)–(f) , and (g)–(i) .
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Fig. 17. (to be continued)
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Fig. 17. Initial, reconstructed at the 300th iteration, and comparisons between original (black solid line) and reconstructed (blue
dots) profiles on the x-axis through the tumor center for 2-D cancerous breast phantom C based on Scenario II: (a)–(c) ,
(d)–(f) , and (g)–(i) Δε1. (continued)
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Fig. 18. Initial, reconstructed at the 300th iteration, and comparisons between original (black solid line) and reconstructed (blue
dots) profiles on the x-axis through the tumor center for 2-D cancerous breast phantom D based on Scenario II: (a)–(c) ,
(d)–(f) , and (g)–(i) .
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Fig.16 reveals that  the  three  Debye  model  para-
meters are reconstructed satisfactorily within almost all
of breast  phantom in  Scenario  II  and  that  the  estima-
tion accuracy of  is the best, followed by that of ,
with  that  of  being  the  worst,  which  is  similar  to
Scenario  I.  Breast  phantom  B  is  similar  to  breast
phantom A shown in Fig.16, where the imaging accur-
acy is decreased slightly. Fig.17 shows that the imaging
quality  of  the  skin  is  the  highest,  followed  by  that  of
normal  tissues,  and that  of  the  tumor  is  the  worst  for
breast phantom  C.  For  breast  phantom  D,  the  recon-
structed  images  shown  in Fig.18 are  seemingly  poorer
than those obtained with other breast phantoms.

Compared with  Scenario  I,  the  accuracy  in  recon-
structing the three Debye model parameters within the
skin  region  is  lower  for  the  four  breast  phantoms  in
Scenario  II.  This  is  a  result  of  an application of  less  a
priori information.  However,  the  accuracies  in  recon-
structing the three Debye model parameters within oth-
er  regions  are  similar,  which is  due to the same initial
estimates.  Naturally,  the  tumor  implanted  in  sparse
breast phantoms is also detected successfully.

 3. Scenario III
After 300  iterations,  the  reconstructed  spatial  dis-

tributions  of  the  two-pole  Debye  parameters  (similar

∆ε2

ε∞ σs ∆ε1

results  for  are  omitted)  in  2-D  cancerous  breast
phantoms  A,  B,  C,  and  D,  based  on  Scenario  III  are
shown in Figs.19, 20, 21, and 22, respectively. In these
figures, the subgraphs (a) and (d), (b) and (e), as well
as (c) and (f) give the estimated value and a comparis-
on between  the  original  (black  solid  line)  and  recon-
structed  (blue  dotted  line)  profiles  on  the x-axis
through its  tumor center for , ,  and , respect-
ively.  In  particular,  the  respective  additional  green
circles in subgraphs (a), (b), and (c) mark the location
and size of the actual tumor.

Comparing between Figs.19–22 and Figs.15–18 (ex-
cept  initial  distributions)  shows  that  there  are  hardly
any differences. Therefore, in Scenario III, the influence
of the serious noise on imaging quality is effectively re-
duced  by  the  Tikhonov’s regularization  scheme  incor-
porated in our inverse scattering technique.

In  addition,  we  also  indicate  the  relative  RMSEs
versus  the  number  of  iterations  in Fig.23,  where  their
values (based on Scenario I, II, and III, respectively) are
(0.2273, 0.5093, and 0.5108), (0.2371, 0.4752, and 0.4764),
(0.4286, 0.4864,  and 0.4809),  and  (0.2843, 0.3843,  and
0.3778)  for  breast  phantoms  A,  B,  C,  and  D  at  the
300th iteration, respectively.

Figure 23 clearly shows that the relative RMSEs all
decreased with the increase in the number of iterations
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Fig. 19. Reconstructed distributions at the 300th iteration and comparisons between the original (black solid line) and reconstruc-
ted (blue dots) profiles on the x-axis through the tumor center in 2-D cancerous breast phantom A based on Scenario III:
(a) and (d) ; (b) and (e) ; (c) and (f) .
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for  the  four  breast  phantoms  in  the  three  scenarios.
Therefore, the  presented  microwave  tomographic  ima-

ging  algorithm  is  convergent  in  these  cases,  and  some
smaller reconstruction errors in practical clinical applic-
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Fig. 20. Reconstructed distributions at the 300th iteration and comparisons between the original (black solid line) and reconstruc-
ted (blue dots) profiles on the x-axis through the tumor center in 2-D cancerous breast phantom B based on Scenario III:
(a) and (d) ; (b) and (e) ; (c) and (f) .
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Fig. 21. Reconstructed distributions at the 300th iteration and comparisons between the original (black solid line) and reconstruc-
ted (blue dots) profiles on the x-axis through the tumor center in 2-D cancerous breast phantom C based on Scenario III:
(a) and (d) ; (b) and (e) ; (c) and (f) .
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ations could be obtained by a proper increase in itera-
tions. Furthermore, the comparison of errors among the
three scenarios demonstrates that the reconstruction ac-
curacy in Scenario I  is  the best,  whereas that in Scen-
ario  II  and  that  in  III  are  similarly  poor,  for  the  four
breast phantoms.  The  acceptable  precision  of  recon-
struction  in  Scenario  III,  where  measurements  are  all
contaminated  by  heavy  noise,  is  thus  beneficial  from
the  incorporation  of  Tikhonov’s  regularization  scheme
in our algorithm. It could be further improved if more a

priori information, such as the thickness of the skin, is
provided. Additionally, the comparison of errors among
four breast phantoms, shows that the computational ac-
curacy  for  sparse  breast  phantoms  is  higher  than  that
for dense breast phantoms in three scenarios. Generally,
the calculation precision of phantom A in Scenario I is
the  best  among  them.  Note,  however,  that  these  final
errors  should  be  decreased  to  an  acceptable  scope  for
practical clinical applications.
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Fig. 22. Reconstructed distributions at the 300th iteration and comparisons between the original (black solid line) and reconstruc-
ted (blue dots) profiles on the x-axis through the tumor center in 2-D cancerous breast phantom D based on Scenario III:
(a) and (d) ; (b) and (e) ; (c) and (f) .

 

Furthermore,  to  further  assess  the  performance  of
microwave tomographic imaging of anatomically realist-
ic numerical phantoms with Debye dispersion for breast
cancer detection  using  a  regularized  time-domain  in-
verse scattering  technique,  the  actual  and  reconstruc-
ted  average  Debye  parameters  and  estimated  relative
RMSEs of  the  skin,  fat,  FG,  transition,  and tumor re-
gions  in  three  scenarios  for  four  breast  phantoms  are
given in Tables 2 and 3, respectively.

Again, Tables  2 and 3 illustrate  that  for  different
scenarios, the reconstruction quality in Scenario I is the
best, but  that  in  Scenario  II  and that  in  III  are  simil-
arly  poor  for  each breast  phantom.  Additionally,  these

results indicate that for different tissue regions, the re-
construction  of  the  FG  tissue  is  the  most  precise  for
each breast  phantom,  except  in  Scenario  I,  where  that
of the skin is the best due to its best initial estimate.

Finally,  some  practical  issues  are  discussed.  First,
as discussed before, the improved TDIS algorithm is ro-
bust  for  four anatomically  realistic  breast  phantoms in
three scenarios.  Second,  the  acceptable  imaging  accur-
acy  provided  by  the  algorithm  is  illustrated  from  the
above reconstruction results.  Finally, its time complex-
ity is of great importance. At each iteration, two FDTD
simulations are needed, and the average computational
time  executed  on  a  PC  with  a  four-core  i5-2320  CPU
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using  MATLAB  (R2011b,  win64-bit)  codes  is  1.9
min/iteration  for  this  2-D  case.  When  this  proposed
technique is, however, applied to large scale 3-D recon-
structions, their high computational cost will become a
new difficulty, which may be overcome by parallel pro-
cessing or multifrequency techniques [16], [46], [47].

In  summary,  systemic  research  on  the  microwave
tomographic  imaging of  four  2-D anatomically  realistic
cancerous numerical phantoms in three scenarios is car-
ried out. The imaging results show that our algorithm is
convergent for all these cases. The error analysis of the

algorithm indicates that reconstruction error can be re-
duced  by  properly  increasing  a  priori  information
and/or  the  number  of  iterations.  The  current  imaging
quality clearly  reveals  that  the  detection  of  breast  tu-
mors by the presented microwave tomographic imaging
technique is promising for sparse breast tissue, but chal-
lenging for dense tissue. In addition, compared to some
single-frequency methods, one of the advantages of the
time-domain  method  proposed  in  this  paper  is  that  it
can  deal  with  dispersive  media.  One  drawback  of  the
time-domain method, however, is the increase in nonlin-
earity  due  to  an  increase  in  the  number  of  unknowns,
which decreases the chance of the method obtaining the
global minimum. Therefore, it is still challenging to find
a solution that is close to the exact one.

 V. Conclusions and Future Work
The TDIS  technique  was  improved  from three  as-

pects and then tested for the reconstruction of the spa-
tial  distribution  of  Debye  parameters  from  four  2-D
anatomically  realistic  breast  models  embedded  in  a  3
mm-diameter malignancy tumor, in three different scen-
arios. The obtained results demonstrate that the modi-
fied  technique  is  feasible  and  promising  for  early-stage
breast cancer detection and/or quantitative reconstruc-
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Fig. 23. Reconstructed  relative  RMSEs  versus  the  number

of iterations for four breast phantoms in three scen-
arios.

 

   
Table 2. Actual and reconstructed average Debye parameters of skin, fat, FG, transition, and tumor regions in three

scenarios for four breast phantoms

Phantom Tissue

ε∞ σs ∆ε1Average Debye parameters ( ,  （S/m）, )

Actual values
Reconstructed values

Scenario I Scenario II Scenario III

A

Skin (15.93, 0.83, 23.83) (16.61, 0.86, 24.76) (10.17, 0.46, 11.81) (10.08, 0.46, 11.75)
Fat (3.32, 0.05, 2.06) (3.38, 0.05, 2.27) (3.58, 0.07, 2.77) (3.59, 0.07, 2.77)
FG (13.59, 0.62, 31.93) (11.10, 0.50, 22.73) (11.07, 0.45, 21.41) (11.00, 0.45, 21.33)

Transition (7.93, 0.22, 12.68) (7.26, 0.24, 12.09) (7.40, 0.24, 11.88) (7.38, 0.24, 11.86)
Tumor (23.72, 0.50, 33.77) (14.79, 0.42, 18.92) (15.01, 0.32, 14.87) (14.63, 0.32, 14.69)

B

Skin (15.93, 0.83, 23.83) (16.62, 0.86, 24.67) (10.61, 0.47, 12.43) (10.60, 0.47, 12.42)
Fat (3.33, 0.05, 2.10) (3.45, 0.05, 2.48) (3.70, 0.07, 3.14) (3.70, 0.07, 3.15)
FG (13.78, 0.67, 33.84) (12.26, 0.55, 26.20) (12.35, 0.49, 23.50) (12.36, 0.48, 23.43)

Transition (7.24, 0.19, 11.09) (6.78, 0.19, 10.26) (6.85, 0.20, 10.39) (6.85, 0.20, 10.39)
Tumor (23.72, 0.50, 33.77) (13.25, 0.37, 18.76) (13.05, 0.32, 16.89) (13.08, 0.31, 16.87)

C

Skin (15.93, 0.83, 23.83) (16.41, 0.85, 25.42) (9.41, 0.45, 11.59) (9.40, 0.45, 11.84)
Fat (3.22, 0.04, 1.86) (3.47, 0.05, 2.23) (3.87, 0.07, 3.43) (3.87, 0.07, 3.45)
FG (13.84, 0.69, 34.70) (11.19, 0.64, 12.98) (10.83, 0.62, 14.88) (10.71, 0.63, 16.33)

Transition (8.15, 0.23, 13.18) (8.52, 0.29, 9.57) (8.49, 0.30, 10.58) (8.46, 0.31, 11.32)
Tumor (23.72, 0.50, 33.77) (10.53, 0.72, 11.74) (10.40, 0.65, 24.30) (10.10, 0.62, 29.27)

D

Skin (15.93, 0.83, 23.83) (16.58, 0.85, 23.97) (9.74, 0.47, 12.85) (9.73, 0.47, 13.07)
Fat (3.11, 0.04, 1.65) (3.47, 0.05, 3.61) (4.04, 0.08, 4.63) (4.05, 0.08, 4.53)
FG (13.82, 0.69, 34.55) (12.93, 0.62, 27.01) (12.73, 0.62, 24.96) (12.63, 0.62, 25.85)

Transition (8.93, 0.25, 14.99) (9.61, 0.35, 19.38) (9.62, 0.36, 18.77) (9.62, 0.36, 18.98)
Tumor (23.72, 0.50, 33.77) (14.80, 0.63, 23.23) (13.47, 0.65, 24.68) (13.12, 0.64, 25.06)

 

1148 Chinese Journal of Electronics 2023



tion  of  the  internal  breast  composition,  especially  for
sparse  breast  tissue.  Future  work  will  improve  the
TDIS algorithm  to  effectively  detect  dense  breast  tu-
mors and test 3-D reconstruction problems.

References
 R. L. Siegel, K. D. Miller, H. E. Fuchs, et al., “Cancer stat-
istics,  2021,” CA:A  Cancer  Journal  for  Clinicians,  vol.71,
no.1, pp.7–33, 2021.

[1]

 M. Jalilvand, X. Y. Li, L. Zwirello, et al., “Ultra wideband
compact near-field  imaging  system for  breast  cancer  detec-
tion,” IET  Microwaves,  Antennas & Propagation,  vol.9,
no.10, pp.1009–1014, 2015.

[2]

 S.  Mukherjee,  L.  Udpa,  S.  Udpa, et  al., “A  time  reversal-
based microwave imaging system for detection of breast tu-
mors,” IEEE  Transactions  on  Microwave  Theory  and
Techniques, vol.67, no.5, pp.2062–2075, 2019.

[3]

 H.  Sato  and  S.  Kidera, “ROI  limited  unknowns  reduction-
based contrast  source  inversion  for  microwave  breast  ima-
ging,” IEEE  Antennas  and  Wireless  Propagation  Letters,
vol.19, no.12, pp.2285–2289, 2020.

[4]

 X. Li, E. J. Bond, B. D. Van Veen, et al., “An overview of
ultra-wideband microwave  imaging  via  space-time  beam-
forming for  early-stage  breast-cancer  detection,” IEEE An-
tennas  and  Propagation  Magazine,  vol.47,  no.1,  pp.19–34,
2005.

[5]

 A.  Zamani,  A.  M.  Abbosh,  and  A.  T.  Mobashsher, “Fast
frequency-based  multistatic  microwave  imaging  algorithm
with application to brain injury detection,” IEEE Transac-
tions  on  Microwave  Theory  and  Techniques,  vol.64,  no.2,
pp.653–662, 2016.

[6]

 X. H. Zhang, X. L. Xi, M. C. Li, et al., “Comparison of im-
pulse radar and spread-spectrum radar in through-wall ima-
ging,” IEEE Transactions on Microwave Theory and Tech-

[7]

niques, vol.64, no.3, pp.699–706, 2016.
 V. Gracheva and J. Ender, “Multichannel analysis and sup-
pression  of  sea  clutter  for  airborne  microwave  radar
systems,” IEEE  Transactions  on  Geoscience  and  Remote
Sensing, vol.54, no.4, pp.2385–2399, 2016.

[8]

 D. O’Loughlin, B. L. Oliveira, A. Santorelli, et al., “Sensit-
ivity and  specificity  estimation  using  patient-specific  mi-
crowave imaging in  diverse  experimental  breast  phantoms,”
IEEE  Transactions  on  Medical  Imaging,  vol.38,  no.1,
pp.303–311, 2019.

[9]

 H. Song, S. Sasada, N. Masumoto, et al., “A two-stage rota-
tional  surface  clutter  suppression  method  for  microwave
breast  imaging  with  multistatic  impulse-radar  detector,”
IEEE Transactions  on Instrumentation and Measurement,
vol.69, no.12, pp.9586–9598, 2020.

[10]

 J.  E.  Johnson,  T.  Takenaka,  and T. Tanaka, “Two-dimen-
sional time-domain  inverse  scattering  for  quantitative  ana-
lysis  of  breast  composition,” IEEE Transactions  on  Bio-
medical Engineering, vol.55, no.8, pp.1941–1945, 2008.

[11]

 T. F. Yin, F. H. Ali, and C. C. Reyes-Aldasoro, “A robust
and  artifact  resistant  algorithm  of  ultrawideband  imaging
system for breast cancer detection,” IEEE Transactions on
Biomedical Engineering, vol.62, no.6, pp.1514–1525, 2015.

[12]

 G. Ruvio,  R.  Solimene,  A.  Cuccaro, et al., “Comparison of
noncoherent linear  breast  cancer  detection  algorithms  ap-
plied to a 2-D numerical model,” IEEE Antennas and Wire-
less Propagation Letters, vol.12, pp.853–856, 2013.

[13]

 A. Cuccaro, A. Dell’Aversano, G. Ruvio, et al., “Incoherent
radar imaging for breast cancer detection and experimental
validation against 3D multimodal breast phantoms,” Journ-
al of Imaging, vol.7, no.2, article no.23, 2021.

[14]

 S. C. Hagness, A. Taflove, and J. E. Bridges, “Two-dimen-
sional FDTD analysis  of  a  pulsed  microwave  confocal  sys-
tem for breast cancer detection: fixed-focus and antenna-ar-
ray  sensors,” IEEE Transactions  on  Biomedical  Engineer-
ing, vol.45, no.12, pp.1470–1479, 1998.

[15]

 D.  Oloumi,  R.  S.  C.  Winter,  A.  Kordzadeh, et  al., “Mi-
crowave  imaging  of  breast  tumor  using  time-domain  UWB
circular-SAR  technique,” IEEE  Transactions  on  Medical
Imaging, vol.39, no.4, pp.934–943, 2020.

[16]

 P. Mojabi and J. LoVetri, “A novel microwave tomography
system  using  a  rotatable  conductive  enclosure,” IEEE
Transactions  on  Antennas  and  Propagation,  vol.59,  no.5,
pp.1597–1605, 2011.

[17]

 A.  Fhager,  M.  Gustafsson,  and  S.  Nordebo, “Image recon-
struction in microwave tomography using a dielectric Debye
model,” IEEE  Transactions  on  Biomedical  Engineering,
vol.59, no.1, pp.156–166, 2012.

[18]

 W. C. Chew and J. H. Lin, “A frequency-hopping approach
for  microwave  imaging  of  large  inhomogeneous  bodies,”
IEEE  Microwave  and  Guided  Wave  Letters,  vol.5,  no.12,
pp.439–441, 1995.

[19]

 T.  Takenaka,  H.  Jia,  and T.  Tanaka, “Microwave  imaging
of  electrical  property  distributions  by  a  forward-backward
time-stepping  method,” Journal  of  Electromagnetic  Waves
and Applications, vol.14, no.12, pp.1609–1626, 2000.

[20]

 R.  Solimene,  A.  Cuccaro,  G.  Ruvio, et  al., “Beamforming
and  holography  image  formation  methods:  an  analytic
study,” Optics Express, vol.24, no.8, pp.9077–9093, 2016.

[21]

 D. W. Winters, E. J. Bond, B. D. Van Veen, et al., “Estim-
ation of  the  frequency-dependent  average  dielectric  proper-
ties  of  breast  tissue  using a  time-domain inverse  scattering
technique,” IEEE Transactions on Antennas and Propaga-
tion, vol.54, no.11, pp.3517–3528, 2006.

[22]

 T. G. Papadopoulos  and I.  T.  Rekanos, “Time-domain mi-
crowave imaging  of  inhomogeneous  Debye  dispersive  scat-

[23]

   
Table 3. Reconstructed relative root mean squared er-
rors of skin, fat, FG, transition, and tumor regions in

three scenarios for four breast phantoms

Phantom Tissue
Reconstructed error

Scenario I Scenario II Scenario III

A

Skin 0.0460 0.4494 0.4523
Fat 0.3360 0.5668 0.5674
FG 0.2748 0.3137 0.3154

Transition 0.3848 0.3870 0.3869
Tumor 0.3575 0.4444 0.4508

B

Skin 0.0536 0.4268 0.4276
Fat 0.3241 0.5240 0.5262
FG 0.2568 0.3077 0.3117

Transition 0.3130 0.3233 0.3257
Tumor 0.3982 0.4485 0.4523

C

Skin 0.0975 0.4729 0.4698
Fat 0.4636 0.5299 0.5244
FG 0.4394 0.4263 0.4161

Transition 0.5404 0.5725 0.5916
Tumor 0.5574 0.3346 0.3701

D

Skin 0.0940 0.4415 0.4384
Fat 0.3857 0.5126 0.5096
FG 0.2248 0.2627 0.2521
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