
Vector Memory-Access Shuffle
Fused Instructions for FFT-Like Algorithms

LIU Sheng, YUAN Bo, GUO Yang, SUN Haiyan, and JIANG Zekun
(College of Computer, National University of Defense Technology, Changsha 410073, China)

 Abstract — The shuffle operations are the bottle-
neck when mapping the FFT-like algorithms to the vec-
tor single instruction multiple data (SIMD) architectures.
We propose six (three pairs) innovative vector memory-
access shuffle fused instructions, which have been proved
mathematically. Combined with the proposed modified
binary-exchange method, the innovative instructions can
efficiently address the bottleneck problem for decimation-
in-frequency or decimation-in-time (DIF/DIT) radix-2/4
FFT-like algorithms, reach a performance improvement
by 17.9%–111.2% and reduce the code size by 5.4%–39.8%.
In addition, the proposed instructions fit some hybrid-
radix FFTs and are suitable for the terms of the initial or
result data placement for general algorithms. The soft-
ware and hardware costs of the proposed instructions are
moderate.

 Key words — Vector memory-access shuffle, Fused

instructions, Vector SIMD, FFT-like algorithms.

 I. Introduction
The fast Fourier transform (FFT) [1] is a basic al-

gorithm for solving engineering and scientific problems
and a universal benchmark in many processor domains
(e.g., embedded system, scientific computing, and gen-
eral-purpose desktop). Designing and executing FFT
through processors efficiently and quickly is a common
problem for processor designers (at the hardware level)
and programmers (at the software level). Although a
dedicated FFT hardware accelerator is a standard solu-
tion [2], this task is accomplished by writing programs
in programmable processors more commonly.

Currently, vector single instruction multiple data
(SIMD) structures are becoming popular in main-
stream processors for their high power efficiency fea-
tures. We counted the new processors released at the
HotChips conference in 2015 and 2016 and found that

nearly 70% of them adopted vector SIMD architecture
to improve power efficiency. Thus, this architecture has
become widely available outside the boundaries of
CPUs, DSPs, and GPUs.

FFT algorithm has two parallel mapping forms, the
binary-exchange (BE) and the 2D transpose (TR) [3],
both of them can be mapped in vector SIMD structures.
The TR is generally used to transform large FFT al-
gorithms into small FFT algorithms in row and column
directions, suitable for larger-scale FFT algorithms. The
BE is suitable for smaller-scale FFTs (suitable for com-
puting smaller-scale FFTs after the TR transformation)
and is more widely used and can be used as the basis
for the TR. This paper focuses on the BE consequently.
When the BE is used to map the FFT-like algorithm on
the vector SIMD structure, the first few rounds of the
decimation-in-time (DIT) method or the last few rounds
of the decimation-in-frequency (DIF) method need to
use a shuffle unit to adjust the original or resultant
data before and after each butterfly operation. The dif-
ferent algorithm radix, the different extraction methods,
and the differences in fixed/float-point, single/double-
precision of the data being processed lead to the need
for shuffle data of FFT algorithm in the vector SIMD
structure being more complex, which can quickly be-
come the bottleneck of the system.

In fact, the algorithms like Viterbi decoding, dis-
crete cosine transform, discrete sine transform, Hartley
transform, etc., have similar memory-access and shuffle
requirements as FFT in SIMD processor mapping, ex-
cept the specific butterfly operation is different from
that of the FFT algorithm. Since the technology pro-
posed in this paper mainly solves the problems of
memory-access and shuffle of these algorithms, which
are not related to the specific butterfly operation and
have general applicability to FFT-like algorithms, we

Manuscript Received Nov. 17, 2021; Accepted Dec. 24, 2021. This work was supported by the National Natural Science Foundation
of China (61602493, 61502508).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.401

Chinese Journal of Electronics
Vol.32, No.5, Sept. 2023

will not intentionally distinguish between FFT and
FFT-like algorithms in the following description.

In this work, we proposes six (three pairs) vector
instructions with memory-access and shuffle based on
mathematical proofs innovatively, fusing some func-
tions of the two components of traditional SIMD pro-
cessors, shuffle and vector memory-access. We also pro-
poses a not-in-place storage binary exchange algorithm
(BE_NIP), halting the number of data shuffles in the
traditional in-place storage-based binary exchange al-
gorithm and unifying the shuffle pattern. The combina-
tion of the two techniques can completely hide the com-
munication between processing elements (PEs) of com-
mon types of FFT algorithms (e.g., DIT/DIF, radix-2/4,
partial hybrid radix) on vector SIMD processors. Exper-
imental results show that the proposed technique can
improve the performance of FFT algorithms by 17.9%–
111.2% and reduce the code size by 5.4%–39.8%. In add-
ition, the proposed technique applies to the problem of
initial or result data placement for general-purpose al-
gorithms and has the advantages of the moderate over-
head in hardware and software.

The rest of this paper is organized as follows. Sec-
tion II presents the related research work. Section III
analyzes the mapping process of FFT-like algorithms on
vector SIMD structures. Section IV elaborates the pro-
posed mapping method, vector memory-access shuffle
fused instructions and binary swap with not-in-place
storage. Section V evaluate the effectiveness of the pro-
posed technique through experiments and finally Sec-
tion VI gives a summary of the whole paper.

 II. Related Work
The fused multiply-add instruction is the most well

known instruction fusion technique. This instruction
completes multiplication and addition operations with
one instruction, fully exploiting the characteristics of
multiply-add pairs in algorithms such as matrix multi-
plication, and has become almost standard in DSPs and
widely used in CPUs.

Unaligned access is, in a sense, a fusion of memory-
access instructions and shift instructions. Philips’ TM3270
processor supports for 32-bit data unaligned accesses
and does not require additional hardware execution
clocks [4]. However, since there is only one set of access
ports, single unaligned access cross a cache line can res-
ult in at most two cache misses. The TMS320C64x pro-
cessor family from TI, USA, supports unaligned access
to 32-bit and 64-bit data, but single unaligned access
results in one of the dual access instruction slots not
working [5]. The DSP from ADI, USA, uses additional
data alignment buffer logic to implement unaligned ac-
cess [6] efficiently.

Several previous works have fused memory-access
and shuffle instructions functionally to accelerate FFT-
like algorithms. Reference [7] proposed VHALFUP and
VHALFDN instructions that can reduce some of the
shuffle operations in the mapping of FFT algorithms,
but only the time-domain radix-2 FFT algorithm is con-
sidered, and an additional MOV operation is required
to store the intermediate results of the two instructions.
The VEXC instruction proposed in [8] eliminates the
extra MOV operation in [7]. However, it adds an extra
register write port, and considers only the time-domain
radix-2 FFT algorithm, thus has no acceleration effect
on other types of FFT algorithms. Although these two
methods can bring partial efficiency improvement to the
FFT, the improvement is limited because the number of
times and types required by the shuffle operations of
the method is still very large.

P 2 P

P

The gather-scatter instruction [9], which has ap-
peared in processors in recent years, reads or writes
data in parallel in different address sequences by set-
ting up several different address-generating units. This
instruction is, in a way, also a technique for memory-
access and shuffle fusion, but it will contain a large
number of buffers and crossbar networks in hardware
because of the address conflict problem that must be
considered, and the vast hardware overhead makes the
bandwidth it can support is limited, while the scalabil-
ity of the instruction proposed in this paper is better. In
terms of implementation complexity, the hardware over-
head of the gather-scatter instruction increases into
O() as the vector width grows, and in this paper it
increases into O(). In Vision P6, the latest DSP from
Tensilica, the bandwidth of gather-scatter is only half of
the bandwidth of a typical vector memory-access in-
struction due to hardware complexity [10]. Thus the in-
structions proposed in this paper and the gather-scatter
instructions can co-exist without any mutual inclusion
relationship.

 III. Mapping Analysis of FFT on Vector
SIMD Structure

 1. Vector SIMD structure and FFT algo-
rithm

P P

Fig.1 gives an abstract model of the vector SIMD
architecture. (is a positive integer power of 2) pro-
cessing elements execute the same instructions under
the control of a fetch and dispatch unit. Each PE con-
tains a private operation unit (usually several comput-
ing components, such as multiplier, shifter, arithmetic
unit) and a vector register file (VRF). Register-level
data exchange between PEs is achieved through shuffle
unit, mostly crossbar structures [11], [12]. Vector
memory (VM) consisted of M memory bodies provides

1078 Chinese Journal of Electronics 2023

high bandwidth supply to VRFs.

N2 N log2 N
log2 N

In 1965, Cooley and Tukey invented the FFT al-
gorithm [1] based on the mathematical characteristics of
the discrete Fourier transform (DFT), which can reduce
its computational complexity from O() to O().
For the radix-2 FFT algorithm, which requires
levels to complete, the FFT algorithm can be divided
into DIT and DIF, with the same results but slightly
different processing: the operational flow graph of DIT
FFT is basically reversed from that of DIF FFT, and
its butterfly operation is multiplication followed by
addition. In contrast, the DIF FFT is addition followed
by multiplication.

5× 5× 3× 2× 2× 2× 2

The basic idea of the radix-n FFT algorithm is to
divide the N points sequence into n N/n points sub-
DFTs by ordinal number and decompose them in this
way each time until the DFT is n point. Theoretically,
a larger number of radixs can further reduce the num-
ber of operations, such as the radix-4 FFT algorithm
has reduced the number of operations compared with
the radix-2, and the number of iterations is half of the
radix-2 FFT, which can further speed up the DFT oper-
ation. In addition to the radix-2 and radix-4 FFTs,
which are the most widely used FFT algorithms, there
are mixed-radix FFTs, where the last few levels are 2 or
4, occupying a relatively large proportion. For example,
the 1200-point FFT in 3GPP LTE protocol, 1200 can
be decomposed into , that is,
radix-5, 3, and 2 FFT operations can be performed re-
spectively. If the number of points to be processed is
not an integer power of 2 or 4, it can be transformed
into a radix-2 or 4 FFT algorithm by using the zero-

padding operation and then perform the zero-suppres-
sion operation at the end of the operation.

P

The input and output data, intermediate results,
and butterfly factors in the FFT algorithm are gener-
ally complex numbers. According to the data represent-
ation of the real (or imaginary) part of the complex num-
ber, such as 32-bit (64-bit) fixed-point, single (double)
precision floating-point, the FFT algorithm can be ab-
breviated such as 32-bit (64-bit) fixed-point FFT, single
(double) precision floating-point FFT. There are two
storage forms for complex data (not only including FFT
algorithm): 1) The real and imaginary parts of the same
element are stored next to each other, as shown in Fig.2
(a); 2) The real parts of all elements are together, and
the imaginary parts are together, as shown in Fig.2(b).
Obviously, the former storage method is more intuitive.
However, when the machine word width of the SIMD
processor and the width of the real/imaginary part of
the complex data to be processed are the same (such as
for a 32-bit processor, the real/imaginary part of the
complex data are both 32 bits, for a 64-bit processor the
real/imaginary part of the complex data are both 64
bits), for the former storage method, when these data
are moved to the VRF, the real and imaginary data will
be in the same register. However, the user wants the
real and imaginary data to be in different registers
(such as when = 4, the real part is in VR0, the ima-
ginary part is in VR1) to facilitate the next operation.
This will introduce additional shuffle operations after
the traditional vector memory-access operations, redu-
cing the program’s execution efficiency.

0
Real

0
Real

0
Imag-
inary

0
Imag-
inary

Address 0 4

Data 1
Real

1
Real

1
Imag-
inary

1
Imag-
inary

2
Real

2
Real

2
Imag-
inary

2
Imag-
inary

3
Imag-
inary

3
Imag-
inary

3
Real

3
Real

8 C 10 14 18 1C

0 4 8 C 10 14 18 1CAddress

Data

(a) Adjacent storage of real and imaginary parts

(b) Separate storage of real and imaginary parts
Fig. 2. Two ways to store complex data.

 2. BE_IP mapping method and analysis of
shuffle operation

Next, this paper analyzes the BE method and the
shuffle operation, using the DIF radix-2 FFT algorithm
as an example. It should be noted that the bit-reversal
operation at the end of the operation is generally ac-
complished by a scalar unit or DMA that supports bit-
reversal addressing and is not discussed too much here.

The execution of the DIF radix-2 FFT algorithm
using the BE method in the vector SIMD structure is
shown as follows [13].

L1) Determine the number of iteration levels and

VRF_0

Opera.

Unit_0

VRF_1

Opera.

Unit_1

VRF_P−1

Opera.

Unit_P−1
……

……

Inst. fetch & dispatch

PE_0 PE_1 PE_P−1……

Shuffle unit

Bank_0 Bank_1 Bank_M−1

Vector mem.

Fig. 1. Vector SIMD structure.

Vector Memory-Access Shuffle Fused Instructions for FFT-Like Algorithms 1079

K N

P
L = log2 N N P

K = log2 P

shuffle levels according to the length of the DIF
FFT transform and the number of PEs in the vector
SIMD, obviously . is much larger than
in general, so . Furthermore, prepare the
butterfly factor in advance.

2) Allocate the storage area. Load the data to be
computed into the first area of the VM and the butter-
fly factor into the second area.

3) Take a batch of data to be operated and butter-
fly factors according to the computing power of the vec-
tor SIMD processor.

L−K

4) Determine whether the current round belongs to
the previous round. If not, it goes to step 5).
Otherwise, it goes to step 7).

5) Perform a shuffle operation with a butterfly op-
eration and go to step 6).

6) Shuffle the results, store them back in the ori-
ginal storage location and go to step 8).

7) Perform butterfly operations and store the res-
ults to the original location.

8) Determine whether the current round is the end
of the operation or not. If yes, go to step 9), otherwise
go to step 3).

L

9) Determine whether the current round is equal to
 or not. If not, increase the current round by one and

go to step 3). Otherwise, end the operation.

K

From the above mapping process, we can see that
the BE mapping method uses an in-place computation
mechanism, and the method of using the same memory
cell to store the same butterfly operation input and out-
put data is called in-place operation [3], [13]. In-place
computation saves memory cells in a sense and makes
the FFT algorithm fast and straightforward. However,
this method also results in the need to shuffle the data
before the post- -level butterfly operation. Moreover,
after the calculation, the data needs to be shuffled back
and saved to the VM. In this paper, we abbreviate the
BE mapping method using in-place operations as the
BE_IP mapping method.

TP

tC
S = tC ×N × (log2 N)/TP E =

S/P =
tC×N×log2 N

P×TP
TP =

tC×N×log2 N
P×E

2P

tS

In this paper, referring to the method of describing
the acceleration ratio and efficiency of the FFT algo-
rithm in reference [3], we assume that the total time
spent by the DIF radix-2 FFT in vector SIMD using the
BE_IP method is . If a complex multiplication and a
complex addition take time , the acceleration ratio is

, and the efficiency is
, then . Consider-

ing that the shuffle network uses the crossover network
with two inputs and one output, it takes two opera-
tions to complete the shuffle of elements in each
round of the BE method, and it needs four operations
to shuffle the elements back again. Let the time spent
for one shuffle operation be , then the total time

N
TS = 4tS × (N/2P)× log2 P

spent for the shuffle operation of the -point FFT us-
ing the BE_IP method is .
To sum up, the proportion of the shuffle operation in
the whole BE_IP mapping method is as follows:

α =
TS

TP
=

2tS × E × log2 P
tC × log2 N

(1)

P = 16 tS = 1

tC = 1

E = 0.30 0.35 0.40 α

Considering the typical case, select , ,
and regard the complex multiplication and addition op-
eration as pipeline ultimately, i.e., . For the three
cases of efficiency , , and , the value
obtained according to formula (1) are shown in Fig.3,
which shows that 1) The proportion of the shuffle oper-
ation in the whole BE_IP algorithm is more significant,
between 17% and 32%; 2) As the number of FFT points
increases, the proportion of the shuffle operation de-
creases, but the decrease is gradually becoming smaller.

0
20

48
40

96
61

44
81

92
12

28
8

10
24

0
14

33
6

16
38

4
0

0.12

0.03
0.06
0.09

0.15
0.18
0.21

0.27
0.30
0.33

0.24

N

α

E=0.30
E=0.35
E=0.40

Fig. 3. Weight of the shuffle operation in BE_IP mapping

method.

Excessive shuffle operations impact the perform-
ance of the FFT algorithm, mainly reflected in three as-
pects: 1) The bandwidth of the shuffle unit is limited.
Crossbar is the most common implementation in the
shuffle unit of SIMD processors due to its flexibility.
However, the hardware overhead limit makes the cross-
bar implementation mostly use one vector input and
one vector output, and the actual effective bandwidth is
low. 2) There is an overhead in setting up the shuffle
mode. Although the shuffle unit with crossbar can
provide a variety of shuffle modes, it needs to set up
and call different shuffle modes when in use, which in-
troduces additional overhead. 3) The instruction issue
slot is limited. In a typical vector SIMD processor, the
multiplication unit, addition unit, and memory-access
unit occupy the central part of the instruction issue
slot, and there is usually only one shuffle unit, which
may share an instruction slot with an addition or multi-
plication unit. This limitation of the instruction issue
slot will reduce the execution efficiency of algorithms
such as FFT.

1080 Chinese Journal of Electronics 2023

K

K

It is essential to reduce the number of shuffle al-
gorithms and the overhead of shuffle operations to im-
prove the efficiency of the BE_IP algorithm due to the
weight of shuffle operation in it. In addition, in the
BE_IP mapping method of DIF FFT, each level in the
post- -level butterfly operation requires different shuf-
fle patterns, which makes the programmer need to ex-
pand the post- -level during programming, increasing
program code size.

 IV. Main Work
This section proposes the corresponding shuffle

function in need for the radix-2 DIF FFT algorithm and
proves its properties. Then gives BE mapping methods
for not-in-place storage and proposes the corresponding
vector memory-access fused instructions. And proposes
six (three pairs) sets of vector memory-access fused in-
structions considering the cases of different radix
(radix-2/4), different domains (DIF/DIT), and differ-
ent element widths (element widths greater than, equal
to, and less than the processor machine word widths).

 1. The modulo shuffle function
A B {0, 1, 2, . . . , 2P−1}

f(x) A B

f(x)=

{
2x%(2P−1), 0 ≤ x ≤ 2P−2

2P−1, x = 2P−1
P

P = 8

Definition 1　If and are set ,
then the modulo shuffle is a function from to

and , is a posit-

ive integer power of 2, and “%” denotes the modulo op-
eration. Fig.4 shows the change in position of the data
according to the modulo shuffle when .

0

VRF0 VRF1

1

2

3

4

5

6

7

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

8

9

10

11

12

13

14

15

0

VRF1'

8

1

9

2

10

3

11

4

12

5

13

6

14

7

15

VRF0'

Fig. 4. The effect of modulo shuffle at P=8.

f(x)Property 1　 is a bijective function.
f(x)Proof　1a) First, prove that is an injection.

x2 ̸= x1 f(x2) ̸= f(x1)That is, prove that if , then .
x2 = 2P − 1 x1 ̸= 2P − 1

0 ≤ x1 ≤ 2P − 2 f(x2) = 2P − 1 f(x1) = 2x1%
(2P − 1)) f(x2) ̸= f(x1)

i) When and , that is
, then ,

. Obviously ;
x1 = 2P − 1 x2 ̸= 2P − 1ii) When and , the case is

similar to i);
x2 ̸= x1 0≤x1≤2P−2 0≤x2≤2P−2

f(x2) = f(x1)

2x1%(2P−1) = 2x2%(2P−1) 2(x2−x1)=K×
(2P−1) K 0 ≤ x1 ≤ 2P − 2

0 ≤ x2 ≤ 2P − 2 −2(2P − 2) ≤ 2(x2 − x1) ≤ 2(2P − 2)

K 2(x2 − x1)

K × (2P − 1)

K = ±1 K ±1
K = 0 x2 = x1

f(x)

iii) When , , ,
use the converse method. Suppose that ,
then , i.e.,

. is an integer. Since and
, .

 can only be −1, 0, or 1. Since is an even
number, and is an odd number when

, cannot be and can only be 0. Moreover,
when , obviously , which contradicts the
premise. So is an injection.

f(x)

∀y ∈ B ∃x f(x) = y

1b) Second, prove that is a surjection. That is,
prove that for , there exists makes .

y = 2P − 1 ∃x =2P − 1
f(x) = y

i) When , it is evident that ,
 is satisfied;

0 ≤ y ≤ 2P − 2 y

∃x = y/2 f(x) = y y

∃x = (2P − 1 + y)/2 f(x) = y

ii) When , it is obvious that when
is even, satisfies ; when is odd,

 satisfies .
∀y ∈ B

∃x f(x) = y f(x)

According to i) and ii) of 1b), i.e., for , there
exists makes so that is a surjection.

f(x)From 1a) and 1b), the function is both injec-
tion and surjection and thus is a bijection. The proof is
over.

x1 ≤ x2 x1, x2 ∈
{0, 1, 2, . . . , P−1} x1, x2 ∈ {P, P+1, P+2, . . . ,

2P−1} f(x2−x1) =

f(x2)−f(x1)

Property 2　When , then case i)
; case ii)

, if any one of them is satisfied, then
.

x1 ≤ x2

x1, x2∈{0, 1, 2, . . . , P−1} 0 ≤ x1≤x2≤P−1

0 ≤ 2x1 ≤ 2P−2, 0 ≤ 2x2 ≤
2P−2, 0≤x2−x1≤P−1 0≤2(x2−x1)≤2P−2

f(x2)=2x2%(2P−1)=2x2

f(x1) = 2x1%(2P−1) = 2x1 f(x2)− f(x1) =

2(x2−x1) f(x2−x1)=(2(x2−x1))%(2P−1)=

2(x2 − x1) f(x2)− f(x1) =f(x2 − x1)

Proof　 2a) Consider case i), when and
, obviously .

It is easy to obtain that
, and . From

Definition 1, we know that ,
and , hence

. Moreover,
, so .

2b) The prove of case ii) is similar to that of case i)
and will not be described in detail here. The proof is
completed.

K = log2 P fK+1(x) = xProperty 3　Let , then .
x = 2P − 1

fK+1(2P − 1) = 2P − 1 fK+1(x) = x

Proof　 3a) When , it is evident that
. , at this point.

0 ≤ x ≤ 2P − 1

0 ≤ f t(x) ≤ 2P − 2 f(x)

f1(x)=21x%(2P−1), f2(x)=(2f(x))%(2P−1)
(2x%(2P−1)+2x%(2P−1))%(2P−1)

f2(x) = (2x+

2x)%(2P − 1) = (22x)%(2P − 1) f t(x) =

3b) When , it is easy to know
 by the bijection property of .

Obviously =
. By the linearity

theorem of congruence, we can get that
. Suppose that

Vector Memory-Access Shuffle Fused Instructions for FFT-Like Algorithms 1081

2t%(2P−1) 2≤ t≤K+1 f t+1(x) = 2f t(x)%(2P−
1) = (2tx%(2P − 1) + 2tx%(2P − 1))%(2P

f t+1(x)=

(2tx+ 2tx)%(2P − 1) = 2t+1x%(2P − 1)

fK+1(x)=

(2K+1x)%(2P−1) 2K+1 =2log2 P+1 = 2P

fK+1(x) = (2Px)%(2P − 1) = ((2P%(2P − 1))∗
(x%(2P − 1)))%(2P − 1) = x%(2P−1) = x

, , then
− 1). By the

linear property of congruence, we can get that
. In summary,

it is known by mathematical induction that
. Obviously , fur-

thermore, by the linear property of congruence, we can
get that

. The proof
is over.

f(x)

According to the definition of modulo shuffle func-
tion and the three corresponding property theor-
ems, we can get the following conclusions:

2P 2P

1) From Property 1, after modulo shuffling a set of
elements with length, these elements just swap
their positions, and there will not be a situation where
one element appears twice or more after the shuffle and
the other does not appear.

P P/2, P/4, P/8,

. . . , 1 P, P/2, P/4, . . . , 2

P

P/2

P

P/4

P/P log2 P

2) From Property 2, if the distance of two ele-
ments in first (or last) elements is

, their distance will become after
the modulo shuffle. In vector SIMD architecture, two
elements with the distance of will be in one PE’s
VRF after vector memory-access, and they can do but-
terfly operations directly. Therefore, through the first
modulo shuffle, two elements with the distance of
in the first (or last) half elements can do butterfly
operations directly. This distance for direct butterfly
operation becomes in the second modulo shuffle,…,
and reaches (i.e., 1) after times of modulo
shuffle. The above process is matched with the radix-2
DIF FFT.

2P
log2 P + 1

log2 P
P

3) From Property 3, for a totle of elements,
after times of modulo shuffle, their location
will recover to their initial value. In other words, after
the first modulo shuffle, arbitrary two elements
with the distance of 1 in the first (or last) elements
can do butterfly operations directly, and then after an-
other modulo shuffle, the sequence can be restored to
the original position.

 2. BE_NIP mapping method

f(x)

We found that the in-place storage mechanism res-
ults in the excessive shuffle operations included in the
BE_IP method. This paper proposes the not-in-place
storage BE method (BE_NIP) method in conjunction
with the modulo shuffle function proposed in the
previous subsection. The proposed method is shown in
Algorithm 1.

L−K − 11) The process of the first level opera-
tion is identical to the BE_IP algorithm.

K + 1

2) After the butterfly operation is completed for
the first set of data at the level to last, modulo
shuffle the data in the VRF0 and VRF1 where the res-

ults are stored and then store the data in the VRF0
and VRF1 into VM. Process all the data of the K+1
level to last according to this method.

K

K

3) At the level to last, the data is read from VM
and performed butterfly operation directly, then mod-
ulo shuffle the data of VRF0 and VRF1 where the res-
ults are stored, and store the data in the VRF0 and
VRF1 into VM. Process all the data of the levels to
last according to this method.

K − 14) Complete the butterfly operation from the
level to the last level according to the method in 3).

Algorithm 1　The BE_NIP mapping method

x[N − 1 : 0]Input: data ; butterfly factors.
xOutput: result data .

i = 0 log2 N − log2 P − 21: for to do
j = 0 N/2P − 12: for to do

3: 　 vector load to get current butterfly factors;
x[2P ∗ j + 2P − 1 : 2P ∗ j]4: 　 vector load to get ;

P5: do pairs of butterfly operations;
x[2P ∗ j + 2P − 1 : 2P ∗ j]6: vector load to put ;

j = 0 N/2P − 17: end for to do
i = 0 log2 N − log2 P − 28: end for to do

i = 0 log2 P9: for to do
j = 0 N/2P − 110: for to do

11: vector load to get current butterfly factors;
x[2P ∗ j + 2P − 1 : 2P ∗ j]12: vector load to get ;

P13: do pairs of butterfly operations;
f(x) x[2P ∗ j + 2P − 1 : 2P ∗ j]14: do shuffle to the

x[2P ∗ j + 2P − 1 : 2P ∗ j]15: vector load to put ;
j = 0 N/2P − 116: end for to do

i = 0 log2 P17: end for to do

f(x)

K

Obviously, the BE_NIP algorithm can reduce the
overhead of shuffle in two aspects: 1) The shuffle re-
quired before and after the butterfly operation in the
BEA_IP algorithm is reduced to the shuffle only be-
fore the butterfly operation, and no shuffle is required
after the butterfly operation, i.e., the number of mixing
is reduced by half. 2) The mode of shuffle is different in
each of the post-K levels in the BEA_IP algorithm,
while the mode of shuffle in the BEA_NIP is exactly
the same (all modulo shuffling). On the one hand,
it can reduce the overhead caused by switching the
shuffle modes, and on the other hand, it can make the
code of the FFT algorithm in the post- level identical
and reduce the code size.

 3. Vector memory-access shuffle fused in-
struction

The BE_NIP mapping method proposed above can
reduce the number of shuffle requests in the FFT al-
gorithm to a certain extent and improve the execution
efficiency. However, the shuffle request is still existing

1082 Chinese Journal of Electronics 2023

in the BE_NIP method. And there is still a certain
amount of overhead in the implementation of the most
potent shuffle unit based on fully associative network,
which is limited by the hardware overhead and the re-
gister write port. In this paper, we fuse shuffle opera-
tions into the vector memory-access unit to solve this
problem. On the one hand, it enables the shuffle opera-
tion to take advantage of the high bandwidth of the
datapath among the instruction issue slot of the vector
memory-access unit, VM and VRF. On the other hand,
since vector memory-access instructions supporting dif-
ferent modulo reassembly methods can be selected dir-
ectly, the user will not need to set up the shuffle mode.

f(x)

Definition VSTDWMX (vector store double
word modulo X type) instruction　Decode the ad-
dress to access the VRF according to the instruction,
read the double word data from the VRF, and modulo
shuffling the data according to the , and then store
it into the memory according to the target address.

P = 8

Fig.5 illustrates the diagram of the effect of the
VSTDWMX instruction execution when . It is ob-
vious that the VSTDWMX instruction can directly re-
place line 14 and 15 in the BE_NIP algorithm. That is,
the modulo shuffle operation in the BE_NIP algorithm
can share the instruction slot and high bandwidth of
the vector memory-access unit and can be completely
hidden in the memory-access instruction.

VRF0 0

8

1

9

2

10

3

11

4

12

5

13

6

14

7

15VRF1

VM

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

VSTDWMXAddress

increase

P = 8

Fig. 5. The effect of VSTDWMX instruction execution
when .

The above VSTDWMX instruction is proposed
only when considering the radix-2 DIF FFT and the bit
width of the data and the register are the same. This
problem becomes complicated after considering various
factors such as radix-2/4, DIF/DIT, the real part of the
complex element being processed is 32/64-bit, and the
processor is 32/64-bit. Fortunately, we found that
adding three dedicated instructions to each normal vec-
tor load and store double-word access can satisfy all the
above requirements. As shown in Table 1, VSTDWMX
and VLDDWMX are a pair of instructions, mainly for
the radix-2 DIF/DIT FFT algorithm. VSTDWMY and
VLDDWMY are a pair of instructions, mainly for the

radix-4 DIF/DIT FFT algorithm. And VSTDWMZ and
VLDDWMZ are a pair, primarily to solve the problem
that when the width of the FFT element is larger than
the processor’s register, adjusting the data position at
the beginning or before the end of the operation. Spe-
cifically, VSTDWMX and VLDDWMX instructions are
muxed inside the data shuffled by one-way vector
double-word access; And VSTDWMY, VLDDWMY,
VSTDWMZ, and VLDDWMZ instructions are muxed
between the data shuffled by two-way vector double-
word. The third column of Table 1 gives the proposed
shuffle functions corresponding to the vector memory-
access shuffle instructions, which have similar proper-
ties to the shuffle functions corresponding to VSTDW-
MX. The proof process is identical, so they are not re-
peated here.

In addition, using the proposed VSTDWMX and
VLDDWMX instructions can complete the conversion
between the two forms of complex data storage illus-
trated in Fig.2, which will accelerate the problem of
placing the initial or result data of the general-purpose
algorithm.

 V. Analysis and Review
 1. Performance optimization
 1) Experimental setup
The experimental platform of this paper is selected

from the subject’s clock-accurate instruction set simu-
lator FT-Matrix-Sim [12]. Briefly, FT-Matrix adopts a
very long instruction word structure with parallel scal-
ar and vector processing units. The instructions of scal-
ar and vector units are dispatched by a common fetch
and dispatch unit. The vector unit contains three
MACs, one ALU/BP, and two Load/Store instruction
issue slots, and the VPE performs register-level data ex-
change through the shuffle unit. The specific paramet-
ers are shown in Table 2.

In order to evaluate various approaches to imple-
ment the FFT algorithm, we add the VHALFUP and
VHALFDN instructions in FT-Matrix-Sim regarding [7]
and the VEXC from [8]. In addition, the FT-Matrix in-
cludes the shuffle unit and the vector memory-access
shuffle fused instructions proposed above. For the FFT
algorithm with same parameters, the following five
schemes are implemented in assembly language. BASE
indicates that use BE_IP algorithm and the shuffle in-
structions. VHALFUP/DN indicates that use BE_IP
algorithm as well as VHALFUP and VHALFDN in-
structions. VEXC indicates that use BE_IP algorithm
and VEXC instructions. NIP indicates that use the
BE_NIP algorithm and shuffle instructions. And
NIP_VLSSF indicates that use BE_NIP algorithm and
the proposed vector memory-access shuffle instruction.

Vector Memory-Access Shuffle Fused Instructions for FFT-Like Algorithms 1083

All FFT algorithms do not include bit reverse pro-
cessing, and we disregard the overhead caused by all in-
struction misses (miss will become hit in multiple con-
secutive simulations). We also do not consider the over-
head introduced by the configuration of the shuffle
mode, the occupation of general-purpose registers dur-
ing the shuffle operation, etc. The MOV operation re-
quired after the VHALFUP/DN operation is ignored
(the MOV instruction can be provided from multiple in-
struction slots). The butterfly factors are calculated in
advance and scheduled as required by the various al-
gorithms described above. The processed elements are
stored in the VM using a crossover of real and imagin-

ary parts. All the above are optimized in manual as-
sembly implementation by using various means such as
software pipeline and loop unfold. At the same time, we
consider using floating MAC unit in the iteration cycle
as much as possible to improve the utilization of MAC.
As the butterfly factors in the first stage of DIF FFT
(or the last stage of DIT FFT) are all 1, there is no
need to access memory to obtain the butterfly factor
and perform multiply operations, which are optimized
by using a dedicated iteration period and software
pipelining methods. In the evaluation of the first four
implementations, we use the same iteration period as
the NIP_VLSSF algorithm.

Table 1. The six vector memory-access shuffle fused instructions

Instruction Explanation Corresponding modulo shuffle
function

Two-way vector memory
access instruction

participation
The application range

VSTDWMX
Vector memory access
shuffle store instruction

Type X
f(x) =

{
2x%(2P − 1), 0 ≤ x ≤ 2P − 2

2P − 1, x = 2P − 1

Two ways can be executed
separately or simultaneously

The round radix-2 DIF
FFT needs to be shuffled,
part of the radix-4 DIF

FFT when the number of
PE is not an integer

power of 4

VSTDWMY
Vector memory access
shuffle store instruction

Type Y
f(x) =

{
4x%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

The round radix-4 DIF
FFT needs to be shuffled

VSTDWMZ
Vector memory access
shuffle store instruction

Type Z
f(x) =

{
2x%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

Adjustment of data
position at the end of the

operation when the
element width is larger

than the register width of
the processor

VLDDWMX
Vector memory access
shuffle load instruction

Type X
f(x) =

{
Px%(2P − 1), 0 ≤ x ≤ 2P − 2

2P − 1, x = 2P − 1

Two ways can be executed
separately or simultaneously

The round radix-2 DIF
FFT needs to be shuffled,
part of the radix-4 DIF

FFT when the number of
PE is not an integer

power of 4

VLDDWMY
Vector memory access
shuffle load instruction

Type Y
f(x) =

{
Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

The round radix-4 DIF
FFT needs to be shuffled

VLDDWMZ
Vector memory access
shuffle load instruction

Type Z
f(x) =

{
2Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

Adjustment of data
position at the end of the

operation when the
element width is larger

than the register width of
the processor

VLDDWMX
Vector memory access
shuffle load instruction

Type X
f(x) =

{
Px%(2P − 1), 0 ≤ x ≤ 2P − 2

2P − 1, x = 2P − 1

Two ways can be executed
separately or simultaneously

The round radix-2 DIF
FFT needs to be shuffled,
part of the radix-4 DIF

FFT when the number of
PE is not an integer

power of 4

VLDDWMY
Vector memory access
shuffle load instruction

Type Y
f(x) =

{
Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

The round radix-4 DIF
FFT needs to be shuffled

VLDDWMZ
Vector memory access
shuffle load instruction

Type Z
f(x) =

{
2Px%(4P − 1), 0 ≤ x ≤ 4P − 2

4P − 1, x = 4P − 1

Two ways need to be
executed simultaneously

Adjustment of data
position at the end of the

operation when the
element width is larger

than the register width of
the processor

1084 Chinese Journal of Electronics 2023

 2) Performance improvement of common FFT al-
gorithms

Table 3 gives the normalized speedup ratio for five
implementations of the FFT computation in radix-2/4
and DIF/DIT for 1024 and 4096 points single/double
floating complex number. The VHALFUP/DN method
proposed in reference [7] and the VEXC in [8] are only
applicable to the radix-2 FFT algorithm but not to the
radix-4. The NIP proposed in this paper and the fur-
ther NIP_VLSSF can achieve performance improve-
ment in both radix-2 and radix-4 FFT algorithms. In
addition, the VHALFUP/DN brings a limited speedup,

which is mainly due to the vital function of the BASE
algorithm in the evaluation environment. Further, in
the radix-2 FFT, the speedup of the NIP is greater than
that of the VHALFUP/DN and smaller than VEXC. In
contrast, the performance of the NIP_VLSSF is optim-
al. Compared with the BASE, the performance improve-
ment of the proposed NIP is between 17.3% and 33.1%,
and the NIP_VLSSF is between 52.8% and 97.1%.
Compared with the best performing method VEXC in
the previous reference, the performance improvement of
the NIP_VLSSF is between 17.9% and 37.1%. In the
radix-4 FFT, the performance improvement of the pro-
posed NIP is between 13.5% and 27.8% compared with
the BASE and the NIP_VLSSF is between 84.3% and
111.2%.

1536 = 3× 29

In addition, Table 3 also shows the statistics of the
1536-point single floating DIF algorithm, and since

, the same technique as the radix-2 FFT
can be used for the last four stage of the rounds that
need to be shuffled. Compared with the previous best
method VEXC, the performance is improved by 21.6%.

By analyzing the parity rows in Table 3, the pro-
posed NIP_VLSSF brings little difference in the spee-
dup of the two FFT extraction algorithms, DIT and
DIF, which is mainly due to the fact that the computa-
tion effort and the shuffle need are almost the same for
these two extraction methods. For single and double
floating FFT with same points, Table 3 shows that the
performance speedup of the NIP_VLSSF is higher for
double floating FFT. That is because the double float-
ing FFT contains a slightly larger ratio of the shuffle
operation. In addition, since the double floating num-
bers are stored consecutively in real and imaginary be-

Table 2. Specific parameters of the simulation platform

Name Specific parameter value
Number of PE 4, 8, 16 (baseline), 32
VM Capacity 512 KB

Processor
machine word

length
64 bits

Shuffle unit

Crossover network implementation; two inputs
and one output (baseline); two cycles pipeline
(baseline) or one cycle completion (PE counts

less than or equal to 8)

Instruction
issue slot design

3 MAC (perform floating multiply-add, multiply
or add) units, 1 BP (branch) unit, 2 vector LS

units

Multiplier 4 stage pipeline, supports double floating or
single floating SIMD

Adder 3 stage pipeline, supports double floating or
single floating SIMD

MAC unit 6 stage pipeline, support double floating or single
floating SIMD

Execution
cycles of vector
memory-access

instruction

VLoad class instruction: 8 cycles pipeline. VStore
class instruction: 4 cycles pipeline

Table 3. The performance improved in the common FFT algorithm

Number of
points Radix-2/Radix-4 Single/Double

precision DIF/DIT
Normalized acceleration ratio NIP_VLSSF/M

Radix-2:M=VEXC;
Radix-4:M=BASEBASE VHALF (UP/DN) VEXC NIP NIP_VLSSF

1024 Radix-2 Single DIF 1 1.03 1.30 1.17 1.53 117.92%
1024 Radix-2 Single DIT 1 1.03 1.28 1.17 1.54 120.09%
1024 Radix-2 Double DIF 1 1.05 1.34 1.26 1.70 126.88%
1024 Radix-2 Double DIT 1 1.04 1.36 1.24 1.70 124.76%
1024 Radix-4 Single DIF 1 – – 1.14 1.84 184.34%
1024 Radix-4 Single DIT 1 – – 1.14 1.93 192.88%
1024 Radix-4 Double DIF 1 – – 1.27 2.08 207.66%
1024 Radix-4 Double DIT 1 – – 1.28 2.11 211.16%
4096 Radix-2 Single DIF 1 1.04 1.42 1.23 1.80 126.74%
4096 Radix-2 Single DIT 1 1.04 1.40 1.24 1.84 131.34%
4096 Radix-2 Double DIF 1 1.06 1.44 1.33 1.97 137.10%
4096 Radix-2 Double DIT 1 1.04 1.46 1.30 1.95 133.77%
4096 Radix-4 Single DIF 1 – – 1.14 1.93 192.58%
4096 Radix-4 Single DIT 1 – – 1.14 1.97 196.73%
4096 Radix-4 Double DIF 1 – – 1.26 1.99 198.63%
4096 Radix-4 Double DIT 1 – – 1.22 2.01 201.46%
1536 Radix-3,Radix-2 Single DIF 1 1.04 1.29 1.22 1.57 121.62%

Vector Memory-Access Shuffle Fused Instructions for FFT-Like Algorithms 1085

fore computation, the NIP_VLSSF can solve this prob-
lem efficiently. For the same points, accuracy, and ex-
traction method, Table 3 shows that the NIP_VLSSF
has a higher speedup ratio for the radix-4 FFT al-
gorithm. Although the radix-4 FFT requires fewer
rounds of shuffle than the radix-2, the number of radix-
4 butterfly operations that need to be shuffled is much
more than that of radix-2, so the NIP_VLSSF can play
a more significant role.

 3) Effect of FFT points
Fig.6 illustrates the normalized speedup of single-

precision floating-point complex radix-2 DIF FFT at
different point sizes. On the one hand, it can be seen
from equation (1) in Section III.2 that the share of the
shuffle operations in the overall operation decrease as
the FFT size increases. On the other hand, as the FFT
points increase, the efficiency of the FFT mapping will
show a slow increase until a smooth trend (e.g., the pro-
portion of filling and emptying decreases gradually
when using software pipeline). The two aspects determ-
ine that the speedup of the proposed NIP_VLSSF
shows a trend of increasing, then decreasing, and then
stabilizing with the increasing of FFT size.

0
0.5
1.0
1.5
2.0
2.5

N
or

m
al

iz
ed

 sp
ee

du
p

1024 2048 4096 8192 16384 32768

VHALFUP/DN VEXCBASE NIP NIP_VLSSF

1.
03

1.
30

1.
17

1.
53

1.
03

1.
28

1.
17

1.
50

1.
04

1.
41

1.
23

1.
79

1.
04

1.
38

1.
22

1.
70

1.
04 1.

21
1.

68

1.
68

1.
04

1.
36

1.
211.

36

Fig. 6. Normalized speedup ratio of single-precision floating-

point complex radix-2 DIF FFT at different scales.

As illustrated in Fig.6, when the radix-2 DIF FFT
size ranges from 1024 to 4096, the speedup of the pro-
posed NIP and NIP_VLSSF increase from 1.17/1.53 to
1.23/1.79, compared with BASE. And as the FFT size
ranges from 4096 to 32768, the speedup decrease to
1.21/1.68, then keep steady. We also found the same
pattern in other FFT types. In addition, when the FFT
points continue to increase, and the data and butterfly
factors capacity exceeds the VM capacity, the perform-
ance of FFT will be affected by more factors, such as
the performance of the Cache system, the storage band-
width of DDR, etc.

 4) Effect of the PE number
The normalized speedup of various implementa-

tions of the 1024-point and 4096-point single floating
radix-2 and radix-4 DIT FFT with different PE counts
are presented respectively in Fig.7. The rounds number
that needs to be shuffled by the FFT increases with the
PE counts. The proposed method mainly reduces the
cost caused by shuffle operation. Thus, the perform-
ance improvement increases with the rise of the PE

counts.

1.
14 1.
14

1.
03

1.
28

1.
17

1.
54

1.
03

1.
31

1.
21

1.
62

1.
08

1.
00 1.
00

1.
24

1.
20 1.

38

PE counts
(a) 1024-point single-precision complex radix-2 DIT FFT

0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 sp
ee

du
p

4 8 16 32

VHALFUP/DN VEXCBASE
NIP NIP_VLSSF

1.
20 1.
19

1.
04

1.
40

1.
24

1.
84

1.
04

1.
42

1.
27

1.
92

1.
12

1.
00

1.
00

1.
37

1.
58

PE counts
(b) 4096-point single-precision complex radix-2 DIT FFT

0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 sp
ee

du
p

4 8 16 32

VHALFUP/DN VEXCBASE
NIP NIP_VLSSF

1.
02 1.

44

1.
19

1.
03 1.

14

1.
93

1.
03 1.

10

2.
31

1.
44

1.
00

1.
00

1.
88

PE counts
(c) 1024-point single-precision complex radix-4 DIT FFT

0

0.5

1.0

1.5

2.0

2.5
N

or
m

al
iz

ed
 sp

ee
du

p

4 8 16 32

BASE NIP NIP_VLSSF

1.
02 1.

19

1.
15

1.
96

1.
10

2.
36

1.
45

1.
92

PE counts
(d) 4096-point single-precision complex radix-4 DIT FFT

0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 sp
ee

du
p

4 8 16 32

BASE NIP NIP_VLSSF

1.
28

Fig. 7. Normalized speedup ratio of various methods with

different PE number.

The performance speedup increases almost linearly
with the PE counts, as shown in Fig.7(a) and (b). For
example, for 1024 point radix-2 DIT FFT, compared
with BASE, the NIP_VLSSF can bring a speedup of
1.24, 1.38, 1.54, and 1.62 as the PE count of 4, 8, 16,
and 32. Morever, for 4096 point radix-2 DIT FFT, the
speedup is even higher (1.37, 1.58, 1.84, and 1.92). The
speedup of the traditional VEXC also increases with the
PE counts, but they are lower than those of the

1086 Chinese Journal of Electronics 2023

NIP_VLSSF.
Unlike the radix-2 FFT, in the radix-4 FFT, with

the PE counts increasing, the speedup of NIP_VLSSF
increases in a stepwise manner. The main reason is the
number of rounds to be shuffled is 2 when PE counts
are 8 and 16. And the rounds are 1 and 3 for PE count
of 4 and 32. Thus, the speedup of the NIP_VLSSF does
not vary much when PE counts are 8 and 16. As shown
in Fig.7(c) and (d), the speedup of the NIP_VLSSF are
1.44, 1.88, 1.93, and 2.31 for 1024-point radix-4 DIT
FFT when PE counts are 4, 8, 16, and 32, respectively,
and 1.45 for 4096-point radix-4 DIT FFT. The VHAL-
FUP/DN and VEXC do not work for the radix-4 FFT,
while the NIP, which does not use vector memory-ac-
cess shuffle instructions, provides a worse speedup than
the NIP_VLSSF.

 2. Code compression
Smaller code size means less instruction cache miss,

and the NIP and NIP_VLSSF proposed in this paper
can significantly reduce the code size of FFT. Tradi-
tional BEA_IP, including those accelerated by the
methods VHALFUP/DN and VEXC, uses different sub
modes of VHALFUP/DN or VEXC and shuffle instruc-
tions in the different shuffling rounds. So the assembly
code cannot be unified for all rounds that need to be
shuffled but need to be expanded, making the code size
too long. Contrarily, the NIP and NIP_VLSSF pro-
posed in this paper have the same shuffle instructions
or memory-access shuffle fused instructions in the
rounds that need to be shuffled, so the code can be uni-
fied in the shuffled rounds, and the code size can be sig-
nificantly reduced. As shown in Fig.8, the code com-
pression ratio of the NIP_VLSSF ranges from 18.4% to
39.8% for PE counts from 8 to 32 in 4096-point radix-2
single floating DIF FFT, compared with the VEXC.
For 4096-point radix-4 single floating DIF FFT, the
code compression ratio of the NIP_VLSSF ranges from
5.4% to 24.2% compared with the BASE.

 3. Hardware overhead

4P × T

The instructions proposed in this paper introduce
some hardware overhead. First, the added vector
memory-access shuffle fused instruction will occupy 2
bits of instruction coding space. Second, two additional
registers are needed at each stage of the vector
memory-access pipeline to record and pass the type of
instructions. When implementing data shuffle in the
vector memory-access pipeline, there will only be four
types of data reassembly (including the case of no data
reassembly) for vector Load instructions (or vector
store). So two 1/4 MUXs are added at the address cal-
culation and data return stage, each of which drives
bits (suppose the vector SIMD processor has two vec-
tor memory-access units, each of which can issue a
double-word vector memory-access instruction per

P Tcycle. is the PE count, and is the processor’s ma-
chine word length). From the timing overhead point of
view, the added 1/4 MUX has a small overhead and is
negligible.

 4. Comprehensive comparison
In terms of hardware and timing overhead, the

BASE has no additional hardware requirements other
than the use of shuffle unit, and therefore the hardware
overhead is minimal. The VHALFUP/DN requires fur-
ther specialized instructions, but the overhead is not
significant. The VEXC requires two reads and two
writes ports to the VRF, which is often assigned to the
BP unit (usually, the BP unit contains only one re-
gister file write port), so the VEXC adds a write port to
VRF. Therefore, it has a higher timing overhead. The
NIP_VLSSF shares some resources of the memory-ac-
cess unit, and the additional hardware is mainly the
MUX and a small number of flip-flops, so the hardware
overhead is reasonable.

In terms of applicability, the VHALFUP/DN and

4

8

16

32

PE

counts 400 600 800 1000 1200

Instruction counts

(a) 4096-point radix-2 single floating DIF FFT

1400

18.4%

27.4%

38.4%

30.9%

46.7%

39.8%

VHALFUP/DN
VEXC

BASE

NIP
NIP_VLSSF

4

8

16

32

PE

counts
200 400 600 800 1000

Instruction counts

(b) 4096-point radix-4 single floating DIF FFT

24.2%

10.2%

10.2%

5.4%

BASE
NIP
NIP_VLSSF

Fig. 8. Code size of FFT algorithm with different PE count.

Vector Memory-Access Shuffle Fused Instructions for FFT-Like Algorithms 1087

VEXC can only accelerate the radix-2 FFT algorithm,
while the NIP_VLSSF has good acceleration for both
radix-2 and radix-4 FFT and can be used for other al-
gorithms with real and imaginary cross-storage. Thus,
the applicability is optimal.

In summary, the NIP_VLSSF can effectively im-
prove the execution efficiency of standard FFT al-
gorithms, reduce the code size, have moderate hard-
ware overhead, and is highly applicable. It has obvious
advantages over the current solutions.

 VI. Summary
In this paper, we propose a class of vector memory-

access shuffle fused instructions for FFT-like algorithms
and vector SIMD structures, which fuse some functions
of data shuffle and vector memory-access parts of tradi-
tional SIMD processors. Together with the proposed
binary swap mapping method of non-in-place storage
with a modulo shuffle, it can completely hide the com-
munication overhead between PEs and efficiently solve
the data access and data replacement problems faced by
FFT-like algorithms in vector SIMD structures. Thus
has important theoretical and engineering significance.

References
 J. W. Cooley and J. W. Tukey, “An algorithm for the ma-
chine calculation of complex Fourier series,” Mathematics of
Computation, vol.19, no.90, pp.297–301, 1965.

[1]

 W. Hussain, F. Garzia, T. Ahonen, et al., “Designing fast
Fourier transform accelerators for orthogonal frequency-divi-
sion multiplexing systems,” Journal of Signal Processing
Systems, vol.69, no.2, pp.161–171, 2012.

[2]

 A. Gupta and V. Kumar, “The scalability of FFT on paral-
lel computers,” IEEE Transactions on Parallel and Distrib-
uted Systems, vol.4, no.8, pp.922–932, 1993.

[3]

 J. W. Van De Waerdt, S. Vassiliadis, S. Das, et al., “The
TM3270 media-processor,” in Proceedings of the 38th An-
nual IEEE/ACM International Symposium on Microarchi-
tecture, Barcelona, Spain, pp.331–342, 2005.

[4]

 Texas Instruments, “Tms320c64x/C64x+ DSP CPU and in-
struction set reference guide, Texas Instruments User manu-
al SPRU732C,”
Available at:
https://www.ti.com/lit/ug/spru732j/spru732j.pdf, 2015

[5]

 J. Fridman, “Data alignment for sub-word parallelism in
DSP,” in Proceedings of IEEE Workshop on Signal Pro-
cessing Systems. SiPS 99. Design and Implementation
(Cat. No. 99TH8461), Taipei, China, pp.251–260, 1999.

[6]

 R. Thomas, An Architectural Performance Study of the
Fast Fourier Transform on Vector IRAM. University of
California, Berkeley, Berkeley, CA, USA, pp.16–35, 2000.

[7]

 K. Zhang, S. M. Chen, S. Liu, et al., “Accelerating the data
shuffle operations for FFT algorithms on SIMD DSPs,” in
Proceedings of the 9th IEEE International Conference on
ASIC, Xiamen, China, pp.740–743, 2011.

[8]

 B. S. He, N. K. Govindaraju, Q. Luo, et al., “Efficient gath-
er and scatter operations on graphics processors,” in Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercom-
puting, Reno, NV, USA, 2007.

[9]

 G. Efland, S. Parikh, H. Sanghavi, et al., “High perform-
ance DSP for vision, imaging and neural networks,” in 2016
IEEE Hot Chips 28 Symposium (HCS), Cupertino, CA,
USA, pp.1–30, 2016.

[10]

 M. Woh, S. Seo, S. Mahlke, et al., “AnySP: Anytime any-
where anyway signal processing,” in Proceedings of the 36th
Annual International Symposium on Computer Architec-
ture, Austin, TX, USA, pp.128–139, 2009.

[11]

 S. M. Chen, Y. H. Wang, S. Liu, et al., “FT-Matrix: A co-
ordination-aware architecture for signal processing,” IEEE
Micro, vol.34, no.6, pp.64–73, 2014.

[12]

 J. H. Huang, “Design and implementation of vectorized
FFTs on the YHFT-Matrix,” Master Thesis, Nat. Univ. De-
fense Technol., Changsha, China, 2012. (in Chinese)

[13]

LIU Sheng was born in 1984. He
is a Ph.D. and Assistant Research Fel-
low in National University of Defense
Technology. His main research interests
include microprocessor architecture and
VLSI design.
(Email: liusheng83@nudt.edu.cn)

YUAN Bo was born in 1996. He
is a Ph.D. candidate of electronic science
and technology. His main research in-
terests include microprocessor architec-
ture and VLSI design.
(Email: yuanbo18@nudt.edu.cn)

GUO Yang (corresponding au-
thor) was born in 1971. He is a Ph.D.
and Research Fellow. His main research
interests include low power VLSI circuit,
microprocessor design & verification, and
electronic design automation (EDA) for
VLSI circuit.
(Email: guoyang@nudt.edu.cn)

SUN Haiyan was born in 1976.
She is a Ph.D. and Associate Research
Fellow in National University of Defense
Technology. Her main research interests
include compilation, programming model,
and embedded application.
(Email: helen@nudt.edu.cn)

JIANG Zekun was born in 1996.
He received the M.E. degree from
Chongqing University of Posts and Tele-
communications. His main research in-
terests include microprocessor architec-
ture. (Email: jzk61010@hotmail.com)

1088 Chinese Journal of Electronics 2023

