
Scheduling Pattern of Time Triggered Ethernet
Based on Reinforcement Learning

HE Feng1,2, XIONG Li2, ZHOU Xuan2, LI Haoruo2, and XIONG Huagang2

(1. Shenzhen Institute of Beihang University, Shenzhen 518000, China)
(2. School of Electronics and Information Engineering, Beihang University, Beijing 100191, China)

 Abstract — Time-triggered Ethernet (TTEthernet or
TTE for short) is a deterministic and congestion-free net-
work based on the Ethernet standard. It supports mix-
critical real-time applications by providing different mes-
sage classes. The time-triggered (TT) messages have strict
end-to-end delay and accurate jitter requirement, and the
rate-constrained (RC) messages have less determinism
than TT messages but with bounded end-to-end delay re-
quirement. Traditionally, the scheduling of TT messages
makes it free of conflicts for the transmission on physical
links, but ignoring RC messages scheduling, so it cannot
guarantee the transmission of RC messages with a bound-
ed delay. Therefore, the design of TT schedule becomes
the key to TTE network applications within avionics en-
vironment. In this paper, we propose an algorithm called
RLTS based on reinforcement learning and tree search, to
optimize the end-to-end delays of both TT and RC mes-
sages. Besides, its computation speed is dozens of times
faster than satisfied modularity theory (SMT) with asyn-
chronous method for the calculation of the optimal sched-
uling table. In the case of a large network with more than
1000 TT and 1000 RC messages, the RLTS method can
find a scheduling timetable in 10 seconds, and reduce the
worst-case delay of RC messages averagely by 20% com-
pared to the genetic algorithm. Meanwhile, our algorithm
has a good generalization performance, in another word, it
can quickly adjust itself to satisfy the scheduling with the
similar performance as before. By using our method, the
scheduling pattern of TTEthernet is further discussed.
According to the experimental results, the uniformly dis-
tributed slots scheduling pattern, namely the porosity
scheduling model which is usually recommended for TTE
application, is not always suitable for general situations.

 Key words — Time-triggered Ethernet, Schedule

pattern, Reinforcement learning, Network calculus.

 I. Introduction
The standard Ethernet (IEEE 802.3 2012) is known

as an unsuitable solution for real-time and safety-critical
message transmission especially in the context of avion-
ics environment [1], [2]. Defined by ARINC 664 P7 stand-
ard, Avionics Full DupleX Switched Ethernet (AFDX)
adopts the concept of virtual link (VL) to enhance the
determinacy of event-triggered (ET) message transmis-
sion and can provide a bounded end-to-end latency guar-
antee, but it still has inherent transmission uncertainty
due to the asynchronous arrival of messages from differ-
ent transmission sources [3], [4]. System-wide clock syn-
chronization established by AS6802 provides the basis
of time-triggered (TT) communication in TTEthernet,
in which TT messages are sent and forwarded at the
predefined time windows specified by the static sched-
ule tables [5], [6]. As planning in advance for schedul-
ing windows of TT messages, there is no conflict for TT
messages transmission. But rate-constrained (RC) mes-
sages still would encounter interference not only from
other RC messages but also from TT messages. How to
generate a reasonable scheduling table in TTEthernet is
really a hard job because different scheduling windows
arrangements have different schedulability for TT mes-
sages and different impacts on RC messages.

In fact, only focusing on TT messages arrangement,
it is difficult to find an analytic method to get a feasible
schedulable result. So the dominant literature adopt the
satisfied modularity theory (SMT) to solve this prob-
lem [7]. Actually, different TT scheduling tables have
great impact on the distribution of RC message end-to-
end delays. For example, the centralized scheduling pat-
tern and porosity scheduling pattern are typically two
different scheduling patterns which will lead to differ-
ent scheduling tables and cause huge difference in RC
message delays. Generally speaking, porosity scheduling

Manuscript Received Dec. 6, 2021; Accepted May 5, 2022. This work was supported by the Technology Development Fund of
Shenzhen (2021Szvup082) and the National Natural Science Foundation of China (62071023).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.419

Chinese Journal of Electronics
Vol.32, No.5, Sept. 2023

might have more scheduling chance for RC messages in
most cases, namely short worst-case end-to-end delays
(WCD). But if the porosities are too even, some RC
message might not find any appropriate window to be
scheduled out as the intervals between two related con-
joint TT windows are too small to fit the RC message
frames. Thus, the above discussion leads to one ques-
tion: how to reduce the WCD of RC messages when
generating the static schedule table for TT messages at
the same time, and this question is still on the way to
be solved since both the scheduling method for TT mes-
sages and the WCD analysis method for RC messages
are complicated enough and time consuming. For ex-
ample, SMT method usually needs too much time to
get a feasible result, so new method should be found to
solve this problem. But up to now few references dis-
cussed this question. The main work of this paper is to
find a way to minimize the delays of TT message and
RC messages simultaneously to get a global better real-
time transmission guarantee.

In recent years, deep learning and reinforcement
learning have achieved a great success in many fields,
such as robot control, video games like Atari, board
games Go, and other situations [8]. Deep learning can
easily describe high-dimensional complexity due to its
multi-level associated networks, and has excellent cap-
ability of generalization. Reinforcement learning can
solve the task without supervise information like labels.
When the unresolved problem is particularly complex to
describe, imitation learning is often used to improve the
convergence speed [9]. For example, AlphaGo Master
begins by training a supervised learning policy network
directly according to human expert moves [10]. In the
case which is difficult to evaluate rewards, count-based
algorithm like Go-Explore policy uses exploration and
recording to obtain high-quality action-series, then ex-
ecutes imitation learning on these samples to train the
neural network with noise to explore to get better
samples [11]. For combinatorial optimization problems
such as traveling salesman problem, minimum vertex
cover, pointer network, S2V DQN and many other al-
gorithms have been adopted to solve them [12], [13].
Thus, deep learning and reinforcement learning poten-
tially can be used to solve scheduling problems in TTE
network.

In this paper, we propose a method based on rein-
forcement learning to generate the optimal scheduling
tables with purpose to decrease the delays of TT mes-
sages and RC messages at the same time. We regard
choosing offset for each message as the action, and the
end-to-end delay of all messages as a reward. Under
such an assumption, we can use asynchronous reinforce-
ment learning implemented by imitation learning with

exploration to quickly solve the scheduling problem
[14]. According to experiments, our method can get an
optimal scheduling table with low end-to-end delays of
TT and RC messages in a short time, and it can suit
the similar network configuration by transfer learning.
Besides, some suggested scheduling patterns are found
according to our experiments.

The rest of this paper is organized as follows. Sec-
tion II gives a short survey about different generating
methods for TTEthernet. Then, the TTEthernet system
model is given in Section III. Next, Section IV gives the
detailed philosophy and process about our method and
Section V introduces the experiments based on an in-
dustrial network case. Finally, some conclusions are giv-
en in Section VI.

 II. Related Work
The generating methods of scheduling table is a

common problem for embedded real-time networks,
such as 1553B, TTP and TTE. There are a lot of works
on bus scheduling and schedulability analysis of end-to-
end delays within embedded networking contexts, such
as Dobrin and Fohler [15], Davis and Burns [16], Ma-
rau et al. [17]. The focus of this paper is the scheduling
optimization for TTEthernet. SMT is a very powerful
general-purpose constraint solver, a tool that combines
decision-making procedures to solve problems in first-
order logic related to its domain theory. But SMT also
has obvious shortcomings that it will take a long time
to solve the actual large-scale topology, and it can only
find solutions that meet the requirements but difficult
to find the optimal one in them. In most situations, we
want to obtain an optimal scheduling result and it is
clear that SMT cannot achieve it. Moreover, SMT has
to completely recalculate even when there are few
changes in configuration. Suethanuwong [18] proposes a
scheduling approach of the TT traffic, ignoring RC
traffic, which introduces equally distributed available
time slots for BE traffic. Stochastic optimization al-
gorithms like tabu search and genetic algorithms can
optimize TT schedule tables and take into account RC
end-to-end delays during the search space exploration [19],
[20]. These methods often require a long calculation
time to achieve algorithm convergence. When the net-
work configuration is changed, the whole process needs
to be executed from the beginning [21]. Moreover, these
algorithms are very sensitive to parameters, the same
algorithm with little different parameters may cause
completely different convergence.

For search problems, A* and its variants have a
wide range of applications, but A* requires some appro-
priate heuristic functions, and different heuristic func-
tions have different guidance and convergence, so they

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1023

have different optimization effects in different environ-
ments, and the results are usually not ideal [22]. In ad-
dition, when the scheduling process is not completed,
heuristic functions can only guarantee the delay of cur-
rent TT messages, but the bound of latency of the RC
messages is difficult to estimate with the heuristic func-
tion, so usually they are not suitable for the problem of
scheduling. On the other hand, search structure such as
A* conforms to Markov processes, so models like neur-
al network can be used to replace these heuristic func-
tions [23]. Model-based algorithms can be used to ad-
apt to the distribution of data and quickly find out
feasible solutions. At the same time, gradient-based op-
timization methods such as stochastic gradient descent
can greatly improve the optimization speed.

 III. System Model

G = (V,E) V

E
vm

vn (vm, vm) ∈ E

prds

The topology of the network is modeled as a direc-
ted graph, , where is the set of nodes rep-
resenting the system terminals or switches in the net-
work and is the set of directed edges connecting two
nodes. We denote the link between node and node

 by , where the first node in the pair de-
scription defines the sending node and the second node
defines the receiving node. Information between the
sender and receiver is communicated in the form of TT
flow that are periodic TT frames according to AS6802.
Since flows may have different periods, we consider an
overall schedule cycle which is larger than (or equal to)
any individual flow period. We denote the hyper-period
of all flows as which is the least common multiple
of the periods of all TT flows.

F
fi

[vk, vl] f [vk, vl]={fi.period, f [vk,vl]
i .offset, fi.length,

fi.sequence}

fi.sequence

fi
fi vk vl

f
[vk,vl]
i .offset

We denote the set of TT flows by . And we use a
quadruple to represent a flow on a dataflow link

, i.e.,
. The period and length of the TT flow are

given based on the application specification. The flow
sequence, namely , identifies different TT
frames of the same flow in different periods. The de-
parture time of TT flow from to , namely

, is scheduled by TT schedulers. For the
scheduling problem of TT flow, there exist three con-
strain conditions as follows.

1) No-conflict constraints
When a message is transmitted between a trans-

mitter and a receiver, it must occupy an exclusive port
and link for sending and receiving. The time windows
for sending different messages cannot overlap with each
other. Otherwise, data conflicts may exist in the trans-
mitting messages, resulting in the loss of message
frames. The expression is

∀ [vk, vl] ∈ E, ∀fi ∈ F

(fi.offset ≥ fj .offset+ fi.length)

∪ (fk.offset ≥ fi.offset+ fi.length) (1)

2) Path-dependent constraint

hopdelay

Messages are sent step by step between ports. The
minimum single-hop delay is determined by the fixed
transmission delay of the physical link. Set as
the minimum single-hop delay. The expression is

∀ [vk, vl] , [vi, vr] ∈ E, ∀fi ∈ F

hopdelay ≤ f
[vi,vr]
i .offset− f

[vk,vl]
i .offset (2)

3) End-to-end delay constraints

n

fi vk vl

n× f
[vk,vl]
i .period+ f

[vk,vl]
i .offset

fi [v0, v1]

[vn, vn+1]

fi f [vn,vn+1]
i

.offset− f
[v0,v1]
i .offset

latency

The source nodes send flows at the specific time ac-
cording to schedule tables. For example, the -th depar-
ture time of flow from to is specified by

. Assuming the first
dataflow link and the last dataflow link of are
and , respectively, the end-to-end latency of
flow is . And the end-
to-end latency should not exceed the maximum end-to-
end latency. Set as the maximum end-to-end
latency. The expression is

∀[v0, v1], [vn, vn+1] ∈ E, ∀fi ∈ F

latency ≥ f
[vn,vn+1]
i .offset− f

[v0,v1]
i .offset (3)

fi prds/fi.period

prds prds/fi.period

prds

fi.period ∈ {4, 8, 16, 32, 64, 128, 256

After finishing scheduling all messages, the sched-
uled results are transformed into schedule tables stored
in devices. As a flow transmits frames
in a hyper-period , it possesses time
slots in . In order to make the hyper-period simple,
the period of TT flows are set to powers of 2, that is to
say: }.

After the above system modeling, the scheduling
problem of TT flow is transformed into finding an ef-
fective scheduling scheme under the given network to-
pology and the requirements of end-to-end delay of TT
flow, so that all TT flows can meet the constraint re-
quirements. We define this model based on assump-
tions that all network nodes (switches) have distrib-
uted synchronization capabilities and real-time storage
and forwarding capabilities.

 IV. Method
Our approach is based on reinforcement learning

implemented by imitation learning with tree search [24],
namely RLTS method. Firstly, in the process of search
optimization scheduling table, three different methods
of reinforcement learning which are pure reinforcement
learning, imitation learning with exploration, and imita-
tion learning with asynchronous methods are applied to

1024 Chinese Journal of Electronics 2023

speed up the search of solution space. For pure rein-
forcement learning, using deterministic policy gradient
(DGP) algorithm, a preliminary and locally optimal
message scheduling table can be obtained. After the
DPG algorithm training, we will get a deterministic
schedule table which will be optimized by using imita-
tion learning with exploration. The advantage of imita-
tion learning is that it has a quick converge speed, but
the disadvantage is that imitation learning might exper-
ience catastrophic performance degradation if it encoun-
ters an untrained state. As for the asynchronous imita-
tion learning, it actually uses the multi-process mechan-
ism of the computer, and uses multiple CPUs to speed
up the reinforcement learning and search, so as to make
the calculation faster.

Some basic settings are introduced and defined by
using the incremental description, which can change the
scheduling problem into a Markov decision process
(MDP). Thus we can treat the scheduling timetable be-
fore and after each generating operation as the current
and the next state. After that, the detailed search and
learning algorithm are proposed. The overall process of
our method is shown in Fig.1.

Collect

schedule

table

Select

tables by

reward

Search

based on

policy

Generate
policy

by adding
noise to model

Train and

update model

Fig. 1. The overall process to generate scheduling table.

 1. Basic setting
From the aspect of scheduling, current messages

distributed in scheduling table can be treated as a state,
so the state just reflects all needed information without
the need of the historical states and actions. Thus, this
kind of scheduling process can be transformed into a
Markov process and handled with tree search method [25].
Furthermore, we use neural network as the function ap-
proximator.

State　State is defined as the configuration mode
for the current physical link and message in TTE net-
work. Every state must uniquely describe the current
physical link and message information. But it cannot be
too complex to affect the calculus speed. So we use the
current scheduling table and some statistics informa-
tion of the physical links like the bandwidth utilization
of each physical link and the number of unprocessed
messages and so on to represent the current state. The
scheduling table after executing an action will be

treated as the next state.
Action　Action is defined as a scheduling offset of

a message in the current physical links. Generally
speaking, the scheduling offset of each message cannot
be larger than its period. Otherwise, the considering
message cannot achieve its deadline assurance. Besides,
the offsets could be potentially assigned with any pos-
sible value as long as it is smaller than the correspond-
ing deadline, which may lead to a continuous distribu-
tion for the offsets. This kind of selection will directly
result in too large search space and too slow conver-
gence speed for the generating algorithm. In order to
balance the speed and accuracy, we use logarithm func-
tion to act on the output of neural network to generate
offsets, here namely the actions, thereby bringing new
operation for reinforcement learning.

Reward　Reward is defined as a value related to
the delays of TT and RC messages. Formula (4) as be-
low shows an example that defines reward. TT message
delays can be obtained from the scheduling table dir-
ectly, and RC message delays are calculated by net-
work calculus or some other methods. During the search
process, we do not give any reward, but perform our
constraints like contention free, bound switch memory
and so on. After search process completed, we can give
a reward calculated to TT and RC messages. In order
to make sure the gradient of the training in reinforce-
ment learning is unbiased, we adopt the whole state-
action-reward triplet tuple series (Monte Carlo) to ex-
ecute training process.

reward = −(ttdelay + rcdelay) (4)

 2. Search framework
In the search framework of our proposed method,

we use the combination of depth-first and optimal-first
search strategies and exclude the branches that obvi-
ously cannot find results to speed up the search effi-
ciency. Algorithm 1 shows the basic search framework.
In order to speed up the traversal search and obtain
feasible solutions, we can traverse the search messages
in a specific order like ascending order of the ratio of
message length to period or descending order of the
message period.

Algorithm 1　Tree search framework of schedule
tmax

x
1:　Input: the maximal attempts times: , the number

of messages: .
2:　Output: a feasible schedule table.
3:　Initialize:

state4:　Initial state: ;
state5:　Policy to choose the first hop offset: Choose();

offset16:　Policy to select each hop offset: Search();
offsets7:　Policy to backtrack: Backtracking();

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1025

Schedule8:　Empty scheduling table: ;
9:　for message in messages
10:　　get state from environment;

t tmax11:　　　for in range()
offset1 = state12:　　　　 Choose ();
offsets = offset113:　　　　 Search ();
t tmax14:　　　if ==

offsets15:　　　　Backtracking();
16:　　　else

Schedule = Schedule+ offsets17:　　　 ;
18:　　　end for
19:　end for

state

state

offsets

offset1

offset1

Without support of reinforcement learning, the func-
tion Choose() uses a manually designed heuristic
function or a completely Random Search(RS) method,
i.e. A* to find the shortest path. When using the rein-
forcement learning, the Choose() function is a
multi-layer perception (MLP) neural network, the in-
put is current state and the output is an action added
noise. The function Backtracking() is used to
recursively trace back to the position of the last layer to
search in other way according to the hyper-parameters.
The function Search() is used to complete the
search process for the entire set of messages in the fol-
lowing nodes according to their transmission paths. The
function Search() is given in Algorithm 2.

offset1Algorithm 2　Search()
offset11:　Input: first hop offset: .

offsets2:　Output: offset series for this message: .
3:　Initialize:

backmax4:　The maximal attempts times ;
lower5:　The basic technical delay for TT messages: ;

upper6:　The deadline of TT messages: ;
a7:　The balancing parameter: ;

lower, upper8:　RandomChoice();
offsets9:　Policy to backtrack:Backtracking ();

delay10: Delay of this TT message: ;
delaytmp11: Delay of this message in this hop: ;

offsets12: Offset list: =[];
13: while the current hop is not the last hop

back = 0, offset = offset114:　　 ;
back backmax15:　　for in range()
upperi loweri16:　　　get and by using formula (5);

diff = a ∗ (upper − lower) ∗ back/backmax17:　　　 ;
higher = lower + diff18:　　　 ;
delay = (lower, higher)19:　　　 RandomChoice ;

delay < higher20:　　　if
21:　　　 break

offsets offset+ delaytmp22:　　　 .append();
23:　　　current hop = the next hop;
24:　　end for

offsets25:　if is feasible
offsets26:　　Output ;

27:　else
offsets28:　　Backtracking();

29:　end while

lower, higher

upperi loweri

backn−1 backn wnu wnl bnu
bnl

Actually, RandomChoice() can ran-
domly select values according to typical distribution
methods like normal or uniform distribution. When the
number of TT messages is small and the length of mes-
sages are short, we can quickly obtain a feasible offset
within the scope between the upper bound and lower
bound, namely a small delay in the current forwarding
node. But if the number of TT messages is big enough,
for example, more than 1000 messages, piecewise for-
mula (5) is used to widen the search space to increase
the likelihood to get a feasible solution. In (5), new

 and can be calculated according to the
current back tracing times back, and it will be com-
pared with the predesigned back tracing interval
defined by and . Parameters , ,
and are used to balance the selecting interval and
need to be specified before search operation [26].

upper1 = w1u × offset+ b1u : back0≤back≤back1
lower1 = w1l × offset+ b1l : back0≤back≤back1

...
uppern = wnu × offset+ bnu : backn−1≤back≤backn
uppern = wnu × offset+ bnu : backn−1≤back≤backn

(5)

 3. Pure reinforcement learning
Reinforcement learning adopts trial-and-error and

iterative approach to achieve the best reward according
to the interaction with the environment and finally ob-
tains the optimal response strategy. It does not require
the complete environment dynamic model and not need
the manually designed heuristic function. So it is quite
suitable to solve the decision problem especially in com-
plex situation.

Reinforcement learning can use gradient-based op-
timization algorithms to make converge much faster,
and use neural network as the function approximator to
make the model generalizable. Q-learning is widely used
in reinforcement learning, but it cannot solve problems
with large-scale action space or continuous action space,
while policy gradient does. So we can use stochastic
policy gradient (SPG) and DPG to train neural net-
work [27].

Q

Q

Q (Q−reward)2

In the process of DPG, we define as the estima-
tion of the cumulative reward. The optimization target
of our method is to maximize . The loss function in-
cludes two parts. The first part represents the estima-
tion accuracy of : in (6), and the

1026 Chinese Journal of Electronics 2023

Q (−Q)

Q

p(a; θ)

a

θ

second part stands for maximizing : in (6). In
this way, we can train the neural network by minimiz-
ing the loss function. In the process of SPG, there is no
need to estimate , and the only optimization target is
to maximize cumulative reward by minimizing the in-
verse of the loss function as (7). means the prob-
ability of choosing action when the parameter of
policy network is . The pseudo code for the both al-
gorithms are shown in Algorithms 3 and 4. Because the
action space in the problem is discrete, we use the DPG
algorithm to obtain a trained neural network.

loss = (Q− reward)
2
+ (−Q) (6)

loss = −
∑

p(a; θ)× reward (7)

Algorithm 3　DPG Algorithm
1:　Input: current state.
2:　Output: trained neural network.

policy p3:　Initialize: neural network ;
4:　while not converge

p5:　　run Algorithm 1 using with random noise;
6:　　receive schedule table as new samples;

p7:　　update network parameters by minimizing the loss
defined in formula (6).

Algorithm 4　SPG Algorithm
1:　Input: current state.
2:　Output: trained neural network.

policy p3:　Initialize: neural network ;
4:　while not converge

p5:　　run Algorithm 1 using ;
6:　　receive schedule table as new samples;

p7:　　update network parameters by minimizing the loss
defined in formula (7).

 4. Imitation learning with exploration
After the DPG algorithm training, we will get a de-

terministic schedule table which is supported to be the
optimal schedule table (possibly suboptimal), and all
the subsequent schedule table should always coincide
with this optimal solution. But its convergence speed
highly depends on the specific parameters and the cor-
responding search space. This may cause our algorithm
unstable, sometime it will take a long time to complete
training process. The advantage of imitation learning is
that it has a quick converge speed, but the disadvant-
age is that imitation learning might experience cata-
strophic performance degradation if it encounters an
untrained state. For a specified avionics networking
case, we have all the information about the transmis-
sion requirements and the detailed messages paramet-
ers as all the characteristics of the messages are defined
according to avionics function requirements, such as the
deadline, frame length, period. Therefore, imitation

learning is used to replace DPG in case of large-scale
messages transmission scenarios. In these networking
cases, random noise is added into the training al-
gorithm to get better exploration (just like adding noise
to DPG), and dataset aggregation (Dagger) is used to
execute imitation learning. Since the optimization ob-
ject is decreasing the delay of the schedule table, there
is no need to artificially provide labels for the new gen-
erated schedule table samples. After a new sample is
obtained, its delay can be used as the label directly [28].

offset

delays

These schedule tables are generated by our al-
gorithm with exploration. In other words, they are pro-
duced by neighbor search, so the output of policy is also
close to the adjacent samples. In this situation, the sim-
ilar action (s) sequences have different but simil-
ar labels (). Thus, neighborhood search provides
the generalization ability, and we can also find whether
there exists a better schedule table at the same time.
The experiments in Section IV also illustrate this philo-
sophy, so we can figure out better schedule table
around our sample schedule tables.

Since we adopt the logarithm function to calculate
the action value, the contribution of different label to
the loss function is also different. Without such logar-
ithm operation the loss value will be too large to cause
the oscillation of our model or the explosion of the
gradient. On the other side, as the absolute value differ-
ence of action is too large, the error of the smaller value
of the action might hardly have contribute to the loss
function, which makes it difficult to train.

loss = (out− action)
2 × action (8)

out

action

In formula (8), is the output value of the neur-
al network, and is the logarithmic value of the
offset with the maximal reward until now. Noise is
defined as a normal or uniform distribution. In imita-
tion learning process, we use formula (8) to train the
neural network. The implement of imitation learning
with exploration is shown in Algorithm 5.

Algorithm 5　Imitation learning with Dagger
Schedule1:　Input: empty scheduling table .

2:　Output: trained neural network.
3:　Initialize:

T Tmax4:　Count , max count ;
p5:　Policy network to choose offsets ;
D6:　Sample set of scheduling tables ;

7:　Noise like normal and uniform distributions;
T < Tmax8:　while

p9:　　Run Algorithm1 with with noise;
Dnew10:　 Gain new sample set ;

D = D ∪Dnew11:　 Aggregate ;
D12:　 Train p from sampled data in using formula (8);

T = T + 113:　 .

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1027

We run imitation learning in sample set with the
largest reward for the schedule tables by exploring
within a neighborhood interval. The selection of the
neighborhood obeys a manually designed distribution
that the closer neighbor holds a larger probability and
the farther neighbor holds a lower probability. Finally,
remaining a small probability to perform a completely
random search can ensure our algorithm jump out of
the current neighbor to have chance to find a more
feasible solution in a big scope. Under such conditions,
our algorithm can find out the optimal schedule table if
the iterations times are adequate.

During training process, we retain some deviation
while fitting in each epoch. Considering all the samples
are generated by the interaction between the algorithm
and the environment, there must exist bias. We can ex-
ploit the deviation to expand the exploration interval.
Complete fitting will lead to premature converge, and
results in insufficient exploration. It is more likely to ac-
cumulate bias to cause worse results. When there are
some deviation between the current result and the fit-
ting target, we can roughly guarantee that the current
solution is in the neighborhood of the target. In this
way, we can search in a larger range, and the overall
direction is always tending to the final target while ex-
ploring and optimizing.

If the training is adequate, theoretically DPG and
imitation learning with random exploration have the
same convergence accuracy. SPG can converge to mul-
tiple preferred paths and maintain the maximum prob-
ability of the optimal path, but it might easily fall into
sub-optimal search region. Therefore, we use imitation
learning here to accelerate convergence rather than
DPG. In order to enhance the exploration efficiency,
formula (5) is used in exploration process, and the out-
put of the neural network can obey distributions such
as uniform or normal methods. The range of the distri-
bution will be adjusted according to the times of visit.

 5. Imitation learning with asynchronous
methods

As in Ape-X DQN, we decompose the standard
deep reinforcement learning algorithm into two parts
which run concurrently without high-level synchroniza-
tion [29]. The first part consists of stepping through an
environment, evaluating a policy implemented as a deep
neural network, and storing the scheduling table. The
second part consists of sampling batches of data to
train and update the policy parameters. The corres-
ponding pseudo code is shown in Algorithm 6.

Algorithm 6　 Asynchronous imitation learning with
Dagger
1:　Input: empty scheduling table Schedule.
2:　Output: trained neural network.

3:　Initialize:
Tmax4:　Max count: ;

n5:　Number of actors: ;
n offsets pw6:　 policy networks to choose their called Actor: ;

pm7:　One policy network for training called Learner: ;
D8:　Sample set of scheduling tables ;

noise9:　Normal and uniform distributions: ;
queue10: One multiprocessing queue: ;

i n11: Asynchronous apply for in
T Tmax12:　　for in range()

pw noise13:　　　Actor runs Algorithm 1() with ;
14:　　　Push schedule tables in queue;
15:　　end for
16:　end for

actors17:　while not all complete
queue18:　　Asynchronously get new samples from ;

Dnew19:　　Put new samples in sample set ;
D = D ∪Dnew20:　　Aggregate ;

21:　　Select data from D;
pm D22:　　Learner trains according to data in using for-

mula (8);
pw pm23:　　Set parameters as parameters;

24:　end while

.

The updated network parameters are periodically
communicated to the actors from the learner. Different
from Ape-X DQN, all the selected training samples are
complete schedule tables. As for the schedule problem,
we do not know whether the action has long-term re-
ward unless the schedule process is complete. So we use
a whole sample to guarantee its rewards unbiased, and
use rewards to sort the schedule tables and choose the
best sample to train our model. Since actors and learner
are parallel, large number of samples for training has no
obvious effect to the speed of searching for the sched-
ule tables. Furthermore, if more actors perform the
searching process, the probability to find better results
would be larger

 V. Experiment
In this part, an industrial networking case is used

to illuminate our proposed generating method for
scheduling table. The topology is shown in Fig.2 with
the similar access switches, backbone switches and con-
nected physical links in A380. The link rates for all
physical links are the same as 100 Mbit/s and the frame
lengths are set within the scope of [64 bytes, 1518
bytes]. According to link rates and frame lengths, the
basic transmission time of each frame is from 6.72 μs to
123.04 μs, here we use the range from 6 μs to 125 μs for
simplicity. Followed by ARINC 664 P7 protocol in
which the bandwidth allocation gap for virtual link is
set from [1 ms, 128 ms], the periods of messages are as-
signed from the same time interval set. Without loss of
generality, the periods and lengths of messages are all

1028 Chinese Journal of Electronics 2023

considered as integers and the periods obey the power
rule of 2 from 1 ms to 128 ms. On the whole, 1050 TT
messages and 1932 RC messages are tested in most of
our experiments, and the transmission route is spe-
cified by load-balancing routing strategy mixed up with
shortest path strategy. For the convenience of calcula-

tion and optimization, we use the scheduling wait time
of TT messages after subtracting the technical delay
from the end-to-end delay as the goal of TT messages,
and RC delay is the mean of the upper bound of end-
to-end latency computed by network calculus in pree-
mption integration policy for all virtual links [30].

SW0

SW5 SW4 SW3

SW1

SW7SW6

SW2

ES1

ES0

ES11

ES2 ES3 ES4

ES5

ES15

ES6

ES7

ES14ES13

ES8ES9

ES12

ES10
Fig. 2. Networking topology for the four experiments.

We design four experiments to show the availabil-
ity of our algorithm with different number of messages,
different length of messages. Also we will show the gen-
eralization of our model.

Hyper-parameters
In order to implement the imitation learning, we

use 3-layer fully-connected network which is shown in
Fig.3 and each layer contains a hidden layer with size
as 256, also ELU is used as the activation function both
for the actor and the learner in each layer. The train-
ing process adopts the Adam optimizer with learning
rate as 0.0005 [30]–[33].

... ...

...

...

...

Input

Preprocess

s1

s2

FC+RELU FC+RELU

w1

w2

v1

v2

n1

n2

w255

w256

v255

v256

n255

n256

Normalization

and

Softmax

constrain

Output

Hidden

unit

Input or

output unit
State unit FC layer Specific operator

Fig. 3. Neutral network with 3 fully-connected layers.

The final optimization target is defined as follow:

reward = α ∗ TTwaitT ime + (1− α) ∗RCdelay (9)

In all experiments, we use genetic algorithm (GA)
as the benchmark algorithm to show the optimization
process. The population batch size is set as 160 in each

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1029

epoch, and asynchronous method is applied for GA in a
multi-core process system with 16 cores. For our imita-
tion learning method, we only use asynchronous meth-
od in Experiment 4. For the others three experiments,
we only use one CPU core to be the actor and one GPU
core for the learner.

TTwaitT ime

RCdealy

α

α

In formula (9), is the scheduling wait
time of TT messages in the outputting ports, is
the end-to-end delay of RC messages, and is a bal-
ance parameter between two optimization goals. We
can get different optimized policy network by adjusting
the parameter .

 1. Experiment 1
Experiment 1 is used to show the basic perform-

ance of our RLTS method. Typically, the calculation
speed of genetic algorithm is related to the size of the
population. Under the acceptable level of optimization,
we try to make the calculate speed fast.

The results are shown in Tables 1–6, which give
the detailed results according to different network con-
figurations. From the results, we can see that our RLTS
algorithm performs better than the other algorithms,
such as SMT, GA and random search (RS), under dif-
ferent scales of the networking scenarios with different
numbers of messages. Both the delays of TT and RC
messages can be optimized according to our RLTS al-
gorithm. The performance of the RS algorithm is taken
as the benchmark to calculate the optimization degree
of our method, which is shown in formula (10). Thus,
the detailed optimization degrees compared with RS ac-
cording to the results shown in Tables 1–6 can be calcu-
lated, which are 12.5%, 21.2%, 12.0%, 20.1%, 23.1%
and 27.4% for the RC messages respectively.

rate% = (resultRS−resultRLTS)/resultRS×100%
(10)

Table 1. 1050 TT messages and 1932 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT Delay
(μs)

RC delay
(ms)

SMT 128.8 1355.3 1436.60 55.24
RS 2.17 7.82 89.12 46.21
GA 171.4 5.80 87.9 45.03

RLST 4.58 4.76 86.06 40.42

Table 2. 1050 TT messages and 1404 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 128.8 1248.6 1329.90 35.09
RS 2.17 12.20 93.50 30.29
GA 171.4 5.85 87.15 28.08

RLST 4.58 5.61 86.91 23.87

If SMT algorithm is taken as the benchmark, we
can find our RLTS algorithm has more advantages for

both small delays and fast responding speed. Generally
speaking, the TT message delays of our RLTS al-
gorithm are nearly one percent of the delays of SMT al-
gorithm, and the RC message delays of our RLTS al-
gorithm are also close to the half of the delays of SMT
algorithm. When considering the computation speed,
the speed of our RLTS algorithm is dozens of times
faster than SMT. For most networking scenarios, our
RLTS algorithm can obtain an optimal solution within
10 seconds.

Besides, we can find out that our RLTS algorithm
can obtain more advantage for the scheduling optimiza-
tion with a large radio of the number of TT messages to
the number of RC messages. It is intuitive that, if there
are more TT messages, there would be more slots
among TT scheduling windows, which finally results in
more complexity for solving the scheduling problem, so
that our method will have more choices to figure out
the optimal scheduling solution.

 2. Experiment 2
In this experiment, we will test our RLTS al-

gorithm in a scenario including 1050 TT messages and
1932 RC messages but with different message lengths

Table 3. 570 TT messages and 1932 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 28.9 1278.6 1381.43 46.23
RS 1.44 6.54 109.37 44.24
GA 31.5 4.92 107.78 41.89

RLST 2.52 2.97 105.80 38.93

Table 4. 570 TT messages and 966 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 28.9 1278.6 1381.43 20.23
RS 1.44 6.09 108.92 18.87
GA 37.3 5.59 108.41 18.29

RLST 2.52 5.27 108.10 15.07

Table 5. 1050 TT messages and 966 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 128.8 1355.3 1436.60 25.52
RS 2.17 7.81 89.11 20.03
GA 160.2 5.80 87.90 19.60

RLST 4.58 4.65 85.95 15.42

Table 6. 1581 TT messages and 966 RC messages

Method Speed
(s/epoch)

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

SMT 492.7 1201.1 1267.43 33.59
RS 6.63 13.68 80.01 21.66
GA 298.6 7.63 73.96 20.57

RLST 12.64 7.03 73.36 15.73

1030 Chinese Journal of Electronics 2023

by randomly multiplying a coefficient between 0.5 and 2.
The results are shown in Figs.4–6 including the delays
of TT messages and RC messages and the standard de-

viation of slots among TT scheduling windows respect-
ively. The horizontal arises in Figs.4–6 are the epoch
numbers.

46

45

44

D
el

ay
 (m

s)
58
56
54
52D

el
ay

 (m
s)

60

55

50

D
el

ay
 (m

s)58

56

54D
el

ay
 (m

s)

58
56
54
52

D
el

ay
 (m

s) 58

56

54D
el

ay
 (m

s)Situation 5 Situation 6

Situation 3

Situation 1

Situation 4

Situation 2

0 100 200 300 400 500
Epochs

0 100 200 300 400 500
Epochs

0 100 200 300 400 500
Epochs

0 100 200 300 400 500
Epochs

0 100 200 300 400 500
Epochs

0 100 200 300 400 500
Epochs

Fig. 4. RC message delay of RLTS algorithm in different situations.

10

8

6

4W
ai

t t
im

e
(μ

s)

40

30

20

10

W
ai

t t
im

e
(μ

s)

80

60

40

20W
ai

t t
im

e
(μ

s) 100

75

50

25W
ai

t t
im

e
(μ

s)

60

40

20W
ai

t t
im

e
(μ

s)

25

20

15

10

W
ai

t t
im

e
(μ

s)Situation 1

0 100 200 300 400 500

Epochs
0 100 200 300 400 500

Epochs

0 100 200 300 400 500

Epochs
0 100 200 300 400 500

Epochs

0 100 200 300 400 500

Epochs
0 100 200 300 400 500

Epochs

Situation 2

Situation 3 Situation 4

Situation 5 Situation 6

Fig. 5. TT message wait time of RLTS algorithm in different situations.

We can find that our RLTS algorithm still can op-
timize the delays for both TT and RC messages at the
same time with different message lengths. The test is
performed six times, namely situation 1 to situation 6.
In each test situation, the lengths of messages are ran-
domly assigned. In Fig.6, it shows that, the standard
deviation for slots between the adjacent TT scheduling
windows is not stably decreasing with the process for
optimization, but converges to different levels which not

always gather into a same degree. For better comparis-
on, we also draw the baseline of RS algorithm in Fig.6.
We can find the convergence trend of our RLTS al-
gorithm is not always consistent with the RS algorithm,
which just means it is not always better for scheduling
problem with a more uniform distribution of scheduling
slots.

 3. Experiment 3
Next, we design Experiment 3 to illustrate the gen-

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1031

eralization ability of our trained model. A series of mes-
sage length changes are applied to check whether our
RLTS algorithm could quickly adjust its inherent mech-
anism to suit the new network situation. In Experi-
ment 3, 1050 TT messages and 1932 RC messages are
used to train our neural network with RLTS, and the
same number of messages with different frame length
are used to test the generalization. Different from Ex-
periment 2, this experiment uses a trained model for
fine-tune, while Experiment 2 is trained from the begin-
ning, so the number of epochs in Experiment 3 is much
less than Experiment 2.

The basic message setting in Experiment 3 is simil-
ar to the case with 1050 TT messages and 1932 RC
messages in Experiment 1. Then we change the mes-
sage lengths randomly according to the corresponding
message IDs which also are selected randomly. In this
way, we can guarantee the randomness of the generat-
ing for messages. Totally, over half the messages are
randomly selected out to change their message lengths
by multiplying a random coefficient to the original
lengths. We will investigate the generalization ability of
our RLTS algorithm. Results after 50 epoch times are
shown in the follow context, which mainly illustrate the
fitting curves for message delays and epoch times.

Operation 1 (small change)　Operation 1 shows
the influence of a relatively small change for message
length. The range of the multiplying coefficient is lim-
ited within the scope of 0.9 to 1.2.

Operation 2 (medium change)　Operation 2 ad-
opts a larger change for message length than Operation
1, where the range of the multiplying coefficient is
between 0.8 and 1.4.

Operation 3 (large change)　 Operation 3 will
have the maximal change for message length, where the
range of the multiplying coefficient is between 0.8 and
1.5.

The results are shown in Fig.7, Fig.8 and Fig.9.
For better comparison, we also take RS algorithm res-
ults as the baseline in Figs.7–9. It can be seen that our
RLTS model can attain much better results than the
RS algorithm in a short period of time, which just
shows our model can quickly adapt itself to the similar
configuration states. Considering our model is a self-
exploration method, it is not strange that our RLTS
model can achieve better and fast solution than RS al-
gorithm based on pre-train. According to the change
degree of message length from Operation 1 to Opera-
tion 3, the randomness also raises with an increasing
scope for the coefficient. When the message length dis-
tribution is completely different, the goal of our al-
gorithm is changed to search for a feasible solution first,
and then optimize it. In all the test cases in Experi-

S
lo

t
s
td

.

160

140

120

S
lo

t
s
td

.

130

120

110

S
lo

t
s
td

.

130

120

110

S
lo

t
s
td

.

130

120

110

S
lo

t
s
td

.

130

120

110

S
lo

t
s
td

.

130

120

110

100

RS baseline

0 100 200 300 400 500

Epochs

0 100 200 300 400 500

Epochs

0 100 200 300 400 500

Epochs

0 100 200 300 400 500

Epochs

0 100 200 300 400 500

Epochs

0 100 200 300 400 500

Epochs

Situation 1

RS baseline

Situation 2

RS baseline

Situation 3

RS baseline

Situation 4

RS baseline

Situation 5

RS baseline

Situation 6

Fig. 6. Standard deviation of slots in different situations.

R
C

 d
e
la

y
 (

m
s
)

0 10 20 30 40 50

Epochs

60

58

56

54

52

50

48

46

44

RS baseline 1

RLTS fine tune 1

RS baseline 2

RLTS fine tune 2

RS baseline 3

RLTS fine tune 3

Fig. 7. Delay of RC messages.

1032 Chinese Journal of Electronics 2023

ments 3, results show that our RLTS model has a good
generalization ability and can handle with the similar
configuration fast. Besides, the results also show that
the optimal scheduling solution does not always prefer
to the uniform distribution for the TT scheduling win-
dows.

60

50

40

30

20

10

TT
 w

ai
t t

im
e

(μ
s)

0 10 20 30 40 50

Epochs

RS baseline 1
RLTS fine tune 1
RS baseline 2
RLTS fine tune 2
RS baseline 3
RLTS fine tune 3

Fig. 8. Wait Time of TT messages.

125

120

115

110

105

S
lo

t
s
td

.

0 10 20 30 40 50

Epochs

RS baseline 1

RLTS fine tune 1

RS baseline 2

RLTS fine tune 2

RS baseline 3

RLTS fine tune 3

Fig. 9. Standard deviation of slots among TT scheduling

windows.

 4. Experiment 4
Finally, we apply the asynchronous method for fast

and better exploration. Since our test platform is a
multi-core process system with up to 16 CPU cores, we
choose several cores to explore and collect schedule
tables to speed up the training process. Results are
shown in Table 7.

Table 7. Multi-process with 1050 TT and 1932 RC

Number of
processors

TT wait time
(μs)

TT delay
(μs)

RC delay
(ms)

1(RS) 7.82 89.12 42.21
1 6.63 86.06 40.42
2 298.6 85.70 39.92
4 12.64 85.78 39.74
8 492.7 85.09 39.63
16 492.7 85.64 39.61

Also the detailed information is shown in Figs.10–12.
We can find the asynchronous method based on multi-

core processing greatly accelerates the convergence
speed for RC message delays. If more processors take
part in the exploration and calculation process, our
RLTS algorithm can achieve a much fast convergence
speed, also attain better scheduling solution with smal-
ler RC delays, though the optimization degree is not so
obvious. For TT message delay, different number of
participating processors has a much smaller effect to
the convergence speed than for RC message. Since we
mainly focus on RC delay, there is no obvious influence
for the convergence speed or the final TT wait time if
more processors participate in the whole process as
shown in Fig.11.

47

46

45

44

43

42

41

40

D
e
la

y
 (

m
s
)

0 100 200 300 400 500

Epochs

RS

1 processes

2 processes

4 processes

8 processes

16 processes

Fig. 10. Delay of RC messages for multi-cores test.

50

40

30

20

10

W
ai

t t
im

e
(μ

s)

0 100 200 300 400 500

Epochs

RS

1 processes
2 processes
4 processes
8 processes
16 processes

Fig. 11. TT messages wait time for multi-cores test.

220

200

180

160

140

120

100

S
lo

t
s
td

.

0 100 200 300 400 500

Epochs

RS

1 processes

2 processes

4 processes

8 processes

16 processes

Fig. 12. Standard deviation of slots among TT scheduling

windows for multi-cores test.

At last, Fig.12 shows the standard deviation of
slots among TT scheduling windows. We can find the
standard deviation of RS algorithm is much smaller
than our RLTS algorithm which just means the di-
versity of scheduling gaps generated by RS are more
uniform than the results by our RLTS.

So the scheduling gaps by RS seem as more expec-

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1033

ted as the porosity scheduling strategy does. It can be
explained since RS algorithm adopts the completely
random method to make the exploration and this kind
of exploration method potentially would result in nor-
mal distribution for the solutions. As shown in Experi-
ment 1, our RLTS algorithm has more advantage in
delays both for TT and RC messages than RS al-
gorithm, and it can reduce the worst-case delay of RC
averagely by 20% and the wait time of TT averagely by
44%. So a more uniform TT scheduling window distri-
bution does not always mean a better scheduling result
both for TT and RC messages as our RLTS algorithm
could achieve better scheduling results but with larger
standard deviation of slots than RS algorithm.

 VI. Analysis and Discussion
When considering the application of TTEthernet in

real time networking environment especially in avionics
context, we propose to use reinforcement learning to
solve and optimize schedule problem, which can achieve
excellent performance beyond SMT and other heuristic
methods like GA.

Due to the periodicity of the TT message, its own
scheduling gap is relatively uniform. In particular, when
all TT messages have the same frame length and the
same period, a scheduling table with a uniform distribu-
tion for the slots among TT scheduling windows could
be the optimal solution with the lowest delays for both
TT and RC messages. However, in the practical net-
working scenario, the distribution of TT messages could
not be so even, so it is really hard to assure that the
end-to-end delays for all messages are always small. In
fact, due to the diversity of TT and RC messages, it is
almost impossible to encounter an example with a uni-
form distribution for the slots to solve the scheduling
problem [34]. In fact, it needs to adjust the offsets of
messages repeatedly to ensure that the scheduling win-
dows could be available and the delays are relatively
small. And this kind of work is quite complicated and
depressing.

To solve the problem, we adopt the reinforcement
learning method, namely the RLTS algorithm, to min-
imize the delays both for TT and RC messages and can
achieve an optimal scheduling table. By using neural
network, it can obtain satisfactory scheduling results in
a short time with a good generalization ability. Besides,
our RLTS algorithm with tree search strategy can ob-
tain a much fast calculation speed. When combining the
asynchronous method to our model, it can further accel-
erate several times which just lays a foundation for the
further optimization.

According to the experimental results based on an
industrial networking case with more than 1000 TT

messages and 1900 RC messages, the traditional view
that the uniform porosity for TT scheduling windows
could contribute to better performance for RC mes-
sages is not always the most suitable strategy for gener-
al situations. The best scheduling pattern of TTEther-
net might lay in the middle between the centralized
scheduling pattern and porosity scheduling pattern.

References
 IEEE Std 802.3-2022: 1968, IEEE Standard for Ethernet,
Available at: https://ieeexplore.ieee.org/document/9844436.

[1]

 Y. H. Lee, Safety and Certification Approaches for Ether-
net Based Aviation Databuses, Technical Report,
DOT/FAA/AR-05/52, Federal Aviation Administration,
2005.

[2]

 AEE Committee, Arinc specification 664 p7, ARINC 664
aircraft data network, Avionics full duplex switched Ether-
net (AFDX) network, Technical report, Annapolis, MD,
USA: Aeronautical Radio Inc., 2005.

[3]

 R. I. Davis, A. Burns, R. J. Bril, et al., “Controller area
network (CAN) schedulability analysis: refuted, revisited
and revised,” Real-Time Systems, vol.35, no.3, pp.239–272,
2005.

[4]

 SAE. SAE AS6802 Time-triggered Ethernet, Warrendale:
SAE International, 2011.

[5]

 J. D. Decotignie, “Ethernet-based real-time and industrial
communications,” Proceedings of the IEEE, vol.93, no.6,
pp.1102–1117, 2005.

[6]

 W. Steiner, “An evaluation of SMT-based schedule synthes-
is for time-triggered multi-hop networks,” in 2010 31st
IEEE Real-Time Systems Symposium, San Diego, CA,
USA, pp.375–384, 2010.

[7]

 V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level
control through deep reinforcement learning,” Nature,
vol.518, no.7540, pp.529–533, 2015.

[8]

 S. Daftry, J. A. Bagnell, and M. Hebert, “Learning transfer-
able policies for monocular reactive MAV control,” in 15th
International Symposium on Experimental Robotics, Naga-
saki, Japan, pp.3–11, 2016.

[9]

 D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering
the game of go without human knowledge,” Nature, vol.550,
no.7676, pp.354–359, 2017.

[10]

 A. Ecoffet, J. Huizinga, J. Lehman, et al., Go-explore: a
new approach for hard-exploration problems, arXiv pre-
print arXiv: 1901.10995, 2019, doi: 10.48550/arXiv.1901.
10995.

[11]

 H. J. Dai, E. B. Khalil, Y. Y. Zhang, et al., “Learning com-
binatorial optimization algorithms over graphs,” in Proceed-
ings of the 31st International Conference on Neural In-
formation Processing Systems, Long Beach CA, USA, 2017.

[12]

 O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer
networks,” in Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems, Montreal,
Canada, pp.2692–2700, 2015.

[13]

 V. Mnih, A. P. Badia, M. Mirza, et al., “Asynchronous
methods for deep reinforcement learning,” in Proceedings of
the 33rd International Conference on International Confer-
ence on Machine Learning, New York, NY, USA,
pp.1928–1937, 2016.

[14]

 R. Dobrin and G. Fohler, “Implementing off-line message
scheduling on controller area network (CAN),” in ETFA
2001. 8th International Conference on Emerging Technolo-
gies and Factory Automation, Antibes-Juan les Pins,
France, pp.241–245, 2001.

[15]

 R. I. Davis and A. Burns, “Robust priority assignment for
messages on controller area network (CAN),” Real-Time
Systems, vol.41, no.2, pp.152–180, 2009.

[16]

 R. Marau, L. Almeida, P. Pedreiras, et al., “Utilization-
based schedulability analysis for switched Ethernet aiming
dynamic QoS management,” in 2010 IEEE 15th Confer-
ence on Emerging Technologies & Factory Automation,

[17]

1034 Chinese Journal of Electronics 2023

Bilbao, Spain, pp.1–10, 2010.
 E. Suethanuwong, “Scheduling time-triggered traffic in
TTEthernet systems,” in Proceedings of 2012 IEEE 17th
International Conference on Emerging Technologies &
Factory Automation, Krakow, Poland, pp.1–4, 2012.

[18]

 F. Glover, “Future paths for integer programming and links
to artificial intelligence,” Computers & Operations Re-
search, vol.13, no.5, pp.533–549, 1986.

[19]

 Y. J. Zhang, F. He, G. S. Lu, et al., “An imporosity mes-
sage scheduling based on modified genetic algorithm for
time-triggered Ethernet,” Science China Information Sci-
ences, vol.61, article no.019102, 2018.

[20]

 D. Tămaş-Selicean, P. Pop, and W. Steiner, “Design optim-
ization of TTEthernet-based distributed real-time systems,”
Real-Time Systems, vol.51, no.1, pp.1–35, 2015.

[21]

 R. E. Korf, “Depth-first iterative-deepening: An optimal ad-
missible tree search,” Artificial Intelligence, vol.27, no.1,
pp.97–109, 1985.

[22]

 R. S. Sutton, D. A. McAllester, S. P. Singh, et al., “Policy
gradient methods for reinforcement learning with function
approximation,” in Proceedings of the 12th International
Conference on Neural Information Processing Systems,
Denver, CO, USA, pp.1057–1063, 1999.

[23]

 H. R. Li, F. He, Z. Zheng, et al., “Time-triggered commu-
nication scheduling method based on reinforcement
learning,” Journal of Beijing University of Aeronautics and
Astronautics, vol.45, no.9, pp.1894–1901, 2019. (in Chinese)

[24]

 D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the
game of Go with deep neural networks and tree search,”
Nature, vol.529, no.7587, pp.484–489, 2016.

[25]

 L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo
planning,” in 17th European Conference on Machine
Learning, Berlin, Germany, pp.282–293, 2006.

[26]

 D. Silver, G. Lever, N. M. O. Heess, et al., “Deterministic
policy gradient algorithms,” in Proceedings of the 31st In-
ternational Conference on International Conference on Ma-
chine Learning, Beijing, China, pp.I-387–I-395, 2014.

[27]

 P. Abbeel and A. Y. Ng, “Apprenticeship learning via in-
verse reinforcement learning,” in Proceedings of the
Twenty-First International Conference on Machine Learn-
ing, Banff, Canada, pp.1–8, 2004.

[28]

 D. Horgan, J. Quan, D. Budden, et al., “Distributed priorit-
ized experience replay,” in 6th International Conference on
Learning Representations, Vancouver, Canada, 2018.

[29]

 L. X. Zhao, P. Pop, Q. Li, et al., “Timing analysis of rate-
constrained traffic in TTEthernet using network calculus,”
Real-Time Systems, vol.53, no.2, pp.254–287, 2017.

[30]

 X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” in Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics,
Fort Lauderdale, FL, USA, pp.315–323, 2011.

[31]

 D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learn-
ing Representations, San Diego, CA, USA, 2015.

[32]

 D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and ac-
curate deep network learning by exponential linear units
(ELUs),” in 4th International Conference on Learning Rep-
resentations, San Juan, Puerto Rico, 2016.

[33]

 Y. J. Zhang, F. He, G. S. Lu, et al., “Scheduling rate-con-
strained flows with dynamic programming priority in time-
triggered ethernet,” Chinese Journal of Electronics, vol.26,
no.4, pp.849–855, 2017.

[34]

HE Feng received the Ph.D. de-
gree in communication and information
systems from the School of Electronic In-
formation Engineering, Beihang Univer-
sity, China, in 2008. He is an Associate
Professor with the School of Electronic
Information Engineering, Beihang Univer-
sity, China. In this area, he has pub-
lished over 76 peer-reviewed papers and 2

books. He has presided more than ten major projects in total,
such as National Natural Science Foundation of China, National 863
Program and Civil Aircraft Research. His research interests in-
clude digital communication technology, communication network
theory and technology, avionics integration, software defined net-
work, embedded system, and real-time network.

XIONG Li was born in Nan-
chang, China. He received the B.S. de-
gree in electronics and information engin-
eering, Beihang University in 2020. He is
currently pursuing the M.E. degree in
communication and information system
at the School of Electronic Information
Engineering, Beihang University, China.

ZHOU Xuan (corresponding au-
thor) received the Ph.D. degree in com-
munication and information systems from
Beihang University in 2021. She is cur-
rently a Postdoc at the School of Elec-
tronic Information Engineering, Beihang
University. The main research direction
is real-time communication system,
scheduling design and performance evalu-

ation. She has published more than ten papers in related fields.
(Email: lomoo@buaa.edu.cn)

LI Haoruo was born in Cheng-
du, China. He received the B.S. degree in
electronics and information engineering,
Beihang University in 2018. Then, he re-
ceived the M.S. degree in communica-
tion and information system at the
School of Electronic Information Engin-
eering, Beihang University, China, in 2020.

XIONG Huagang received the
Ph.D. degree in communication and in-
formation system from the School of
Electronic Information Engineering, Bei-
hang University, China, in 1998. He is
currently a Full Professor with Beihang
University, China. He has published over
305 peer-reviewed SCI/EI papers and 3
books. He has presided more than twenty

major projects in total, such as National Natural Science Founda-
tion of China, National 863 Program and Civil Aircraft Research.
His research is focused on communication network theory and
technology, avionics information integration, airborne network,
and standards. He is the chief of BUAA-TTTech Time-Triggered
Technology Joint Laboratory (TTTJL) at Beihang University. He
is also the head of the Avionics and Bus Communications Re-
search Team (ABC) at School of Electronic Information Engineer-
ing, Beihang University. Furthermore, he is a Member of China
Aviation Electronics Standardization Committee, the director of
Beijing Electronic Circuit Research Association, a Member of
Avionics and Air Traffic Control Branch of China Society of
Aeronautics and Astronautics, and an Expert of Civil Aircraft
Scientific Research Group.
(Email: hgxiong@buaa.edu.cn)

Scheduling Pattern of Time Triggered Ethernet Based on Reinforcement Learning 1035

