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   Abstract — The  shuffle  operations  are  the  bottle-
neck when  mapping  the  FFT-like  algorithms  to  the  vec-
tor single instruction multiple data (SIMD) architectures.
We  propose  six  (three  pairs)  innovative  vector  memory-
access shuffle fused instructions, which have been proved
mathematically.  Combined  with  the  proposed  modified
binary-exchange  method,  the  innovative  instructions  can
efficiently address the bottleneck problem for decimation-
in-frequency  or  decimation-in-time  (DIF/DIT)  radix-2/4
FFT-like  algorithms,  reach  a  performance  improvement
by 17.9%–111.2% and reduce the code size by 5.4%–39.8%.
In  addition,  the  proposed  instructions  fit  some  hybrid-
radix FFTs and are suitable for the terms of the initial or
result data  placement  for  general  algorithms.  The  soft-
ware and hardware costs of the proposed instructions are
moderate.

   Key words — Vector  memory-access  shuffle, Fused

instructions, Vector SIMD, FFT-like algorithms.

 I. Introduction
The fast Fourier transform (FFT) [1] is a basic al-

gorithm for  solving  engineering  and scientific  problems
and a universal benchmark in many processor domains
(e.g., embedded  system,  scientific  computing,  and  gen-
eral-purpose  desktop).  Designing  and  executing  FFT
through processors efficiently and quickly is a common
problem for processor designers (at the hardware level)
and  programmers  (at  the  software  level).  Although  a
dedicated FFT hardware accelerator is a standard solu-
tion [2],  this  task is  accomplished by writing programs
in programmable processors more commonly.

Currently,  vector  single  instruction  multiple  data
(SIMD) structures  are  becoming  popular  in  main-
stream processors  for  their  high  power  efficiency  fea-
tures.  We  counted  the  new  processors  released  at  the
HotChips  conference  in  2015  and  2016  and  found  that

nearly  70% of  them adopted vector  SIMD architecture
to improve power efficiency. Thus, this architecture has
become  widely  available  outside  the  boundaries  of
CPUs, DSPs, and GPUs.

FFT algorithm has two parallel mapping forms, the
binary-exchange  (BE)  and  the  2D  transpose  (TR)  [3],
both of them can be mapped in vector SIMD structures.
The TR  is  generally  used  to  transform  large  FFT  al-
gorithms into small FFT algorithms in row and column
directions, suitable for larger-scale FFT algorithms. The
BE is suitable for smaller-scale FFTs (suitable for com-
puting smaller-scale FFTs after the TR transformation)
and is  more  widely  used  and can  be  used  as  the  basis
for the TR. This paper focuses on the BE consequently.
When the BE is used to map the FFT-like algorithm on
the vector  SIMD structure,  the  first  few rounds of  the
decimation-in-time (DIT) method or the last few rounds
of  the  decimation-in-frequency  (DIF)  method  need  to
use  a  shuffle  unit  to  adjust  the  original  or  resultant
data before and after each butterfly operation. The dif-
ferent algorithm radix, the different extraction methods,
and  the  differences  in  fixed/float-point,  single/double-
precision  of  the  data  being  processed  lead  to  the  need
for  shuffle  data  of  FFT algorithm in  the  vector  SIMD
structure being  more  complex,  which  can  quickly  be-
come the bottleneck of the system.

In fact,  the  algorithms  like  Viterbi  decoding,  dis-
crete cosine transform, discrete sine transform, Hartley
transform, etc., have similar memory-access and shuffle
requirements as  FFT  in  SIMD processor  mapping,  ex-
cept  the  specific  butterfly  operation  is  different  from
that of  the  FFT  algorithm.  Since  the  technology  pro-
posed  in  this  paper  mainly  solves  the  problems  of
memory-access  and  shuffle  of  these  algorithms,  which
are  not  related  to  the  specific  butterfly  operation  and
have  general  applicability  to  FFT-like  algorithms,  we
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will  not  intentionally  distinguish  between  FFT  and
FFT-like algorithms in the following description.

In  this  work,  we  proposes  six  (three  pairs)  vector
instructions  with  memory-access  and  shuffle  based  on
mathematical  proofs  innovatively,  fusing  some  func-
tions  of  the  two  components of traditional  SIMD pro-
cessors, shuffle and vector memory-access. We also pro-
poses  a not-in-place storage binary exchange algorithm
(BE_NIP),  halting  the  number  of  data  shuffles  in  the
traditional in-place  storage-based  binary  exchange  al-
gorithm and unifying the shuffle pattern. The combina-
tion of the two techniques can completely hide the com-
munication between processing elements (PEs) of com-
mon types of FFT algorithms (e.g., DIT/DIF, radix-2/4,
partial hybrid radix) on vector SIMD processors. Exper-
imental  results  show  that  the  proposed  technique  can
improve the performance of FFT algorithms by 17.9%–
111.2% and reduce the code size by 5.4%–39.8%. In add-
ition, the proposed technique applies to the problem of
initial or  result  data  placement  for  general-purpose  al-
gorithms and has the advantages of the moderate over-
head in hardware and software.

The rest of this paper is organized as follows. Sec-
tion  II  presents  the  related  research  work.  Section  III
analyzes the mapping process of FFT-like algorithms on
vector SIMD structures. Section IV elaborates the pro-
posed  mapping  method,  vector  memory-access  shuffle
fused  instructions  and  binary  swap  with  not-in-place
storage. Section V evaluate the effectiveness of the pro-
posed technique  through  experiments  and  finally  Sec-
tion VI gives a summary of the whole paper.

 II. Related Work
The fused multiply-add instruction is the most well

known  instruction  fusion  technique.  This  instruction
completes  multiplication  and  addition  operations  with
one  instruction,  fully  exploiting  the  characteristics  of
multiply-add pairs  in algorithms such as matrix multi-
plication, and has become almost standard in DSPs and
widely used in CPUs.

Unaligned access is, in a sense, a fusion of memory-
access instructions and shift instructions. Philips’ TM3270
processor  supports  for  32-bit  data  unaligned  accesses
and  does  not  require  additional  hardware  execution
clocks [4]. However, since there is only one set of access
ports, single unaligned access cross a cache line can res-
ult in at most two cache misses. The TMS320C64x pro-
cessor  family  from TI,  USA, supports  unaligned access
to  32-bit  and  64-bit  data,  but  single  unaligned  access
results  in  one  of  the  dual  access  instruction  slots  not
working [5].  The DSP from ADI, USA, uses additional
data alignment buffer logic to implement unaligned ac-
cess [6] efficiently.

Several  previous  works  have  fused  memory-access
and shuffle instructions functionally to accelerate FFT-
like algorithms. Reference [7] proposed VHALFUP and
VHALFDN  instructions  that  can  reduce  some  of  the
shuffle  operations  in  the  mapping  of  FFT  algorithms,
but only the time-domain radix-2 FFT algorithm is con-
sidered,  and  an  additional  MOV  operation  is  required
to store the intermediate results of the two instructions.
The  VEXC  instruction  proposed  in  [8]  eliminates  the
extra MOV operation in [7]. However, it adds an extra
register write port, and considers only the time-domain
radix-2  FFT algorithm,  thus  has  no  acceleration  effect
on other types of FFT algorithms. Although these two
methods can bring partial efficiency improvement to the
FFT, the improvement is limited because the number of
times  and  types  required  by  the  shuffle  operations  of
the method is still very large.

P 2 P

P

The  gather-scatter  instruction  [9], which  has  ap-
peared  in  processors  in  recent  years,  reads  or  writes
data in  parallel  in  different  address  sequences  by  set-
ting  up several  different  address-generating  units.  This
instruction  is,  in  a  way,  also  a  technique  for  memory-
access  and  shuffle  fusion,  but  it  will  contain  a  large
number  of  buffers  and  crossbar  networks  in  hardware
because  of  the  address  conflict  problem  that  must  be
considered, and the vast hardware overhead makes the
bandwidth it can support is limited, while the scalabil-
ity of the instruction proposed in this paper is better. In
terms of implementation complexity, the hardware over-
head  of  the  gather-scatter  instruction  increases  into
O( ) as the vector width  grows, and in this paper it
increases into O( ). In Vision P6, the latest DSP from
Tensilica, the bandwidth of gather-scatter is only half of
the bandwidth  of  a  typical  vector  memory-access  in-
struction due to hardware complexity [10]. Thus the in-
structions proposed in this paper and the gather-scatter
instructions  can  co-exist  without  any  mutual  inclusion
relationship.

 III. Mapping Analysis of FFT on Vector
SIMD Structure

 1. Vector  SIMD  structure  and  FFT  algo-
rithm

P P

Fig.1 gives  an  abstract  model  of  the  vector  SIMD
architecture.  (  is a positive integer power of 2) pro-
cessing  elements  execute  the  same  instructions  under
the control of a fetch and dispatch unit. Each PE con-
tains a private operation unit (usually several  comput-
ing  components,  such  as  multiplier,  shifter,  arithmetic
unit)  and  a  vector  register  file  (VRF).  Register-level
data exchange between PEs is achieved through shuffle
unit,  mostly  crossbar  structures  [11],  [12].  Vector
memory  (VM) consisted  of M memory  bodies  provides
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high bandwidth supply to VRFs.

N2 N log2 N
log2 N

In 1965,  Cooley  and  Tukey  invented  the  FFT  al-
gorithm [1] based on the mathematical characteristics of
the discrete Fourier transform (DFT), which can reduce
its computational complexity from O( ) to O( ).
For  the  radix-2  FFT  algorithm,  which  requires 
levels  to  complete,  the  FFT  algorithm  can  be  divided
into  DIT  and  DIF,  with  the  same  results  but  slightly
different processing:  the operational  flow graph of  DIT
FFT is  basically  reversed  from  that  of  DIF  FFT,  and
its  butterfly  operation  is  multiplication  followed  by
addition. In contrast, the DIF FFT is addition followed
by multiplication.

5× 5× 3× 2× 2× 2× 2

The basic idea of the radix-n FFT algorithm is to
divide  the N points  sequence  into n  N/n points  sub-
DFTs  by  ordinal  number  and  decompose  them in  this
way each time until the DFT is n point. Theoretically,
a larger number of radixs can further reduce the num-
ber  of  operations,  such  as  the  radix-4  FFT  algorithm
has  reduced  the  number  of  operations  compared  with
the radix-2, and the number of iterations is half of the
radix-2 FFT, which can further speed up the DFT oper-
ation.  In  addition  to  the  radix-2  and  radix-4  FFTs,
which are the most widely used FFT algorithms, there
are mixed-radix FFTs, where the last few levels are 2 or
4, occupying a relatively large proportion. For example,
the 1200-point  FFT  in  3GPP  LTE  protocol, 1200 can
be  decomposed  into ,  that  is,
radix-5, 3, and 2 FFT operations can be performed re-
spectively.  If  the  number  of  points  to  be  processed  is
not  an  integer  power  of  2  or  4,  it  can  be  transformed
into  a  radix-2  or  4  FFT  algorithm  by  using  the  zero-

padding  operation  and  then  perform  the  zero-suppres-
sion operation at the end of the operation.

P

The  input  and  output  data,  intermediate  results,
and butterfly  factors  in  the  FFT  algorithm  are  gener-
ally complex numbers. According to the data represent-
ation of the real (or imaginary) part of the complex num-
ber,  such  as  32-bit  (64-bit)  fixed-point,  single  (double)
precision floating-point,  the  FFT algorithm can be  ab-
breviated such as 32-bit (64-bit) fixed-point FFT, single
(double)  precision  floating-point  FFT.  There  are  two
storage forms for complex data (not only including FFT
algorithm): 1) The real and imaginary parts of the same
element are stored next to each other, as shown in Fig.2
(a); 2) The real parts of all elements are together, and
the imaginary parts are together, as shown in Fig.2(b).
Obviously, the former storage method is more intuitive.
However,  when  the  machine  word  width  of  the  SIMD
processor  and  the  width  of  the  real/imaginary  part  of
the complex data to be processed are the same (such as
for  a  32-bit  processor,  the  real/imaginary  part  of  the
complex data are both 32 bits, for a 64-bit processor the
real/imaginary  part  of  the  complex  data  are  both  64
bits),  for  the  former  storage  method,  when  these  data
are moved to the VRF, the real and imaginary data will
be  in  the  same  register.  However,  the  user  wants  the
real  and  imaginary  data  to  be  in  different  registers
(such as when  = 4, the real part is in VR0, the ima-
ginary part is in VR1) to facilitate the next operation.
This  will  introduce  additional  shuffle  operations  after
the traditional  vector  memory-access  operations,  redu-
cing the program’s execution efficiency.
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Fig. 2. Two ways to store complex data.

 

 2. BE_IP  mapping  method  and  analysis  of
shuffle operation

Next,  this  paper  analyzes  the BE method and the
shuffle operation, using the DIF radix-2 FFT algorithm
as an example. It should be noted that the bit-reversal
operation at  the  end  of  the  operation  is  generally  ac-
complished by a scalar unit or DMA that supports bit-
reversal addressing and is not discussed too much here.

The  execution  of  the  DIF  radix-2  FFT  algorithm
using  the  BE method  in  the  vector  SIMD structure  is
shown as follows [13].

L1) Determine the number of iteration levels  and
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Fig. 1. Vector SIMD structure.
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K N

P
L = log2 N N P

K = log2 P

shuffle  levels  according  to  the  length  of  the  DIF
FFT transform and the number  of PEs in the vector
SIMD, obviously .  is much larger than 
in  general,  so .  Furthermore,  prepare  the
butterfly factor in advance.

2)  Allocate  the  storage  area.  Load  the  data  to  be
computed into the first area of the VM and the butter-
fly factor into the second area.

3) Take a batch of data to be operated and butter-
fly factors according to the computing power of the vec-
tor SIMD processor.

L−K

4) Determine whether the current round belongs to
the  previous  round.  If  not,  it  goes  to  step  5).
Otherwise, it goes to step 7).

5) Perform a shuffle operation with a butterfly op-
eration and go to step 6).

6) Shuffle  the  results,  store  them back  in  the  ori-
ginal storage location and go to step 8).

7) Perform butterfly  operations  and  store  the  res-
ults to the original location.

8) Determine whether the current round is the end
of the operation or not. If yes, go to step 9), otherwise
go to step 3).

L

9) Determine whether the current round is equal to
 or not. If not, increase the current round by one and

go to step 3). Otherwise, end the operation.

K

From the above mapping process,  we can see that
the  BE mapping method uses  an in-place  computation
mechanism, and the method of using the same memory
cell to store the same butterfly operation input and out-
put  data  is  called  in-place  operation  [3],  [13].  In-place
computation  saves  memory  cells  in  a  sense  and  makes
the  FFT algorithm fast  and  straightforward.  However,
this method also results in the need to shuffle the data
before  the  post- -level  butterfly  operation.  Moreover,
after the calculation, the data needs to be shuffled back
and saved to the VM. In this paper, we abbreviate the
BE  mapping  method  using  in-place  operations  as  the
BE_IP mapping method.

TP

tC
S = tC ×N × (log2 N)/TP E =

S/P =
tC×N×log2 N

P×TP
TP =

tC×N×log2 N
P×E

2P

tS

In this paper, referring to the method of describing
the  acceleration  ratio  and  efficiency  of  the  FFT  algo-
rithm  in  reference  [3],  we  assume  that  the  total  time
spent by the DIF radix-2 FFT in vector SIMD using the
BE_IP method is . If a complex multiplication and a
complex addition take time , the acceleration ratio is

,  and  the  efficiency  is 
,  then . Consider-

ing that the shuffle network uses the crossover network
with two  inputs  and  one  output,  it  takes  two  opera-
tions  to  complete  the  shuffle  of  elements  in  each
round of  the  BE method,  and it  needs  four  operations
to  shuffle  the  elements  back again.  Let  the  time spent
for  one  shuffle  operation  be ,  then  the  total  time

N
TS = 4tS × (N/2P )× log2 P

spent for the shuffle operation of the -point FFT us-
ing the BE_IP method is .
To  sum  up,  the  proportion  of  the  shuffle  operation  in
the whole BE_IP mapping method is as follows:
 

α =
TS

TP
=

2tS × E × log2 P
tC × log2 N

(1)

P = 16 tS = 1

tC = 1

E = 0.30 0.35 0.40 α

Considering the typical case, select , ,
and regard the complex multiplication and addition op-
eration as pipeline ultimately, i.e., . For the three
cases of efficiency , , and , the value 
obtained  according  to  formula  (1)  are  shown  in Fig.3,
which shows that 1) The proportion of the shuffle oper-
ation in the whole BE_IP algorithm is more significant,
between 17% and 32%; 2) As the number of FFT points
increases, the  proportion  of  the  shuffle  operation  de-
creases, but the decrease is gradually becoming smaller.
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Fig. 3. Weight  of  the  shuffle  operation in  BE_IP mapping

method.         
 

Excessive shuffle  operations  impact  the  perform-
ance of the FFT algorithm, mainly reflected in three as-
pects:  1)  The  bandwidth  of  the  shuffle  unit  is  limited.
Crossbar  is  the  most  common  implementation  in  the
shuffle  unit  of  SIMD  processors  due  to  its  flexibility.
However, the hardware overhead limit makes the cross-
bar  implementation  mostly  use  one  vector  input  and
one vector output, and the actual effective bandwidth is
low.  2)  There  is  an  overhead  in  setting  up  the  shuffle
mode.  Although  the  shuffle  unit  with  crossbar  can
provide  a  variety  of  shuffle  modes,  it  needs  to  set  up
and call  different shuffle modes when in use, which in-
troduces  additional  overhead.  3)  The  instruction  issue
slot is limited. In a typical vector SIMD processor, the
multiplication  unit,  addition  unit,  and  memory-access
unit  occupy  the  central  part  of  the  instruction  issue
slot,  and  there  is  usually  only  one  shuffle  unit,  which
may share an instruction slot with an addition or multi-
plication  unit.  This  limitation  of  the  instruction  issue
slot  will  reduce  the  execution  efficiency  of  algorithms
such as FFT.
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K

K

It is  essential  to  reduce  the  number  of  shuffle  al-
gorithms and the overhead of shuffle operations to im-
prove the efficiency of the BE_IP algorithm due to the
weight  of  shuffle  operation  in  it.  In  addition,  in  the
BE_IP mapping method of DIF FFT, each level in the
post- -level butterfly operation requires different shuf-
fle patterns,  which makes  the  programmer need to  ex-
pand  the  post- -level  during  programming,  increasing
program code size.

 IV. Main Work
This  section  proposes  the  corresponding  shuffle

function in need for the radix-2 DIF FFT algorithm and
proves its properties. Then gives BE mapping methods
for not-in-place storage and proposes the corresponding
vector  memory-access  fused  instructions.  And proposes
six (three pairs) sets of vector memory-access fused in-
structions  considering  the  cases  of  different  radix
(radix-2/4), different  domains  (DIF/DIT),  and  differ-
ent element widths (element widths greater than, equal
to, and less than the processor machine word widths).

 1. The modulo shuffle function
A B {0, 1, 2, . . . , 2P−1}

f(x) A B

f(x)=

{
2x%(2P−1), 0 ≤ x ≤ 2P−2

2P−1, x = 2P−1
P

P = 8

Definition 1　If  and  are set ,
then the modulo shuffle  is a function from  to 

and ,  is a posit-

ive integer power of 2, and “%” denotes the modulo op-
eration. Fig.4 shows the change in position of the data
according to the modulo shuffle when .
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Fig. 4. The effect of modulo shuffle at P=8.

 

f(x)Property 1　  is a bijective function.
f(x)Proof　1a)  First,  prove  that  is  an injection.

x2 ̸= x1 f(x2) ̸= f(x1)That is, prove that if , then .
x2 = 2P − 1 x1 ̸= 2P − 1

0 ≤ x1 ≤ 2P − 2 f(x2) = 2P − 1 f(x1) = 2x1%
(2P − 1)) f(x2) ̸= f(x1)

i)  When  and ,  that  is
,  then , 

. Obviously ;
x1 = 2P − 1 x2 ̸= 2P − 1ii) When  and , the case is

similar to i);
x2 ̸= x1 0≤x1≤2P−2 0≤x2≤2P−2

f(x2) = f(x1)

2x1%(2P−1) = 2x2%(2P−1) 2(x2−x1)=K×
(2P−1) K 0 ≤ x1 ≤ 2P − 2

0 ≤ x2 ≤ 2P − 2 −2(2P − 2) ≤ 2(x2 − x1) ≤ 2(2P − 2)

K 2(x2 − x1)

K × (2P − 1)

K = ±1 K ±1
K = 0 x2 = x1

f(x)

iii)  When , , ,
use  the  converse  method.  Suppose  that ,
then ,  i.e., 

.  is  an  integer.  Since  and
, .

 can only be −1, 0, or 1. Since  is an even
number,  and  is  an  odd  number  when

,  cannot be  and can only be 0. Moreover,
when ,  obviously ,  which  contradicts  the
premise. So  is an injection.

f(x)

∀y ∈ B ∃x f(x) = y

1b) Second, prove that  is a surjection. That is,
prove that for , there exists  makes .

y = 2P − 1 ∃x =2P − 1
f(x) = y

i) When , it is evident that ,
 is satisfied;

0 ≤ y ≤ 2P − 2 y

∃x = y/2 f(x) = y y

∃x = (2P − 1 + y)/2 f(x) = y

ii) When , it is obvious that when 
is  even,  satisfies ;  when  is  odd,

 satisfies .
∀y ∈ B

∃x f(x) = y f(x)

According to i) and ii) of 1b), i.e., for , there
exists  makes  so that  is a surjection.

f(x)From 1a) and 1b), the function  is both injec-
tion and surjection and thus is a bijection. The proof is
over.

x1 ≤ x2 x1, x2 ∈
{0, 1, 2, . . . , P−1} x1, x2 ∈ {P, P+1, P+2, . . . ,

2P−1} f(x2−x1) =

f(x2)−f(x1)

Property 2　When , then case i) 
;  case  ii) 

, if any one of them is satisfied, then 
.

x1 ≤ x2

x1, x2∈{0, 1, 2, . . . , P−1} 0 ≤ x1≤x2≤P−1

0 ≤ 2x1 ≤ 2P−2, 0 ≤ 2x2 ≤
2P−2, 0≤x2−x1≤P−1 0≤2(x2−x1)≤2P−2

f(x2)=2x2%(2P−1)=2x2

f(x1) = 2x1%(2P−1) = 2x1 f(x2)− f(x1) =

2(x2−x1) f(x2−x1)=(2(x2−x1))%(2P−1)=

2(x2 − x1) f(x2)− f(x1) =f(x2 − x1)

Proof　 2a)  Consider  case  i),  when  and
,  obviously .

It  is  easy  to  obtain  that 
, and . From

Definition  1,  we  know  that ,
and , hence 

. Moreover, 
, so .

2b) The prove of case ii) is similar to that of case i)
and  will  not  be  described  in  detail  here.  The  proof  is
completed.

K = log2 P fK+1(x) = xProperty 3　Let , then .
x = 2P − 1

fK+1(2P − 1) = 2P − 1 fK+1(x) = x

Proof　 3a)  When ,  it  is  evident  that
. , at this point.

0 ≤ x ≤ 2P − 1

0 ≤ f t(x) ≤ 2P − 2 f(x)

f1(x)=21x%(2P−1), f2(x)=(2f(x))%(2P−1)
(2x%(2P−1)+2x%(2P−1))%(2P−1)

f2(x) = (2x+

2x)%(2P − 1) = (22x)%(2P − 1) f t(x) =

3b)  When ,  it  is  easy  to  know
 by  the  bijection  property  of .

Obviously =
.  By  the  linearity

theorem  of  congruence,  we  can  get  that 
.  Suppose  that 
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2t%(2P−1) 2≤ t≤K+1 f t+1(x) = 2f t(x)%(2P−
1) = (2tx%(2P − 1) + 2tx%(2P − 1))%(2P

f t+1(x)=

(2tx+ 2tx)%(2P − 1) = 2t+1x%(2P − 1)

fK+1(x)=

(2K+1x)%(2P−1) 2K+1 =2log2 P+1 = 2P

fK+1(x) = (2Px)%(2P − 1) = ((2P%(2P − 1))∗
(x%(2P − 1)))%(2P − 1) = x%(2P−1) = x

, ,  then 
− 1).  By  the

linear property of congruence, we can get that 
.  In  summary,

it  is  known by  mathematical  induction  that 
. Obviously , fur-

thermore, by the linear property of congruence, we can
get that 

.  The  proof
is over.

f(x)

According to the definition of modulo shuffle func-
tion  and the  three  corresponding  property  theor-
ems, we can get the following conclusions:

2P 2P

1) From Property 1, after modulo shuffling a set of
elements  with  length,  these  elements  just  swap
their positions, and there will not be a situation where
one element appears twice or more after the shuffle and
the other does not appear.

P P/2, P/4, P/8,

. . . , 1 P, P/2, P/4, . . . , 2

P

P/2

P

P/4

P/P log2 P

2) From  Property  2,  if  the  distance  of  two  ele-
ments  in  first  (or  last)  elements  is 

, their distance will become  after
the  modulo  shuffle.  In  vector  SIMD  architecture,  two
elements  with  the  distance  of  will  be  in  one  PE’s
VRF after vector memory-access, and they can do but-
terfly  operations  directly.  Therefore,  through  the  first
modulo shuffle,  two elements with the distance of 
in  the  first  (or  last)  half  elements  can  do  butterfly
operations  directly.  This  distance  for  direct  butterfly
operation becomes  in the second modulo shuffle,…,
and reaches  (i.e.,  1) after  times of modulo
shuffle. The above process is matched with the radix-2
DIF FFT.

2P
log2 P + 1

log2 P
P

3)  From  Property  3,  for  a  totle  of  elements,
after  times  of  modulo  shuffle,  their  location
will  recover to their initial value. In other words, after
the  first  modulo  shuffle,  arbitrary  two  elements
with the distance of 1 in the first (or last)  elements
can do butterfly operations directly, and then after an-
other  modulo  shuffle,  the  sequence  can  be  restored  to
the original position.

 2. BE_NIP mapping method

f(x)

We found that the in-place storage mechanism res-
ults  in  the  excessive  shuffle  operations  included  in  the
BE_IP  method.  This  paper  proposes  the  not-in-place
storage  BE  method  (BE_NIP)  method  in  conjunction
with  the  modulo  shuffle  function  proposed  in  the
previous  subsection.  The proposed method is  shown in
Algorithm 1.

L−K − 11)  The  process  of  the  first  level opera-
tion is identical to the BE_IP algorithm.

K + 1

2)  After  the  butterfly  operation  is  completed  for
the first set of  data at the  level  to last,  modulo
shuffle the data in the VRF0 and VRF1 where the res-

ults  are  stored  and  then  store  the  data  in  the  VRF0
and  VRF1  into  VM.  Process  all  the  data  of  the K+1
level to last according to this method.

K

K

3) At the  level to last, the data is read from VM
and performed  butterfly  operation  directly,  then  mod-
ulo shuffle the data of VRF0 and VRF1 where the res-
ults  are  stored,  and  store  the  data  in  the  VRF0  and
VRF1 into VM. Process all the data of the  levels to
last according to this method.

K − 14) Complete the butterfly operation from the 
level to the last level according to the method in 3).

Algorithm 1　The BE_NIP mapping method

x[N − 1 : 0]Input: data ; butterfly factors.
xOutput: result data .

i = 0 log2 N − log2 P − 21: for  to  do
j = 0 N/2P − 12:     for  to  do

3:   　 vector load to get current butterfly factors;
x[2P ∗ j + 2P − 1 : 2P ∗ j]4:   　 vector load to get ;

P5:     do  pairs of butterfly operations;
x[2P ∗ j + 2P − 1 : 2P ∗ j]6:     vector  load to  put ;

j = 0 N/2P − 17:     end for  to  do
i = 0 log2 N − log2 P − 28: end for  to  do

i = 0 log2 P9: for  to  do
j = 0 N/2P − 110:    for  to  do

11:     vector load to get current butterfly factors;
x[2P ∗ j + 2P − 1 : 2P ∗ j]12:     vector load to get ;

P13:     do  pairs of butterfly operations;
f(x) x[2P ∗ j + 2P − 1 : 2P ∗ j]14:     do  shuffle to  the 

x[2P ∗ j + 2P − 1 : 2P ∗ j]15:     vector load to put ;
j = 0 N/2P − 116:    end for  to  do

i = 0 log2 P17: end for  to  do

f(x)

K

Obviously,  the  BE_NIP algorithm can  reduce  the
overhead of  shuffle  in  two  aspects:  1)  The  shuffle  re-
quired  before  and  after  the  butterfly  operation  in  the
BEA_IP algorithm  is  reduced  to  the  shuffle  only  be-
fore  the  butterfly  operation,  and  no  shuffle  is  required
after the butterfly operation, i.e., the number of mixing
is reduced by half. 2) The mode of shuffle is different in
each  of  the  post-K levels  in  the  BEA_IP  algorithm,
while  the  mode  of  shuffle  in  the  BEA_NIP  is  exactly
the same (all modulo shuffling ). On the one hand,
it  can  reduce  the  overhead  caused  by  switching  the
shuffle modes, and on the other hand, it can make the
code of the FFT algorithm in the post-  level identical
and reduce the code size.

 3. Vector memory-access  shuffle  fused  in-
struction

The BE_NIP mapping method proposed above can
reduce the  number  of  shuffle  requests  in  the  FFT  al-
gorithm to a certain extent and improve the execution
efficiency.  However,  the  shuffle  request  is  still  existing

1082 Chinese Journal of Electronics 2023



in  the  BE_NIP  method.  And  there  is  still  a  certain
amount of overhead in the implementation of the most
potent  shuffle  unit  based  on  fully  associative  network,
which is limited by the hardware overhead and the re-
gister write  port.  In  this  paper,  we  fuse  shuffle  opera-
tions  into  the  vector  memory-access  unit  to  solve  this
problem. On the one hand, it enables the shuffle opera-
tion  to  take  advantage  of  the  high  bandwidth  of  the
datapath among the instruction issue slot of the vector
memory-access unit, VM and VRF. On the other hand,
since vector memory-access instructions supporting dif-
ferent modulo reassembly methods can be selected dir-
ectly, the user will not need to set up the shuffle mode.

f(x)

Definition VSTDWMX (vector store double
word modulo X type) instruction　Decode the ad-
dress  to  access  the  VRF  according  to  the  instruction,
read the double word data from the VRF, and modulo
shuffling the data according to the , and then store
it into the memory according to the target address.

P = 8

Fig.5 illustrates  the  diagram  of  the  effect  of  the
VSTDWMX instruction execution when . It is ob-
vious that the VSTDWMX instruction can directly re-
place line 14 and 15 in the BE_NIP algorithm. That is,
the modulo shuffle operation in the BE_NIP algorithm
can  share  the  instruction  slot  and  high  bandwidth  of
the  vector  memory-access  unit  and  can  be  completely
hidden in the memory-access instruction.
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Fig. 5. The  effect  of  VSTDWMX  instruction  execution
when .   

 

The  above  VSTDWMX  instruction  is  proposed
only when considering the radix-2 DIF FFT and the bit
width  of  the  data  and  the  register  are  the  same.  This
problem becomes  complicated after  considering  various
factors such as radix-2/4, DIF/DIT, the real part of the
complex  element  being  processed  is  32/64-bit,  and  the
processor  is  32/64-bit.  Fortunately,  we  found  that
adding three dedicated instructions to each normal vec-
tor load and store double-word access can satisfy all the
above requirements. As shown in Table 1, VSTDWMX
and VLDDWMX are a  pair  of  instructions,  mainly for
the radix-2 DIF/DIT FFT algorithm. VSTDWMY and
VLDDWMY are  a  pair  of  instructions,  mainly  for  the

radix-4 DIF/DIT FFT algorithm. And VSTDWMZ and
VLDDWMZ are a pair, primarily to solve the problem
that when the width of the FFT element is larger than
the  processor’s  register,  adjusting  the  data  position  at
the beginning  or  before  the  end  of  the  operation.  Spe-
cifically, VSTDWMX and VLDDWMX instructions are
muxed  inside  the  data  shuffled  by  one-way  vector
double-word  access;  And  VSTDWMY,  VLDDWMY,
VSTDWMZ,  and  VLDDWMZ  instructions  are  muxed
between  the  data  shuffled  by  two-way  vector  double-
word.  The third column of Table 1 gives the proposed
shuffle  functions  corresponding  to  the  vector  memory-
access shuffle  instructions,  which  have  similar  proper-
ties to the shuffle functions corresponding to VSTDW-
MX. The proof process is identical, so they are not re-
peated here.

In  addition,  using  the  proposed  VSTDWMX  and
VLDDWMX  instructions  can  complete  the  conversion
between the  two  forms  of  complex  data  storage  illus-
trated  in Fig.2,  which  will  accelerate  the  problem  of
placing the initial or result data of the general-purpose
algorithm.

 V. Analysis and Review
 1. Performance optimization
 1) Experimental setup
The experimental platform of this paper is selected

from  the  subject’s clock-accurate  instruction  set  simu-
lator  FT-Matrix-Sim [12].  Briefly,  FT-Matrix  adopts  a
very long instruction word structure with parallel  scal-
ar and vector processing units. The instructions of scal-
ar and vector units  are dispatched by a common fetch
and  dispatch  unit.  The  vector  unit  contains  three
MACs,  one  ALU/BP,  and  two  Load/Store  instruction
issue slots, and the VPE performs register-level data ex-
change through the  shuffle  unit.  The  specific  paramet-
ers are shown in Table 2.

In order  to  evaluate  various  approaches  to  imple-
ment  the  FFT  algorithm,  we  add  the  VHALFUP and
VHALFDN instructions in FT-Matrix-Sim regarding [7]
and the VEXC from [8]. In addition, the FT-Matrix in-
cludes  the  shuffle  unit  and  the  vector  memory-access
shuffle fused instructions proposed above. For the FFT
algorithm  with  same  parameters,  the  following  five
schemes  are  implemented in  assembly  language.  BASE
indicates that use BE_IP algorithm and the shuffle in-
structions.  VHALFUP/DN  indicates  that  use  BE_IP
algorithm as  well  as  VHALFUP  and  VHALFDN  in-
structions.  VEXC indicates  that  use  BE_IP algorithm
and  VEXC  instructions.  NIP  indicates  that  use  the
BE_NIP  algorithm  and  shuffle  instructions.  And
NIP_VLSSF indicates that use BE_NIP algorithm and
the proposed vector memory-access shuffle instruction.
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All FFT algorithms do not include bit reverse pro-
cessing, and we disregard the overhead caused by all in-
struction misses (miss  will  become hit  in multiple  con-
secutive simulations). We also do not consider the over-
head  introduced  by  the  configuration  of  the  shuffle
mode, the  occupation  of  general-purpose  registers  dur-
ing the  shuffle  operation,  etc.  The  MOV operation  re-
quired  after  the  VHALFUP/DN  operation  is  ignored
(the MOV instruction can be provided from multiple in-
struction slots).  The butterfly  factors  are  calculated in
advance and  scheduled  as  required  by  the  various  al-
gorithms  described  above.  The  processed  elements  are
stored in the VM using a crossover of real and imagin-

ary parts.  All  the  above  are  optimized  in  manual  as-
sembly implementation by using various means such as
software pipeline and loop unfold. At the same time, we
consider using floating MAC unit in the iteration cycle
as much as possible to improve the utilization of MAC.
As  the  butterfly  factors  in  the  first  stage  of  DIF FFT
(or  the  last  stage  of  DIT  FFT)  are  all  1,  there  is  no
need  to  access  memory  to  obtain  the  butterfly  factor
and  perform  multiply  operations,  which  are  optimized
by  using  a  dedicated  iteration  period  and  software
pipelining  methods.  In  the  evaluation  of  the  first  four
implementations,  we  use  the  same  iteration  period  as
the NIP_VLSSF algorithm.

   
Table 1. The six vector memory-access shuffle fused instructions

Instruction Explanation Corresponding modulo shuffle
function

Two-way vector memory
access instruction

participation
The application range

VSTDWMX
Vector memory access
shuffle store instruction

Type X
f(x) =

{
2x%(2P − 1), 0 ≤ x ≤ 2P − 2

2P − 1, x = 2P − 1

Two ways can be executed
separately or simultaneously

The round radix-2 DIF
FFT needs to be shuffled,
part of the radix-4 DIF

FFT when the number of
PE is not an integer

power of 4

VSTDWMY
Vector memory access
shuffle store instruction

Type Y
f(x) =

{
4x%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

The round radix-4 DIF
FFT needs to be shuffled

VSTDWMZ
Vector memory access
shuffle store instruction

Type Z
f(x) =

{
2x%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

Adjustment of data
position at the end of the

operation when the
element width is larger

than the register width of
the processor

VLDDWMX
Vector memory access
shuffle load instruction

Type X
f(x) =

{
Px%(2P − 1), 0 ≤ x ≤ 2P − 2

2P − 1, x = 2P − 1

Two ways can be executed
separately or simultaneously

The round radix-2 DIF
FFT needs to be shuffled,
part of the radix-4 DIF

FFT when the number of
PE is not an integer

power of 4

VLDDWMY
Vector memory access
shuffle load instruction

Type Y
f(x) =

{
Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

The round radix-4 DIF
FFT needs to be shuffled

VLDDWMZ
Vector memory access
shuffle load instruction

Type Z
f(x) =

{
2Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

Adjustment of data
position at the end of the

operation when the
element width is larger

than the register width of
the processor

VLDDWMX
Vector memory access
shuffle load instruction

Type X
f(x) =

{
Px%(2P − 1), 0 ≤ x ≤ 2P − 2

2P − 1, x = 2P − 1

Two ways can be executed
separately or simultaneously

The round radix-2 DIF
FFT needs to be shuffled,
part of the radix-4 DIF

FFT when the number of
PE is not an integer

power of 4

VLDDWMY
Vector memory access
shuffle load instruction

Type Y
f(x) =

{
Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

The round radix-4 DIF
FFT needs to be shuffled

VLDDWMZ
Vector memory access
shuffle load instruction

Type Z
f(x) =

{
2Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

Adjustment of data
position at the end of the

operation when the
element width is larger

than the register width of
the processor
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 2) Performance improvement  of  common  FFT  al-
gorithms

Table 3 gives the normalized speedup ratio for five
implementations  of  the  FFT computation  in  radix-2/4
and  DIF/DIT  for 1024 and 4096 points  single/double
floating  complex  number.  The VHALFUP/DN method
proposed in reference [7] and the VEXC in [8] are only
applicable to the radix-2 FFT algorithm but not to the
radix-4. The  NIP  proposed  in  this  paper  and  the  fur-
ther NIP_VLSSF  can  achieve  performance  improve-
ment  in  both  radix-2  and  radix-4  FFT  algorithms.  In
addition, the VHALFUP/DN brings a limited speedup,

which is mainly due to the vital function of the BASE
algorithm  in  the  evaluation  environment.  Further,  in
the radix-2 FFT, the speedup of the NIP is greater than
that of the VHALFUP/DN and smaller than VEXC. In
contrast, the performance of the NIP_VLSSF is optim-
al. Compared with the BASE, the performance improve-
ment of the proposed NIP is between 17.3% and 33.1%,
and  the  NIP_VLSSF  is  between  52.8%  and 97.1%.
Compared  with  the  best  performing  method  VEXC in
the previous reference, the performance improvement of
the  NIP_VLSSF  is  between  17.9%  and  37.1%.  In  the
radix-4 FFT, the performance improvement of the pro-
posed NIP is between 13.5% and 27.8% compared with
the BASE and the NIP_VLSSF is  between 84.3% and
111.2%.

1536 = 3× 29

In addition, Table 3 also shows the statistics of the
1536-point  single  floating  DIF  algorithm,  and  since

,  the  same  technique  as  the  radix-2  FFT
can  be  used  for  the  last  four  stage  of  the  rounds  that
need  to  be  shuffled.  Compared  with  the  previous  best
method VEXC, the performance is improved by 21.6%.

By analyzing the parity  rows in Table  3, the  pro-
posed NIP_VLSSF brings  little  difference  in  the  spee-
dup  of  the  two  FFT  extraction  algorithms,  DIT  and
DIF, which is mainly due to the fact that the computa-
tion effort and the shuffle need are almost the same for
these  two  extraction  methods.  For  single  and  double
floating FFT with same points, Table 3 shows that the
performance  speedup  of  the  NIP_VLSSF  is  higher  for
double floating FFT. That is because the double float-
ing  FFT  contains  a  slightly  larger  ratio  of  the  shuffle
operation. In  addition,  since  the  double  floating  num-
bers are stored consecutively in real and imaginary be-

   
Table 2. Specific parameters of the simulation platform

Name Specific parameter value
Number of PE 4, 8, 16 (baseline), 32
VM Capacity 512 KB

Processor
machine word

length
64 bits

Shuffle unit

Crossover network implementation; two inputs
and one output (baseline); two cycles pipeline
(baseline) or one cycle completion (PE counts

less than or equal to 8)

Instruction
issue slot design

3 MAC (perform floating multiply-add, multiply
or add) units, 1 BP (branch) unit, 2 vector LS

units

Multiplier 4 stage pipeline, supports double floating or
single floating SIMD

Adder 3 stage pipeline, supports double floating or
single floating SIMD

MAC unit 6 stage pipeline, support double floating or single
floating SIMD

Execution
cycles of vector
memory-access

instruction

VLoad class instruction: 8 cycles pipeline. VStore
class instruction: 4 cycles pipeline

 

   
Table 3. The performance improved in the common FFT algorithm

Number of
points Radix-2/Radix-4 Single/Double

precision DIF/DIT
Normalized acceleration ratio NIP_VLSSF/M

Radix-2:M=VEXC;
Radix-4:M=BASEBASE VHALF (UP/DN) VEXC NIP NIP_VLSSF

1024 Radix-2 Single DIF 1 1.03 1.30 1.17 1.53 117.92%
1024 Radix-2 Single DIT 1 1.03 1.28 1.17 1.54 120.09%
1024 Radix-2 Double DIF 1 1.05 1.34 1.26 1.70 126.88%
1024 Radix-2 Double DIT 1 1.04 1.36 1.24 1.70 124.76%
1024 Radix-4 Single DIF 1 – – 1.14 1.84 184.34%
1024 Radix-4 Single DIT 1 – – 1.14 1.93 192.88%
1024 Radix-4 Double DIF 1 – – 1.27 2.08 207.66%
1024 Radix-4 Double DIT 1 – – 1.28 2.11 211.16%
4096 Radix-2 Single DIF 1 1.04 1.42 1.23 1.80 126.74%
4096 Radix-2 Single DIT 1 1.04 1.40 1.24 1.84 131.34%
4096 Radix-2 Double DIF 1 1.06 1.44 1.33 1.97 137.10%
4096 Radix-2 Double DIT 1 1.04 1.46 1.30 1.95 133.77%
4096 Radix-4 Single DIF 1 – – 1.14 1.93 192.58%
4096 Radix-4 Single DIT 1 – – 1.14 1.97 196.73%
4096 Radix-4 Double DIF 1 – – 1.26 1.99 198.63%
4096 Radix-4 Double DIT 1 – – 1.22 2.01 201.46%
1536 Radix-3,Radix-2 Single DIF 1 1.04 1.29 1.22 1.57 121.62%
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fore computation, the NIP_VLSSF can solve this prob-
lem efficiently.  For  the same points,  accuracy,  and ex-
traction  method, Table  3 shows  that  the  NIP_VLSSF
has a  higher  speedup  ratio  for  the  radix-4  FFT  al-
gorithm.  Although  the  radix-4  FFT  requires  fewer
rounds of shuffle than the radix-2, the number of radix-
4 butterfly operations that need to be shuffled is much
more than that of radix-2, so the NIP_VLSSF can play
a more significant role.

 3) Effect of FFT points
Fig.6 illustrates  the  normalized  speedup  of  single-

precision  floating-point  complex  radix-2  DIF  FFT  at
different  point  sizes.  On  the  one  hand,  it  can  be  seen
from equation (1) in Section III.2 that the share of the
shuffle  operations  in  the  overall  operation  decrease  as
the FFT size increases. On the other hand, as the FFT
points increase, the efficiency of the FFT mapping will
show a slow increase until a smooth trend (e.g., the pro-
portion  of  filling  and  emptying  decreases  gradually
when using software pipeline). The two aspects determ-
ine  that  the  speedup  of  the  proposed  NIP_VLSSF
shows a  trend of  increasing,  then decreasing,  and then
stabilizing with the increasing of FFT size.
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Fig. 6. Normalized speedup ratio of single-precision floating-

point complex radix-2 DIF FFT at different scales.
 

As illustrated in Fig.6, when the radix-2 DIF FFT
size ranges from 1024 to 4096, the speedup of the pro-
posed NIP and NIP_VLSSF increase from 1.17/1.53 to
1.23/1.79,  compared with BASE. And as the FFT size
ranges  from 4096 to 32768,  the  speedup  decrease  to
1.21/1.68,  then  keep  steady.  We  also  found  the  same
pattern in other FFT types. In addition, when the FFT
points continue to increase, and the data and butterfly
factors capacity exceeds the VM capacity, the perform-
ance  of  FFT will  be  affected  by  more  factors,  such  as
the performance of the Cache system, the storage band-
width of DDR, etc.

 4) Effect of the PE number
The normalized  speedup  of  various  implementa-

tions  of  the 1024-point  and 4096-point  single  floating
radix-2 and radix-4 DIT FFT with different PE counts
are presented respectively in Fig.7. The rounds number
that needs to be shuffled by the FFT increases with the
PE  counts.  The  proposed  method  mainly  reduces  the
cost caused  by  shuffle  operation.  Thus,  the  perform-
ance  improvement  increases  with  the  rise  of  the  PE

counts.
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Fig. 7. Normalized  speedup  ratio  of  various  methods  with

different PE number.
 

The performance speedup increases almost linearly
with the PE counts, as shown in Fig.7(a) and (b). For
example,  for 1024 point  radix-2  DIT  FFT,  compared
with  BASE,  the  NIP_VLSSF  can  bring  a  speedup  of
1.24,  1.38,  1.54,  and 1.62  as  the  PE count  of  4,  8,  16,
and 32. Morever, for 4096 point radix-2 DIT FFT, the
speedup is even higher (1.37, 1.58, 1.84, and 1.92). The
speedup of the traditional VEXC also increases with the
PE  counts,  but  they  are  lower  than  those  of  the
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NIP_VLSSF.
Unlike the radix-2 FFT, in the radix-4 FFT, with

the PE counts  increasing,  the  speedup of  NIP_VLSSF
increases in a stepwise manner. The main reason is the
number  of  rounds  to  be  shuffled  is  2  when  PE counts
are 8 and 16. And the rounds are 1 and 3 for PE count
of 4 and 32. Thus, the speedup of the NIP_VLSSF does
not vary much when PE counts are 8 and 16. As shown
in Fig.7(c) and (d), the speedup of the NIP_VLSSF are
1.44,  1.88,  1.93,  and  2.31  for 1024-point  radix-4  DIT
FFT when PE counts are 4, 8, 16, and 32, respectively,
and 1.45 for 4096-point radix-4 DIT FFT. The VHAL-
FUP/DN and VEXC do not work for the radix-4 FFT,
while  the  NIP,  which  does  not  use  vector  memory-ac-
cess shuffle instructions, provides a worse speedup than
the NIP_VLSSF.

 2. Code compression
Smaller code size means less instruction cache miss,

and  the  NIP  and  NIP_VLSSF  proposed  in  this  paper
can significantly  reduce  the  code  size  of  FFT.  Tradi-
tional  BEA_IP,  including  those  accelerated  by  the
methods VHALFUP/DN and VEXC, uses different sub
modes of VHALFUP/DN or VEXC and shuffle instruc-
tions in the different shuffling rounds. So the assembly
code  cannot  be  unified  for  all  rounds  that  need  to  be
shuffled but need to be expanded, making the code size
too long.  Contrarily,  the  NIP  and  NIP_VLSSF  pro-
posed  in  this  paper  have  the  same  shuffle  instructions
or  memory-access  shuffle  fused  instructions  in  the
rounds that need to be shuffled, so the code can be uni-
fied in the shuffled rounds, and the code size can be sig-
nificantly  reduced.  As  shown  in Fig.8, the  code  com-
pression ratio of the NIP_VLSSF ranges from 18.4% to
39.8% for PE counts from 8 to 32 in 4096-point radix-2
single  floating  DIF  FFT,  compared  with  the  VEXC.
For 4096-point  radix-4  single  floating  DIF  FFT,  the
code compression ratio of the NIP_VLSSF ranges from
5.4% to 24.2% compared with the BASE.

 3. Hardware overhead

4P × T

The  instructions  proposed  in  this  paper  introduce
some  hardware  overhead.  First,  the  added  vector
memory-access  shuffle  fused  instruction  will  occupy  2
bits of instruction coding space. Second, two additional
registers  are  needed  at  each  stage  of  the  vector
memory-access  pipeline  to  record  and pass  the  type  of
instructions.  When  implementing  data  shuffle  in  the
vector  memory-access  pipeline,  there  will  only  be  four
types of data reassembly (including the case of no data
reassembly)  for  vector  Load  instructions  (or  vector
store). So two 1/4 MUXs are added at the address cal-
culation and data return stage, each of which drives 
bits (suppose  the  vector  SIMD processor  has  two  vec-
tor  memory-access  units,  each  of  which  can  issue  a
double-word  vector  memory-access  instruction  per

P Tcycle.  is the PE count, and  is the processor’s ma-
chine word length). From the timing overhead point of
view, the added 1/4 MUX has a small overhead and is
negligible.

 4. Comprehensive comparison
In  terms  of  hardware  and  timing  overhead,  the

BASE  has  no  additional  hardware  requirements  other
than the use of shuffle unit, and therefore the hardware
overhead is minimal.  The VHALFUP/DN requires fur-
ther  specialized  instructions,  but  the  overhead  is  not
significant.  The  VEXC  requires  two  reads  and  two
writes ports to the VRF, which is often assigned to the
BP unit  (usually,  the  BP  unit  contains  only  one  re-
gister file write port), so the VEXC adds a write port to
VRF.  Therefore,  it  has  a  higher  timing  overhead.  The
NIP_VLSSF  shares  some  resources  of  the  memory-ac-
cess  unit,  and  the  additional  hardware  is  mainly  the
MUX and a small number of flip-flops, so the hardware
overhead is reasonable.

In  terms  of  applicability,  the  VHALFUP/DN and
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Fig. 8. Code size of FFT algorithm with different PE count.
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VEXC can only  accelerate  the  radix-2  FFT algorithm,
while  the  NIP_VLSSF  has  good  acceleration  for  both
radix-2 and radix-4 FFT and can be used for other al-
gorithms  with  real  and  imaginary  cross-storage.  Thus,
the applicability is optimal.

In summary,  the  NIP_VLSSF  can  effectively  im-
prove the  execution  efficiency  of  standard  FFT  al-
gorithms, reduce  the  code  size,  have  moderate  hard-
ware overhead, and is highly applicable. It has obvious
advantages over the current solutions.

 VI. Summary
In this paper, we propose a class of vector memory-

access shuffle fused instructions for FFT-like algorithms
and vector SIMD structures, which fuse some functions
of data shuffle and vector memory-access parts of tradi-
tional  SIMD  processors.  Together  with  the  proposed
binary  swap  mapping  method  of  non-in-place  storage
with a modulo shuffle, it can completely hide the com-
munication overhead between PEs and efficiently solve
the data access and data replacement problems faced by
FFT-like  algorithms  in  vector  SIMD  structures.  Thus
has important theoretical and engineering significance.
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