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   Abstract — In  this  paper,  we  derive  and  propose  a
track-oriented  marginal  Poisson  multi-Bernoulli  mixture
(TO-MPMBM)  filter  to  address  the  problem  that  the
standard random finite set filters cannot build continuous
trajectories for multiple extended targets. First, the Pois-
son point process model and the multi-Bernoulli  mixture
(MBM) model  are used to establish the set  of  birth tra-
jectories and the set of  existing trajectories,  respectively.
Second,  the  proposed  filter  recursively  propagates  the
marginal  association  distributions  and the  Poisson multi-
Bernoulli  mixture  (PMBM) density  over  the  set  of  alive
trajectories.  Finally,  after  pruning  and  merging  process,
the  trajectories  with  existence  probability  greater  than
the given threshold are extracted as the estimated target
trajectories. A comparison of the proposed filter with the
existing trajectory  filters  in  two  classical  scenarios  con-
firms the validity and reliability of  the TO-MPMBM fil-
ter.

   Key words — Extended target tracking, Random fi-

nite  set, Poisson  multi-Bernoulli  mixture, Poisson  point

process, Marginal distribution, Target trajectory.

 I. Introduction
Multi-target  tracking  (MTT)  refers  to  the  process

of  inferring  trajectories  of  an  unknown/time-varying
number of targets based on the noisy measurement set
[1]–[3]. According to the resolution of the sensors and the
distances between targets  and sensors,  the  MTT prob-
lems can be divided into point MTT and extended tar-
get tracking (ETT) [3]. A point target usually assumes that
one target generates at most one measurement, while the
extended target assumes that a target potentially gives
rise  to  more  than  one  measurement  per  time  step  [3].

Compared  with  the  point  target  which  only  provides
the  kinematic  state  information,  the  extended  target
can provide  the  kinematic  state  and  extent  state  in-
formation, making it more useful in robotics, large ships
and car  tracking.  At  present,  the  widespread  applica-
tions of  modern  high-resolution  radars  make  ETT  re-
search increasingly become a current research hotspot.

The inhomogeneous Poisson point process (PPP) is
a common  extended  target  measurement  model.  It  as-
sumes each extended target generates a Poisson distrib-
uted random number of measurements at each time step,
and the measurements  are  spatially  distributed around
the target [4], [5]. Random finite sets (RFSs) [6] have wide-
ly  been  discussed  in  the  multiple  ETT.  It  provides  a
theoretical foundation for ETT filters. Based on the PPP
model and RFSs theory, the probability hypothesis dens-
ity (PHD) filter [7], the cardinalised PHD (CPHD) fil-
ter [8], the generalized labelled multi-Bernoulli (GLMB)
filter  [9],  the  labelled  multi-Bernoulli  (LMB)  filter  [10]
and  the  Poisson  multi-Bernoulli  mixture  (PMBM) fil-
ter [11] for ETT have been developed.

In RFS-based MTT filters, two conjugate priors [12]
are  widely  used.  One  is  the  PMBM  conjugate  prior,
which is based on the unlabelled RFSs; the other is the
GLMB conjugate  prior,  which  is  based  on  the  labelled
RFSs.  In  accordance  with  these  two  conjugate  priors,
several computationally tractable filters with the closed-
form  solutions  [9]–[15] have  been  proposed.  The  avail-
able studies have shown that the well-structured PMBM
filter  with  fewer  global  hypotheses  outperforms  the
GLMB filter in terms of computational time and filter-
ing accuracy [11], [16]. However, the PMBM filter can-
not provide target trajectory between time steps [17]. 
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To address this problem, two approaches have been
developed  to  build  target  trajectories.  One  is  to  add
unique labels to the extended target states and link all
the targets with the same label in time series, e.g., the
LMB filter, the GLMB filter, and the Delta GLMB ( -
GLMB) filter. The other is to estimate the set of target
trajectories instead of  the set of  target states [17]–[20].
And in this  trajectory framework,  the filter  recursively
propagates  the  posterior  trajectory  distribution,  e.g.,
the tracker/trajectory PMBM (TPMBM) filter [20].

δ

In this paper, based on the TPMBM filter and the
marginal  distribution  PMBM  (MD-PMBM)  filter  [21],
we  present  the  track-oriented  marginal  PMBM  (TO-
MPMBM)  filter  to  address  the  ETT  problem.  Unlike
the  TPMBM  filter,  the  proposed  filter  recursively
propagates  the  the  weight,  existence  probability,  and
probability density function (pdf) of each track. The ex-
perimental results show that the proposed filter outper-
forms  the  TPMBM  filter  and  the -GLMB  filter  in
terms of the tracking performance and running time.

The rest  of  the paper is  organized as follows:  Sec-
tion II introduces the Bayesian model assumptions, the
trajectory  RFSs  representation,  and  the  trajectory  set
model;  Section  III  details  the  recursive  process,  shape
estimation  method,  complexity  analysis  and  algorithm
summary  of  the  TO-MPMBM  filter;  Section  IV  tests
the  proposed  tracking  algorithm;  Section  V  gives  the
conclusion.

 II. Background
In this  section,  we introduce several  Bayes  model-

ing assumptions,  give a brief  introduction to the RFSs
of the trajectories, and outline the transition and meas-
urement model used in Section III.

 1. Bayes modeling assumptions

Xk

Zk k

The target states and sensor measurements are rep-
resented as  two  RFSs  in  the  traditional  targets  prob-
lem  formulation  [22].  Let  denote  target  state  set,
and  denote measurement set at time . Several mod-
eling assumptions are required to establish the multi-ex-
tended target transition model and measurement model.
They are as follows:

xk ∈ Xk

Ps(xk) 1− Ps(xk)

Assumption 1　Given a single target state ,
the  target  either  survives  with  a  survival  probability

 or disappears with a probability .

Db
k(xk)

Assumption  2　Each birth  target  evolves  inde-
pendently of the existing targets,  and the birth intens-
ity is given by .

f(xk|xk−1)

Assumption  3　Each  single  target  state  evolves
according to the Markov transition function .

Zk

k

Assumption 4　The measurements set  at time
 consists of two disjoint sets: the clutter measurement

set and the target-generated measurement set, and both

sets are independent of each other.

λFA

c(zk)

κ(zk ) = λFAc(zk)

Assumption 5　The clutter can be modeled as a
Poisson RFS with Poisson rate  and spatial Poisson
distribution ,  and  the  clutter  Poisson  intensity  is

.

Pd(xk)

k

γk
ϕ(zk|xk)

Assumption  6　 If  the  target  is  detected  with
probability ,  the  measurements  generated  by
each  target  at  time  step  are  a  Poisson  distribution
with  Poisson  rate  and  the  spatial  distribution

.
wk

wk

Assumption 7　Given a measurement set , the
conditional  extended  target  measurement  likelihood
when  is a nonempty set (detected) and an empty set
[11] can be expressed as follows:
 

lwk
(xk) = Pd(xk)e−γ(xk)

∏
zk∈wk

γ(xk)ϕ(zk|xk) (1)

 

l∅(xk) = 1− Pd(xk)(1− e−γ(xk))

= 1− Pd(xk) + Pd(xk)e−γ(xk) (2)

1− e−γ(xk)

Pd(xk)(1− e−γ(xk))

where  denotes the  extended target  generat-
ing at least one measurement and  is
the effective  detection  probability  of  an  extended  tar-
get.

 2. RFSs of trajectory
X

X = (β, ε, xβ:ε)

β ε

k ε = k

xβ , xβ+1, . . . , xε−1, xε l = ε− β + 1

Tk k

Let  denote the single-target state space. Similar
to  the  trajectory  state  model  [18],  the  trajectory  state
model  used  in  this  paper  is  a  tuple ,  in
which  is the time step at which a trajectory starts, 
is the time step at which the trajectory ends. If the cur-
rent time is ,  means the trajectory is still alive.
For  each  specific  trajectory,  its  sequence  of  states  is

,  its  length  is .  The
trajectory state space [19]  at time  is given by
 

Tk = ⊎
(β,ε)∈Ik

{β} × {ε} × X ε−β+1
(3)

⊎ Ik={(β, ε) :
0 ≤ β ≤ ε ≤ k} X ε−β+1

ε ≥ β Xk

k

where  denotes the union of disjoint sets 
 and  denotes the Cartesian prod-

ucts. If , the trajectory state density of  at time
step  can be written as
 

πk|k′(Xk) = πk|k′(xβ:ε|β, ε)Pk|k′(β, ε), k′ ≤ k (4)

πk|k′(Xk) = 0Otherwise, .  The  integration  of  a  single
trajectory density can be written as
  ˆ

π(X)dX

=
∑
β,ε

[ˆ
. . .

ˆ
π(xβ , . . . , xε|β, ε)dxβ · · · dxε

]
P (β, ε)

(5)

Xk ∈ F(Tk)Let  denote the set of trajectories up to
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k F(Tk) Tk
g(Xk)

time  where  is the set of all subsets of , and
 denotes a real-valued function on a set of traject-

ories. The set integral is given by
  ˆ

g(Xk)dXk

= g(∅)

+
∞∑

n=1

1

n!

ˆ
. . .

ˆ
g({X1

k , . . . , X
n
k })dX1

k . . . dX
n
k (6)

Xk={X1
k , . . . , X

n
k } g(Xk) ´

g(Xk)dXk

= 1 g(Xk) ≥ 0

where ,  denotes  the  multi-tra-
jectory density of an RFS of trajectories, and 

 for .

f(X)
In  analogy  to  the  definition  for  the  set  of  targets

density function,  denotes the set of the trajectory
density  function.  The  probability  generating  functional
(p.g.fl.)  [6] can simplify the analysis of RFSs that pos-
sess  independence relationships  and is  a  useful  tool  for
understanding RFS  densities.  The  p.g.fl.  for  a  traject-
ory RFS density can be defined as
 

G[h] =

ˆ
hXf(X)dX (7)

hX =
∏

X∈Xh(X)where  is set power.
The RFS-based MTT approach consists of two ma-

jor parts: the Poisson RFS and the Bernoulli RFS. We
use the  Bernoulli  RFS to  model  the  existing  alive  tra-
jectory density, and the Poisson RFS to model the birth
and  missed  detection  trajectory  density.  The  density
and  the  corresponding  p.g.fl.  of  a  trajectory  Bernoulli
are given by
 

fber(X) =

 1− r, X = ∅
rf(X), X = {X}
0, otherwise

(8)

 

Gber[h] = 1− r + r⟨f ;h⟩ (9)

f(X)

r

⟨f ;h⟩ f(·)
h(·) ⟨f ;h⟩ =

´
f(X)h(X)dX ⟨f ;h− 1⟩ =´

f(X)h(X)dX −
´
f(X)dX

f(X) r

where  is  the  probability  density  function  of  a
single existence-conditional trajectory,  is the Bernoulli
existence probability,  is the inner product of 
and ,  i.e.,  and 

. The  appearance  and  dis-
appearance  of  a  target  trajectory  can  be  measured  by

 and .  Similar  to  definitions  of  the  target  multi-
Bernoulli  RFS  and  the  target  multi-Bernoulli  mixture
(MBM)  RFS,  the  trajectory  multi-Bernoulli  RFS  and
the trajectory  MBM  RFS  can  be  described  as:  A  tra-
jectory  multi-Bernoulli  denotes  the  disjoint  union  of  a
multiple trajectory Bernoulli RFS; the trajectory MBM
RFS means  an RFS whose  density  is  a  mixture  of  the
trajectory multi-Bernoulli densities.

XiWhen  is an independent trajectory Bernoulli pro-

X =
∪N

i=1Xi

cess,  the RFS density and p.g.fl.  of  a trajectory multi-
Bernoulli process resulting from the union 
can be written as
 

GX[h] =

N∏
i=1

(1− ri + ri⟨fi;h⟩) (10)

 

fber(X)

=

[
N∏
i=1

(1−ri)

]
·

∑
1≤i1≤i2≤···≤in≤N

n∏
j=1

[
rij

1−rij
fij (Xi)

]

=
∑

α∈Pn
N

N∏
i=1

fi(Xα(i))

(11)
 

Pn
N =

{
α : {1, 2, . . . , N} → {0, 1, . . . , n}|

{1, . . . , n} ⊂ α({1, 2, . . . , N}),

and if α(i) > 0, i ̸= j, then α(i) ̸= α(j)
}

(12)
 

Xα(i) =

{ ∅, α(i) = 0

{Xα(i)}, α(i) > 0
(13)

fi(Xα(i))

ri fi(X) Pn
N

where  is  the  density  of  a  trajectory Bernoulli
of the form (8) with parameters  and ,  is the
set of all functions.

The density and the corresponding p.g.fl.  of a tra-
jectory Poisson RFS are given by
 

fp(X) = e−
´
D(X′)dX′ ∏

X∈X

D(X) (14)

 

Gp[h] = exp{⟨D;h− 1⟩} ∝ exp{⟨D;h⟩} (15)

D(X)

Tk
where  is  the  trajectory  Poisson  RFS  intensity
that is defined on the the trajectory state space .

 3. Models for sets of trajectories
1) Transition models for the set of trajectories
In the multi-target transition model, the birth tar-

get can be modeled as a Poisson RFS with birth intens-
ity
 

DB
k (X) = DB

k,x(xβ:ε|β, ε)δk,εδk,β (16a)
 

DB
k,x(xk:k|k, k) = Db

k(xk) (16b)

δi,jwhere  denotes Kronecker delta function.

0 ≤ β ≤ ε = k

In this paper, we focus our attention on the set of
alive  trajectories  [17] that  are  still  alive  in  the surveil-
lance area at the current time step, i.e., .

The survival probability of each track is defined as
 

Ps,k(X) = Ps(xε)δk,ε (17)

The Bernoulli  RFS transition  density  [20]  without
birth is given by 
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f alik|k−1(X|X
′)=


1, X′ = ∅, X = ∅
1−Ps,k−1(X

′), X′ = {X ′},X = ∅
Ps,k−1(X

′)f ali(X|X ′),
X′ = {X ′},X = {X}

0, otherwise
(18a)

 

f ali(X|X ′) = f alix (xβ:ε|β, ε,X ′)δε′+1,εδβ′,β (18b)
 

f alix (xβ:ε|β, ε,X ′) = fx(xε|x′
ε′)δx′

β′:ε′
(xβ:ε−1) (18c)

δ(·)where  denotes  the  Dirac  delta  function.  In  this
model, a target may die or be alive. If a target dies, its
trajectory will be removed; otherwise, its trajectory will
be  extended  to  the  next  time  step.  The  p.g.fl.  of  the
multiple  extended  targets  transition  density  can  be
written as
 

Gali
k|k−1[h|X

′]

=

ˆ
hXf alik|k−1(X|X

′)dX

= exp{⟨DB
k ;h−1⟩}(1−Ps,k−1+Ps,k−1⟨f ali;h⟩)X

′
(19)

For  the  above  transition  model,  the  union  of  the
birth  process  (PPP  RFS)  and  the  set  of  trajectories
(Bernoulli RFS) generated from the previous set of tra-
jectories constitutes the predicted set of trajectories.

2) Single trajectory measurement model
The  extended  target  measurement  model  can  be

defined as a Bernoulli measurement density with
 

lwk
(X) = lwk

(xε)δk,ε (20a)
 

φk(wk|X) =


1, X = ∅, wk = ∅
l∅(X), X = {X},wk = ∅
lwk

(X), X = {X},wk ̸= ∅
0, otherwise

(20b)

ε = k

Equation (20b) implies that an extended target can
be detected iff . The measurement p.g.fl. is
 

Gk[g|Xk] = exp{⟨λFAk ; g−1⟩}(1−Pd + Pd⟨ϕ; g⟩)Xk (21)

 III. TO-MPMBM Filter
Based  on  the  TPMBM  filter  [20]  and  the  MD-

PMBM filter [21], the multiple trajectories (MBM com-
ponent)  can  be  decomposed  into  the  distributions  of
multiple single trajectories, and the distribution of each
single  trajectory  can  be  calculated  from  the  marginal
distribution by  equation  (22f),  hence  the  proposed  fil-
ter  can  be  referred  to  as  the  TO-MPMBM filter.  The
trajectory marginal PMBM density and its correspond-
ing p.g.fl. can be defined as 

fk|k′(Xk) =
∑

Xu
k⊎X

d
k=Xk

fpppk|k′(X
u
k)f

mbm
k|k′ (Xd

k ) (22a)

 

Gk|k′ [h] = Gppp
k|k′ [h]G

mbm
k|k′ [h] (22b)

 

fpppk|k′(X
u
k) = exp

{
−
ˆ

Du
k|k′(X ′)dX ′

} ∏
X∈Xu

k

Du
k|k′(X)

(22c)
 

Gppp
k|k′ [h] = exp

{
⟨Du

k|k′ ;h− 1⟩
}

(22d)
 

fmbmk|k′ (Xd
k) =

∑
α∈P

|Xd
k
|

N

∏
i∈Tk|k′

fd,i
k|k′(Xα(i)) (22e)

 

fd,i
k|k′(Xα(i)) =

∑
ai∈Hi

k|k′

ωd,i,ai

k|k′ fd,i,ai

k|k′ (Xα(i)) (22f)

 

Gmbm
k|k′ [h] =

∑
a∈Ak|k′

∏
i∈Tk|k′

ωd,aGd,i,ai

k|k′ [h] (22g)

Xk

Xu
k

Du
k|k′(·) Xd

k

rd,i,a
i

k|k′ fd,i,ai

k|k′ (·)
P

|Xd
k |

N Xα(i) Ak|k′

hi
k|k′

k′ = k − 1

fk|k′(Xk) = fk|k−1(Xk) = fk|k−1(Xk|Zk−1) Zk−1

k − 1

k′ = k

fk|k′(Xk) = fk|k(Xk) = fk|k(Xk|Zk)

Tk|k′

nk|k′ a ∈ Ak|k′

a

i ∈ Tk|k′ ai

where the set of trajectories  is the disjoint union of
a Poisson RFS  (which represents the unknown tar-
get trajectories that are hypothesized to exist but have
not detected yet, e.g.,  the new birth target trajectories
and  the  undetected  target  trajectories  at  the  current
time) with intensity  and an MBM RFS  with
Bernoulli parameters  and , cf. equation (8);

 and  are defined in (12) and (13);  is the
set  of  global  data  association  history  hypotheses,  each
global hypothesis contains a single trajectory hypothes-
is from each track. For each track, there are  single
trajectory  hypotheses.  In  equation  (22a),  if ,
then  (  is
the set of measurements up to and including time )
denotes  the  predicted  distribution;  else  if ,  then

 denotes the updated
distribution. In the MBM RFS of (22g),  is a track
table with  tracks;  is a global data associ-
ation hypothesis  for each global  hypothesis  and each
track ,  indicates which local track hypothes-
is is used in the global hypothesis.

The global data association hypothesis weights are
correlated with single trajectory hypothesis weights
 

ωd,a ∝
∏

i∈Tk|k′
ωd,i,ai

k|k′ (23)

ωd,i,ai

k|k′

i ωd,a∑
a∈Ak|k′ ω

d,a = 1

where  denotes the  trajectory  marginal  associ-
ation distribution for track . The normalized  satis-
fies .

mk Zk

k j ∈ Mk = {1, 2, . . . ,mk}
Mk

(t, j) t ≤ k j ∈ Mt Mk(i, a
i) ⊆

Let  be the number of measurements  at time
 and  be the index of each cor-

responding measurement.  represents  the  tuples  set
 that  satisfies  and ;  and 
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Mk

i ai

Mk(i, a
i)

k

Ak|k′

 denotes the  history  of  measurements  that  are  re-
lated  to  track  in  hypothesis .  Since  each  extended
target generates at least one measurement at each time
step,  contains more than one element at time
step , as shown in Example 1. Each global hypothesis
needs  to  explain  the  origin  of  each  measurement,  so

 can be defined as
 

Ak|k′ =
{
(a1, a2, . . . , ant|t′ )|ai ∈ Hi

k|k′ ,∪
i∈Tk|k′

Mk′(i, ai) = Mk′ ,

Mk′(i, ai) ∩Mk′(j, aj) = ∅, ∀i ̸= j
}

(24)

M5(i, a
i) = {(2, 1), (2, 2), (2, 3),

(4, 5), (5, 9)} ai i

Example  1　 If 
,  then  hypothesis  indicates  that  the -th

hypothesized target is first detected at time 2 by meas-
urement 1, 2, and 3, missed detection occurs at time 3,
it is detected at time 4 by measurement 5, and it is de-
tected at time 5 by measurement 9.

r

In  the  TO-MPMBM filter,  the  Bernoulli  existence
probability  denotes  the  probability  of  a  trajectory
that is still alive. The prediction and update for the set
of alive trajectories are as follows:

 1. Prediction

k−1

Theorem  1　 Given  the  set  of  alive  trajectories
distribution at time step  (see (22)), the transition
model (18) and the birth model (16), the predicted dis-
tribution is a trajectory marginal PMBM with
 

Du
k|k−1(Xk|Xk−1)

= DB
k (Xk)

+

ˆ
Du

k−1|k−1(Xk−1)Ps,k−1(Xk−1)f
ali(Xk|Xk−1)dXk−1

(25a)
 

nk|k−1 = nk−1|k−1 (25b)
 

hi
k|k−1 = hi

k−1|k−1 (25c)
 

ωd,i,ai

k|k−1 = ωd,i,ai

k−1|k−1,∀a
i (25d)

 

rd,i,a
i

k|k−1

= rd,i,a
i

k−1|k−1

ˆ
fd,i,ai

k−1|k−1(Xk−1)Ps,k−1(Xk−1)dXk−1, ∀ai

(25e)
 

fd,i,ai

k|k−1 (Xk)

=

´
fd,i,ai

k−1|k−1(Xk−1)Ps,k−1(Xk−1)f
ali(Xk|Xk−1)dXk−1´

fd,i,ai

k−1|k−1(Xk−1)Ps,k−1(Xk−1)dXk−1
, ∀ai

(25f)

The proof is given in Appendix A.
 2. Update
To find  the  measurements  generated  by  each  ex-

P(Zk) Zk

Zk wp
k

p p ∈ {1, . . . , |P(Zk)| − 1}
P(Zk) |wp

k|
{j1, j2, . . . , j|wp

k|}
wp

k

tended target,  the  measurement  set  needs  to  be  parti-
tioned.  In  this  paper,  the  power  set  of  de-
notes  all  partitions  of  the  measurement set ,  de-
notes the -th ( ) nonempty par-
tition in  and  is the number of measurement
set cells  in this  partition,  i.e.,  denotes
the set of measurement indices of .

κ(zk )

Theorem 2　Given the predicted trajectory distri-
bution (18), the single trajectory measurement model (20)
and  (21),  and  the  clutter  with  the  Poisson  intensity

 (Assumption 5), the updated distribution is a tra-
jectory marginal PMBM with
 

Du
k|k(Xk) = l∅(Xk)D

u
k|k−1(Xk|Xk−1) (26)

 

nk|k−1 = nk−1|k−1 + |P(Zk)| − 1 (27)
 

Mk = Mk−1 ∪ {(k, j1), (k, j2), . . . , (k, j|wp
k|) (28)

i ∈ {1, . . . , nk|k−1}

k − 1

wp
k k

hi
k|k = |P(Zk)|hi

k|k−1

For the tracks ( ) continuing from
the  previous  time  step,  the  hypotheses  at  time  step k
originate  from  three  cases:  from  time  step ,  from
the  missed  detection,  or  from  an  update  with  a
nonempty  measurement  set .  At  time  step ,  there
are  hypotheses.

i ∈ {1, . . . , nk|k−1}
ãi ∈ {1, . . . , hi

k|k−1} ãi

wp
k

Case 1　Update existing tracks ( ,
,  is the previous hypothesis) with

the nonempty measurement set :
 

ai = ãi + hi
k|k−1p (29a)

 

Mk(i, a
i) =Mk−1(i, ã

i)

+ {(k, j1), (k, j2), . . . , (k, j|wp
k|)} (29b)

 

ωd,i,ai

k|k = ωd,i,ai

k|k−1r
d,i,ãi

k|k−1

ˆ
fd,i,ãi

k|k−1(Xk)lwp
k
(Xk)dXk (29c)

 

rd,i,a
i

k|k = 1 (29d)
 

fd,i,ai

k|k (Xk) =
lwp

k
(Xk)f

d,i,ãi

k|k−1(Xk)´
fd,i,ãi

k|k−1(Xk)lwp
k
(Xk)dXk

(29e)

i ∈ {1, . . . , nk|k−1} ai ∈
{1, . . . , hi

k|k−1}
Case  2　 Update  tracks  ( , 

) using the missed detection hypotheses:
 

Mk(i, a
i) = Mk−1(i, a

i) (30a)
 

ωd,i,ai

k|k =ωd,i,ai

k|k−1(1− rd,i,a
i

k|k−1

+ rd,i,a
i

k|k−1

ˆ
l∅(Xk)f

d,i,ai

k|k−1(Xk)dXk) (30b)

 

rd,i,a
i

k|k =
rd,i,a

i

k|k−1

´
l∅(Xk)f

d,i,ai

k|k−1(Xk)dXk

1− rd,i,a
i

k|k−1 + rd,i,a
i

k|k−1

´
l∅(Xk)f

d,i,ai

k|k−1(Xk)dXk

(30c)
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fd,i,ai

k|k (Xk) =
l∅(Xk)f

d,i,ai

k|k−1(Xk)´
l∅(Xk)f

d,i,ai

k|k−1(Xk)dXk

(30d)

i ∈ {nk|k−1 + p}
wp

k

Case 3　Update new tracks( ) with
the nonempty measurement set :
 

hi
k|k = 2 (31a)

 

Mk(i, 1) = ∅, ωd,i,1
k|k = 1, rd,i,1k|k = 0 (31b)

 

Mk(i, 2) = {(k, j1), (k, j2), . . . , (k, j|wp
k|)} (31c)

 

ωd,i,2
k|k =


κ(wp

k )+

ˆ
Du

k|k−1(Xk)lwp
k
(Xk)dXk, |wp

k| = 1ˆ
Du

k|k−1(Xk)lwp
k
(Xk)dXk, |wp

k| > 1

(31d)
 

rd,i,2k|k =


´
Du

k|k−1 (Xk) lwp
k
(Xk)dXk

κ(wp
k )+
´
Du

k|k−1(Xk)lwp
k
(Xk)dXk

, |wp
k| = 1

1, |wp
k| > 1

(31e)
 

fd,i,2
k|k (Xk) =

Du
k|k−1(Xk)lwp

k
(Xk)´

Du
k|k−1(Xk)lwp

k
(Xk)dXk

(31f)

With the help of Appendixes B and C, the proof of
Theorem 2 is given in Appendix D.

The above single trajectory and the intensity of the
Poisson RFS can be  given as  a  mixture  density  of  the
form
 

π(X) =
∑

j
ωjπi(xβ:ε|β, ε)δej ,εδbj ,β (32)

ωj

bj ej bj ≤ ej

πi(·) ∀j

where  each  mixture  density  consists  of  a  weight ,  a
birth time , a recent time , , and a state se-
quence density  for .

 3. Shape estimation method
For the general ETT algorithms, in addition to the

above  prediction  and  update  steps,  the  shape  of  each
extended  target  needs  to  be  estimated.  Scholars  have
proposed many  shape  estimation  methods.  The  repres-
entative methods include the random matrix (RM) [7],
[23]–[25] (or Gamma Gaussian inverse Wishart (GGIW)
[8]–[11], [20]), random hypersurface (RH) [26], [27], and
Gaussian process (GP) [28], etc. Since the GGIW meth-
od  is  particularly  easy  to  integrate  into  common  ETT
algorithms, such as the CPHD filter [8] and the PMBM
filter  [11],  we  employ  the  GGIW  method  to  estimate
the  shape  of  extended  targets.  In  this  paper,  we  focus
on  deriving  the  prediction  and  update  of  the  TO-
MPMBM  filter,  hence  the  shape  estimation  is  only
briefly discussed (detailed in [11]).

 4. Discussion
The  above  analysis  shows  that  the  TO-MPMBM

filter recursively propagates the prediction and the up-
date of  the  set  of  alive  trajectories.  Each track  corres-
ponds to a hypothesis tree, and each hypothesis is a se-
quence  of  different  data  associations  for  the  track,  as
shown in Fig.1 where the numbers of measurements at
time  steps  1  and  2  are  1  and  2,  respectively,  and  the
line with arrow constitutes a valid global hypothesis. As
time goes on, the number of data associations [29], glob-
al  hypotheses,  and  MBM  components  are  exponential
increasing, which leads to a huge computational burden.

To reduce  the  complexity  of  data  associations,  re-
duction methods, such as gating, clustering [10], [11], [30],
random sampling [29], [31], [32], pruning, merging, and
recycling, are widely used in the point MTT algorithms
and the ETT algorithms. In the proposed TO-MPMBM
filter, we  use  the  random sampling  method  to  maxim-
ize the data association likelihood. Besides,  for the up-

 

Time 1 (one measurement)

Time 2 (two measurements)

n.e.: non-existence

m: missed detection

(t, j): time t measurement j

Track 1 (new)

Track 2 (new) Track 3 (new) Track 4 (new)

Track 1

n.e.

n.e. n.e. n.e. n.e.m

{(1, 1)}

{(1, 1)}

{(2, 1)} {(2, 1)} {(2, 2)}{(2, 2)} {(2, 1), (2, 2)}

A valid global hypothesis

{(2, 1), (2, 2)}

 
Fig. 1. Tracks and hypotheses of the TO-MPMBM filter.
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dated marginal PMBM density of each track, global hy-
potheses with weight lower than the given threshold are
pruned, and Bernoulli components with existence prob-
ability lower than the given threshold are removed.

j i

j

i i

j

j i

In  the  implementation  of  the  TO-MPMBM  filter,
global hypotheses are represented by a look-up table, in
which, the ( , )-th element corresponds to the index of
the -th global  hypothesis  including  the  single  traject-
ory  hypothesis  in  the -th  track.  If  the -th single  tra-
jectory  hypothesis  does  not  include  in  the -th  global
hypothesis, the ( , )-th element equals zero.

Example  2　 As  shown  in Fig.1,  there  are  four
valid  global  hypotheses  at  time  step  2.  Assuming  the
single  trajectory  hypotheses  in  each  track  are  indexed
from left to right, the corresponding global look-up ta-
ble is
  

1 1 1 0
2 1 0 0
3 0 0 0
4 0 0 0

 (33)

 5. Pseudo code of the TO-MPMBM filter
Based on the GGIW method [11], the pseudo code

for one step prediction and update of the extended tar-
get TO-MPMBM filter is given in Algorithm 1.

Algorithm 1　Pseudo code of one prediction and update for
extended target TO-MPMBM filter

k

Zk

Input: Parameters of the trajectory marginal PMBM posteri-
or, the global hypotheses look-up table at time -1 and the
measurement set .

k

Output: Parameters  of  the  trajectory  marginal  PMBM pos-
terior and the global hypotheses look-up table at time .

Du
k|k−1(·)1: Calculate  the  predicted  PPP intensity  via equa-

tion  (25a)  to  predict  the  existing  PPP  (missed  or  pruned
GGIW components) and the birth PPP;

i = 1, . . . , nk−1|k−12: for  do
ai = 1, . . . , hi

k−1|k−1for  do
ωd,i,ai

k|k−1 rd,i,a
i

k|k−1 fd,i,ai

k|k−1(·)   Predict ,  and  via (25d)–(25f);
end for

  end for
z ∈ Zk3: for  do

　　Calculate  the  gated  measurements  of  undetected  targets
and  detected  targets  by  gating  each  mixture  component
of  Poisson  intensity  and  each  single  trajectory  density
contained in Bernoulli RFS;

  end for
a ∈ Ak|k−14: for  do

P(Zk)4.1: Calculate  the  subset  of  the  data  association  by
partitioning  the  set  of  measurements  within  the  gate  of
existing targets;

4.2: Reduce the  number  of  data  association  subsets  by  nor-
malizing  and  pruning  multi-Bernoulli  with  low  weights,

and prune measurement partitions that correspond to low
weight  global  hypotheses  indices  of  measurements  that
have been associated to pre-existing targets;

i = 1, . . . , nk|k−1　　　for  do
ai = 1, . . . , hi

k|k−1　　　　for  do
wp

k ̸= ∅　　　　　if  then
ωd,i,ai

k|k rd,i,a
i

k|k fd,i,ai

k|k (·)4.3: Update ,  and  via  (29c)–(29e),  i.e.,
create new  Bernoulli  components  by  updating  the  hypo-
theses of the existing trajectories;

　　　　　else
ωd,i,ai

k|k rd,i,a
i

k|k fd,i,ai

k|k (·)4.4: Update ,  and  via  (30b)–(30d),  i.e.,
create new Bernoulli  components by updating the missed
detection hypotheses;

　　　　　end if
　　　　end for
　　　end for

i ∈ {nk|k−1 + p}　　　for  do
ωd,i,ai

k|k rd,i,a
i

k|k fd,i,ai

k|k (·)4.5: Update ,  and  via  (31),  i.e.,  create
new Bernoulli components by updating new tracks;

　　　end for
4.6: Prune  global  hypotheses  with  weight  lower  than  a

threshold and update hypotheses look-up table;
4.7: Prune  Bernoulli  components  whose  existence  probability

is  below  a  threshold  or  do  not  appear  in  the  truncated
global hypotheses and update hypotheses look-up table;

  end for
5: Merge  duplicate  global  hypotheses  and  update  hypotheses

look-up table;
6: Update  the  Poisson  intensity  for  measurements  that  only

fall  inside  the  gate  of  undetected  targets  via  (26)  and  the
clustering method;

7: Prune PPP components with weights smaller than a given
threshold;

8: Estimate the set of alive trajectories;
9: Recycle  Bernoulli  components  pruned  in  step  4  and  add

them to PPP components.

 IV. Simulation
In this section, the proposed TO-MPMBM filter is

compared  with  two  typical  extended  target  trajectory
filters [9], [20] in two scenarios [9]–[11], [33] in terms of
the tracking performance and running time.

γk xk

Ek ξ
(i)
k = {γ(i)

k , x
(i)
k , E

(i)
k }

xk = [pk, vk]
T ∈ R4 pk ∈ R2

vk ∈ R2 Ek ∈ S2++

Each extended  target  state  consists  of  three  vari-
ables, the measurement rate , the kinematic state ,
and  the  extent  state ,  that  is ,
where ,  is  the  position,

 is the velocity and . The motion mod-
el,  the  measurement  model,  and  their  corresponding
parameters can be defined as
 

γk+1 = γk (34)
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xk+1 = f(xk) + wk (35)
 

Ek+1 = M(xk)EkM(xk)
T (36)

 

zk = Hkxk + υk (37)
 

f(xk) =

[
I2 TsI2
0 I2

]
xk, Q = Gσ2

aI2G
T (38)

 

G =

 T 2
s

2
I2

TsI2

 , Hk = [I2 02] (39)

wk

Q f(·) M(·)
Hk

υk
Ek σa

Ts = 1 s

M(·)

where  is the Gaussian process noise with zero mean
and covariance ;  and  are the transition mat-
rix of kinematic state and extent state, respectively; 
is the measurement matrix, and  is the Gaussian ob-
servation noise with zero mean and covariance ;  is
the acceleration standard deviation and . Given
that the kinematic state motion model is a model with
constant velocity, the extent transition function  is
an identity matrix. The measurement model is also lin-
ear Gaussian  in  a  two-dimensional  Cartesian  coordin-
ate system.

δ

The process of obtaining estimates of the set of tra-
jectories (or set of states) from the multi-target density
is  called  trajectory  (or  state)  extraction.  The -GLMB
filter  needs  performing  state  extraction  at  each  time
step and then connects target states with the same la-
bel  to  form  target  state  trajectories,  see  [9].  For  the
TO-MPMBM filter  and  the  TPMBM  filter,  an  estim-
ate  of  the  set  of  trajectories  is  extracted  from  MBM
components with the highest weight and existence prob-
ability larger than 0.5.

c = 10 p = 1

s = 4

To evaluate the tracking performance of  the three
algorithms,  we use the generalized optimal  sub-pattern
assignment  (GOSPA)  metric  [34],  and  the  distance
measurement used in the GOSPA metric is the Gaussi-
an  Wasserstein  Distance  metric  [35].  The  parameters
used  in  GOSPA  metric  are:  the  location  error  cutoff

,  the  ordered ,  and  the  track  switch  cost
.  Besides,  we  divide  the  GOSPA metric  into  four

categories: localization/ extended error (LEE), false de-
tection  error  (FDE),  miss  detection  error  (MDE),  and
track  switch  error  (SE).  The  trajectory  extraction
method  of  the  three  algorithms  used  in  this  paper  is
given in [20].

 1. The high clutter scenario

[±75,±75]T

Pd Ps

λ

γ

In this scenario, there are 100 time steps, 27 highly
time-varying numbers  of  extended  targets  are  ran-
domly generated in four fixed positions ( ), as
shown  in Fig.2. Table  1 shows  the  target  detection
probability ,  the  target  survival  probability ,  the
clutter  Poisson  rate ,  and  the  measurement  Poisson
rate  for  the  three  filters.  This  scenario  aims  to  test

the three algorithms’ tracking performance in case of a
high clutter density and high target numbers.
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Fig. 2. Target trajectories.

 

  
Table 1. The parameters

Pd Ps λ γ

0.90 0.99 60 {7, 8, 9}
 
 

δ

% %
δ

δ

Fig.3 gives  the  average  GOSPA,  the  LEE,  the
MDE, the FDE, and the SE of the three filters over 100
Monte  Carlo  runs,  and Table  2 shows  the  average
tracking errors and the average running times (RTs) of
the  three  filters.  The  comparison  results  are:  1)  In
terms  of  tracking  accuracy,  the  TO-MPMBM  filter  is
slightly  better  than  the  TPMBM  filter,  and  both  the
TO-MPMBM  filter  and  TPMBM  filter  significantly
outperform the -GLMB filter;  2)  In  terms of  RT,  the
TO-MPMBM  filter  is  30.98  and  76.83  lower  than
the TPMBM filter and the -GLMB filter, respectively;
3) The proposed filter unarguably has the best perform-
ance  in  terms  of  average  tracking  errors  and  average
RT. The main reason is that the proposed filter propag-
ates  the  marginal  association distributions  and PMBM
density for  each  track.  It  effectively  reduces  the  inter-
ference  between  trajectories  by  extracting  each  track
and  improves  the  tracking  performance.  Both  the
TPMBM filter and the -GLMB filter are pruning and
merging after  updating  the  joint  probability  distribu-
tion of all trajectories, which lead to an increasing com-
putational burden  by  retaining  a  large  number  of  tra-
jectories with low existence probability.

 2. The low detection probability scenario
In this  scenario,  there  are  40  time  steps,  five  tar-

gets  first  get  close  to  each  other  and  then  split,  as
shown in Fig.4. Table 3 shows the corresponding para-
meters that required for the three filters. This scenario
aims to test the three algorithms’ tracking performance
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of handling coalescence under low detection probability.
Fig.5 gives the comparisons  of  the various  estima-

tion  errors  for  the  three  filters  over  100  Monte  Carlo
runs, Table  4 shows  the  detailed  corresponding  errors
and  RTs.  Based  on Fig.5 and Table  4,  the  TO-
MPMBM  filter  outperforms  the  other  two  filters  in
terms  of  average  errors  and  average  RTs.  At  the  low
detection probability,  a  large  number  of  measurements
not  fall  within  the  gate  of  existing  targets.  The  TO-
MPMBM filter re-clusters these measurements and up-
dates  them.  In  addition,  the  pruned  trajectories  with
low  existence  probability  are  recycled  into  the  PPP
components  and entered into the next  prediction,  thus
avoiding the reduction of trajectories due to missed de-
tection. Therefore, the tracking performance of the TO-
MPMBM filter remains good at low detection probabil-
ity.

Based  on  the  analysis  of  the  two  scenarios  in  the
Sections IV.1 and IV.2, the simulation results indicates
that the proposed filter performs better than the other
filters at low detection probability and high number of
clutter.

 V. Conclusions
In this paper, we propose an efficient GGIW imple-

mentation of the TO-MPMBM filter to address the tra-
jectory tracking problem for multiple extended targets.
Instead of maintaining the joint posterior PMBM dens-
ity of the multiple extended target trajectory in the fil-
tering recursion, the TO-MPMBM filter jointly propag-
ates  the  marginal  PMBM density  for  individual  tracks
and  their  existence  probabilities.  By  using  individual
trajectory distributions to model the uncertainty of in-
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Fig. 3. Several average errors of three algorithms over 100 Monte Carlo runs (in high clutter scenario).

 

   
Table 2. Simulation results of the errors and

running time

Parameters TO-MPMBM TPMBM δ-GLMB

GOSPA (m) 927.2 967.6 1912.0

LEE (m) 793.8 799.9 955.1

MDE 53.0 64.9 328.6

FDE 45.4 97.3 280.7

SE 0.2 0.5 9.8

RT (s) 32.3 46.8 139.4
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Fig. 4. Target trajectories.

 

   
Table 3. The parameters

Pd Ps λ γ

0.70 0.99 10 5
 

1114 Chinese Journal of Electronics 2023



dividual  target  trajectories  and  using  the  existence
probability of  the  trajectory  distribution  to  character-
ize  the  randomness  of  target  appearance,  the  proposed
filter can deal with an unknown/varying number of tar-
gets with  uncertain  data  association,  uncertain  detec-
tion and clutter. The benefits of the proposed filter are
twofold.  On  the  one  hand,  the  overall  computation  is
significantly reduced because the Bernoulli  components
of each track with low existence probability are pruned.
On the other hand, the tracking accuracy can be effect-
ively  improved  by  calculating  the  trajectory  marginal
PMBM density (instead of the trajectory PMBM dens-
ity). A comparison of the proposed filter with the exist-
ing  trajectory  filters  in  two  typical  scenarios  confirms
the effectiveness of the proposed filter. Future work in-
cludes  developing  a  multi-scan  TO-MPMBM  filter  to
solve the multi-scan data association problem.

 Appendix A

Proof of Theorem 1 Substituting the p.g.fl. of the multiple ex-

7

tended targets transition density (19) and the p.g.fl. of the trajectory
marginal  PMBM density  (22b)  into  the  p.g.fl.  for  a  trajectory  RFS
density ( ), we find
 

Gk|k−1[h]

=

ˆ
hXfk|k−1(X)dX

=

ˆ ˆ
hXfalik|k−1(X|X

′)dXfk−1|k−1(X
′)dX′

= exp
{
⟨DB

k ;h− 1⟩
} ˆ (

1− Ps,k−1 + Ps,k−1⟨fali;h⟩
)X′

× fk−1|k−1(X
′)dX′

= exp
{
⟨DB

k ;h− 1⟩
}

×Gk−1|k−1

[
1− Ps,k−1 + Ps,k−1⟨fali;h⟩

]
∝ exp

{
⟨DB

k ;h⟩
}
Gk−1|k−1

[
1− Ps,k−1 + Ps,k−1⟨fali;h⟩

]
= exp

{
⟨DB

k ;h⟩
}
Gppp

k−1|k−1

[
1− Ps,k−1 + Ps,k−1⟨fali;h⟩

]
︸ ︷︷ ︸

∝G
ppp
k|k−1

[h]

×Gmbm
k−1|k−1

[
1− Ps,k−1 + Ps,k−1⟨fali;h⟩

]
︸ ︷︷ ︸

∝Gmbm
k|k−1

[h]

(A-1)

Gk|k−1[h]

Gppp
k|k−1

[h] Gmbm
k|k−1

[h]

where  is the product of  two p.g.fl.s  that are a PPP com-

ponent  and an MBM component . The PPP in-

tensity  is  directly  calculated  using  a  standard  PHD  prediction  step
(see  (22d)).  The MBM prediction  step  is  applied  to  each hypothesis
for each trajectory separately (see (9) and (22g)). 
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Fig. 5. Several average errors of three algorithms over 100 Monte Carlo runs (in low detection probability scenario).

 

   
Table 4. Simulation results of the errors and

running time

Parameters TO-MPMBM TPMBM δ-GLMB

GOSPA (m) 467.7 540.3 611.7

LEE (m) 215.7 265.3 349.3

MDE 122.5 182.6 260.4

FDE 30.8 57.5 109.4

SE 0.4 1.0 4.9

RT (m) 6.8 9.3 21.1
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where .  Thus

 is a PPP and its intensity is given by (25a).
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where
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where  and  in the last equality can be obtained via

(25e)  and  (25f).  According  to  (A-3)  and  (A-4),  we  obtain  that  the
form  is similar to (22g), with , 

, and .

 Appendix B

Any p.g.fl of the following form is an unnormalised Bernoulli dis-

tribution, see [15]:

 

a+ ⟨b;h⟩ = ω(1− r + r⟨f ;h⟩) (B-1)

where

 

ω = a+

ˆ
b(x)dx (B-2)

 

r =

´
b(x)dx

a+
´
b(x)dx

(B-3)

 

f(x) =
b(x)´
b(x)dx

(B-4)

 Appendix C
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,  such  that .  If 
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where

 

Ak ={(ā1, ā2, . . . , ān+|P(Zk)|−1)|āi ∈ {0, 1, . . . , |P(Zk)| − 1},

for i∈{1, . . . , n}, ān+j ∈ {0, j}, for j ∈ {1, . . . , |P(Zk)|−1},∪n+|P(Zk)|−1
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Mk(i, 0) = ∅ Mk(i, j) = {k, j}with  and . Finally

 

Zā
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{
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wp
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(C-3)

j ∈ {1, . . . , |P(Zk)| − 1}and for 

 

F
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{
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fwã,i[g;h], |Wi| > 1
(C-4)

The above proof details in [15].

 Appendix D

Proof of Theorem 2 Substituting the measurement p.g.fl  (21)

and  the  p.g.fl  of  the  trajectory  marginal  PMBM  density  (22b)  into

the p.g.fl for a trajectory RFS density (7), we find
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with
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where  is the product of two p.g.fls which are a PPP compon-

ent  and an MBM component . The PPP intensity is

directly calculated using a standard PHD update step (22d) and ar-

rived at the result in (26). The MBM p.g.fl ( ) consists of two

steps: 1) updating the detected portion of the PPP with PPP-distri-

bution  clutter  ( ), and  2)  updating  the  Bernoulli  compon-

ent ( ).

Using the derivative of a linear function and the chain rule in [6],
we get
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Iterating the derivative of (D-8), we find
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The  Bayes  update  of  an  unnormalised  Poisson  distribution  in
Poisson  clutter  can  be  obtained  via  (D-9). ,  and 

(which are calculated using Appendix B are given in (D-4)–(D-6), re-
spectively.

Using (22b), (22g), and Appendix C, we find
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k|k−1
[h(1− Pd + Pd⟨ϕ; g⟩)]

∣∣∣∣∣∣
g=0

∝
d

dZk

(
exp

{
⟨λFAk ; g⟩+ ⟨Du

k|k−1;hPd⟨ϕ; g⟩⟩
}

×
∑
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k|k−1
G [h(1− Pd + Pd⟨ϕ; g⟩)]

∣∣∣∣∣∣
g=0

=
∑
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where
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formula (D-10) can be rewritten as
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Using (D-10), (9) and Appendix B, we find
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k|k−1
(1− rd,i,ã

i

k|k−1

+ rd,i,ã
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where ,  and  are  given  in  (29c)–(29e)  (detec-

tions  updating  existing  tracks  with  nonempty  measurement  set ,
i.e., , , ),

(30b)–(30d)  (missed  detections  on  existing  tracks,  i.e.,
, ),   (31b)  (new  tracks

without  measurements,  i.e., , )  and

(31d)–(31f) (updating of new tracks, i.e., , ).
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