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   Abstract — This  paper  proposes  a  new  scheme  that
allows decentralized  machine-to-machine  (M2M) commu-
nication to  share  spectrum  with  conventional  user  com-
munication in an orthogonal frequency division multiplex-
ing system.  This  scheme can  effectively  separate  and  re-
cover  mixed  signals  at  the  receiving  end.  It  mainly  uses
the  signal  space  cancellation-complex  system  Hopfield
neural  network  (SSC-CSHNN)  blind  detection  algorithm
to reconstruct the complementary projection operator and
the  blind  detection  performance  function  to  restore  the
M2M communication signals. In order to further improve
the anti-interference performance of the system and accel-
erate the  convergence  of  the  algorithm,  the  double  sig-
moid idea is introduced, and the signal space cancellation-
double  sigmoid  complex  system  Hopfield  neural  network
(SSC-DSCSHNN)  blind  detection  algorithm  is  proposed.
The  proposed  blind  detection  algorithm  improves  the
anti-interference  ability  and  the  convergence  speed  and
prevents the Hopfield neural network from falling into the
local  optimal  solution  based  on  the  successful  separation
and  recovery  of  mixed  signals.  Compared  with  existing
methods, the blind detection algorithm used in this paper
can directly detect the transmitted signal without identi-
fying the channel.

   Key words — Machine-to-machine  communication,

5G, Spectrum  sharing, Signal  space  cancellation, Com-

plex Hopfield neural network, Blind detection.

 I. Introduction
Due  to  the  widespread  application  of  machine-to-

machine  (M2M)  communications  in  Internet  of  things,
sensor  networks,  smart  meters,  and  intelligent  health,

people are  increasingly  interested  in  M2M communica-
tions [1]. In the future, terminals used for human-to-hu-
man (H2H) communications  may only  account  for  1/3
of  the  entire  market,  while  the  remaining  will  be  used
for  M2M communication,  which will  inevitably  lead to
the  lack of  wireless  spectrum resources  [2].  Most  M2M
communications have some common properties, such as
a  large  number  of  devices,  extremely  low  data  rates,
and highly  sporadic  transmissions,  while  cellular  sys-
tems based  on  local  area  networks  are  basically  de-
signed  for  H2H  communications.  H2H  communications
have different characteristics compared with M2M com-
munications,  which  makes  cellular  systems  unsuitable
for  M2M  applications  and  services  [3],  [4]. This  prob-
lem contradicts  the  increasingly  scarce  spectrum  re-
sources and becomes a bottleneck restricting the devel-
opment of M2M communications.

Many researchers  have  proposed  solutions  to  sup-
port M2M communication  spectrum sharing  and  coex-
istence. To improve the M2M support scheme of global
system for  mobile  communications  (GSM),  the  scheme
supporting  M2M  communication  in  the  Long-Term
Evolution  Standard  (LTE)  architecture  is  proposed  in
[5]. The M2M communication scheduling scheme based
on  the  LTE  cellular  system  is  proposed  in  [6],  which
uses  the  orthogonal  frequency  division  multiple  access
(OFDMA)  technology  to  share  specific  frequency  and
time  resources  in  the  user’s  system  architecture.  To
support future M2M communication in cellular systems,
a random  access  scheme  for  fixed-position  M2M  com-
munication in  OFDMA-based  cellular  systems  is  pro- 
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posed in [7].
However,  how  to  efficiently  separate  and  recover

transmission signals is a major difficulty for M2M spec-
trum sharing and coexistence systems. A spectrum shar-
ing scheme based on compressed sensing for M2M Com-
munication is proposed in [8], which utilizes the redund-
ancy  of  transmission  signals  to  separate  mixture  and
compression sensing techniques are then used to detect
jointly all the transmitted signals from the mixture. In
orthogonal  frequency  division  multiplexing  (OFDM)
system,  reference  [9] solves  the  problem of  random ac-
cess channel (RACH) congestion by allowing large-scale
M2M devices and H2H communications to share the en-
tire  spectrum  of  the  system  assuming.  However,  the
above  schemes  are  all  implemented  on  the  premise  of
using the  training  sequence  to  estimate  the  transmis-
sion channel in advance. We all know that frequent use
of  training  sequences  increases  the  channel  overhead
and does not meet the time-varying and unknown char-
acteristics of the actual transmission channel.

The  blind  detection  technology  can  detect  the
transmitted  signal  only  relying  on  the  signal  obtained
by the receiving end without using a training sequence.
A  blind  constellation  detection  method  that  meets  the
requirements  of  the  fifth-generation  (5G)  system  for
higher  spectral  efficiency  is  proposed  in  [10].  A  new
type  of  autonomous  unauthorized  high-load  non-ortho-
gonal multiple  access  (NOMA)  blind  multi-user  detec-
tion framework is described in [11], which is designed to
meet  the  requirements  of  5G  large-scale  machine-like
communications. For sparse quadrature amplitude mod-
ulation  (QAM)  signals,  a  blind  detection  algorithm
based  on  complex  discrete  is  proposed  in  [12].  For  the
OFDM  signal  receiver,  a  continuous  Hopfield  neural
network is designed in [13], which can significantly im-
prove the bit error rate (BER) performance. A scheme
that uses the redundancy in the transmitted signals to
separate  mixture  under  compressed  sensing  technology
and  uses  the  complex  system  Hopfield  neural  network
(CSHNN) blind detection algorithm to recover the con-
ventional user signals is proposed in [14]. However, the
plan does not further analyze the performance of M2M
communications.

In  this  paper,  we  consider  the  problem  where  a
large  number of  sporadic  M2M devices  share  the same
unknown  channel  with  a  conventional  communication
user such as a cellular user. We will show that the sig-
nal space cancellation (SSC) can be exploited to separ-
ate the  mixtures  and  the  CSHNN  blind  detection  al-
gorithm  can  be  used  to  detect  the  mixtures.  We  have
made the following contributions.

1) We  introduced  the  SSC  and  proposed  the  im-
proved  SSC-complex  system  Hopfield  neural  network

(SSC-CSHNN)  by  selecting  the  appropriate  improved
activation function.

2) In order to further improve the anti-interference
performance of  the  system  and  accelerate  the  conver-
gence of the algorithm, the double sigmoid idea is intro-
duced, and the SSC-double sigmoid CSHNN (SSC-DSC-
SHNN) blind detection algorithm is proposed.

3) We selected the combination of activation func-
tions with  better  anti-noise  performance  and  conver-
gence speed  by  comparing  the  blind  detection  al-
gorithms formed by different double sigmoid activation
functions.

The remainder of this paper is organized as follows.
In Section II, we give the system model and the trans-
mission  scheme.  In  Section  III,  we  detect  conventional
user signals; In Section IV, we develop a new blind de-
tection algorithm  to  restore  M2M  communication  sig-
nals, and we develop an algorithm to improve perform-
ance. Simulations are presented in Section V, and con-
clusions are given in Section VI.

 II. System Model
M

N

N × 1 si(m) =

[si(m) , . . . , si(m+N − 1)]
T

i = 0, . . . ,M

In this paper, we consider a system in which  M2M
devices transmit in a dispersed state and share the same
over-sampling channel with the persistently convention-
al  user.  This  makes  M2M  applications  have  low  duty
cycles and low data rates. We assume the M2M devices
and conventional users use OFDM modulation to trans-
mit  signals  which  contain  OFDM  symbols  in  each
OFDM  block,  then  the  symbol  vector 

 can  be  constructed,  where
. The schematic diagram of the blind detec-

tion algorithm based on the spectrum sharing and coex-
istence for M2M communications is shown in Fig.1.
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Fig. 1. Schematic of the blind detection algorithm based on

spectrum sharing and coexistence for M2M commu-
nications.
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H v(m)

σ2
v

In Fig.1,  and  represent the  conven-
tional user’s transmitted signal and its estimated signal
respectively.  and  represent  the  M2M
device’s transmitted signal  and its  estimated signal  re-
spectively.  is  the  over-sampling  channel;  con-
sists  of  additive  white  Gaussian  noise  with  zero  mean
and variance .

After  OFDM modulation  and  demodulation,  blind
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y(m) = [y(m), . . . ,

y(m+N − 1)]T

detection  system  for  M2M  communication  spectrum
sharing  receives  the  signal  vector 

, and the receiving equation is
 

(y(m))q×1 =

P∑
j=0

M∑
i=0

(hj)q×1 si (m− j) + (v(m))q×1

(1)

q P

M
(hj)q×1

where  is  the  channel  oversampling  factor,  and  is
the  order  of  the  channel,  is  the  number  of  M2M
devices;  is the impulse response of the channel.

v(m)In  the  case  of  ignoring  the  noise ,  the  above
receiver (1) can be written as
 

Y = SΓ T (2)

S = [sL+P (m), . . . , sL+P (m+N − 1)]T = [sN (k),

. . . , sN (m− P − L)]N×(L+P+1)M

(Y )N×(L+1)q = [yL(m), . . . ,

yL (m+N − 1)]T

(Γ )(L+1)q×M(L+P+1)[
h0, . . . ,hP ]q×(P+1)

where 
 is  the  conventional

user transmit signal matrix; 
 is the  receive  matrix  of  the  conven-

tional user;  is block Toeplitz mat-
rix  which  consists  of  the  channel  impulse  response

.
 

Γ =
h0 h1 · · · hP 0 · · · 0

0 h0
...

. . .

· · · · · ·
. . .

. . .

hP . . .
...

. . . . . . 0
0 · · · 0 h0 · · · · · · hP


(L+1)q×M(P+L+1)

i = 0When , the formula
 

P∑
j=0

(hj)q×1 s0 (m− j) (3)

s0(m) i = 1, . . . ,M

is the  matrix  obtained by the  conventional  user  trans-
mitted  signal  after  channel;  when ,
the formula
 

P∑
j=0

M∑
i=1

(hj)q×1 si (m− j) (4)

si(m)

is the  matrix  obtained  by  the  M2M  devices  transmit-
ted signals  after channel.

L
y(m)

(L+ 1)q

When an  order filter  is  used to equalize  the re-
ceived signal , the received signal vector of length

 can be expressed as
 

(yL(m))1×(L+1)q

= (sL+P (m))1×(P+L+1)M · ΓL (h) + vL(m) (5)

L
(gj)(L+1)q×1

where  is the parameter of equalizer; the output of the
equalizer  on the received signal is
 

sNj = yL(m) · gj
= ((sL+P (m))ΓL (h) + vL(m)) · gj

(6)

In this paper, conventional user communication sig-
nals and M2M communication signals are not related to
noise.

 III. Receiver and Conventional User
Signal Detection

 1. Blind  detection  performance  function  of
receiver signal

g N × (L+ 1)q

YN

N yL(m)

The  effect  of  the  equalizer  on  the 
dimensional received data array  which is composed
of  consecutive  can be expressed as
 

YN · g =
[
SN · Γ T

L + V
]
· g = ŜN +E0 (7)

We define
 

E0 = YN · g − ŜN = V · g (8)

where
 

YN =
{
[yL(m) , yL(m+ 1), . . . , yL(m+N)]T

}
N×(L+1)q

 

SN =
[
SN0,SN1, . . . ,SNj , . . . ,SN(P+L)]N×(P+L+1)M

 

SNj = {[sM (n− j), sM (n− j + 1), . . . ,

sM (n− j +N)]T}N×M , j = 0, . . . , (P + L)
 

E0 = {[ε01, ε02, . . . , ε0M ]}N×M

YN

ŜN g

ŜN

SN ∈ {±1 ±i} Q = Un ·UT
n

ŜN

In  (7),  is  the  only  known  quantity.  For  such
blind problems where  and  are unknown, the blind
detection  algorithm  can  be  used  to  convert  the  blind
detection problem  into  a  quadratic  optimization  prob-
lem, and the solution target can be concentrated on 
with the help of a complementary space projection op-
erator.  Under  the constraints  of  the  transmitted signal
character  set ,  let  be  the
complementary  projection  operator  of ,  then  the
zeroing residual equation is
 

(E)N×M = QηN = Q
(
XNg − ŜN

)
= −QŜN (9)

E = [ε1, . . . , εM ]N×M

V = 0 E = 0
where ,  when  the  noise  matrix

, the spatial residual is .
The corresponding least squares performance func-

tion is
 

J (SN ) = ETE = sTNQsN (10)

ŜNTherefore, the estimated transmission sequence 
can be obtained by the direct blind detection algorithm
of the following quadratic programming problem: 
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ŜN = arg min
∀sN∈{±1±i}N

J (SN )

= arg min
∀sN∈{±1±i}N

(
ŜT
N ·Q · ŜN

)
(11)

ŜN = [ŝN1, ŝN2, . . . , ŝNM ] ŝNi ∈ RN i = 1, . . . ,

M i

N

where , , 
 represents the th estimated user sequence of length
.  For  the  blind  identification  problem  where  the

multi-users  use  the  same  frequency  at  the  same  time,
because  of  the  direct  signal  interference  of  the  multi-
users  at  the  receiving  end,  it  is  impossible  to  directly
use  Hopfield  neural  network  to  solve  (11)  for  multiple
users.  Therefore,  the  SSC  method  is  used  to  separate
the conventional user signals and the M2M communica-
tion users signals one by one from the received signal.

 2. Conventional user signal detection
1) Performance  function  of  conventional  user  sig-

nal’s blind detection problem

ŜN0

Refer to the idea in references [15],  [16], we intro-
duce signal space cancellation (SSC) to restore conven-
tional  user  signals.  First,  we estimate the conventional
user signals  according to the following formula:
 

ŜN0 = arg min
∀sN0∈{±1±i}N

(
ŜT
N0 ·Q · ŜN0

)
(12)

Q = UNUT
N QŜN0 = 0

UN

yN = [U ,UN ] ·
[
D
0

]
· V T

yN

where  meets the condition , and
 is the unitary matrix in the singular value decom-

position  of the received signal

matrix . We will use the CSHNN to solve the minim-
um value of (12).

2)  The  construction  of  complex  Hopfield  neural
network

The network  structure  diagram  of  CSHNN as  de-
picted in Fig.2.
 

W

S (m) S (m+1)

σ (·)

Z
−1

 
Fig. 2. The network structure diagram of CSHNN.

 

According  to  the  above  CSHNN  network,  we  can
list the state equation and output equation correspond-
ingly. The state equation is
 

s (m+ 1) = sR (m+ 1) + isI (m+ 1)

= σR (Re (Ws(m))) + iσI (Im (Ws(m)))

= σ (Ws(m)) (13)

and the output equation is 

y(m) = Ws(m) (14)

s(m)

s = [s1, s2, . . . , sN ]

W

W ∈ CN×N W T = W σ(·)

y(m) = s(m)

s(m)

where  is  the  transmission  signal  of  each  neural
network;  is the send vector for neur-
al network;  is the connection weight of each neuron,

 and ;  is the activation func-
tion  of  the  complex  neural  network.  When  the  neural
network reaches the final  balance,  it  can be approxim-
ated  as , the  obtained  solution  point  sig-
nal  is  the  signal  sented  by  the  conventional  user
to be detected.

In order to use HNN as a powerful tool to solve the
problem of blind detection of traditional user, the con-
nection  weight  matrix  of  the  neural  network  can  be
configured as
 

W = I −Q (15)

s(m) = s (m+ 1)

When the complex HNN reaches equilibrium, that
is , which satisfies the requirements of
the cost function. So the neural network weight matrix
as  above  configuration  can  put  the  quadrature  phase
shift keying (QPSK) signal blind detection problem in-
to  an  HNN energy  function  of  the  minimum problem.
According  to  the  proof  of  network  stability  in  [17],  it
can  be  obtained  that  the  stable  convergence  point  of
HNN is the needed sending signal.

It pointed out that if the blind detection algorithm
is  to  achieve  the  goal  of  having  a  strong  anti-interfer-
ence ability, it is necessary to select the appropriate ac-
tivation function of the HNN in [18].

3)  Select  the  activation  function  of  the  complex
Hopfiled neural network

At present, in many literatures which use the HNN
to solve the blind detection problem, most of the activ-
ation functions use the sigmoid function [19], [20]. In in-
formation science, the sigmoid function is often used as
the  threshold  function  of  neural  networks  due  to  its
single  increase  and  inverse  function  single  increase.  In
order to adapt to complex channel and complex constel-
lation  signal  QPSK,  this  paper  refers  to  [21],  [22]  and
compares  the  following  five  activation  modes  through
simulation experiments, and selects the appropriate ac-
tivation function.
 

σR(x) = σI(x) = tanh(x) (16)
 

σR(x) = σI(x)

= A
arctan(Bx0) + 0.5 (1 + arctan(Bx− x0))

1 + arctan(Bx0)
ε(x)

+A
0.5 (1 + arctan(Bx− x0))

1 + arctan(Bx0)
ε (−x) (17)

 

σR(x) = σI(x) = k
(
−1 +

(
2/
(
1 + e−δx

)))
(18)
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σR(x) = σI(x) = arctan(x) (19)
 

σR(x) = σI(x) = sign(x) (20)

A = 1, B = 50, k = 1, δ = 0.5 σR(x) σI(x)where ;  and 
denote the real part and the imaginary part of the sig-
moid activation function.

The  curves  of  the  above  five  sigmoid  activation
functions  named  as tanh,  new-atan,  e,  atan,  and  sign
respectively,  are shown in Fig.3.  From Fig.3,  it  can be
seen that:
 

tanh
new-atan
e
atan
sign

−2−3
−1.5

0

0.5

1.0

−1.0

1.5

−0.5

−1 0 1 2 3 
Fig. 3. Different sigmoid activation function.

 

i)  The  new-atan  activation  function  and  the  sign
rounded  sigmoid  activation  function  can  ensure  rapid
convergence when the absolute value of  the neuron in-
put is large;

ii)  Near  the  0  point,  the  exponential  activation
function derivative value is smaller than the other four
activation  function  derivative  values,  that  is,  the  exp
activation  function  is  significantly  less  sensitive  to  the
neuron input value near the 0 point.

Through experiments 1 and 2 in the Section V, the
SSC-CSHNN network  blind  detection  algorithm  com-
posed  of  the  above  five  sigmoid  functions  is  simulated
and compared,  and  new-atan  activation  function  is  se-
lected as the activation function of the SSC-CSHNN al-
gorithm HNN.

The energy function of  the SSC-CSHNN blind de-
tection algorithm is expressed as
 

E(m) =− 1

2
s(m)TWs(m)

+

N∑
i=1

(ˆ sRi(m)

0

σ−1(x)dx+

ˆ sIi(m)

0

σ−1(x)dx

)
(21)

E

W W = W T s(m)

σ−1(x)

σ(x)

where  is the energy function of the network, the en-
ergy function is a variable related to the iteration time,
the weight  moment satisfies ,  is  the
output  of  the  neuron,  and  is the  inverse  func-
tion of the sigmoid function  of the neuron. Accord-
ing to the proof  of  the stability of  the energy function

in  [23],  [24], the  energy  function  of  the  network  is  de-
signed by referring  to  the  network structure,  and then
the second theorem of  Lyapunov can be used to prove
the stability of the neural network.

 3. Detect  M2M  communication  signal  by
the signal space cancellation

ŜN0

It can be seen from Section III.2 that the transmis-
sion sequence  is the conventional user signals is re-
stored, which is interference for M2M communication.

In order to restore the M2M communication signal,
the  restored  conventional  user  signal  is  added  to  the
noise  space,  and then a new complementary projection
operator is reconstructed, and a new quadratic normal-
ization algorithm is formed again to solve the problem,
so as to obtain the signal sequence of the M2M commu-
nication.

The new secondary planning problem is
 

ŜNi = arg min
∀sNi∈{±1±i}N

(
ŜT
Ni ·Q′ · ŜNi

)
(22)

i = 1

ŜN0

yN

The specific process is as follows. Suppose the first
M2M device  communication  signal  sequence  is  estim-
ated using SSC, then . We add the calculated con-
ventional  user  signal  to  the  complementary  space
of , and the signal space will be reduced to
 

U ′
N =

[
(UN )N×(N−(L+1)P )

...ŜN0

]
(23)

ŜN0where  is the restored conventional user signal.
Perform singular value decomposition on (23), i.e.,

 

[Um,Σm,Vm] = SV D (U ′
N ) (24)

Um = [U1m

...U1n] U1m

U ′
N

where ,  is  the orthogonal basis of
.
The new complement space is thus obtained as

 

UmN =
(
U1m)N×(N−(L+1)P+M+1) (25)

Q′ = UmN ·UT
mN

i = 2, . . . ,M

Reconstruct the  complementary  projection  operat-
or , and substitute (22) to recover the
M2M  communication  signal  by  using  the  same  SSC-
CSHNN  blind  detection  algorithm  as  in  the  previous
section.  At  this  time,  the  estimated  signal  sequence  of
the first M2M device must not converge to the conven-
tional  user  signal,  so  that  the  signal  sequence  of  the
first M2M device  is  restored.  By  analogy,  the  commu-
nication signal sequence of M2M devices ( )
can be obtained one by one.

 IV. Double Sigmoid Neural Network
Blind Detection System

Since HNN has a delay limitation, the convergence
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speed  of  the  HNN  energy  function  is  an  important
factor considered in real-time applications. The conven-
tional HNN cannot  guarantee  to  obtain  the  global  op-
timum, and often falls into the local optimum, and once
it falls  into the local optimum, the HNN needs to find
the initial  point  again.  Therefore,  under  the  same  op-
timization conditions, improving the convergence speed
of the HNN is a necessary research point.

This  section  introduces  the  ideas  of  [22],  [23],
adding a sigmoid function to each neuron of the neural
network,  so  that  all  neurons  form  a  new  double-sig-
moid complex HNN, which is the neural network of the
DSCHNN  blind  detection  algorithm.  The  network
structure diagram is shown in Fig.4.
 

σ1 (·)

s (m) s (m+1)

σ2 (·)

Z
−1

W

 
Fig. 4. Block diagram of blind detection algorithm based on

SSC-DSCSHNN.
 

s(m)

W

W ∈ CN×N , W T = W σ1(·) σ2(·)

s0(m) =

s0 (m+ 1)

In Fig.4,  is  the  transmission  signal  of  each
neural network;  is the weight matrix of the neuron,
satisfying ; ,  are  the
two sigmoid functions of the neural network. When the
neural  network  reaches  equilibrium,  that  is 

, the solution point signal obtained is the con-
ventional user signal that needs to be detected.

For QPSK transmission signals, the state equation
and the  output  equation of  the  blind  detection  al-
gorithm SSC-DSCSHNN in this scheme are
 

s (m+ 1) =sR (m+ 1) + isI (m+ 1)

=σ2R (σ1R (Re (Ws(m))))

+ iσ2I (σ1I (Im (Ws(m))))

=σ2 (σ1 (Ws(m))) (26)

 

y(m) = Ws(m) (27)

s = [s1, s2, . . . , sN ]

W

W ∈ CN×N , W T = W σ1(·)
σ2(·)

where  is  the  transmission  vector  of
the  neural  network;  is the  connection  weight  mo-
ment of each neuron, and ; ,

 are the two sigmoid functions.
According to  the  selection  analysis  of  the  activa-

tion function in Section III.2.3) and related experiment-
al simulations, this paper selects the sigmoid activation
function  (17)  as  the  first  activation  function  of  the
DSCHNN network.

In order to deeply analyze the impact of the double
sigmoid structure  on  the  performance  of  the  blind  de-
tection  network  [22],  [23],  in  this  paper,  we  use  the

δ, k > 0

three formulas (18),  (19),  and  (20)  as  the  second  sig-
moid function  of  the  DSCSHNN  blind  detection  al-
gorithm,  in  which .  Hence,  there  are  three
double  sigmoid  functions  used  in  this  work,  shortly
named  as  new-atan+e,  new-atan+atan,  new-atan+sign
respectively. In Section V, the performance of the SSC-
DSCSHNN network  formed  by  the  three  double  sig-
moid functions is simulated, the bit error rate and dis-
tance norm of the three are compared in detail, and the
best  combination  is  selected  to  form  the  SSC-DSCSH-
NN  network  and  act  as  the double  sigmoid  activation
function of this paper.

∆E(m) =

E (m+ 1)− E(m)

sn(m) ∆sn = sn(m+ 1)−
sn(m) ̸= 0 ∆sj = sj(m+ 1)− sj(m) = 0, j ̸= n

According  to  the  idea  of  [18],  suppose 
, only one neuron’s state is updated in

each feedback vector. Without losing generality, it is as-
sumed that  is  updated,  then 

,  .
 

∆E(m) = E (m+ 1)− E(m)

= − 1

2
sT (m+ 1)Ws (m+ 1)+

1

2
sT(m)Ws(m)

+

N∑
j=1

ˆ sj(m+1)

sj(m)

f−1(x)dx

= − 1

2
∆sT(m)W∆s(m)−∆sT(m)Ws(m)

+

N∑
j=1

ˆ sj(m+1)

sj(m)

f−1(x)dx

= − 1

2
∆s2nwnn −∆sn · f−1 (sn (m+ 1))

+

ˆ sn(m)+∆sn

sn(m)

f−1(x)dx

= − 1

2
∆s2nwnn −∆sn · f−1 (sn (m+ 1))

+ ∆sn · f−1 (sn(m+ 1))− 1

2
(∆sn)

2 [
f−1 (ξn)

]′
= − 1

2
∆s2n

{
wnn +

[
f−1 (ξn)

]′}
∆s(m) = s(m+ 1)− s(m) f−1(·)

f(·)
where ,  is  the  inverse
function  of  activation  function .  The  fifth  equation
is based on Taylor’s theorem.
  ˆ sn(m+1)

sn(m)

f−1(x)dx =∆sn · f−1 (sn(m+ 1))

− 1

2
(∆sn)

2 [
f−1 (ξn)

]′
(28)

ξn sn(m) ≤ ξn ≤ sn(m+ 1) sn(m+

1) ≤ ξn ≤ sn(m)

where  satisfies  or 
.

µ = min
{[

f−1 (ξj)
]′
|j = 1, . . . , N

}
f−1(·)

µ > 0

Assume  that ,
because  increases  monotonically,  there  must  be

.
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[wnn + µ] > 0, ∀n
∆E(m) < 0 s(m) =

s(m+ 1) ∆E(m) = 0

To  sum  up,  as  long  as , the  in-
equality  can be guaranteed. Only if 

,  can  be  guaranteed,  the  network
reaches equilibrium. It shows that the energy of the net-
work  gradually  decreases  during  operation,  and  finally
converges to a stable equilibrium state.

The  energy  function  of  the  SSC-DSCSHNN  blind
detection algorithm in this paper is expressed as
 

E(m) =− 1

2
s(m)TWs(m)

+

N∑
i=1

(ˆ sRi(m)

0

σ−1
i (x)dx+

ˆ sIi(m)

0

σ−1
i (x)dx

)
(29)

E

W W = W T s(m)

σi
−1(x)

σi(x) i i

where  is the energy function of the network, the en-
ergy function is a variable related to the iteration time,
the weight  moment satisfies ,  is  the
output  of  the  neuron,  and  is the  inverse  func-
tion of ,  represents the th sigmoid function. Ac-
cording to reference [25], it can be concluded that SSC-
DSCSHNN network is  a  stable  structure.  The value of
the energy function of SSC-DSCSHNN becomes less and
less in the iterative process, and the final system is in a
stable state of convergence.

 V. Simulations
M2M  communication  plays  an  important  role  in

many  fields,  among  which  people’s  demand  for  smart
grid is  a powerful  driving force for  the development of
M2M  communication  [26].  Phasor  measurement  unit
(PMU),  as  the  main  equipment  of  the  smart  grid,  can
be used in the fields of dynamic monitoring, system pro-
tection,  system  analysis  and  prediction  of  the  power
system,  and  is  an  important  equipment  to  ensure  the
safe operation of the power grid [27]. Therefore, the M2M
communication in  this  paper  is  completed  by  simulat-
ing  the  PMU  communication  in  the  smart  grid.  This
text combines the user datagram protocol (UDP) pack-
et and PMU sampling data to form M2M transmission
signal. Each group of  sampled data consists  of  the fol-
lowing sampled values: time, voltage amplitude, voltage
angle,  voltage  frequency  and  current  of  adjacent  lines.
We  use  16-bit  A/D  to  quantize  the  data  and  convert
the bit sequence into a QPSK symbol sequence.

Simulation  environment　 Conventional  users
and  M2M  sending  signals  are  QPSK  signals,  and  the
noise  is  additive  white  Gaussian  noise.  The  simulation
results are obtained after 100 Monte Carlo experiments.
Set the point where the bit error rate is zero to facilit-
ate comparison with the CSHNN algorithm.

1) Experiment 1: Comparison of bit error rate and
convergence time

N = 80

Fixed  QPSK  transmission  signal  data  length  as
,  using  random  channels  with  varying  weights

and  delays.  Under  this  condition,  when  comparing  the
following five different sigmoid functions as the activa-
tion  function  of  the  SSC-CSHNN  neural  network,  the
bit  error  rate  of  the  conventional  user  signal  and  the
M2M communication  signal  and  the  algorithm conver-
gence  time are  compared.  Sigmoid  activation  functions
are: tanh, new-atan, e, atan, sign.

It can be seen from Table 1 that the corresponding
algorithms of e activation function and new-atan activa-
tion  function  run  slowly,  but  within  the  acceptable
range,  the  corresponding  algorithms  of  the  other  three
activation functions run shorter.
  

Table 1. Operation time of five activation
function algorithms

Activation function tanh new-atan e atan sign
Operation time (s) 86.741 175.562 137.626 110.476 41.9499

 
 

It can be seen from Fig.5 that when the signal-to-
noise  ratio  is  10  dB,  except  for  the  exp index and the
tanh  activation  function,  the  error  rate  of  the  neural
network composed  of  the  other  three  activation  func-
tions all drops to 0. It can be seen from Fig.6 that for
sparse QPSK signals, the tanh activation function has a
bit error rate of 0 when the minimum signal-to-noise ra-
tio is 18 dB, and the new-atan activation function and
the sign  rounding  activation  function  reach  the  bit  er-
ror  rate  when  the  signal-to-noise  ratio  is  24  dB.  Zero
point, the  error  rate  of  the  other  two  activation  func-
tions  is  always  higher  than  other  algorithms  before  it
drops to  zero.  Comprehensively  available:  tanh  activa-
tion  function  shows  good  performance  in  terms  of  bit
error rate,  anti-noise ability or time complexity,  but it
is  sensitive  to  neuron  input;  the  network  composed  of
new-atan activation function has strong anti-noise abil-
ity, but the corresponding time complexity is relatively
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Fig. 5. Comparison of  conventional  user  bit  error  rate  un-

der different Sigmoid activation functions.
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high.
2) Experiment 2: Convergence speed comparison

N = 80

L2

In the case of a signal-to-noise ratio of 10 dB, the
fixed QPSK transmission signal data length is ,
using  a  random  synthesis  channel  with  varying  delays
and varying weights.  The SSC-CSHNN blind detection
algorithm  is  simulated  under  five  different  activation
functions,  including  tanh,  new-atan,  exp  index,  atan
and sign. In this experiment, the number of iterations is
used to reflect the convergence speed of the algorithm,
and the distance norm  is used to reflect the perform-
ance  index  of  this  experiment.  The  distance  norms  of
the above five activation function algorithms are shown
in Fig.7.
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Fig. 7. Comparison  of  distance  norms  of  five  activation

function algorithms.
 

∥ x ∥
∥ x ∥≥ 0 ∥ cx ∥=|c|· ∥ x ∥

∥ x+ y ∥≤∥ x ∥ + ∥ y ∥ L2

L2 =
(∑n

i=0 ∥ xi ∥2
) 1

2

The  norm  of  a  vector  refers  to  the  length  of  the
quantity. Its mathematical definition is: the norm 
of  a  vector  must  satisfy ,  and

.  The  norm  of  text  selection
( ).

The zero point of the distance norm is the network
equilibrium  point.  From Fig.7 and Table  2,  it  can  be
seen that  the  algorithm composed  of  the  new-atan  ac-
tivation function decreases to 0 when the number of it-

erations is  11;  and the algorithm composed of  the sign
activation  function  decreases  the  value  of  the  distance
norm  when  the  number  of  iterations  is  12.  When  it
drops to  0,  the  distance  norm  of  the  algorithm  com-
posed of  tanh activation function drops  to  0  when the
number of  iterations  is  18,  while  the  algorithm  com-
posed  of  exp  exponential  activation  function  and  atan
needs  more  than  20  iterations  to  reduce  the  distance
norm to 0. In the simulation, when the value of the dis-
tance norm drops to 0, the network reaches an equilibri-
um  state.  It  can  be  seen  that:  under  the  same  initial
test conditions, among the algorithms composed of five
activation  functions,  the  algorithm  composed  of  new-
atan  activation  functions  has  the  fastest  convergence
speed.  Synthesizing  experiment  1  and  experiment  2,  it
can be concluded that the new-atan activation function
algorithm has  the  fastest  convergence  speed,  better  er-
ror performance and anti-noise performance, so the sig-
moid  activation  function  of  the  SSC-CSHNN  neural
network selects the new-atan activation function.
  

Table 2. Neural network iteration times under five
activation functions

Activation function tanh new-atan exp atan sign
Number of iterations 18 11 20+ 20+ 12

 
 

3) Experiment  3:  Comparison  of  SSC-CSHNN  al-
gorithm bit error rate under different channels

N=80

delay = [0, 1/3] weight coefficient = [1,−0.7]

The  fixed  QPK  signal  transmission  sequence  data
length  is ,  and  the  SSC-CSHNN blind  detection
algorithm  is  simulated  under  the  following  five differ-
ent channel conditions. CH1: a composite channel with
fixed weights and delays and no common zero; CH2: a
composite channel with fixed weights and delays, and a
composite  channel  with  a  common  zero;  CH3:  fixed
weights and delays, A composite channel with two com-
mon  zeros;  CH4:  a  random  composite  channel  with
varying  weights  and  delays;  CH5:  The  channel  of  [12]
with  and ,
which adds zeros at the beginning and end of the chan-
nel.  Under  the  above  five different  channel  conditions,
the  SSC-CSHNN  blind  detection  algorithm  is  used  to
recover  the  bit  error  rate  of  conventional  user  signals
and  M2M  communication  signals  as  shown  in Figs.8
and 9.

In  conventional  user  signal  detection,  under  the
random  synthetic  channel  CH4  with  varying  weights
and delays,  the  bit  error  rate  (BER) of  the  SSC-CSH-
NN algorithm is  reduced  to  0  when the  signal-to-noise
ratio (SNR) is 12 dB; in the synthetic channel without
common zeros when the signal-to-noise ratio of CH1 is 14
dB, it drops to 0; the composite channel CH2 with one
common  zero  is  reduced  to  0  when  the  signal-to-noise
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Fig. 6. Comparison  of  M2M  communication  bit  error  rate

under different sigmoid activation functions.
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ratio  is  16  dB;  the  composite  channel  CH3  with  two
common zeros is  reduced to 0 when the signal-to-noise
ratio  is  18  dB.;  When  the  SNR of  the  channel  of  [12]
CH5 is 26 dB, it will be reduced to 0.

In  the  detection  of  M2M  communication  signals,
under the random synthetic channel CH4 with varying
weights and delays, the bit error rate of the SSC-CSH-
NN algorithm is  reduced  to  0  when the  signal-to-noise
ratio is  18  dB;  in  the  synthetic  channel  without  com-
mon zeros,  the  signal-to-noise  ratio  under  CH1  is  re-
duced  to  0  when  it  is  28  dB;  the  composite  channel
CH2  with  one  common  zero  is  reduced  to  0  when  the
signal-to-noise  ratio  is  12  dB;  the  composite  channel
CH3 with two common zeros is reduced to 0 when the
signal-to-noise  ratio  is  22  dB;  When  the  SNR  of  the
channel of [12] CH5 is 10 dB, it will be reduced to 0.

It  can  be  seen  from Figs.8 and 9 that  the  SSC-
CSHNN blind detection algorithm has certain applicab-
ility under different classical channels.

4) Experiment 4: Data length comparison
This experiment is carried out under the condition

that the data length of the traditional transmission se-
quence and  the  data  length  of  the  M2M  communica-

tion  signal  are  both:  40,  60,  80, 100,  200,  300,  400,  to
compare the detection of the SSC-CSHNN blind detec-
tion algorithm proposed in this article The relationship
between the bit error rate of traditional user signals and
M2M  communication  signals  and  the  length  of  the
transmitted  data  is  shown  in Figs.10 and 11.  Among
them,  the  transmission  channel  is  a  composite  channel
with fixed weights and delays and without common zer-
os. Under the condition of 30 dB signal-to-noise ratio at
the same  time,  when  the  M2M signal  transmission  se-
quence data length is  40,  50,  60,  the constellation dia-
gram of the signal before the 100th Monte Carlo experi-
ment and the signal has not passed the sigmoid activa-
tion function is shown in Fig.12.
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Fig. 10. Comparison of  bit  error rate under different tradi-

tional user data volume of SSC-CSHNN algorithm.
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Fig. 11. Comparison of  bit  error  rate  under  different  M2M

signal data volume of SSC-CSHNN algorithm.
The SSC-CSHNN  algorithm  proposed  in  this  art-

icle requires a data length greater than or equal to 60 to
obtain  stable  M2M  signal  detection  results,  and  the
data length is increased from 40 to 100 at a scale ratio
of  20,  and the  algorithm’s  anti-interference  ability  and
error  code  performance  are  getting  better  and  better.
The data length is increased from 100 to 400 with 100
arithmetic, the algorithm’s anti-interference ability and
error code performance are reduced, but the mixed sig-
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Fig. 8. The SSC-CSHNN blind detection algorithm restores

the bit error rate of conventional user signals.
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Fig. 9. SSC-CSHNN  blind  detection  algorithm  to  recover

M2M communication signal error rate.
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nal can still be recovered well.

N = 40

N = 50

N = 60

Comparing  the  three  constellation  diagrams  in
Fig.12, it can be seen that the distribution of points at

 is  relatively scattered,  and the positions of  the
four  groups  of  points  can  be  clearly  distinguished;  the
distribution  of  points  at  tends  to  be  compact;
the  distribution  of  points  at  is  more compact,
which shows that the neuron state of the SSC-CSHNN
algorithm  finally  converges  to  the  four  equilibrium
points,  and  it  becomes  easier  to  converge  when  the
length  of  the  input  data  increases.  The  experimental
results show  that  the  SSC-CSHNN  blind  detection  al-
gorithm  proposed  in  this  section requires  a  shorter
amount of data. The larger the data length, the better
the performance of the algorithm. The SSC-CSHNN al-
gorithm  has  better  applicability  in  a  relatively  short
data volume environment.

5) Experiment 5: Comparison of bit error rate

N = 80

Fixed  QPSK  transmission  signal  data  length
,  using  random  channels  with  varying  weights

and delays. Under this condition, compare the bit error
rates of  traditional  user  signals  and  M2M communica-
tion signals when the three different dual sigmoid func-
tions described in Section III.2.2) are used as the activa-
tion  function  of  the  SSC-DSCSHNN  neural  network.
And give the bit error rate comparison chart when the
fixed signal-to-noise  ratio  is  8  dB.  The  simulation  res-
ults are shown in Figs.13–15.

It can be seen from Fig.13 that the double sigmoid
activation  function  neural  network  composed  of  new-
atan and sign and atan respectively has a bit error rate
of  0  when  the  signal-to-noise  ratio  is  8  dB,  while  the
neural network composed of new-atan and exp is in the
signal-to-noise ratio. When it is 12 dB, the zero bit er-
ror  rate  is  reached.  It  shows  that  for  traditional  user
signals,  the  former  has  better  anti-interference  ability
than the latter.

It can be seen from Fig.14 that the double sigmoid
activation  function  neural  network  composed  of  new-
atan and e and atan respectively has a bit error rate of

0  when  the  signal-to-noise  ratio  is  24  dB,  while  the
neural network composed of new-atan and sign is in the
signal-to-noise ratio When it is 26 dB, the bit error rate
zero  point  is  reached.  It  shows  that  for  sparse  M2M
communication signals, the former has better anti-inter-
ference ability than the latter.

6) Experiment 6: Convergence speed comparison
In the case of a signal-to-noise ratio of 10 dB, the

fixed  QPSK transmission  signal  data  length  is N =80,
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Fig. 12. The constellation diagram of the M2M communication signal under different data lengths for the SSC-CSHNN algorithm.
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Fig. 13. Comparison of traditional user bit error rate under

different dual sigmoid function algorithms.
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Fig. 14. Comparison of  M2M communication  signal  bit  er-

ror rate  under  different  dual  sigmoid  function  al-
gorithms.
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using  a  random  synthesis  channel  with  varying  delays
and varying weights, and combining three different Sig-
moid activation  functions  into  the  SSC-DSCSHNN de-
tection algorithm for simulation. In the experiment, the
distance norm is used as the performance index to com-
pare  the  convergence  speed  of  the  algorithm as  shown
in Fig.16.
 

0 20 40 60 80 100

Number of iterations

0

2

4

6

8

10

12

14

16

18

D
is

ta
n
ce

 n
o
rm

new-atan+sign
new-atan+atan
new-atan+e

5 10 15 20

0

1

2

3

 
Fig. 16. Comparison of distance norms under three dual sig-

moid activation function algorithms.
 

It can be seen from Fig.16 that the double sigmoid
activation  function  algorithm  formed  by  new-atan+e
decreases the value of the distance norm to 0 when the
number of  iterations  is  10,  and  the  value  of  the  dis-
tance norm drops to 0 when the number of iterations of
the  other  algorithms  is  13  and  17.  When  the  value  of
the distance norm drops to 0 in the simulation, the net-
work reaches a balanced state. It can be seen from the
figure  that  under  the  same  initial  test  conditions,
among  the  three  double  sigmoid  activation  functions,
the  SSC-CSHNN  algorithm  formed  by  the  new-atan
and exp  activation  functions  has  the  fastest  conver-
gence speed.

Combining  experiment  5  and experiment  6,  it  can
be concluded  that  the  SSC-DSCSHNN algorithm com-

posed of new-atan and exp activation functions has the
fastest convergence speed, better error performance and
noise resistance. Therefore, the dual sigmoid activation
function selects new-atan and exp activation function.

7) Experiment 7: Comparison of bit error rate and
convergence speed

N = 80

The  transmission  sequence  data  length  of  a  fixed
signal  is ,  and  a  random  channel  with  varying
weights and delays is used. Compare the bit error rate
of CSHNN algorithm, SSC-CSHNN algorithm and SSC-
DSCSHNN algorithm in [7], as shown in Fig.17.
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Fig. 17. Comparison of  the bit  error rate of  CSHNN, SSC-

CSHNN and SSC-CSHNN algorithms.
 

The  activation  function  is  the  core  of  the  neural
network. It can be seen from Fig.17 that for traditional
user signals, under the same initial conditions, the SSC-
CSHNN  algorithm  achieves  zero  bit  error  rate  at  the
lowest signal-to-noise ratio (8 dB), the traditional activ-
ation function  SSC-CSHNN  algorithm  and  the  im-
proved  activation  function  SSC-CSHNN.  the  bit  error
rate  of  the algorithm is  reduced to 0 at  10 dB and 12
dB respectively. Therefore, the introduction of the dual
sigmoid  function  further  improves  the  anti-interference
ability of the network.

When the signal-to-noise ratio is  10 dB, the CSH-
NN algorithm,  SSC-CSHNN algorithm,  and  SSC-DSC-
SHNN algorithm  of  [7] are  used  to  compare  the  num-
ber  of  iterations  when  the  value  of  the  distance  norm
drops to 0, as shown in Table 3.
  

Table 3. Number of iterations of the three algorithms

Algorithm CSHNN SSC-CSHNN SSC-DSCSHNN
Number of iteration 18 11 10

It can be seen from Table 3 that the SSC-DSCSH-
NN  algorithm  further  improves  the  convergence  speed
of the algorithm, making the neural network obtain bet-
ter performance.

8) Experiment 8: Comparison of bit error rate and
convergence speed
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Fig. 15. The bit error rate of the algorithm under different

dual sigmoid functions at 8 dB.
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N = 80

Fixed  QPSK  transmission  signal  data  length
,  using  random  channels  with  varying  weights

and delays.  Compare the bit  error  rate  of  several  clas-
sical  algorithms,  SSC-CSHNN  algorithm,  SSC-CSHNN
algorithm with  improved  activation  function  and SSC-
DCSHNN algorithm  composed  of  new-atan  and  e  pro-
posed in this paper, as shown in Fig.18. The operation
time comparison of different algorithms under fixed sig-
nal-to-noise ratio of 12 dB and 24 dB is shown in Fig.19.
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Fig. 18. Comparison of the bit error rate of several classical

algorithms,  SSC-CSHNN,  Improved  SSC-CSHNN
and SSC-DCSHNN algorithms.
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Activation  function  is  the  core  of  neural  network.
It can be seen from Fig.18 that for traditional user sig-
nals,  under  the  same  initial  conditions,  the  bit  error
rate  of  SSC-DSCSHNN  algorithm  reaches  zero  at  the
lowest  signal-to-noise  ratio  (8  dB),  and  the  bit  error
rate  of  SSC-CSHNN  algorithm  of  classical  activation
function and SSC-CSHNN algorithm of improved activ-
ation function is  reduced to 0 at 10 dB and 12 dB re-
spectively. Therefore,  the  introduction  of  double  sig-
moid  function  further  improves  the  anti-interference
ability of the network. It can be seen from Fig.19 that
the  SSC-DSCSHNN  algorithm  runs  faster  than  the
SSC-CSHNN algorithm with improved activation func-
tion,  but  slower  than  the  SSC-CSHNN algorithm with
classical  activation  function,  but  within  the  acceptable
range.

Combining  Experiment  2  and  Experiment  6,  the
comparison of the number of iterations of SSC-CSHNN
algorithm  using  classical  activation  function,  the SSC-
CSHNN  algorithm  with  improved  activation  function
and SSC-DSCSHNN  algorithm  when  the  value  of  dis-
tance norm drops to 0 is given in Table 4 when the sig-
nal-to-noise ratio is 10 dB.
  

Table 4. Number of iterations of the three algorithms

Algorithm SSC-CSHNN Improved
SSC-CSHNN SSC-DSCSHNN

Number of iteration 18 11 10
 
 

It  can  be  seen  from Table  4 that when  the  dis-
tance norm of SSC-DSCSHNN algorithm decreases to 0,
the number  of  iterations  required  by  the  neural  net-
work is the least, that is, the convergence speed is faster
and the neural network performance is better.

Comprehensive  Experiment  8  concludes  that  the
SSC-DSCSHNN algorithm  using  double  sigmoid  func-
tion improves  the  anti-noise  performance  and  conver-
gence  speed  of  SSC-CSHNN algorithm  on  the  basis  of
ensuring time efficiency.

On the whole, it can be seen that SSC-DSCSHNN
algorithm  using  dual  sigmoid  functions  improves  the
anti-noise  performance  and  convergence  speed  of  the
SSC-CSHNN algorithm on the basis of ensuring time ef-
ficiency.

 VI. Conclusions
In this paper, in the M2M communication and con-

ventional user communication spectrum sharing system,
different  activation  functions  are  selected  to  improve
the SSC-CSHNN blind detection algorithm. The disad-
vantages of poor anti-noise performance, slower conver-
gence  speed,  and  large  neuron  sensitivity  to  input  are
proved by  simulation  and  comparison.  The  conver-
gence speed of  the blind detection algorithm of  activa-
tion function has been improved to a certain extent. In
order  to  further  improve  the  network’s  anti-interfer-
ence ability and convergence speed, this paper refers to
the  dual  sigmoid  idea,  proposes  the  SSC-DSCSHNN
blind detection algorithm, and compares and selects the
dual  sigmoid  activation  functions  through  simulation
experiments  such  as  bit  error  rate  and  distance  norm,
and finally  compares  the  simulations.  Error  perform-
ance  and  convergence  speed  of  SSC-CSHNN algorithm
and  SSC-DSCSHNN  algorithm.  The  simulation  results
show that the signal space deletion method successfully
separates  the  mixed  signals  of  M2M  and  conventional
users.  The  SSC-CSHNN  algorithm  improves  the  anti-
noise  performance  of  the  network  to  a  certain  extent.
The proposed  complex  Hopfield  blind  detection  al-
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gorithm  is  robust  to  different  channels.  A  very  short
amount of  data  is  required  to  obtain  better  error  per-
formance.  Under  the  condition  of  the  same  signal-to-
noise ratio,  the  simulation  comparison  with  the  dis-
tance norm between the state vector and the equilibri-
um point  as  the  index shows that  the  SSC-DSCSHNN
algorithm can significantly and effectively accelerate the
convergence speed of  the algorithm compared with the
SSC-CSHNN algorithm, and greatly optimize the neur-
al network. It can be seen that the solution proposed in
this  paper  solves  the  problem  of  using  the  statistical
characteristics of the receiving end signal to recover the
transmitted  signal  when  the  channel  is  unknown.  It  is
more in line with the characteristics of the actual trans-
mission  channel  and  avoids  the  channel  overhead  and
the  waste  of  spectrum  resources  caused  by  the  use  of
training sequences.

References
 A. Ali,  G.  A.  Shah,  and J.  Arshad, “Energy efficient  tech-
niques for M2M communication: A survey,” Journal of Net-
work and Computer Applications, vol.68, pp.42–55, 2016.

[1]

 Y. Mehmood, C. Görg, M. Muehleisen, et al., “Mobile M2M
communication architectures,  upcoming challenges,  applica-
tions,  and  future  directions,” EURASIP Journal  on  Wire-
less  Communications  and  Networking, vol.2015,  no.1,  art-
icle no.250, 2015.

[2]

 P.  K.  Verma,  R.  Verma,  A.  Prakash, et  al., “Machine-to-
machine  (M2M)  communications:  A  survey,” Journal  of
Network  and  Computer  Applications,  vol.66,  pp.83–105,
2016.

[3]

 H. Shariatmadari, R. Ratasuk, S. Iraji, et al., “Machine-type
communications: Current status and future perspectives to-
ward  5G  systems,” IEEE  Communications  Magazine,
vol.53, no.9, pp.10–17, 2015.

[4]

 A. Biral,  M. Centenaro,  A.  Zanella, et al., “The challenges
of M2M massive access in wireless cellular networks,” Digit-
al  Communications  and  Networks,  vol.1,  no.1,  pp.1–19,
2015.

[5]

 A. S. Lioumpas and A. Alexiou, “Uplink scheduling for ma-
chine-to-machine communications in LTE-based cellular sys-
tems,” in Proceedings  of 2011 IEEE  GLOBECOM Work-
shops, Houston, TX, USA, pp.353–357, 2011.

[6]

 T. Kim, K. S. Ko, and D. K. Sung, “Prioritized random ac-
cess  for  machine-to-machine  communications  in  OFDMA
based systems,” in Proceedings of 2015 IEEE International
Conference  on  Communications,  London,  UK,
pp.2967–2972, 2015.

[7]

 X. H. Li, J. Zheng, and M. J. Zhang, “Compressive sensing
based spectrum sharing and coexistence for machine-to-ma-
chine communications,” in Proceedings of 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, New Orleans, LA, USA, pp.3604–3608, 2017.

[8]

 A. T. Abebe and C. G. Kang, “Overlaying machine-to-ma-
chine (M2M) traffic over human-to-human (H2H) traffic in
OFDMA  system:  Compressive-sensing  approach,” in Pro-

[9]

ceedings of 2016 International Conference on Selected Top-
ics in Mobile & Wireless Networking, Cairo, Egypt, pp.1–6,
2016.
 J. Zhang, X. Wang, and X. J. Yang, “A method of constel-
lation blind detection for spectrum efficiency enhancement,”
in Proceedings  of the  2016  18th  International  Conference
on  Advanced  Communication  Technology,  PyeongChang,
Korea (South), pp.148–152, 2016.

[10]

 Z.  F.  Yuan,  Y.  Z.  Hu,  W.  M.  Li, et  al., “Blind  multi-user
detection for  autonomous  grant-free  high-overloading  mul-
tiple-access without reference signal,” in Proceedings of the
2018  IEEE 87th  Vehicular  Technology  Conference,  Porto,
Portugal, pp.1–7, 2018.

[11]

 Y. Zhang and Z. Y. Zhang, “Blind detection of 64QAM sig-
nals with a complex discrete Hopfield network,” Journal of
Electronics & Information  Technology,  vol.33,  no.2,
pp.315–320, 2011. (in Chinese)

[12]

 Q. Y. Quan, “A multilevel Hopfield neural network for OF-
DM system with  phase  noise,” in Proceedings  of the  2009
7th International Conference on Information, Communica-
tions and Signal Processing, Macau, China, pp.1–5, 2009.

[13]

 Y.  Zhang,  B.  R.  Li,  S.  J.  Yu, et  al., “Blind detection  al-
gorithm based on spectrum sharing and coexistence for ma-
chine-to-machine  communication,” IEICE TRANSAC-
TIONS  on  Fundamentals  of  Electronics,  Communications
and Computer Sciences, vol.E103.A, no.1, pp.297–302, 2020.

[14]

 R. Hu, “The study of blind processing system based on clus-
tering  virtual  MIMO  wireless  sensor  networks,” Master
Thesis, Nanjing  University  of  Posts  and  Telecommunica-
tions, Nanjing, China, pp. 9 - 28 , 2015. (in Chinese)

[15]

 Z.  Z.  Zhang, “Blind  detection  system  based  on  clustering
virtual  MIMO  wireless  sensor  networks,” Master  thesis,
Nanjing  University  of  Posts  and  Telecommunications,
Nanjing, China, pp. 12 -17 , 2014. (in Chinese)

[16]

 X. K. Ruan and Z. Y. Zhang, “Blind detection of QAM sig-
nals using continuous Hopfield-type neural network,” Journ-
al  of  Electronics & Information  Technology,  vol.33,  no.7,
pp.1600–1605, 2011. (in Chinese)

[17]

 D.  Feng,  S.  J.  Yu,  and  Y.  Zhang, “Blind detection  al-
gorithm of  Hopfield  neural  network  with  improved  activa-
tion  function,” Computer  Technology  and  Development,
vol.22, no.12, pp.207–210, 2012. (in Chinese)

[18]

 M.  A.  Zaveri,  S.  N.  Merchant,  and  U.  B.  Desai, “Robust
neural-network-based  data  association  and  multiple  model-
based  tracking  of  multiple  point  targets,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), vol.37, no.3, pp.337–351, 2007.

[19]

 S. J. Yu, D. Feng, and Y. Zhang, “Blind detection of BPSK
signals  using  hysteretic  Hopfield  neural  network,” in Pro-
ceedings  of 2013 Chinese  Intelligent  Automation  Confer-
ence:  Intelligent  Automation,  Z.  Q.  Sun  and  Z.  D.  Deng,
Eds. Springer, Berlin, Germany, pp.693–701, 2013.

[20]

 S. W. Chen, S.  J.  Yu, Z.  M. Zhang, et al., “A novel  blind
detection algorithm based on adjustable parameters activa-
tion function Hopfield neural network,” Journal of Informa-
tion Hiding and Multimedia Signal  Processing,  vol.8,  no.3,
pp.670–675, 2017.

[21]

 Z. Uykan, “Fast-convergent double-sigmoid Hopfield neural[22]

1048 Chinese Journal of Electronics 2023



network as applied to optimization problems,” IEEE Trans-
actions on Neural Networks and Learning Systems,  vol.24,
no.6, pp.990–996, 2013.
 Y. Shen and J. Wang, “Robustness analysis of global expo-
nential stability  of  recurrent  neural  networks  in  the  pres-
ence of time delays and random disturbances,” IEEE Trans-
actions on Neural Networks and Learning Systems,  vol.23,
no.1, pp.87–96, 2012.

[23]

 A. Balavoine,  J.  Romberg,  and C.  J.  Rozell, “Convergence
and rate  analysis  of  neural  networks  for  sparse  approxima-
tion,” IEEE Transactions on Neural  Networks and Learn-
ing Systems, vol.23, no.9, pp.1377–1389, 2012.

[24]

 J.  Nong, “Global  exponential  stability  of  delayed  Hopfield
neural  networks,” in Proceedings  of 2012  International
Conference on  Computer  Science  and  Information  Pro-
cessing, Xi’an, China, pp.193–196, 2012.

[25]

 M.  Emmanuel  and  R.  Rayudu, “Communication technolo-
gies for smart grid applications: A survey,” Journal of Net-
work and Computer Applications, vol.74, pp.133–148, 2016.

[26]

 L. Zora, D. Elizondo, S. M. Jaramillo, et al., “PMU applica-
tions prioritization  methodology  using  wide-area  disturb-
ances events and its implementation in the Colombian elec-
tric power system,” in Proceedings of 2017 IEEE Power &
Energy Society General Meeting, Chicago, IL, USA, pp.1–5,
2017.

[27]

ZHANG Yun     was  born  in
Nanjing,  Jiangshu Province,  China,  in
1977.  She  received  the  M.S.  and  Ph.D.
degrees from Nanjing University of Posts
and Telecommunication,  Nanjing,  China,
in  2005  and  2011  respectively.  She  has
been a lectorate with the college of Elec-
trical  Science  and  Engineering,  Nanjing
University of Posts  and  Telecommunica-

tion since 2012. Her research interests are in the fields of adapt-
ive signal processing, blind channel equalization, and digital wire-
less communications. (Email: y021001@njupt.edu.cn)

ZHOU Jing   was born in Chang-
zhou,  Jiangsu Province,  China,  in  1998.
She is  a  master  student  of  Nanjing  Uni-
versity of Posts and Telecommunications.
Her research directions are intelligent sig-
nal  processing and communication signal
processing.
(Email: Z_Jing1020@163.com)

LIU Rong   was born in Nantong,
Jiangsu Province, China, in 1999. He is a
master  student  of  Nanjing  University  of
Posts and  Telecommunications.  His  re-
search  directions  are  intelligent  signal
processing and communication signal pro-
cessing.
(Email: 1021020927@njupt.edu.cn)

YU Shujuan   was born in Hailar,
Inner Mongolia,  China,  in  1967.  She  re-
ceived  the  B.E.  and  M.S.  degrees  from
Harbin  Institute  of  Technology,  Harbin,
China, in 1989 and Southeast University,
Nanjing, China, in 1995 respectively. She
has been an Associate Professor and Mas-
ter  Tutor  at  College  of  Electronic  and
Optical  Engineering,  Nanjing  University

of Posts and Telecommunications since 2007.
(Email: yusj@njupt.edu.cn)

LI Binrui   was  born  in  Anyang,
Henan Province, China,  in  1997.  She re-
ceived the  M.S. degree  in  Nanjing  Uni-
versity of Posts and Telecommunications.
Her research directions are intelligent sig-
nal  processing,  wireless  sensor  network,
and communication signal processing.
(Email: 1419866124@njupt.edu.cn)

A Novel Blind Detection Algorithm Based on Spectrum Sharing and Coexistence for Machine-To-Machine... 1049


