
Scheduling Pattern of Time Triggered Ethernet
Based on Reinforcement Learning

HE Feng1,2, XIONG Li2, ZHOU Xuan2, LI Haoruo2, and XIONG Huagang2

(1. Shenzhen Institute of Beihang University, Shenzhen 518000, China)
(2. School of Electronics and Information Engineering, Beihang University, Beijing 100191, China)

 
   Abstract — Time-triggered Ethernet (TTEthernet or
TTE for short) is a deterministic and congestion-free net-
work  based  on  the  Ethernet  standard.  It  supports  mix-
critical real-time applications by providing different mes-
sage classes. The time-triggered (TT) messages have strict
end-to-end delay and accurate jitter requirement, and the
rate-constrained  (RC)  messages  have  less  determinism
than TT messages but with bounded end-to-end delay re-
quirement.  Traditionally,  the  scheduling  of  TT  messages
makes it free of conflicts for the transmission on physical
links,  but  ignoring RC messages  scheduling,  so  it  cannot
guarantee the transmission of RC messages with a bound-
ed  delay.  Therefore,  the  design  of  TT  schedule  becomes
the key to TTE network applications within avionics en-
vironment. In this paper, we propose an algorithm called
RLTS based on reinforcement learning and tree search, to
optimize the end-to-end delays of both TT and RC mes-
sages.  Besides,  its  computation  speed  is  dozens  of  times
faster than satisfied modularity theory (SMT) with asyn-
chronous method for the calculation of the optimal sched-
uling table. In the case of a large network with more than
1000  TT and  1000  RC messages,  the  RLTS method  can
find a scheduling timetable in 10 seconds, and reduce the
worst-case  delay  of  RC messages  averagely  by  20% com-
pared to the genetic algorithm. Meanwhile, our algorithm
has a good generalization performance, in another word, it
can quickly adjust itself to satisfy the scheduling with the
similar performance as before.  By using our method, the
scheduling  pattern  of  TTEthernet  is  further  discussed.
According to the experimental results, the uniformly dis-
tributed  slots  scheduling  pattern,  namely  the  porosity
scheduling model which is usually recommended for TTE
application, is not always suitable for general situations.

   Key words — Time-triggered  Ethernet, Schedule

pattern, Reinforcement learning, Network calculus.

 I. Introduction
The standard Ethernet (IEEE 802.3 2012) is known

as an unsuitable solution for real-time and safety-critical
message transmission especially in the context of avion-
ics environment [1], [2]. Defined by ARINC 664 P7 stand-
ard,  Avionics  Full  DupleX Switched Ethernet  (AFDX)
adopts the concept of virtual link (VL) to enhance the
determinacy of  event-triggered (ET) message transmis-
sion and can provide a bounded end-to-end latency guar-
antee, but it still has inherent transmission uncertainty
due to the asynchronous arrival of messages from differ-
ent transmission sources [3], [4]. System-wide clock syn-
chronization  established  by  AS6802  provides  the  basis
of  time-triggered  (TT)  communication  in  TTEthernet,
in  which  TT  messages  are  sent  and  forwarded  at  the
predefined time  windows  specified  by  the  static  sched-
ule  tables  [5],  [6]. As  planning  in  advance  for  schedul-
ing windows of TT messages, there is no conflict for TT
messages transmission. But rate-constrained (RC) mes-
sages  still  would  encounter  interference  not  only  from
other RC messages but also from TT messages. How to
generate a reasonable scheduling table in TTEthernet is
really  a  hard job because  different  scheduling windows
arrangements have different schedulability for TT mes-
sages and different impacts on RC messages.

In fact, only focusing on TT messages arrangement,
it is difficult to find an analytic method to get a feasible
schedulable result. So the dominant literature adopt the
satisfied modularity  theory  (SMT)  to  solve  this  prob-
lem  [7].  Actually,  different  TT  scheduling  tables  have
great impact on the distribution of RC message end-to-
end delays. For example, the centralized scheduling pat-
tern  and  porosity  scheduling  pattern  are  typically  two
different scheduling  patterns  which  will  lead  to  differ-
ent  scheduling  tables  and  cause  huge  difference  in  RC
message delays. Generally speaking, porosity scheduling 
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might have more scheduling chance for RC messages in
most  cases,  namely  short  worst-case  end-to-end  delays
(WCD).  But  if  the  porosities  are  too  even,  some  RC
message  might  not  find  any appropriate  window to  be
scheduled out as the intervals between two related con-
joint TT windows are too small to fit the RC message
frames. Thus,  the  above  discussion  leads  to  one  ques-
tion:  how  to  reduce  the  WCD  of  RC  messages  when
generating the static schedule table for TT messages at
the same time, and this question is still  on the way to
be solved since both the scheduling method for TT mes-
sages  and  the  WCD analysis  method  for  RC messages
are complicated  enough  and  time  consuming.  For  ex-
ample,  SMT  method  usually  needs  too  much  time  to
get a feasible result, so new method should be found to
solve this  problem.  But  up  to  now  few  references  dis-
cussed this question. The main work of this paper is to
find a  way to  minimize  the  delays  of  TT message and
RC messages simultaneously to get a global better real-
time transmission guarantee.

In  recent  years,  deep  learning  and  reinforcement
learning  have  achieved  a  great  success  in  many  fields,
such  as  robot  control,  video  games  like  Atari,  board
games  Go,  and  other  situations  [8].  Deep  learning  can
easily  describe  high-dimensional  complexity  due  to  its
multi-level associated  networks,  and  has  excellent  cap-
ability  of  generalization.  Reinforcement  learning  can
solve the task without supervise information like labels.
When the unresolved problem is particularly complex to
describe, imitation learning is often used to improve the
convergence  speed  [9].  For  example,  AlphaGo  Master
begins by training a supervised learning policy network
directly  according  to  human  expert  moves  [10].  In  the
case which is difficult to evaluate rewards, count-based
algorithm  like  Go-Explore  policy  uses  exploration  and
recording to  obtain  high-quality  action-series,  then  ex-
ecutes imitation learning on these samples to train the
neural  network  with  noise  to  explore  to  get  better
samples  [11].  For  combinatorial  optimization  problems
such  as  traveling  salesman  problem,  minimum  vertex
cover, pointer  network,  S2V DQN and  many  other  al-
gorithms  have  been  adopted  to  solve  them  [12],  [13].
Thus, deep  learning  and  reinforcement  learning  poten-
tially can be used to solve scheduling problems in TTE
network.

In this paper, we propose a method based on rein-
forcement  learning  to  generate  the  optimal  scheduling
tables with purpose to decrease the delays of  TT mes-
sages  and  RC  messages  at  the  same  time.  We  regard
choosing offset for each message as the action, and the
end-to-end  delay  of  all  messages  as  a  reward.  Under
such an assumption, we can use asynchronous reinforce-
ment  learning  implemented  by  imitation  learning  with

exploration  to  quickly  solve  the  scheduling  problem
[14].  According to experiments, our method can get an
optimal scheduling table with low end-to-end delays of
TT and  RC messages  in  a  short  time,  and  it  can  suit
the  similar  network  configuration  by  transfer  learning.
Besides,  some  suggested  scheduling  patterns  are  found
according to our experiments.

The rest of this paper is organized as follows. Sec-
tion  II  gives  a  short  survey  about  different  generating
methods for TTEthernet. Then, the TTEthernet system
model is given in Section III. Next, Section IV gives the
detailed philosophy and process about our method and
Section V  introduces  the  experiments  based  on  an  in-
dustrial network case. Finally, some conclusions are giv-
en in Section VI.

 II. Related Work
The  generating  methods  of  scheduling  table  is  a

common  problem  for  embedded  real-time  networks,
such as 1553B, TTP and TTE. There are a lot of works
on bus scheduling and schedulability analysis of end-to-
end delays within embedded networking contexts, such
as  Dobrin  and  Fohler  [15],  Davis  and  Burns  [16], Ma-
rau et al. [17]. The focus of this paper is the scheduling
optimization  for  TTEthernet.  SMT  is  a  very  powerful
general-purpose constraint  solver,  a  tool  that  combines
decision-making  procedures  to  solve  problems  in  first-
order logic related to its domain theory. But SMT also
has  obvious  shortcomings  that  it  will  take a  long time
to solve the actual large-scale topology, and it can only
find  solutions  that  meet  the  requirements  but  difficult
to find the optimal one in them. In most situations, we
want  to  obtain  an  optimal  scheduling  result  and  it  is
clear that SMT cannot achieve it.  Moreover,  SMT has
to  completely  recalculate  even  when  there  are  few
changes in configuration. Suethanuwong [18] proposes a
scheduling  approach  of  the  TT  traffic,  ignoring  RC
traffic,  which  introduces  equally  distributed  available
time slots  for  BE  traffic.  Stochastic  optimization  al-
gorithms  like  tabu  search  and  genetic  algorithms  can
optimize TT schedule tables and take into account RC
end-to-end delays during the search space exploration [19],
[20].  These  methods  often  require  a  long  calculation
time to  achieve  algorithm convergence.  When  the  net-
work configuration is changed, the whole process needs
to be executed from the beginning [21]. Moreover, these
algorithms  are  very  sensitive  to  parameters,  the  same
algorithm  with  little  different  parameters  may  cause
completely different convergence.

For  search  problems,  A*  and  its  variants  have  a
wide range of applications, but A* requires some appro-
priate heuristic  functions,  and  different  heuristic  func-
tions  have different  guidance and convergence,  so  they
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have different  optimization effects  in  different  environ-
ments, and the results are usually not ideal [22]. In ad-
dition,  when  the  scheduling  process  is  not  completed,
heuristic functions can only guarantee the delay of cur-
rent TT messages, but the bound of latency of the RC
messages is difficult to estimate with the heuristic func-
tion, so usually they are not suitable for the problem of
scheduling. On the other hand, search structure such as
A* conforms to Markov processes, so models like neur-
al network can be used to replace these heuristic func-
tions  [23]. Model-based  algorithms  can  be  used  to  ad-
apt  to  the  distribution  of  data  and  quickly  find  out
feasible solutions. At the same time, gradient-based op-
timization methods such as stochastic  gradient descent
can greatly improve the optimization speed.

 III. System Model

G = (V,E) V

E
vm

vn (vm, vm) ∈ E

prds

The topology of the network is modeled as a direc-
ted graph, , where  is the set of nodes rep-
resenting the  system  terminals  or  switches  in  the  net-
work and  is the set of directed edges connecting two
nodes.  We denote  the  link  between  node  and  node

 by , where the first node in the pair de-
scription defines the sending node and the second node
defines  the  receiving  node.  Information  between  the
sender and receiver is communicated in the form of TT
flow that are periodic TT frames according to AS6802.
Since flows may have different periods,  we consider an
overall schedule cycle which is larger than (or equal to)
any individual flow period. We denote the hyper-period
of all flows as  which is the least common multiple
of the periods of all TT flows.

F
fi

[vk, vl] f [vk, vl]={fi.period, f [vk,vl]
i .offset, fi.length,

fi.sequence}

fi.sequence

fi
fi vk vl

f
[vk,vl]
i .offset

We denote the set of TT flows by . And we use a
quadruple  to  represent  a  flow  on  a  dataflow  link

,  i.e., 
. The period and length of the TT flow are

given  based  on  the  application  specification.  The  flow
sequence,  namely ,  identifies  different  TT
frames of the same flow  in different periods. The de-
parture  time  of  TT  flow  from  to ,  namely

,  is  scheduled  by  TT  schedulers.  For  the
scheduling problem  of  TT  flow,  there  exist  three  con-
strain conditions as follows.

1) No-conflict constraints
When a  message  is  transmitted  between  a  trans-

mitter and a receiver, it must occupy an exclusive port
and  link  for  sending  and  receiving.  The  time  windows
for sending different messages cannot overlap with each
other. Otherwise, data conflicts may exist in the trans-
mitting  messages,  resulting  in  the  loss  of  message
frames. The expression is 

∀ [vk, vl] ∈ E, ∀fi ∈ F

(fi.offset ≥ fj .offset+ fi.length)

∪ (fk.offset ≥ fi.offset+ fi.length) (1)

2) Path-dependent constraint

hopdelay

Messages are sent step by step between ports. The
minimum  single-hop  delay  is  determined  by  the  fixed
transmission delay of the physical link. Set  as
the minimum single-hop delay. The expression is
 

∀ [vk, vl] , [vi, vr] ∈ E, ∀fi ∈ F

hopdelay ≤ f
[vi,vr]
i .offset− f

[vk,vl]
i .offset (2)

3) End-to-end delay constraints

n

fi vk vl

n× f
[vk,vl]
i .period+ f

[vk,vl]
i .offset

fi [v0, v1]

[vn, vn+1]

fi f [vn,vn+1]
i

.offset− f
[v0,v1]
i .offset

latency

The source nodes send flows at the specific time ac-
cording to schedule tables. For example, the -th depar-
ture  time  of  flow  from  to  is  specified  by

.  Assuming  the  first
dataflow link and the last dataflow link of  are 
and ,  respectively,  the  end-to-end  latency  of
flow  is . And the end-
to-end latency should not exceed the maximum end-to-
end  latency.  Set  as  the  maximum  end-to-end
latency. The expression is
 

∀[v0, v1], [vn, vn+1] ∈ E, ∀fi ∈ F

latency ≥ f
[vn,vn+1]
i .offset− f

[v0,v1]
i .offset (3)

fi prds/fi.period

prds prds/fi.period

prds

fi.period ∈ {4, 8, 16, 32, 64, 128, 256

After finishing  scheduling  all  messages,  the  sched-
uled results are transformed into schedule tables stored
in devices. As a flow  transmits  frames
in a hyper-period , it possesses  time
slots in . In order to make the hyper-period simple,
the period of TT flows are set to powers of 2, that is to
say: }.

After  the  above  system  modeling,  the  scheduling
problem of  TT  flow  is  transformed  into  finding  an  ef-
fective scheduling  scheme  under  the  given  network  to-
pology and the requirements of end-to-end delay of TT
flow, so  that  all  TT flows  can  meet  the  constraint  re-
quirements. We  define  this  model  based  on  assump-
tions that  all  network  nodes  (switches)  have  distrib-
uted  synchronization  capabilities  and  real-time  storage
and forwarding capabilities.

 IV. Method
Our  approach  is  based  on  reinforcement  learning

implemented by imitation learning with tree search [24],
namely RLTS method. Firstly, in the process of search
optimization  scheduling  table,  three  different  methods
of reinforcement learning which are pure reinforcement
learning, imitation learning with exploration, and imita-
tion learning with asynchronous methods are applied to
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speed up  the  search  of  solution  space.  For  pure  rein-
forcement  learning,  using  deterministic  policy  gradient
(DGP)  algorithm,  a  preliminary  and  locally  optimal
message  scheduling  table  can  be  obtained.  After  the
DPG  algorithm  training,  we  will  get  a  deterministic
schedule table which will  be optimized by using imita-
tion learning with exploration. The advantage of imita-
tion learning is that it has a quick converge speed, but
the disadvantage is that imitation learning might exper-
ience catastrophic performance degradation if it encoun-
ters an untrained state. As for the asynchronous imita-
tion learning, it actually uses the multi-process mechan-
ism of the computer, and uses multiple CPUs to speed
up the reinforcement learning and search, so as to make
the calculation faster.

Some basic settings are introduced and defined by
using the incremental description, which can change the
scheduling  problem  into  a  Markov  decision  process
(MDP). Thus we can treat the scheduling timetable be-
fore and after each generating operation as the current
and the next state. After that, the detailed search and
learning algorithm are proposed. The overall process of
our method is shown in Fig.1.
 

Collect

schedule

table

Select

tables by

reward

Search

based on

policy

Generate 
policy

by adding 
noise to model

Train and

update model

 
Fig. 1. The overall process to generate scheduling table.

 

 1. Basic setting
From  the  aspect  of  scheduling,  current  messages

distributed in scheduling table can be treated as a state,
so the state just reflects all needed information without
the need of the historical states and actions. Thus, this
kind  of  scheduling  process  can  be  transformed  into  a
Markov process and handled with tree search method [25].
Furthermore, we use neural network as the function ap-
proximator.

State　State is defined as the configuration mode
for the current physical  link and message in TTE net-
work.  Every  state  must  uniquely  describe  the  current
physical link and message information. But it cannot be
too complex to affect the calculus speed. So we use the
current scheduling  table  and  some  statistics  informa-
tion of the physical links like the bandwidth utilization
of  each  physical  link  and  the  number  of  unprocessed
messages and so on to represent the current state. The
scheduling  table  after  executing  an  action  will  be

treated as the next state.
Action　Action is defined as a scheduling offset of

a  message  in  the  current  physical  links.  Generally
speaking,  the  scheduling  offset  of  each  message  cannot
be  larger  than  its  period.  Otherwise,  the  considering
message cannot achieve its deadline assurance. Besides,
the offsets  could  be  potentially  assigned with  any pos-
sible value as long as it is smaller than the correspond-
ing deadline, which may lead to a continuous distribu-
tion  for  the  offsets.  This  kind  of  selection  will  directly
result in  too  large  search  space  and  too  slow  conver-
gence  speed  for  the  generating  algorithm.  In  order  to
balance the speed and accuracy, we use logarithm func-
tion to act on the output of neural network to generate
offsets,  here  namely  the  actions,  thereby  bringing  new
operation for reinforcement learning.

Reward　Reward is defined as a value related to
the delays of TT and RC messages. Formula (4) as be-
low shows an example that defines reward. TT message
delays can  be  obtained  from  the  scheduling  table  dir-
ectly, and  RC  message  delays  are  calculated  by  net-
work calculus or some other methods. During the search
process,  we  do  not  give  any  reward,  but  perform  our
constraints  like  contention  free,  bound  switch  memory
and so on. After search process completed, we can give
a reward calculated to  TT and RC messages.  In  order
to make  sure  the  gradient  of  the  training  in  reinforce-
ment  learning  is  unbiased,  we  adopt  the  whole  state-
action-reward triplet  tuple  series  (Monte  Carlo)  to  ex-
ecute training process.
 

reward = −(ttdelay + rcdelay) (4)

 2. Search framework
In  the  search  framework  of  our  proposed  method,

we use the combination of depth-first and optimal-first
search strategies  and  exclude  the  branches  that  obvi-
ously cannot  find  results  to  speed  up  the  search  effi-
ciency. Algorithm 1 shows the basic search framework.
In  order  to  speed  up  the  traversal  search  and  obtain
feasible  solutions,  we  can  traverse  the  search  messages
in  a  specific  order  like  ascending  order  of  the  ratio  of
message  length  to  period  or  descending  order  of  the
message period.

Algorithm 1　Tree search framework of schedule
tmax

x
1:　Input: the maximal attempts times: , the number

of messages: .
2:　Output: a feasible schedule table.
3:　Initialize:

state4:　Initial state: ;
state5:　Policy to choose the first hop offset: Choose( );

offset16:　Policy to select each hop offset: Search( );
offsets7:　Policy to backtrack: Backtracking( );
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Schedule8:　Empty scheduling table: ;
9:　for message in messages
10:　　get state from environment;

t tmax11:　　　for  in range( )
offset1 = state12:　　　　  Choose ( );
offsets = offset113:　　　　  Search ( );
t tmax14:　　　if  == 

offsets15:　　　　Backtracking( );
16:　　　else

Schedule = Schedule+ offsets17:　　　 ;
18:　　　end for
19:　end for

state

state

offsets

offset1

offset1

Without support of reinforcement learning, the func-
tion Choose( )  uses  a manually designed heuristic
function or a completely Random Search(RS) method,
i.e. A* to find the shortest path. When using the rein-
forcement  learning,  the Choose( )  function  is  a
multi-layer perception  (MLP)  neural  network,  the  in-
put is current state and the output is an action added
noise.  The  function Backtracking( )  is  used  to
recursively trace back to the position of the last layer to
search in other way according to the hyper-parameters.
The  function Search( )  is  used  to  complete  the
search process for the entire set of messages in the fol-
lowing nodes according to their transmission paths. The
function Search( ) is given in Algorithm 2.

offset1Algorithm 2　Search( )
offset11:　Input: first hop offset: .

offsets2:　Output: offset series for this message: .
3:　Initialize:

backmax4:　The maximal attempts times ;
lower5:　The basic technical delay for TT messages: ;

upper6:　The deadline of TT messages: ;
a7:　The balancing parameter: ;

lower, upper8:　RandomChoice( );
offsets9:　Policy to backtrack:Backtracking ( );

delay10: Delay of this TT message: ;
delaytmp11: Delay of this message in this hop: ;

offsets12: Offset list: =[ ];
13: while the current hop is not the last hop

back = 0, offset = offset114:　　 ;
back backmax15:　　for  in range( )
upperi loweri16:　　　get  and  by using formula (5);

diff = a ∗ (upper − lower) ∗ back/backmax17:　　　 ;
higher = lower + diff18:　　　 ;
delay = (lower, higher)19:　　　 RandomChoice ;

delay < higher20:　　　if 
21:　　　 break

offsets offset+ delaytmp22:　　　 .append( );
23:　　　current hop = the next hop;
24:　　end for

offsets25:　if  is feasible
offsets26:　　Output ;

27:　else
offsets28:　　Backtracking( );

29:　end while

lower, higher

upperi loweri

backn−1 backn wnu wnl bnu
bnl

Actually, RandomChoice( ) can ran-
domly  select  values  according  to  typical  distribution
methods like normal or uniform distribution. When the
number of TT messages is small and the length of mes-
sages  are  short,  we can quickly obtain a  feasible  offset
within  the  scope  between  the  upper  bound  and  lower
bound, namely a small delay in the current forwarding
node. But if the number of TT messages is big enough,
for  example,  more  than 1000 messages, piecewise  for-
mula (5) is  used to widen the search space to increase
the  likelihood  to  get  a  feasible  solution.  In  (5),  new

 and  can  be  calculated  according  to  the
current back  tracing  times  back,  and  it  will  be  com-
pared  with  the  predesigned  back  tracing  interval
defined by  and . Parameters , , 
and  are  used  to  balance  the  selecting  interval  and
need to be specified before search operation [26].
 

upper1 = w1u × offset+ b1u : back0≤back≤back1
lower1 = w1l × offset+ b1l : back0≤back≤back1

...
uppern = wnu × offset+ bnu : backn−1≤back≤backn
uppern = wnu × offset+ bnu : backn−1≤back≤backn

(5)

 3. Pure reinforcement learning
Reinforcement  learning  adopts  trial-and-error  and

iterative approach to achieve the best reward according
to the interaction with the environment and finally ob-
tains the optimal response strategy. It does not require
the complete environment dynamic model and not need
the manually designed heuristic function. So it is quite
suitable to solve the decision problem especially in com-
plex situation.

Reinforcement learning can use  gradient-based op-
timization  algorithms  to  make  converge  much  faster,
and use neural network as the function approximator to
make the model generalizable. Q-learning is widely used
in reinforcement learning, but it cannot solve problems
with large-scale action space or continuous action space,
while  policy  gradient  does.  So  we  can  use  stochastic
policy gradient  (SPG)  and  DPG  to  train  neural  net-
work [27].

Q

Q

Q (Q−reward)2

In the process of DPG, we define  as the estima-
tion of the cumulative reward. The optimization target
of  our method is  to maximize . The loss function in-
cludes two parts.  The  first  part  represents  the  estima-
tion  accuracy  of :  in  (6),  and  the
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Q (−Q)

Q

p(a; θ)

a

θ

second  part  stands  for  maximizing :  in  (6).  In
this way, we can train the neural network by minimiz-
ing the loss function. In the process of SPG, there is no
need to estimate , and the only optimization target is
to maximize  cumulative  reward  by  minimizing  the  in-
verse of the loss function as (7).  means the prob-
ability  of  choosing  action  when  the  parameter  of
policy  network  is . The  pseudo  code  for  the  both  al-
gorithms are shown in Algorithms 3 and 4. Because the
action space in the problem is discrete, we use the DPG
algorithm to obtain a trained neural network.
 

loss = (Q− reward)
2
+ (−Q) (6)

 

loss = −
∑

p(a; θ)× reward (7)

Algorithm 3　DPG Algorithm
1:　Input: current state.
2:　Output: trained neural network.

policy p3:　Initialize:  neural network ;
4:　while not converge

p5:　　run Algorithm 1 using  with random noise;
6:　　receive schedule table as new samples;

p7:　　update  network parameters by minimizing the loss
defined in formula (6).

Algorithm 4　SPG Algorithm
1:　Input: current state.
2:　Output: trained neural network.

policy p3:　Initialize:  neural network ;
4:　while not converge

p5:　　run Algorithm 1 using ;
6:　　receive schedule table as new samples;

p7:　　update  network parameters by minimizing the loss
defined in formula (7).

 4. Imitation learning with exploration
After the DPG algorithm training, we will get a de-

terministic schedule table which is supported to be the
optimal  schedule  table  (possibly  suboptimal),  and  all
the  subsequent  schedule  table  should  always  coincide
with  this  optimal  solution.  But  its  convergence  speed
highly depends on the specific parameters and the cor-
responding search space. This may cause our algorithm
unstable, sometime it will take a long time to complete
training process. The advantage of imitation learning is
that it  has a quick converge speed,  but the disadvant-
age is  that  imitation  learning  might  experience  cata-
strophic  performance  degradation  if  it  encounters  an
untrained  state.  For  a  specified  avionics  networking
case, we  have  all  the  information  about  the  transmis-
sion requirements  and  the  detailed  messages  paramet-
ers as all the characteristics of the messages are defined
according to avionics function requirements, such as the
deadline,  frame  length,  period.  Therefore,  imitation

learning  is  used  to  replace  DPG  in  case  of  large-scale
messages  transmission  scenarios.  In  these  networking
cases, random  noise  is  added  into  the  training  al-
gorithm to get better exploration (just like adding noise
to  DPG),  and  dataset  aggregation  (Dagger)  is  used  to
execute imitation  learning.  Since  the  optimization  ob-
ject is decreasing the delay of the schedule table, there
is no need to artificially provide labels for the new gen-
erated  schedule  table  samples.  After  a  new  sample  is
obtained, its delay can be used as the label directly [28].

offset

delays

These schedule  tables  are  generated  by  our  al-
gorithm with exploration. In other words, they are pro-
duced by neighbor search, so the output of policy is also
close to the adjacent samples. In this situation, the sim-
ilar  action ( s) sequences  have different  but  simil-
ar  labels  ( ).  Thus,  neighborhood  search  provides
the generalization ability, and we can also find whether
there  exists  a  better  schedule  table  at  the  same  time.
The experiments in Section IV also illustrate this philo-
sophy,  so  we  can  figure  out  better  schedule  table
around our sample schedule tables.

Since we adopt the logarithm function to calculate
the  action  value,  the  contribution  of  different  label  to
the loss  function  is  also  different.  Without  such  logar-
ithm operation the loss value will be too large to cause
the  oscillation  of  our  model  or  the  explosion  of  the
gradient. On the other side, as the absolute value differ-
ence of action is too large, the error of the smaller value
of  the  action  might  hardly  have  contribute  to  the  loss
function, which makes it difficult to train.
 

loss = (out− action)
2 × action (8)

out

action

In formula (8),  is the output value of the neur-
al  network,  and  is  the  logarithmic  value  of  the
offset  with  the  maximal  reward  until  now.  Noise  is
defined as  a  normal  or  uniform  distribution.  In  imita-
tion  learning  process,  we  use  formula  (8)  to  train  the
neural  network.  The  implement  of  imitation  learning
with exploration is shown in Algorithm 5.

Algorithm 5　Imitation learning with Dagger
Schedule1:　Input: empty scheduling table .

2:　Output: trained neural network.
3:　Initialize:

T Tmax4:　Count , max count ;
p5:　Policy network to choose offsets ;
D6:　Sample set of scheduling tables ;

7:　Noise like normal and uniform distributions;
T < Tmax8:　while 

p9:　　Run Algorithm1 with  with noise;
Dnew10:　 Gain new sample set ;

D = D ∪Dnew11:　 Aggregate ;
D12:　 Train p from sampled data in  using formula (8);

T = T + 113:　  .
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We run  imitation  learning  in  sample  set  with  the
largest  reward  for  the  schedule  tables  by  exploring
within  a  neighborhood  interval.  The  selection  of  the
neighborhood  obeys  a  manually  designed  distribution
that the closer  neighbor holds  a larger  probability and
the farther neighbor holds a lower probability. Finally,
remaining  a  small  probability  to  perform a  completely
random  search  can  ensure  our  algorithm  jump  out  of
the  current  neighbor  to  have  chance  to  find  a  more
feasible solution in a big scope. Under such conditions,
our algorithm can find out the optimal schedule table if
the iterations times are adequate.

During  training  process,  we  retain  some  deviation
while fitting in each epoch. Considering all the samples
are generated by the interaction between the algorithm
and the environment, there must exist bias. We can ex-
ploit  the  deviation  to  expand  the  exploration  interval.
Complete  fitting  will  lead  to  premature  converge,  and
results in insufficient exploration. It is more likely to ac-
cumulate  bias  to  cause  worse  results.  When  there  are
some deviation  between the  current  result  and the  fit-
ting target,  we can roughly guarantee that the current
solution  is  in  the  neighborhood  of  the  target.  In  this
way,  we  can  search  in  a  larger  range,  and  the  overall
direction is always tending to the final target while ex-
ploring and optimizing.

If  the training is  adequate,  theoretically DPG and
imitation  learning  with  random  exploration  have  the
same convergence accuracy. SPG can converge to mul-
tiple preferred paths and maintain the maximum prob-
ability of the optimal path, but it might easily fall into
sub-optimal  search  region.  Therefore,  we  use  imitation
learning  here  to  accelerate  convergence  rather  than
DPG.  In  order  to  enhance  the  exploration  efficiency,
formula (5) is used in exploration process, and the out-
put  of  the  neural  network  can  obey  distributions  such
as uniform or normal methods. The range of the distri-
bution will be adjusted according to the times of visit.

 5. Imitation  learning  with  asynchronous
methods

As  in  Ape-X  DQN,  we  decompose  the  standard
deep  reinforcement  learning  algorithm  into  two  parts
which run concurrently without high-level synchroniza-
tion [29]. The first part consists of stepping through an
environment, evaluating a policy implemented as a deep
neural  network,  and  storing  the  scheduling  table.  The
second  part  consists  of  sampling  batches  of  data  to
train and  update  the  policy  parameters.  The  corres-
ponding pseudo code is shown in Algorithm 6.

Algorithm  6　 Asynchronous  imitation  learning  with
Dagger
1:　Input: empty scheduling table Schedule.
2:　Output: trained neural network.

3:　Initialize:
Tmax4:　Max count: ;

n5:　Number of actors: ;
n offsets pw6:　  policy networks to choose their  called Actor: ;

pm7:　One policy network for training called Learner: ;
D8:　Sample set of scheduling tables ;

noise9:　Normal and uniform distributions: ;
queue10: One multiprocessing queue: ;

i n11: Asynchronous apply for  in 
T Tmax12:　　for  in range( )

pw noise13:　　　Actor runs Algorithm 1( ) with ;
14:　　　Push schedule tables in queue;
15:　　end for
16:　end for

actors17:　while not all  complete
queue18:　　Asynchronously get new samples from ;

Dnew19:　　Put new samples in sample set ;
D = D ∪Dnew20:　　Aggregate ;

21:　　Select data from D;
pm D22:　　Learner trains  according to data in  using for-

mula (8);
pw pm23:　　Set  parameters as  parameters;

24:　end while

.

The  updated  network  parameters  are  periodically
communicated to the actors from the learner. Different
from Ape-X DQN, all the selected training samples are
complete schedule tables.  As for  the schedule problem,
we do  not  know  whether  the  action  has  long-term  re-
ward unless the schedule process is complete. So we use
a whole sample to guarantee its rewards unbiased, and
use rewards to sort the schedule tables and choose the
best sample to train our model. Since actors and learner
are parallel, large number of samples for training has no
obvious effect  to  the  speed  of  searching  for  the  sched-
ule  tables.  Furthermore,  if  more  actors  perform  the
searching process,  the probability to find better results
would be larger

 V. Experiment
In this  part,  an industrial  networking case  is  used

to  illuminate  our  proposed  generating  method  for
scheduling  table.  The  topology  is  shown  in Fig.2 with
the similar access switches, backbone switches and con-
nected  physical  links  in  A380.  The  link  rates  for  all
physical links are the same as 100 Mbit/s and the frame
lengths  are  set  within  the  scope  of  [64  bytes, 1518
bytes].  According  to  link  rates  and  frame  lengths,  the
basic transmission time of each frame is from 6.72 μs to
123.04 μs, here we use the range from 6 μs to 125 μs for
simplicity.  Followed  by  ARINC  664  P7  protocol  in
which  the  bandwidth  allocation  gap  for  virtual  link  is
set from [1 ms, 128 ms], the periods of messages are as-
signed from the same time interval set. Without loss of
generality,  the  periods  and  lengths  of  messages  are  all
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considered  as  integers  and  the  periods  obey  the  power
rule of 2 from 1 ms to 128 ms. On the whole, 1050 TT
messages  and  1932  RC messages  are  tested  in  most  of
our experiments,  and  the  transmission  route  is  spe-
cified by load-balancing routing strategy mixed up with
shortest path  strategy.  For  the  convenience  of  calcula-

tion and optimization, we use the scheduling wait time
of  TT  messages  after  subtracting  the  technical  delay
from the end-to-end delay as the goal of TT messages,
and RC delay is  the mean of  the upper bound of  end-
to-end latency  computed  by  network  calculus  in  pree-
mption integration policy for all virtual links [30].
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Fig. 2. Networking topology for the four experiments.

 

We design four experiments to show the availabil-
ity of our algorithm with different number of messages,
different length of messages. Also we will show the gen-
eralization of our model.

Hyper-parameters
In  order  to  implement  the  imitation  learning,  we

use  3-layer  fully-connected  network  which  is  shown  in
Fig.3 and each  layer  contains  a  hidden layer  with  size
as 256, also ELU is used as the activation function both
for the  actor  and the  learner  in  each layer.  The train-
ing  process  adopts  the  Adam  optimizer  with  learning
rate as 0.0005 [30]–[33].
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Fig. 3. Neutral network with 3 fully-connected layers.

 

The final optimization target is defined as follow:
 

reward = α ∗ TTwaitT ime + (1− α) ∗RCdelay (9)

In all  experiments,  we use genetic algorithm (GA)
as  the  benchmark  algorithm  to  show  the  optimization
process. The population batch size is set as 160 in each
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epoch, and asynchronous method is applied for GA in a
multi-core process system with 16 cores. For our imita-
tion learning method,  we only use asynchronous meth-
od in  Experiment 4.  For  the  others  three  experiments,
we only use one CPU core to be the actor and one GPU
core for the learner.

TTwaitT ime

RCdealy

α

α

In  formula  (9),  is  the  scheduling  wait
time of TT messages in the outputting ports,  is
the  end-to-end  delay  of  RC  messages,  and  is a  bal-
ance  parameter  between  two  optimization  goals.  We
can get different optimized policy network by adjusting
the parameter .

 1. Experiment 1
Experiment 1  is  used  to  show  the  basic  perform-

ance  of  our  RLTS  method.  Typically,  the  calculation
speed of  genetic  algorithm is  related  to  the  size  of  the
population. Under the acceptable level of optimization,
we try to make the calculate speed fast.

The  results  are  shown  in Tables  1–6,  which  give
the detailed results according to different network con-
figurations. From the results, we can see that our RLTS
algorithm  performs  better  than  the  other  algorithms,
such as SMT, GA and random search (RS), under dif-
ferent  scales  of  the  networking  scenarios  with  different
numbers  of  messages.  Both  the  delays  of  TT  and  RC
messages can  be  optimized  according  to  our  RLTS  al-
gorithm. The performance of the RS algorithm is taken
as  the  benchmark  to  calculate  the  optimization  degree
of  our  method,  which  is  shown  in  formula  (10).  Thus,
the detailed optimization degrees compared with RS ac-
cording to the results shown in Tables 1–6 can be calcu-
lated,  which  are  12.5%,  21.2%,  12.0%,  20.1%,  23.1%
and 27.4% for the RC messages respectively.
 

rate% = (resultRS−resultRLTS)/resultRS×100%
(10)

  
Table 1. 1050 TT messages and 1932 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT Delay
(μs)

RC delay
(ms)

SMT 128.8 1355.3 1436.60 55.24
RS 2.17 7.82 89.12 46.21
GA 171.4 5.80 87.9 45.03

RLST 4.58 4.76 86.06 40.42

  
Table 2. 1050 TT messages and 1404 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 128.8 1248.6 1329.90 35.09
RS 2.17 12.20 93.50 30.29
GA 171.4 5.85 87.15 28.08

RLST 4.58 5.61 86.91 23.87
 
 

If  SMT  algorithm  is  taken  as  the  benchmark,  we
can find our RLTS algorithm has more advantages for

both small delays and fast responding speed. Generally
speaking, the  TT  message  delays  of  our  RLTS  al-
gorithm are nearly one percent of the delays of SMT al-
gorithm, and  the  RC  message  delays  of  our  RLTS  al-
gorithm are also close to the half of the delays of SMT
algorithm.  When  considering  the  computation  speed,
the  speed  of  our  RLTS  algorithm  is  dozens  of  times
faster  than  SMT.  For  most  networking  scenarios,  our
RLTS algorithm can obtain an optimal solution within
10 seconds.

Besides, we can find out that our RLTS algorithm
can obtain more advantage for the scheduling optimiza-
tion with a large radio of the number of TT messages to
the number of RC messages. It is intuitive that, if there
are  more  TT  messages,  there  would  be  more  slots
among TT scheduling windows, which finally results in
more complexity for solving the scheduling problem, so
that  our  method  will  have  more  choices  to  figure  out
the optimal scheduling solution.

 2. Experiment 2
In this  experiment,  we  will  test  our  RLTS  al-

gorithm in a scenario including 1050 TT messages and
1932  RC  messages  but  with  different  message  lengths

   
Table 3. 570 TT messages and 1932 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 28.9 1278.6 1381.43 46.23
RS 1.44 6.54 109.37 44.24
GA 31.5 4.92 107.78 41.89

RLST 2.52 2.97 105.80 38.93
 

   
Table 4. 570 TT messages and 966 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 28.9 1278.6 1381.43 20.23
RS 1.44 6.09 108.92 18.87
GA 37.3 5.59 108.41 18.29

RLST 2.52 5.27 108.10 15.07
 

   
Table 5. 1050 TT messages and 966 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 128.8 1355.3 1436.60 25.52
RS 2.17 7.81 89.11 20.03
GA 160.2 5.80 87.90 19.60

RLST 4.58 4.65 85.95 15.42
 

   
Table 6. 1581 TT messages and 966 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 492.7 1201.1 1267.43 33.59
RS 6.63 13.68 80.01 21.66
GA 298.6 7.63 73.96 20.57

RLST 12.64 7.03 73.36 15.73
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by randomly multiplying a coefficient between 0.5 and 2.
The results  are  shown in Figs.4–6 including the delays
of TT messages and RC messages and the standard de-

viation of slots among TT scheduling windows respect-
ively.  The  horizontal  arises  in Figs.4–6 are  the  epoch
numbers.
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Fig. 4. RC message delay of RLTS algorithm in different situations.
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Fig. 5. TT message wait time of RLTS algorithm in different situations.

 

We can find that our RLTS algorithm still can op-
timize the delays for both TT and RC messages at the
same  time  with  different  message  lengths.  The  test  is
performed six times,  namely situation 1 to situation 6.
In each test situation, the lengths of messages are ran-
domly  assigned.  In Fig.6,  it  shows  that,  the  standard
deviation for slots between the adjacent TT scheduling
windows  is  not  stably  decreasing  with  the  process  for
optimization, but converges to different levels which not

always gather into a same degree. For better comparis-
on, we also draw the baseline of RS algorithm in Fig.6.
We can  find  the  convergence  trend  of  our  RLTS  al-
gorithm is not always consistent with the RS algorithm,
which just means it is not always better for scheduling
problem with a more uniform distribution of scheduling
slots.

 3. Experiment 3
Next, we design Experiment 3 to illustrate the gen-
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eralization ability of our trained model. A series of mes-
sage  length  changes  are  applied  to  check  whether  our
RLTS algorithm could quickly adjust its inherent mech-
anism to  suit  the  new  network  situation.  In  Experi-
ment  3, 1050 TT messages  and 1932 RC messages  are
used  to  train  our  neural  network  with  RLTS,  and  the
same  number  of  messages  with  different  frame  length
are used  to  test  the  generalization.  Different  from Ex-
periment  2,  this  experiment  uses  a  trained  model  for
fine-tune, while Experiment 2 is trained from the begin-
ning, so the number of epochs in Experiment 3 is much
less than Experiment 2.

The basic message setting in Experiment 3 is simil-
ar  to  the  case  with 1050 TT  messages  and  1932  RC
messages in  Experiment  1.  Then  we  change  the  mes-
sage  lengths  randomly  according  to  the  corresponding
message  IDs  which  also  are  selected  randomly.  In  this
way, we can guarantee the randomness of  the generat-
ing  for  messages.  Totally,  over  half  the  messages  are
randomly selected  out  to  change  their  message  lengths
by  multiplying  a  random  coefficient  to  the  original
lengths. We will investigate the generalization ability of
our  RLTS algorithm.  Results  after  50  epoch  times  are
shown in the follow context, which mainly illustrate the
fitting curves for message delays and epoch times.

Operation  1 (small  change)　Operation  1  shows
the  influence  of  a  relatively  small  change  for  message
length. The range  of  the  multiplying coefficient  is  lim-
ited within the scope of 0.9 to 1.2.

Operation  2 (medium change)　Operation 2  ad-
opts a larger change for message length than Operation
1,  where  the  range  of  the  multiplying  coefficient  is
between 0.8 and 1.4.

Operation  3 (large  change)　 Operation  3  will
have the maximal change for message length, where the
range  of  the  multiplying coefficient  is  between 0.8  and
1.5.

The  results  are  shown  in Fig.7, Fig.8 and Fig.9.
For better  comparison,  we also take RS algorithm res-
ults as the baseline in Figs.7–9. It can be seen that our
RLTS  model  can  attain  much  better  results  than  the
RS  algorithm  in  a  short  period  of  time,  which  just
shows our model can quickly adapt itself to the similar
configuration  states.  Considering  our  model  is  a  self-
exploration  method,  it  is  not  strange  that  our  RLTS
model can achieve better and fast solution than RS al-
gorithm  based  on  pre-train.  According  to  the  change
degree of  message  length  from  Operation  1  to  Opera-
tion  3,  the  randomness  also  raises  with  an  increasing
scope for the coefficient. When the message length dis-
tribution is  completely  different,  the  goal  of  our  al-
gorithm is changed to search for a feasible solution first,
and then  optimize  it.  In  all  the  test  cases  in  Experi-
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Fig. 6. Standard deviation of slots in different situations.
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Fig. 7. Delay of RC messages.
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ments 3, results show that our RLTS model has a good
generalization  ability  and  can  handle  with  the  similar
configuration  fast.  Besides,  the  results  also  show  that
the  optimal  scheduling  solution  does  not  always  prefer
to the uniform distribution for the TT scheduling win-
dows.
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Fig. 8. Wait Time of TT messages.
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Fig. 9. Standard  deviation  of  slots  among  TT  scheduling

windows.      
 

 4. Experiment 4
Finally, we apply the asynchronous method for fast

and  better  exploration.  Since  our  test  platform  is  a
multi-core process system with up to 16 CPU cores, we
choose  several  cores  to  explore  and  collect  schedule
tables  to  speed  up  the  training  process.  Results  are
shown in Table 7.
  

Table 7. Multi-process with 1050 TT and 1932 RC

Number of
processors

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

1(RS) 7.82 89.12 42.21
1 6.63 86.06 40.42
2 298.6 85.70 39.92
4 12.64 85.78 39.74
8 492.7 85.09 39.63
16 492.7 85.64 39.61

 
 

Also the detailed information is shown in Figs.10–12.
We can find the asynchronous method based on multi-

core  processing  greatly  accelerates  the  convergence
speed  for  RC  message  delays.  If  more  processors  take
part  in  the  exploration  and  calculation  process,  our
RLTS  algorithm  can  achieve  a  much  fast  convergence
speed, also attain better scheduling solution with smal-
ler RC delays, though the optimization degree is not so
obvious.  For  TT  message  delay,  different  number  of
participating  processors  has  a  much  smaller  effect  to
the  convergence  speed  than  for  RC  message.  Since  we
mainly focus on RC delay, there is no obvious influence
for  the convergence speed or the final  TT wait  time if
more  processors  participate  in  the  whole  process  as
shown in Fig.11.
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Fig. 10. Delay of RC messages for multi-cores test.
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Fig. 11. TT messages wait time for multi-cores test.
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Fig. 12. Standard  deviation  of  slots  among  TT  scheduling

windows for multi-cores test.
 

At  last, Fig.12 shows  the  standard  deviation  of
slots  among  TT  scheduling  windows.  We  can  find  the
standard  deviation  of  RS  algorithm  is  much  smaller
than our  RLTS  algorithm  which  just  means  the  di-
versity  of  scheduling  gaps  generated  by  RS  are  more
uniform than the results by our RLTS.

So the scheduling gaps by RS seem as more expec-

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1033



ted as  the porosity scheduling strategy does.  It  can be
explained  since  RS  algorithm  adopts  the  completely
random method to make the exploration and this kind
of exploration  method  potentially  would  result  in  nor-
mal distribution for the solutions. As shown in Experi-
ment  1,  our  RLTS  algorithm  has  more  advantage  in
delays both  for  TT  and  RC  messages  than  RS  al-
gorithm, and it can reduce the worst-case delay of RC
averagely by 20% and the wait time of TT averagely by
44%. So a more uniform TT scheduling window distri-
bution does not always mean a better scheduling result
both for TT and RC messages as our RLTS algorithm
could  achieve  better  scheduling  results  but  with  larger
standard deviation of slots than RS algorithm.

 VI. Analysis and Discussion
When considering the application of TTEthernet in

real time networking environment especially in avionics
context,  we  propose  to  use  reinforcement  learning  to
solve and optimize schedule problem, which can achieve
excellent performance beyond SMT and other heuristic
methods like GA.

Due to the periodicity of the TT message, its own
scheduling gap is relatively uniform. In particular, when
all  TT  messages  have  the  same  frame  length  and  the
same period, a scheduling table with a uniform distribu-
tion for the slots among TT scheduling windows could
be the optimal solution with the lowest delays for both
TT and  RC  messages.  However,  in  the  practical  net-
working scenario, the distribution of TT messages could
not  be  so  even,  so  it  is  really  hard  to  assure  that  the
end-to-end delays for all  messages are always small.  In
fact, due to the diversity of TT and RC messages, it is
almost impossible to encounter an example with a uni-
form  distribution  for  the  slots  to  solve  the  scheduling
problem  [34].  In  fact,  it  needs  to  adjust  the  offsets  of
messages repeatedly to ensure that the scheduling win-
dows  could  be  available  and  the  delays  are  relatively
small.  And this  kind  of  work  is  quite  complicated  and
depressing.

To solve the problem, we adopt the reinforcement
learning method,  namely the RLTS algorithm, to min-
imize the delays both for TT and RC messages and can
achieve  an  optimal  scheduling  table.  By  using  neural
network, it can obtain satisfactory scheduling results in
a short time with a good generalization ability. Besides,
our RLTS algorithm with  tree  search  strategy  can ob-
tain a much fast calculation speed. When combining the
asynchronous method to our model, it can further accel-
erate several times which just lays a foundation for the
further optimization.

According to the experimental results based on an
industrial  networking  case  with  more  than 1000 TT

messages  and  1900  RC  messages,  the  traditional  view
that  the  uniform  porosity  for  TT  scheduling  windows
could contribute  to  better  performance  for  RC  mes-
sages is not always the most suitable strategy for gener-
al situations.  The best  scheduling pattern of  TTEther-
net  might  lay  in  the  middle  between  the  centralized
scheduling pattern and porosity scheduling pattern.
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