
Transformer-Based Under-sampled
Single-Pixel Imaging

TIAN Ye1,4, FU Ying2,3, and ZHANG Jun1,2,4

(1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)
(2. Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China)

(3. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
(4. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China)

 
   Abstract — Single-pixel  imaging,  as  an  innovative
imaging  technique,  has  attracted  much  attention  during
the last decades. However, it is still a challenging task for
single-pixel  imaging  to  reconstruct  high-quality  images
with fewer  measurements.  Recently,  deep  learning  tech-
niques have shown great potential in single-pixel imaging
especially for  under-sampling  cases.  Despite  outperform-
ing  traditional  model-based  methods,  the  existing  deep
learning-based methods usually  utilize  fully  convolutional
networks to model the imaging process which have limita-
tions  in  long-range  dependencies  capturing,  leading  to
limited  reconstruction  performance.  In  this  paper,  we
present  a  transformer-based  single-pixel  imaging  method
to  realize  high-quality  image  reconstruction  in  under-
sampled  situation.  By  taking  advantage  of  self-attention
mechanism, the proposed method is good at modeling the
imaging process and directly reconstructs high-quality im-
ages  from  the  measured  one-dimensional  light  intensity
sequence. Numerical  simulations  and  real  optical  experi-
ments demonstrate  that  the  proposed  method  outper-
forms the state-of-the-art single-pixel imaging methods in
terms of reconstruction performance and noise robustness.

   Key words — Computational  imaging, Single-pixel

imaging, Vision transformer, Under-sampled ratio.

 I. Introduction
Single-pixel  imaging  (SPI)  [1]–[3], as  a  novel  com-

putational  imaging  technique,  has  attracted  a  wide
range of  attention  recently  due  to  its  ability  of  repla-
cing conventional pixel-rich detectors with a single-pixel
detector.  Different  from  the  conventional  single-shot
imaging scheme,  single-pixel  imaging  reconstructs  ob-
ject  image  with  multiple  measurements.  To  be  more
specific, SPI  uses  a  sequence  of  modulation  light  pat-

terns to  illuminate  the  object  image  and  the  corres-
ponding reflected or transmitted light is captured by a
single-element photodetector  as  one-dimensional  meas-
urement data. The object image can be recovered from
the recorded  measurements  by  using  various  computa-
tional  imaging  algorithms.  SPI  has  unique  advantages
such as high signal-to-noise ratio, low cost, broadband,
and  flexible  light-path  configuration  [4].  Therefore,  it
has  been  applied  to  three-dimensional  imaging  [5],  gas
imaging  [6],  terahertz  imaging  [7],  remote  sensing  [8],
and many other fields [9] where pixelated detectors are
not accessible due to cost or technical constraints.

In  SPI,  high-quality  image  reconstruction  needs  a
large amount of measurements, which greatly increases
the  imaging  time  and  limits  the  practical  application.
Therefore, it is very important for SPI to balance ima-
ging quality and efficiency. Various methods have been
proposed to  solve  this  problem.  One  of  the  most  com-
monly used  methods  is  to  adopt  the  compressed  sens-
ing  (CS)  which  incorporates  the  prior  knowledge  that
most  natural  images  have  [10],  [11].  However,  these
hand-crafted priors  are  insufficient  to represent the di-
verse  range  of  real-world  images.  Moreover,  these  CS-
based methods are very time-consuming because of the
iterative process. Recently, deep learning methods have
been proposed for SPI to improve the reconstructed im-
age  quality  [12]–[14].  In  comparison  to  the  CS-based
methods, deep learning (DL)-based methods can recov-
er higher quality images with fewer measurements. But
most of  these  methods  need  data  preprocessing  to  re-
cover  the  approximant  first,  which  ignores  the  SPI
physical model and is more like image denoising. More
importantly,  for  SPI,  the  measured  data  has  a  strong 
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relationship because it is obtained from the same scene,
indicating  that  long-range  dependencies  are  crucial  for
effective SPI modeling. But the current DL-based meth-
ods all rely on convolution filters to model the depend-
encies across the input and desirable reconstructed im-
age.  These  convolutional  neural  network  (CNN)  based
models often focus on local features and ignore the long-
range  dependencies  of  SPI  measurements.  Thus,  these
DL-based  methods  exhibit  satisfactory  reconstruction
results only for simple objects and show little perform-
ance improvement  as  the  number  of  measurements  in-
creases.

Inspired by the great success in the field of natural
language processing (NLP) [15], transformer models are
applied  to  computer  vision  (CV)  tasks  recently  and
show  valuable  potential  to  substitute  for  CNN models
[16], [17]. Different from CNN models, transformer mod-
els  are  good  at  extracting  global  features  and  flexibly
modeling  long-range  dependencies  of  data  at  various
scales.  Benefiting  from  these  advantages,  transformer
models  have  the  potential  to  overcome  the  limitations
of CNN-based models in SPI reconstruction.

In this paper, we propose an under-sampled trans-
former-based SPI method,  which can realize  high-qual-
ity image reconstruction with the one-dimensional light
intensity sequence.  By developing an end-to-end trans-
former  network,  the  long-range  dependencies  in  the
measured data can be effectively utilized to improve the
reconstruction performance of under-sampled SPI. Sim-
ulated  and experimental  results  show that  our  method
can achieve better performance than the state-of-the-art
SPI  methods  in  terms  of  fidelity  and  robustness.  This
work  provides  a  novel  solution  for  high-quality  under-
sampled single-pixel imaging.

 II. Related Work
In this  section,  we review the researches  most  rel-

evant  to  our  work,  including  single-pixel  imaging  and
vision transformer. Through this review, the innovation
of our proposed method is clarified.

 1. Single-pixel imaging
Existing SPI methods can be divided into conven-

tional  model-based  methods  and  DL-based  methods.
Among them, the conventional  model-based SPI meth-
ods  can  be  classified  into  two  categories:  non-iterative
SPI  methods  and iterative  SPI  methods.  The non-iter-
ative  SPI  methods  [18]  directly  utilize  the  correlation
between modulation light patterns and object image to
reconstruct the object image without iteration, such as
the differential ghost imaging (DGI) method [19]. How-
ever,  these  non-iterative  SPI  methods  can  successfully
reconstruct  images  only  in  the  fully-sampled  situation.
The  iterative  SPI  methods,  including  gradient  descent

SPI methods [20], alternating projection SPI methods [21]
and  CS-based  SPI  methods  [10],  [11],  combine  convex
optimization  theory  and  various  of  hand-crafted  priors
to  reconstruct  the  object  images.  In  [20],  the  authors
compared all  model-based  SPI  methods  and  demon-
strated  that  the  CS-based  methods  outperform  other
model-based methods in under-sampled cases. Neverthe-
less,  the  CS-based  methods  are  with  higher  algorithm
complexity and not suitable for real-time imaging.

Recently, DL-based  SPI  methods  are  widely  con-
cerned due  to  their  superior  SPI  reconstruction  per-
formance  in  the  under-sampled  situation.  In  [12], re-
searchers  reported  a  DL-based  ghost  imaging  method
(GIDL) with  a  two-step  process.  It  first  uses  a  tradi-
tional correlation-based  method  to  reconstruct  the  ap-
proximate image  from  the  under-sampled  measure-
ments, then uses a deep neural  network (DNN) to im-
prove the reconstruction performance. Similarly, in [13],
researchers  proposed  a  deep  learning  ghost  imaging
method (DLGI). Different from the GIDL, it uses a CS-
based method  in  the  first  step  and  a  CNN-based  net-
work in  the  second  step.  However,  these  methods  re-
duce the reconstruction efficiency due to the long time
consumed in the first step. To improve the reconstruc-
tion  efficiency,  in  [22],  researchers  proposed  a  one-step
SPI  method  based  on  a  deep  convolutional  auto-en-
coder  network  (DCAN),  which  can  reconstruct  image
directly  from  the  under-sampled  SPI  measurements.
After  that,  researchers  proposed  several  other  one-step
SPI methods  that  employ  different  end-to-end  SPI  re-
construct  networks  [23]–[26].  However,  these  CNN-
based  network  structures  are  inefficient  in  reasoning
long-range dependencies  in  SPI  measurements.  There-
fore,  these  methods  are  more  suitable  for  MNIST-like
simple object  imaging.  To  further  enhance  the  recon-
struction performance,  researchers  prefer  making  ef-
forts to  improve  the  two-step  DL-based  methods  re-
cently  [27]–[29].  These  methods  use  non-iterative  SPI
methods  to  reconstruct  the  approximate  image  in  the
first step and more complicated CNN-based networks in
the second step, which can obtain better reconstruction
efficiency and quality compared with the previous two-
step  methods.  Besides,  researchers  applied  a  physics-
enhanced framework with fine-tuning process [30] to im-
prove  the  reconstruction  quality  and  generalization  of
the two-step method [31]. In summary, the majority of
DL-based  SPI  methods  adopt  a  two-step  process  for
imaging  [26]–[31]  and  heavily  rely  on  CNN  structures
for modeling.

 2. Vision transformer
Transformer  was  first  proposed  in  [32]  and  has

gained  extensive  application  for  NLP  tasks  [33].  The
key  component  of  transformer  is  attention  mechanism,
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which can  capture  long-term  information  between  se-
quence  elements.  Recently,  many  efforts  have  been
made  by  researchers  to  explore  its  applicability  in  CV
tasks. Compared  with  CNN-based  architecture,  trans-
former  shows  more  appealing  performance  in  various
applications, such as image classification [34], segmenta-
tion [35], object detection [36], and human pose estima-
tion [37].  Among them, ViT [38]  is  the first  work that
uses  transformer  in  place  of  the  standard  convolution.
To adapt to visual tasks, the 2D image patches are con-
verted into a vector and fed into the transformer. After
that, many kinds of transformers are developed for dif-
ferent demands. For example, to further reduce compu-
tation expense  and  improve  the  efficiency  of  trans-
former, pyramid  vision  transformer  (PVT)  was  pro-
posed in [39], which makes full use of spatial-reduction
attention (SRA) to learn multiscale and high-resolution
features. To improve the modeling capacity of local in-
formation, shifted windows (Swin) transformer was pro-
posed  in  [40]  which  has  the  advantage  of  processing
large-size  images  on  the  strength  of  shifted  windows
mechanism.  In  summary,  transformer  now is  becoming
an upgraded alternative for original CNNs in CV tasks
due to its outstanding performance.

 III. Principles and Methods
In  this  section,  we  first  formulate  the  problem for

under-sampled  SPI  reconstruction  and  illustrate  the
motivation of our work. Then we describe the proposed
transformer-based single-pixel imaging method in detail.

 1. Problem formulation
The process of single-pixel imaging consists of two

stages.  First,  the  object  is  illuminated  by  a  series  of
modulation light patterns and the corresponding reflec-
ted light is collected as measurement data with a single-
pixel detector.  Mathematically,  this  process  can be  ex-
pressed as
 

Bi =

ˆ
Pi(x, y)T (x, y)dxdy (1)

T (x, y)

N (x, y)

Pi(x, y) i

i = 1, 2, . . . ,M M

N M M/N

Bi

i

where  denotes  the  object  image  and  the  total
number of pixels is ,  is the transverse coordin-
ates at the object plane.  denotes the -th modu-
lation pattern, where  and  is the total
number  of  modulation  patterns.  In  under-sampled  SPI
condition,  is  larger  than  and  is  the
sampling ratio.  is the reflected light intensity under
the -th modulation pattern. For convenience, we gener-
ally express the above process in matrix form as
 

B = PT (2)

Secondly, various kinds of SPI algorithms are used

T

P

to  reconstruct  the  object  image  according  to  the
known  modulation  light  patterns .  In  the  under-
sampled situation, the reconstruction of object image is
an  ill-posed  problem.  For  CS-based  SPI  methods,  the
image  reconstruction  is  regarded  as  an  optimization
problem, which can be expressed as
 

T̂ = argmin
T

∥B −PT∥22 + τR(T ) (3)

R(T )

τ

B

where  is the prior that most natural images pos-
sess, such as sparsity, total variation and low rankness.
 is a trade-off parameter. By combining the convex op-

timization  theory  [41],  [42],  the  above  optimization
problem can be solved and the object image can be ob-
tained. However, these CS-based methods need to tune
parameters  manually  and  have  slow  reconstruction
speed  due  to  their  iterative  process.  By  comparison,
DL-based  SPI  methods  adopt  a  CNN-based  network
that can implicitly learn the prior to reconstruct the ob-
ject  images.  Most  of  these  methods  need preprocessing
algorithms  [12],  [13]  to  recover  the  approximant  first
from measurements ,  and then send the  noisy  image
to the  CNN-based  network  to  get  a  higher  quality  re-
constructed image. This process can be expressed as
 

T̂ = fcnn(SPI(B)) (4)

fcnn(·)
SPI(·)

where  denotes the  CNN-based  SPI  reconstruc-
tion  network.  denotes the  preprocessed  al-
gorithm,  such  as  DGI  algorithm [19].  However,  due  to
the limitation of CNN structure, these CNN-based SPI
methods perform well only in reconstructing binary im-
ages and  sparse  gray  images.  Besides,  when  the  num-
ber of  measurements  increases,  the  performance  im-
provement of these methods is very limited. It is still a
challenging task for SPI to reconstruct high-quality im-
ages  directly  from  fewer  one-dimensional  measurement
data. Therefore, we develop a transformed-based single-
pixel  imaging  method  to  reconstruct  the  high-quality
image directly  from  one-dimensional  light  intensity  se-
quence in the under-sampled situation.

 2. Transformer-based single-pixel imaging

B

The proposed method employs a transformer-based
network  to  reconstruct  the  object  image  directly  from
the one-dimensional  measurements . This reconstruc-
tion process can be mathematically expressed as an im-
plicit function:
 

T̂ = ftspi(B) (5)

ftspi(·)

T̂

where  denotes  our  proposed  transformed-based
SPI  network  that  models  the  dependencies  across  the
SPI  measurements  to  the  reconstructed  image.  de-
notes  the  reconstructed  object  image.  The  mapping
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K

T k

Bk k = 1,

2, . . . ,K

from  one-dimensional  measurements  to  a  two-dimen-
sional image  without  knowing the  transformation mat-
rix is highly ill-posed. Therefore, we train the proposed
transformer-based network from  pairs of labeled data
each  of  which  pairs  up  a  known  object  image  and
the corresponding SPI measurements ,  where 

. The training stage can be expressed as:
 

f̃tspi = argmin
w

K∑
k=1

L(T k, ftspi,w(B
k)) (6)

w

L(·)
ftspi(B

k)

T k

where  is the all learnable parameters in our proposed
network,  is  a  loss  function  to  measure  the  error
between the network output  and the ground-
truth . We use the mean squared error (MSE) as the
loss in this work. After training is completed, the arbit-
rary  object  image  can  be  reconstructed  in  terms  of  its
SPI measurements:
 

T̂
′
= f̃tspi(B

′
) (7)

Then, we  illustrate  the  architecture  of  the  pro-
posed  transformed-based  SPI  network  in Fig.1.  As
shown in Fig.1, the input of the network is the one-di-
mensional  measurement  data  obtained  by  the  single-
pixel detector. To effectively exploit the long-range de-

j

Xj−1

Xj

pendencies in  measurements,  we  first  add  a  fully  con-
nected layer  at  the  input  which reshapes  the  measure-
ment  data  into  a  two-dimensional  feature  map.  Then,
we  use  a  convolutional  layer  to  extract  the  low-level
features. Next, we use four transformer blocks and one
convolutional layer to extract the deep features. Finally,
we adopt  one  convolution  layer  to  reconstruct  the  ob-
ject image from the extracted features.  In order to ob-
tain better image quality, we adopt a long skip connec-
tion that can aggregate both low-level features and deep
features to the last convolution layer. For more details,
each transformer block consists of four transformer lay-
ers and one convolutional layer. Inspired by the advant-
ages  of  the  Swin  transformer,  each  transformer  layer
consists  of  LayerNorm  (LN),  multi-layer  perceptron
(MLP) and  multi-head  self-attention  (MSA).  In  addi-
tion,  the  shifted  window  mechanism  is  used  in  the
MSA, which is expressed as S-MSA. For the -th trans-
former  layer,  assuming  is  the  input,  the  output

 can be expressed as:
 

X ′
j = S-MSA(LN(Xj−1)) +Xj−1 (8)

 

Xj = MLP(LN(Xj
′)) +X ′

j (9)

X ′
jwhere  denotes the output of the S-MSA.
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Fig. 1. Architecture of the proposed transformer-based SPI network.

 

 IV. Simulation and Experimental
Results

In this section, we conduct several simulations and
real  experiments  to  evaluate  the  performance  of  our
method. We  first  describe  the  settings  for  our  simula-
tions and real experiments, including dataset, quantitat-
ive  evaluation  metrics  and  competing  methods.  Then,
we compare our proposed method with the state-of-the-

art methods by simulation, in which both the noiseless
and noisy  situations  are  considered.  Finally,  we  imple-
ment  our  proposed  method  on  the  real  SPI  captured
data which further verifies the effectiveness of our pro-
posed method.

 1. Metrics and setups
We  conduct  a  comparative  analysis  between  our

proposed transformer-based SPI method and the state-
of-the-art  SPI  methods,  which  includes  traditional  CS-
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+1

−1

1× 10−4

16 150

based  methods  (i.e.,  CS-sparse  [10]  and  CS-TV  [11]),
and DL-based methods (i.e., DCAN [22], RNN [25], and
physics-enhanced  method  [31]).  Following  [22], the  op-
timized binary patterns  are  selected as  the modulation
light  patterns  because  they  are  more  practical  and
hardware-friendly. More specifically, the values of mod-
ulation patterns  are  optimized  together  with  the  pro-
posed network in the training stage and restricted to 
or  approximately by regularization function. We use
Adam optimizer [43] to train the proposed transformer-
based SPI network. The learning rate is .  The
batch  size  is  set  to  with  epochs.  All  DL-based
methods  are  trained  using  STL-10  dataset  [22]  on  a
server equipped with a GeForce RTX 3090. All compet-
ing  methods  are  tested  on  a  computer  with  NVIDIA
GeForce GTX 1660 SUPER GPU, 16 GB RAM, and 64
bit  Windows  10  operating  system.  To  quantitatively
evaluate all methods, we employ two performance met-
rics,  including  peak  signal-to-noise  ratio  (PSNR)  and
structure  similarity  (SSIM)  index  [44].  In  general,  the
larger the PSNR and SSIM values, the better the recon-
struction performance of SPI.

 2. Simulations
We compare the performance of all competing SPI

5% 8% 10% 20% 30%
algorithms  based  on  Set12  [45]  dataset.  The  sampling
ratios  are  set  as , , , ,  and .  The
quantitative results of SPI reconstruction are shown in
Table  1.  The  proposed  transformer-based  SPI  method
consistently  outperforms  both  CS-based  and  DL-based
SPI methods in terms of PSNR and SSIM, demonstrat-
ing  superior  reconstruction  quality  across  various
sampling ratios.

64× 64

To  facilitate  a  visual  comparison  of  all  competing
methods, we present the reconstructed images of “cam-
eraman” at various sampling ratios for each competing
methods,  as  shown  in Fig.2.  The  image  have 
pixels. From Fig.2, it is apparent that more details and
sharper edges can be obtained by our proposed method,
which further demonstrates the effectiveness of our pro-
posed method.

1× 10−5 1× 10−3

In practical SPI, the measurements inevitably con-
tain  various  noise.  To  test  the  noise  robustness  of  our
method, we simulate the case that Gaussian white noise
is  included  in  SPI  measurements.  Following  [20],  the
noise level  added  in  SPI  measurements  can  be  calcu-
lated  by  the  dividing  of  noise  standard  deviation  and
total  pixel  number.  According  to  the  above  definition,
we set the noise level as  to . The im-

   
Table 1. Average PSNR (dB) and SSIM of the reconstructed results at various sampling ratios on Set12 dataset

×Image size: 32  32

Algorithm Metrics
Sampling ratio

2% 5% 8% 10% 20% 30%

CS-sparse
PSNR 11.80 12.54 12.82 13.05 14.73 16.21
SSIM 0.0527 0.0824 0.1233 0.1480 0.3194 0.4501

CS-TV
PSNR 13.83 15.03 15.80 16.23 18.05 19.38
SSIM 0.1776 0.2672 0.3464 0.3907 0.5551 0.6522

DCAN
PSNR 17.85 19.16 19.91 20.98 22.78 22.45
SSIM 0.2662 0.4149 0.4945 0.5586 0.7112 0.6848

RNN
PSNR 18.00 19.82 20.69 21.09 23.20 23.08
SSIM 0.3085 0.5040 0.5934 0.6307 0.7822 0.7830

Physics-enhanced
PSNR 16.78 18.23 19.27 19.97 22.26 23.50
SSIM 0.2735 0.4211 0.5068 0.5426 0.7074 0.7693

Ours
PSNR 18.72 20.60 21.55 22.40 23.64 25.04
SSIM 0.3350 0.5322 0.6145 0.6811 0.7853 0.8301

×Image size: 64  64

Algorithm Metrics
Sampling ratio

2% 5% 8% 10% 20% 30%

CS-sparse
PSNR 12.24 13.24 14.02 14.54 16.51 18.12
SSIM 0.0554 0.1127 0.1525 0.1882 0.3440 0.4661

CS-TV
PSNR 15.17 16.60 17.51 17.93 19.89 21.39
SSIM 0.2584 0.3470 0.4138 0.4478 0.5807 0.6662

DCAN
PSNR 18.77 19.97 20.12 20.68 21.00 21.97
SSIM 0.3531 0.4720 0.4816 0.5305 0.5449 0.6308

RNN
PSNR 16.53 20.86 21.69 21.52 21.45 23.16
SSIM 0.3504 0.5819 0.6461 0.6372 0.6819 0.7428

Physics-enhanced
PSNR 16.85 19.41 20.73 21.36 23.20 24.74
SSIM 0.3233 0.4678 0.5614 0.6021 0.7052 0.7752

Ours
PSNR 19.57 21.29 22.00 22.49 24.30 25.34
SSIM 0.4366 0.5928 0.6532 0.6785 0.7870 0.8280
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64× 64 8%age have  pixels. The sampling ratio is . The
simulated  results  are  presented  in Table  2. It  is  obvi-
ous that our method maintains the best SPI reconstruc-

tion performance,  even  the  noise  level  increases.  It  in-
dicates  our  method  has  superior  noise  robustness  and
much suitable for practical SPI applications.

  
Table 2. Average PSNR (dB) and SSIM of the reconstructed results on Set12 dataset at different noise levels

Algorithm Metrics
Noise level

1E−3 5E−4 1E−4 5E−5 1E−5

CS-sparse
PSNR 12.99 13.79 14.02 14.02 14.02
SSIM 0.1100 0.1393 0.1503 0.1523 0.1525

CS-TV
PSNR 16.33 17.15 17.48 17.50 17.51
SSIM 0.3348 0.3874 0.4122 0.4133 0.4138

DCAN
PSNR 19.86 20.04 20.11 20.12 20.12
SSIM 0.4710 0.4780 0.4813 0.4815 0.4816

RNN
PSNR 21.19 21.54 21.67 21.68 21.69
SSIM 0.6188 0.6384 0.6455 0.6459 0.6461

Physics-enhanced
PSNR 19.54 20.40 20.72 20.73 20.73
SSIM 0.4953 0.5404 0.5571 0.5577 0.5578

Ours
PSNR 21.31 21.83 21.99 22.00 22.00
SSIM 0.6190 0.6457 0.6530 0.6532 0.6532

 
 

64× 64

10%

Additionally, we conduct a comparison of computa-
tional costs associated with all competing DL-based SPI
methods,  where  the  images  have  pixels  with

 sampling ratio. From Table 3, it can be seen that
the one-step DL-based SPI methods consume shorter in-
ference  time  than  the  two-step  method,  indicating  a
higher  reconstruction  efficiency.  Among  the  one-step
methods, our proposed method has a comparable infer-
ence  time  but  higher  training  consumption.  However,
the  relatively  high  training  consumption  is  acceptable
because it  does not affect the reconstruction efficiency.
In addition, our method has a few more network para-
meters than DCAN and RNN methods but realizes bet-
ter  reconstruction  performance  than  other  competing
methods.

 3. Real experiments
To further  validate  the  effectiveness  of  the  trans-

 

CS-TV DCAN RNN Ours

5%

10%

30%

13.84/0.1035

15.22/0.1541

19.02/0.3603

17.55/0.3682

18.97/0.4264

22.28/0.5634

20.33/0.5174

21.33/0.5962

22.84/0.6604

21.52/0.6336

22.11/0.6697

23.78/0.7644

21.78/0.6612

22.86/0.7450

25.97/0.8421

Physics-enhanced

19.99/0.4760

22.31/0.6398

25.61/0.7776

CS-sparse

 
Fig. 2. Reconstructed images of “cameraman” (PSNR(dB)/SSIM) with different methods.

 

   
Table 3. The comparison of computational cost among

different DL-based SPI methods

Algorithm Params. Training consumption Inference time

DCAN 3.37 M
2 hours single-GPU

0.1031 s
(1545 MiB)

RNN 5.61 M
27 hours single-GPU

0.1485 s
(1106 MiB)

Physics-enhanced 12.87 M
64 hours single-GPU

7.9219 s
(2093 MiB)

Ours 6.50 M
59 hours single-GPU

0.1401 s
(15723 MiB)
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64× 64

5% 10% 30%

former-based SPI  method,  we  build  up  an  optical  sys-
tem to acquire real SPI measurement data. The experi-
mental  setup  is  shown in Fig.3. Specifically,  we  gener-
ate the  binary modulation patterns using a pro-
jector (Panasonic, X416C XGA) and project them onto
the object. Then we capture the reflection light using a
Si amplified photodetector (Thorlabs, PDA100A2). We
set the sampling ratio as , , and . Fig.4 illus-
trates  the  optical  reconstruction  results.  It  is  obvious
that our method outperforms the model-based methods
and DL-based methods, producing higher quality image
reconstructions. These experimental results are in good

agreement  with  the  simulation  results.  Furthermore,
these  results  demonstrate  that  our  method  is  better
suited for practical applications.
 

Computer

Projector

Single-pixel detector

Object

Binary patterns

 
Fig. 3. The SPI experimental setup.

 

5%

10%

30%

CS-sparse CS-TV DCAN RNN Ours

5%

10%

30%

(a)

(b)

Physics-enhanced

 
Fig. 4. The  images  reconstructed  by  all  competing  methods  using  the  real  SPI  system.  (a)  Imaging  of  a “ghost” picture;

(b) Imaging of a tea caddy with a “SPI” letter background.
 

 V. Conclusions
In  this  study,  we  present  a  novel  one-step  single-

pixel  imaging  method  that  enables  high-performance
SPI  reconstruction  based  on  one-dimensional  under-
sampled  measurements.  By  taking  advantage  of  the

self-attention mechanism  and  shifted  window  mechan-
ism,  the  proposed  transformer-based  SPI  network  can
well exploit the intrinsic features of SPI. Numerous sim-
ulation and  experimental  results  show  that  the  pro-
posed  method  achieves  higher  image  quality  and
stronger noise  robustness  than  the  existing  SPI  meth-
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ods. In  addition,  our  work  indicates  that  the  trans-
former  architecture  has  great  potential  to  replace  the
CNN  architecture  in  single-pixel  imaging,  which  could
provide a  new  insight  into  optical  computational  ima-
ging.
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