
Towards Order-Preserving and Zero-Copy
Communication on Shared Memory for

Large Scale Simulation
LI Xiuhe, SHEN Yang, LIN Zhongwei, ZHAO Shunkai, SHI Qianqian, and DAI Shaoqi

(College of Electronic Engineering, National University of Defense Technology, Hefei 230031, China)

 Abstract — Parallel simulation generally needs effi-
cient, reliable and order-preserving communication. In
this article, a zero-copy, reliable and order-preserving in-
tra-node message passing approach named ZeROshm is
proposed. This mechanism partitions shared memory into
segments assigned to processes for receiving messages.
Each segment consists of two levels of index L1 and L2
that recordes the order of messages in the host segment,
and the processes also read from and write to the seg-
ments directly according to the indexes, thereby elimin-
ating allocating and copying buffers. As experimental re-
sults show, ZeROshm exhibits nearly equivalent perform-
ance to message passing interface (MPI) for small mes-
sage and superior performance for large message. Specific-
ally, ZeROshm costs less time by 43%, 40% and 55% re-
spectively in pure communication, communication with
contention and real PHOLD simulation within a single
node. Additionally, in hybrid environment, the combina-
tion of ZeROshm and MPI also shorten the execution
time of PHOLD simulation by about 42% compared to
pure MPI.

 Key words — Zero-copy, Order-preserving, Shared

memory, Parallel simulation, Message passing interface,

Interprocess communicaton.

 I. Introduction
Communication plays an essential role in any par-

allel simulation, where the main procedure is to process
events (messages) in causal order. Connecting multi-
core processors into a cluster (called multi-core cluster,
MCC) has been a dominant computing architecture
which is used to run parallel simulation. Compared to
the cluster connecting single-core processors, MCC can
provide deeper communication hierarchy, i.e., cores
within a processor transfer data through special chan-

nels among them, which can achieve fast communica-
tion through proper layout of tasks. Threads within a
process can share data without transforming addresses
by operating system, thereby multi-threaded applica-
tion has been the primary choice for communication-in-
tensive applications, to make full use of fast channels
among cores [1]–[4].

Parallel simulation proposes requirements to under-
lying communication, including 1) Reliability, it never
lose any data, and a message reaches its destination be-
fore the end of simulation, which is a mandatory condi-
tion to the correctness of simulation; 2) Order-pre-
serving, it receives messages in sent-out order between a
pair of sender and receiver, which is a optional need to
the correctness, as time management can control the
process of disordered messages in causal order at the
price of extra overheads, e.g. delay and computation of
synchronizing messages; 3) Zero-copy, it never copies
the whole body of the message, which is not mandat-
ory but can reduce cost and overheads significantly.

In modern operating system (OS), a process gener-
ally uses different logic address, which prevents sharing
data among processes directly even if those reside in an
individual physical machine (node). As a result, inter-
process communication (IPC) is employed to transfer
data among processes.

The message passing interface (MPI) is the most-
widely used IPC, and it employs the so called two-sided
communication [5] to transfer data from one process to
another, which copies data twice. Shared memory is
proved to be the fastest IPC medium [6], [7] within a
single machine. The present dominant communication
mid-wares based on shared memory can be classified in-
to two categories: 1) Simply employing shared memory

Manuscript Received Nov. 9, 2021; Accepted Feb. 11, 2022. This work was supported by the National Natural Science Foundation
of China (61802422).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.393

Chinese Journal of Electronics
Vol.32, No.5, Sept. 2023

as transient space, leading to copy operation between
the source and destination process, e.g. MPI; 2) Data
reside in shared memory, while are read and written in
first-in-first-out (FIFO) order, which can lead to viola-
tion of data order when a process is switched during
reading and writing the data, e.g. ZIMP [8] and shared
memory based RTI [9]. Moreover, the FIFO policy may
lead to damage to performance of parallel simulation, as
demonstrated in Fig.1.

0 1 2 3 4 5 6 7

e1 (1)

e4 (4)

e2 (2) e3 (3)

A

B
Fig. 1. Example of FIFO policy.

e1 e4
e4

e2 e3

In Fig.1, the process B has sent 3 messages (with
timestamp in brackets) to process A, after that mes-
sage is reclaimed and returned to contain , in this
circumstance process A prefers to receive in prior to

 and , which in essence gives lower priority to mes-
sages with lower timestamp. As a result correct lower
bound of time-stamp (LBTS) [10] can be computed only
when the message with global minimum timestamp is
received, which consequently increases the execution
time of simulation.

In this work, a zero-copy, reliable and order-pre-
serving mechanism (ZeROshm) was proposed on shared
memory for large scale parallel simulation oriented to
MCC. In ZeROshm, shared memory is partitioned into
segments by which a process exchanges and stores mes-
sages, and each segment consists of two levels of index
L1 and L2 that both control the use of space in the host
segment and record the order of messages. Thereinto,
L1 index marks the start and end point of L2 index in
use, and L2 index directs to the space that contains
pending messages, as a result it never copy message
body. Sending and receiving message operates on L1
and L2 index, and a process reads from and writes to
shared memory directly, thereby eliminating allocating
and copying buffers. As experimental results show, ZeR-
Oshm exhibits nearly equivalent performance to MPI
for small message and superior performance for large
message. Specifically, ZeROshm costs less time by 43%,
40% and 55% respectively in pure communication, com-
munication with contention and real simulation within
a single node. In hybrid environment, the combination
of ZeROshm and MPI also shows better performance by
about 42% than pure MPI.

The rest of this article is organized as follows. Sec-
tion II provides an overview of previous studies and
their limitations. We describe the structure and proced-

ures of ZeROshm in Section III, and then prove the cor-
rectness and analyze the cost of ZeROshm in Section
IV. Experimental results and evaluation is represented
in Section V, followed by conclusion in Section VI.

 II. Related Work
Compared to general applications, parallel simula-

tion is special in terms of requirements to communica-
tion, i.e., it needs reliable and order-preserving commu-
nication for correctness and performance [10]. In fact,
order-preserving is not a rigid requirement on commu-
nication for correctness in modern simulation systems,
as both conservative and optimistic policy can handle
the disordered arrival of messages. In conservative
policy, all logic processes (LPs) wait until a new LBTS
is updated, and the calculation of LBTS must trace all
messages, which prevents violation of causal order. Op-
timistic simulation rolls back to a past time point when
violation of causal error is detected, e.g. a straggler
message arrives. However those solutions to disordered
message leads to significant degeneration in perform-
ance for simulation execution through prolonging the
time of computing LBTS (keeping LPs idle meantime)
in a conservative simulation and bringing in extra
straggler message in optimistic policy. Zero-copy attrib-
ute of communication mechanism can significantly de-
crease the cost of transferring messages, thereby im-
prove the performance of applications including paral-
lel simulation.

As we know, transmission control protocol/inter-
net protocol (TCP/IP) is the most typical reliable and
order-preserving mechanism used in network communic-
ation, which is also effective for IPC within a node.
However, copying buffer is always employed in TCP/IP
protocol. Standard MPI is based on TCP/IP, while it is
possible to avoid copying by skillfully-designed layout
and usage of data to be transferred in special applica-
tions. Hoefler et al. [11] proposed zero-copy algorithms
for fast Fourier transform and conjugate gradient using
MPI datatypes and observed significant speedups up to
a factor of 3.8. The MPI 3.0 standard [12] introduces
new process-level interfaces to allocate space directly on
shared memory (i.e., MPI_Win_allocate_shared) and
to synchronize processes to access those data (i.e.,
MPI_Win_sync and MPI_Win_shared_query), mak-
ing it possible to eliminating coping buffer. As tested
and analyzed in [5] and [13], compared to the two-side
version (namely MPI-2.x), MPI 3.0 promotes commu-
nication performance of transferring data up to 85%.
The shared memory version MPI provides basic sup-
port to construct zero-copy communication, while extra
control of receiving those data is necessary to achieve
order-persevering.

Towards Order-Preserving and Zero-Copy Communication on Shared Memory for Large Scale Simulation 1067

Aublin et al. proposed ZIMP [8] which constructs
channels (actually a circular buffer) on shared memory,
and then a process can allocate memory from channels
and others processes also read from channels without
any copying. Moreover, it also achieves one-to-many
communication. As tested and reported, ZIMP consist-
ently improves the performance of the state-of-art
mechanisms by up to one order of magnitude. However,
messages in ZIMP are organized into a circular buffer
and receivers read messages in arbitrary order, which
leads to possibility of breaking down the message order-
ZIMP is not order-preserving.

Swenson et al. [14] proposed a new approach to
support zero-copy inter-process communication. Each
logic process (LP) holds an allocator which can allocate
memory (called “heap item”) from shared memory, and
smart pointer to heap item is sent to receiver. Each
heap item holds the identifier of host LP which can be
used to reversible allocation in case of rollback. They
compared the performance among MPI full copy, Boost
shared memory object (also zero-copy) and their ap-
proach, and concluded: 1) The execution time of zero-
copy approach is nearly constant regardless of data size;
2) The general-purposed design and implementation of
Boost leads to noticeable degeneration in performance;
3) MPI full copy performs better when massage size is
small (approximately 3,000 bytes).

Each logic process in [14] holds an array of shared
heap pointers (called “HeapCluster”) to identify the
sender LP of a message, whereas the memory consump-
tion and the time of recognizing smart pointer are pro-
portional to the number of LPs in the simulation. In
other works, high memory consumption and long recog-
nizing time should be inevitable as the number of LPs
increases without extra optimization.

 III. ZeROshm Design
We are achieving zero-copy, reliable and order-pre-

serving communication on shared memory. To cover
these requirements, we consider as follows:

1) Accessible: a shared memory block should be al-
located and initialized properly in prior to simulation
execution;

2) Zero-copy: all messages should reside in shared
memory, and processes within a node write and read
message directly by pointer or reference;

3) Reliable: messages can reach the destination and
keeps unchanged before read;

4) Order-preserving: the order of sending message
to a process should be recorded, and the receiver pro-
cess reads messages according the recorded order.

Before the allocation of shared memory, it is neces-
sary to know the number of processes in each node and

the distribution of those processes which is used to cal-
culate the size of shared memory block and distinguish
local and remote messages.

 1. Construction of routing map
As a process communicates to both local and re-

mote processes, it needs route messages before actually
sending them out. This can be done by querying rout-
ing map which tells the host node of an individual pro-
cess. Suppose we have 2 nodes, node0 and node1, and
create 8 processes in total and evenly distribute them to
run simulation, which forms hybrid (distributed and
shard memory) communication architecture as shown in
Fig.2.

P6P4P2P0

MPI

ZeROshm

Node0

P7P5P3P1

ZeROshm

Node1

Fig. 2. Hybrid communication architecture.

rank

P0 P0

n n

⟨rank, path⟩ path

P0

⟨1,−1⟩ ⟨2, 0⟩

At first, each process reports the hostname of its
host node and identifier number (also named in
MPI) to the controller, say ; and then groups the
reports by hostnames; after that we can have sets (
is the number of nodes), and each set contains the
ranks of process in that node; and finally, the sets are
serialized into a special message tagged Topology and
sent to all processes. When another process receives the
Topology message, it constructs a map R containing

, where can be 0 (local) or −1 (re-
mote), by comparing the local hostname and host-
names in the message. The process in Fig.2 can own
a routing map item and .

 2. Allocation
c

0, 1, . . . , c− 1

For a node containing processes numbered by
, we call the processes a family, and one

process is assigned as family controller, which is in ac-
cordance with the design of NTW-MT [1], [2] and
double-indexed shared memory [15]. Family controller
can allocate a block of shared memory, and each pro-
cess use a part of the block as so called a segment to
contain messages sent to it, the access to which is con-
trolled by the structure shm_entry as shown in Fig.3.

The structure shm_entry consists of three parts,
including reading area prefixed by “r”, writing area pre-
fixed by “w”, and message storage area. The reading
area and the writing area have the same components,
including a mutex, two integers, and an array of in-
tegers, which contribute to recording message orders.
For each area, taking the reading area as an example,
rMutex cares of exclusive access to the reading area,
rBeginIndex and rEndIndex (L1 index) respectively in-
dicates the start and end point of pending indexes in

1068 Chinese Journal of Electronics 2023

sizeof(·)

Lentry = 2× sizeof(mutex) + 4× sizeof(integer)+
2× SHM_N_MSG× sizeof(interger) SHM_N_MSG×
sizeof(message)
Lnode = c× Lentry

⟨rank, seg⟩ seg

0, 1, . . . , c− 1

offsetseg = seg × Lentry

P0

P2

P0

⟨0, 0⟩ ⟨2, 1⟩

rPendingMsgIndexes (L2 index) that stores the indexes
of pending messages in actualMsgs, and actualMsgs
contains SHM_N_MSG empty messages. Then the size
of the block can be easily computed according to back-
ground platform. Suppose the operator com-
putes the size of variables, the size of an shm_entry
equals

 +
, then the family controller allocates

 memory in total. Once when the block
is allocated and partitioned, family controller also de-
cides the segment assignment , where in-
dicates the segment number and can be ,
and then each member can calculate the segment offset
in the block . Finally, the family
controller sends segment assignment to all members,
and each member update its own routing map by repla-
cing the second value in routing map item with the seg-
ment number of family members. In Fig.2, suppose
and is assigned to used the first and second segment
respectively, then updates the routing map items like

 and .
 3. Initialization

0, 1, . . . ,

The family members attach to shared memory and
initialize variables in their own shm_entry: construct
and initialize mutex, set rBeginIndex, rEndIndex and
wBeginIndex to 0, set wEndIndex to SHM_N_MSG−1,
set all integers in rPendingMsgIndexes to 0, set integers
in wAvailableMsgIndexes to SHM_N_MSG−1
in turn, at last clear all message space.

 4. Path of sending and receiving messages
LPs interact with each other by message. Suppose

LPx LPy LPx

LPy

Py LPy

Py

an sends a message to , firstly queries the
identifier of by name service, after that it contin-
ues to query the host process of by partition
service which controls distribution of LPs among pro-
cesses, and then queries the communication path to
process according to the routing map which has been
constructed, as demonstrated in Fig.4. As sending and
receiving message via MPI has been fully introduced in
wide literature, we are mainly representing the proced-
ures of ZeROshm in this article.

Destination

LP

Name

service

Partition

service
LP ID

Routing

map

shm

segment
ZeROshm

MPI

Process ID

−1

Fig. 4. Conversion path for sending a message.

 5. Send messages
Pr

seg Ps

seg

seg

To send a message to family member which uses
the -th segment, the sender directly writes to
the -th segment as described in Algorithm 1, where
all variables resides in the shm_entry of the receiver
process, i.e. -th shm_entry.

Algorithm 1　Steps of sending messages

1: Lock wMutex, and load wBeginIndex and wEndIndex;
2: if wBeginIndex == wEndIndex then
3: 　Unlock wMutex {no available space};
4: 　Wait for available space and try again;
5: else

wMutex

actualMsgs

wBeginIndex

wEndIndex

wAvailableMsgIndexes

Single mutex, control the access to the reading

area

Single integer, the start point of pending index

in rPendingMsgIndexes

Single integer, the end point of pending index

in rPendingMsgIndexes

SHM_N_MSG integers, indexes of pending

messages in actualMsgs

Single mutex, control the access to the reading

area
Single integer, the start point of available index

in wAvailableMsgIndexes

Single integer, the end point of available index

in wAvailableMsgIndexes

SHM_N_MSG integers, indexes of available

message space in actualMsgs

SHM_N_MSG messages, space for storing

the actual messages

rMutex

rBeginIndex

rEndIndex

rPendingMsgIndexes

rL1

rL2

wL1

wL2

Fig. 3. Structure shm_entry for control the access to a segment.

Towards Order-Preserving and Zero-Copy Communication on Shared Memory for Large Scale Simulation 1069

6: 　pos ← wBeginIndex {L1 index};
7: 　wBeginIndex++;
8: 　wBeginIndex mod SHM_N_MSG;
9: 　Unlock wMutex;
10: 　index ← wAvailableMsgIndex[pos] {L2 index};
11: 　e ← actualMsgs[index];
12: 　e ->shm_pos ← index;
13: 　Sender writes message to the space pointed by e;
14: 　Lock rMutex;
15: 　rPendingMsgIndexes[rEndIndex] ← index;
16: 　rEndIndex++;
17: 　rEndIndex mod SHM_N_MSG;
18: 　Unlock rMutex;
19: end if

mod
mod

pos

pos

index

index

index

In Algorithm 1, the main steps of sending a mes-
sage include finding space and submitting it to receiver.
In L1 index, the index interval [wBeginIndex
SHM_N_MSG, wEndIndex SHM_N_MSG] tells
the start and end position which stores available in-
dexes in wAvailalbeMsgIndexes, then the sender fetches
the first available index, i.e. wBeginIndex, and records
it by a temporary variable . In L2 index, the index
interval available in wAvailableMsgIndexes, the sender
fetches the integer with offset and records to a tem-
porary variable , then the actual space is the

-th element in actualMsgs. It should be noted that
a message has a component shm_pos set by for
space reclaiming as represented in the algorithm in Sec-
tion III.7.

After the space is found, the sender can write mes-
sage content to shared memory, then submit it by writ-
ing the message index into the reading area, hence the
message becomes perceptible to the receiver process.

 6. Receive messages
Each process also looks up its own reading area

and receives all perceptible messages as listed in Al-
gorithm 2.

Algorithm 2　Steps of receiving messages

1: Lock rMutex, and load rBeginIndex and rEndIndex;
2: if rBeginIndex == rEndIndex then
3: 　 Unlock rMutex and return {no perceptible message};
4: else
5: 　pos ← rBeginIndex;
6: 　rBeginIndex++;
7: 　rBeginIndex mod SHM_N_MSG;
8: 　Unlock rMutex;
9: 　index ← rPendingMsgIndexes[pos];
10: e ← actualMsgs[index];
11: Enqueue e into the destination LP;
12: end if

Receiving messages also includes twice access to in-

dexes. It should be noted that algorithm of receiving
messages in Algorithm 2 returns a pointer of message
which locates at shared memory (thereby no buffer
copy is needed), and the received message becomes
pending event of the destination LP after properly en-
queued.

 7. Reclaim message space
The space occupied by messages is reclaimed in

fossil collection (optimistic policy) or once when the
message is processed (conservative policy). The main
steps of reclaiming message space is to return index in-
to wAvailableMsgIndexes as listed in Algorithm 3.

Algorithm 3　Setps of reclaiming message space

1: Lock wMutex;
2: wAvailableMsgIndexes[wEndIndex] = e.shm_pos;
3: wEndIndex++;
4: wEndIndex mod SHM_N_MSG;
5: Unlock wMutex.

Free space is added to the end of available mes-
sages, and thus can be allocated again in the algorithm
of sending messages. In fact the access to actualMsgs is
definitely controlled by L1 and L2 indexes, hence the
order of empty messages does not matter the proced-
ures of ZeROshm at all.

Here we summarize how ZeROshm satisfies the
zero-copy, reliable and order-preserving requirements
proposed at the beginning of Section III.

1) Accessible: All processes attach to shared
memory and thereby can access all data there.

2) Zero-copy: Message resides in the shared
memory block, hence reading and writing message is op-
erated by pointers, as a result no data is copied during
the whole procedure.

3) Reliable: Messages are tightly aligned, and all
writing checks the bound of adjacent messages to get
rid of any breakdown to message body.

4) Order-preserving: The r-prefixed indexes, i.e.
rBeginIndex and rPendingMsgIndexes, forms a cyclic
queue which records the orders of message sent to the
host process; The w-prefixed indexes, i.e. wBeginIndex
and wAvailableMsgIndex, also forms a cyclic queue and
accepts free space at any time, which is suitable for
asynchronous fossil collection in optimistic simulation.

 IV. Correctness Proof and Cost Analysis
As analyzed in Section II, parallel simulation gener-

ally needs reliable and order-preserving message
passing. In this section, we prove the reliability and or-
der-preserving property, and also analyze the cost of
ZeROshm.

1070 Chinese Journal of Electronics 2023

 1. Proof to reliability and order-preserving
Definition 1　A message passing mechanism is re-

liable if any message can arrive its specific destination
and the content keeps unchanged.

Definition 2　 A message passing mechanism is
order-preserving if messages sent firstly are received
firstly between a pair of sender and receiver.

Theorem 1 (Reliability)　ZeROshm achieves reli-
able message passing.

Proof　 The reliability of ZeROshm highly de-
pends on stable access to shared memory, here we as-
sume operating system provides stable service to shared
memory, lock and unlock operation in ZeROshm (error
and fault can be detected).

• Reachability: In ZeROshm, any process can ac-
cess the full space of shared memory, hence a sender
process find room (equivalent to index) and push the
index into the pending message queue (also resides in
shared memory) of receiver, then the receiver process
can read the message according to the indexes in queue.

ebroken
eoccupy

0, 1, . . . ,

• Fidelity: A message should not be broken down
by another writing before reclaimed by the receiver, and
this can be proved by contradiction. Note that space
in actualMsgs is strictly aligned in message format and
mutexes prevent concurrent operation on an individual
segment, then a message, say is broken down
only if the later writing of message, say , gets the
same index in actualMsgs, i.e. line 11 in Algorithm 1.
And given that all L2 indexes are set to
SHM_N_MSG−1, which are different from each other,
then the later writing gets the same L1 index, i.e. line 10
in Algorithm 1, and then it also gets the same value of
wBeginIndex, i.e. line 6. However, wBeginIndex keeps
increasing and moded by SHM_N_MSG: It reaches the
same position until it exceeds SHM_N_MSG and turns
back. As both wBeginIndex and wEndIndex are moded
by SHM_N_MSG, wBeginIndex must stride across the
wEndIndex position, which would be prevented by
judgment between them (line 2 in Algorithm 1) .

• No loss of message: Given that all reading from
and writing to the shared memory is reliable and the
processes within a node would have the same view of
orders of memory access, any message written by the
sender process in actualMsgs and indexed at a position
in rPendingMsgIndexes can be perceived and accessed
by the receiver process in a reversed manner.

N B E
a, b ∈ [0, N) a

b

As modulus operator is used in ZeROshm, we use
the concept “left” to mark position of indexes in cyclic
queues. For modulus , let and as the start and
end position, for any integers , we say is
on the left of if
 {

a < b, B < E
B < a < b, a < b < E, b < E&a > B, B > E

and the symmetry (i.e., the concept “right”) can be in-
ferred.

Lemma 1 (L2 index position)　For any segment,
rBeginIndex (rEndIndex) is on the left (right) of any
perceptible messages in rPendingMsgIndexes.

Proof　Under the control of memory consistency
[16], processes residing in the same node should hold
the same order of writings to memory, which prevents
disorder of readings. In Algorithm 1, each submission
increases rEndIndex (line 16), then rEndIndex locates
the right of the latest message in rPendingMsgIndexes,
naturally. For reading messages from shared memory in
Algorithm 2, rBeginIndex is initialized to 0 and in-
creases only if it reads a message (line 6 in Algorithm
2), then rBeginIndex must locates the left of the earli-
est message in rPendingMsgIndex.

Theorem 2 (Order-preserving)　ZeROshm is or-
der-preserving.

A
e1 e2 B

B e2
e1.pos e2.pos

Proof　Proof by contradiction. Suppose process
sent message and in turn to process , while pro-
cess received message first. The index of the two
messages and in rPendingMsgIndexes can
be in two cases as follows:

e1.pos < e2.pos B e2
e2.pos

rBeginIndex > e1.pos− rBeginIndex
e1

: Process received first, which
indicates rBeginIndex passed the position first,
then we have is on
the right of , which violates Lemma 1.

e1.pos > e2.pos

e1

: It follows the second branch of the
left definition, and rBeginIndex also locates on the
right of .

 2. Cost analysis

∑c
i=1 i ·O(CAS) = O(c2)O(CAS)

O(CAS)

The primary cost of ZeROshm comes from the
overhead of locking on mutex and integer operations.
For sending message, it involves 2 locking and 2 unlock-
ing of mutex, 5 integer assigning, 2 integer increment, 2
integer modulus and writing of message content, then
the total time should be the sum of the above compon-
ents. The cost of integer operations can be generally
considered as constant in a specific run, while the time
of locking depends on the number of processes that
compete an individual mutex, in the worst case a pro-
cess waits until it
locks the mutex successfully, where is the over-
head of a single locking.

Receiving a message involves 1 locking and unlock-
ing of mutex, 3 integer assigning, 1 integer increment
and 1 modulus. Here we can infer that, for small mes-
sages, it is possible that ZeROshm costs more time than
traditional copy-based communication in specific cir-
cumstances, e.g. MPI, since copying of small buffer is
adequately optimized and message merging is generally
in use.

Towards Order-Preserving and Zero-Copy Communication on Shared Memory for Large Scale Simulation 1071

 V. Experiment and Evaluation
Attribute to ZeROshm, NTW-MT [1] now uses hy-

brid communication, i.e., intra-node message is sent via
zero-copy access to shared memory while inter-node
message is sent by MPI. In this section, we test and
analyze the effect of ZeROshm to communication and
real simulation.

 1. Effect to communication
ZeROshm is designed for intra-node communica-

tion, thus we set a bunch of processes within a node to
exchange messages and collect the total time, and then
calculate the average time of receiving a single message.
The hardware and software environment is listed in
Table 1. We use non-blocking MPI interfaces, to be
more specific, it uses MPI_Isend to send out the mes-
sage and calls MPI_Wait to wait completion, and it
firstly calls MPI_Iprobe to check if there are messages
to receive and uses MPI_Irecv to receive data actually.
All global parameters of MPI environment are set by
default value.

Table 1. Environment used in intra-node communication

Item Configuration
CPU Intel i7 with 8 cores

Frequency 1.8 GHz
Cache 32 KB, 256 KB and 8192 KB

Memory 16 GB
OS Linux 4.8.0 - 36 - generic x86_64

GCC 5.4.0
MPI MPICH 3.3

 1) Pure point-to-point message passing
To reduce the impact of contention on segments,

we set only a pair of processes in this scenario, and each
process sends and receives 10,000 messages and the time
is averaged from 5 runs as demonstrated in Fig.5.

1024 3000 4096

1.09

3.62

1.64
1.321.251.151.016

5.85

0.72 0.86 0.95
1.20

1.56 1.57
1.318

1.78

0

2

1

3

4

5

6

2048 1000020000

Message size (byte)

Ti
m

e
(μ

s)

MPI
ZeROshm

Fig. 5. Time of transferring a message.

As shown in Fig.5, MPI costs less time (about 20%
on average) than ZeROshm for small message, e.g., 256
and 1024 bytes. As analyzed in Section IV, the primary

cost of ZeROshm is the overhead of locking on mutex,
and sending a message involves twice locking on mutex,
which could introduce higher overhead than allocating
small buffer by MPI that uses internal memory pool [17]
to get rid of the overhead of small-sized (generally less
than page size) allocation from heap. In this circum-
stances, the extra overhead of ZeROshm from OS is
higher than MPI, as a result ZeROshm costs more time
than MPI for small-sized messages. However, the time
of transferring large message via MPI shows a sharp in-
crease, i.e., it almost doubles as message size doubles up
especially when message size exceeds page size (4096
bytes in our environment). The primary explanation to
the sharp increase lies in that MPI takes much time to
allocate large buffer for transiting message, and it can
be naturally inferred MPI costs much more time for
larger size than the ones in Fig.5. The time consumed
by ZeROshm almost shows linear increase as message
size. Note that this scenario involves only two pro-
cesses, thus the contention on segments is low; there-
fore, the locking on mutex and integer operations cost
constant time as described in Section IV, and the in-
creased time is used for writing message content to
shared memory.

 2) Contention involved
When a few processes access shared memory con-

currently, contention on segments can happen, which
increases overhead of locking on mutexes directly. In
this scenario, we vary the number of processes and mes-
sage size to show the impact of contention as demon-
strated in Figs.6 and 7. For simplicity, we only con-
sider two message size, 1024 bytes and 16384 bytes, as
representatives of small and large size. To create con-
tention, all processes are organized into a virtual ring,
and each process receives message from and sends mes-
sage to one of its neighbor, i.e., the previous and next
process in the ring, which leads to at most 3 processes
accessing an individual segment simultaneously.

43 6 7

3.56

8.62

6.94

5.19

4.28

1.34
2.03

2.47

1

2

8

3

4

5

6

7

9

5 8

Number of process

Ti
m

e
(μ

s)

MPI (1024)
ZeROshm (1024)
MPI (16384)
ZeROshm (16384)

Fig. 6. Time of transferring a message when contention in-

volved.

1072 Chinese Journal of Electronics 2023

From Fig.6, both MPI and ZeROshm takes much
more time to transfer a single message when contention
happens. For small messages, MPI costs less time
(about 13% on average) than ZeROshm when few pro-
cesses are involved (consistent with that in the pure
point-to-point communication circumstance), while the
two curves shows a reverse case when a few processes,
say 7 processes, are introduced. One primary explana-
tion to the crossover is as follows, since allocation of
buffer is critical operation, the overhead of simultan-
eous allocation of buffers increases as the number of
processes increases in MPI, while ZeROshm never alloc-
ates buffers during the whole procedure. For large mes-
sages, MPI always takes more time than ZeROshm
(about 40% on average, and shows higher difference
when a few processes are included), since overhead of
allocating large buffer and contention is much high as
analyzed in Section V.

n

n− 1

1, 2, . . . ,

n− 1 0

0

As stated in Section IV, uncertainty of ZeROshm
lies in locking on mutex, i.e., the waiting time of access
to segments can be long when a few processes tries to
lock on an individual segment. Suppose processes are
used, process 0 sends message to the remaining
processes in turn, while process numbered by

 sends message to process simultaneously, which
constructs a worst case for process as shown in Fig.7.

The curves (worst case) in Fig.7 show similar trend
to that in Fig.5, except for larger value which indicates
that it takes more time to wait for exclusive control to
mutexes.

 2. Effect to simulation
 1) Intra-node communication
Communication latency plays an essential role to

performance of simulation [18]. In this section, we turns
to evaluate the effect of ZeROshm to real simulation.
The overall architecture of our simulator is same as
NTW-MT [1], [2], while intra-node communication is
improved by ZeROshm, thereby eliminating twice copy
of intra-node messages between process space and the

shared memory.

(my_id+ radius)modN
N my_id ∈ [0, N − 1]

radius ∈ (0, N)

1 + time_scale time_scale ∈
(0, 1)

PHOLD is a classical model in parallel and distrib-
uted simulation for testing simulators and related tech-
niques. Each PHOLD instance, namely LP in this simu-
lation, receives and sends message to others. Selection of
destination is determined by ,
where is the total number of LPs,
is identifier of an LP, is a parameter for
controlling distance. The step between processing and
sending message is , where

 is a parameter for controlling simulation rate.

radius

time_scale

The environment used in this experiment is same
as in Section V.1 and listed in Table 1. We launch 3
processes which includes 1 controller process taking care
of global control of simulation, e.g. synchronization
among all processes, and 2 worker processes that con-
tains 2 processing threads for processing events, and
readers can refer to NTW-MT [1], [2] for more details
about the use of process and thread. We create 10,000
PHOLD instances and distribute them evenly among all
processing threads. The simulation employs conservat-
ive time policy and ends when global LBTS exceeds the
end time which can be configured before execution. The
parameter is set to 200, 300, and 400 respect-
ively, is set to 0.8, and the experimental
results are demonstrated in Fig.8.

200

14.36

23.92

30.13

5.86

8.78

12.48

5

10

15

20

25

30

300 400

End simulation time (virtual second)

W
al

lc
lo

ck
 t

im
e

(s
)

MPI (1024)
ZeROshm (1024)
MPI (16384)
ZeROshm (16384)

Fig. 8. Wallclock time of executing PHOLD model within

node.

In Fig.8, for small message size, the wallclock time
does not show noticeable difference between MPI and
ZeROshm, which indirectly indicates both of them ex-
hibits similar performance on communication. However,
for large message size, MPI costs much more time than
ZeROshm (about 55% on average), and the primary ex-
planation includes: 1) MPI costs much more time than
ZeROshm to transfer large messages as analyzed in Sec-
tion V; and 2) high cost of MPI also leads to high com-
munication latency which subsequently results in high
latency for computing global LBTS and processing
threads stay idle until latest LBTS is updated, thereby

43 6 7

3.95

9.57

7.90

6.94

5.90

1.40

2.05
2.78

1

2

8

3

4

5

6

7

10

9

5 8

Number of process

Ti
m

e
(μ

s)
MPI (1024)
ZeROshm (1024)
MPI (16384)
ZeROshm (16384)

Fig. 7. Time of transferring a message in worst cases.

Towards Order-Preserving and Zero-Copy Communication on Shared Memory for Large Scale Simulation 1073

it takes more total time to process all events. In real
simulation, ZeROshm is not sensitive to message size
either, i.e., the two curves (small and large message
size) almost overlaps, whereas messages size appears to
a key parameter on performance of MPI. The wallclock
time increases linearly as the end time of simulation,
which indicates our simulator architecture achieves fine
scalability.

 2) Hybrid communication
A bunch of physical nodes is generally employed to

execute large scale simulation, which creates a hybrid
environment of both intra-node and inter-node commu-
nication. In this section, we conduct experiments to test
performance of ZeROshm in hybrid environment. We
use multiple virtual nodes in Aliyun cloud environment
(www.aliyun.com), and the configuration (elastic com-
puting service ecs.c7.2xlarge) is listed in Table 2.

Table 2. Environment used in hybrid communication

Item Configuration
CPU cores 8

CPU frequency 2.7 GHz
Memory 16 GB

OS Linux 5.4.0-81-generic x86_64
GCC version 9.3.0

MPI MPICH 3.4.2

radius

We have two contrast configuration in this section,
one is to compare the performance between pure MPI
2.x and the combination of MPI 2.x and ZeROshm, and
the other is to compare the First-Fit policy (FFshm)
and ZeROshm in hybrid communication. Each worker
process contains 2 processing threads, thereby each
node can hold 2 worker processes at most (3 threads per
process × 2 processes = 6 threads < 8 cores), we varies
the total number of threads by configuring the number
of processes. The placement of process among nodes fol-
lows the default (evenly) distribution. As we employed
4 nodes, the number of processing threads can be 16 at
most (4 threads per node) to get rid of extra overheads
of scheduling threads from OS. Since real models may
transfer many parameters among LPs, the message size
is set to large, the parameter is set to 400, and
the execution time is shown in Fig.9.

In Fig.9, ZeROshm exhibits superior performance
than both of the other two contrast: 1) ZeROshm shows
shorter execution time by about 42% on average com-
pared to pure MPI 2.x, attribute to no need to allocat-
ing and copying buffer for each message. 2) The execu-
tion time of combination of MPI 2.x and FFshm is ap-
proximately 5.7 times of that of combination of MPI 2.x
and ZeROshm, which agrees with the analysis in Sec-
tion I. Messages with lower timestamp may get lower
probability to be received, as a result it takes longer

time to calculate a correct LBTS, consequently threads
waits for the latest LBTS to advance simulation, wast-
ing a lot of execution time. 3) When a few threads are
used, the performance begins to decline as the latency
of computing LBTS increases. The optimal number of
threads for this experiment may be around 10 from
visual observation.

ZeROshm

MPI
FFshm

4

16.07

70.71

40.57

55.76

115.32

9.16

12.58

7.04

14.37

27.78

8.91
15.57

0

20

40

60

80

100

120

6 8 10 12 14 16

Number of processing thread

W
al

lc
lo

ck
 t

im
e

(s
)

Fig. 9. Wallclock time of executing PHOLD model in hy-

brid environment.

 VI. Conclusions
In this paper, we propose a zero-copy, reliable and

order-preserving communication mechanism ZeROshm
over shared memory for intra-node message passing to
reduce overhead and latency, which also supports hy-
brid communication along with standard MPI imple-
mentation for very large simulation. ZeROshm parti-
tions shared memory into segments by which a process
stores and exchanges messages, and each segment con-
sists of two levels of index L1 and L2 that both control
the use of space in the host segment, i.e., L1 index
marks the start and end point of L2 index in use and
L2 index directs to the space that contains pending
messages. Sending and Receiving message operates on
L1 and L2 index, and process reads from and writes to
shared memory directly, thereby eliminating allocating
and copying buffers. We proved that ZeROshm is reli-
able and order-keeping under stable access to shared
memory. We also tested the effect of ZeROshm to pure
communication and real simulation within a single node
and in hybrid environment. Compared to MPI, ZeR-
Oshm is not sensitive to message size, i.e., ZeROshm
shows almost equivalent performance for small message
size (less than page size of OS), and much lower cost for
large message size. ZeROshm employs mutex to control
exclusive operation on segments, which leads to possib-
ility of contention, and the time of transferring a single
message shows a linear increase as the number of pro-
cess accessing an individual segment simultaneously. In
real simulation of PHOLD model, ZeROshm also exhib-

1074 Chinese Journal of Electronics 2023

its superior performance to MPI, it costs similar
wallclock time for small message size and much less
(about 55%) for large message size than MPI. For large
scale simulation in hybrid environment, the combina-
tion of MPI and ZeROshm costs less execution time
about 42% than the pure MPI.

Nmsg=1.5×NLP_per_process NLP_per_process

SHM_N_MSG ≥ Nmsg

ZeROshm pre-allocates space that can stores at
most SHM_N_MSG messages in each segment, thereby
intra-node communication can fail when the space is
full at that moment. There can be two ways to resolve
this failure: 1) Pre-allocate enough space according to
the scale of real simulation, as reference [1] reported,
the number of pending message is generally less than

, where is num-
ber of LPs residing in a process, thus we recommend

 or even larger; 2) Wait until
some space is returned. It should be noted, in some cir-
cumstance, e.g., processing of an event produces two or
more new events (the total number of events keeps ex-
panding), this failure can still happen in the first way.
The second way can prevent this failure, whereas the
waiting time can be long, which leads to degradation in
performance.

The order-preserving and zero-copy attribute of
communication can affect the performance of simula-
tion that employs optimistic or hybrid time policy,
which will be tested in future.

References

 Z. W. Lin, C. Tropper, M. N. I. Patoary, et al., “NTW-MT:
A multi-threaded simulator for reaction diffusion simula-
tions in neuron,” in Proceedings of the 3rd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation,
New York, NY, USA, pp.157–167, 2015.

[1]

 Z. W. Lin, C. Tropper, R. A. McDougal, et al., “Multith-
readed stochastic PDES for reactions and diffusions in neur-
ons,” ACM Transactions on Modeling and Computer Simu-
lation, vol.27, no.2, article no.7, 2016.

[2]

 W. J. Tang, Y. P. Yao, and F. Zhu, “A hierarchical paral-
lel discrete event simulation kernel for multicore platform,”
Cluster Computing, vol.16, no.3, pp.379–387, 2013.

[3]

 D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev, “Optimiz-
ation of parallel discrete event simulator for multi-core sys-
tems,” in Proceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, Shanghai,
China, pp.520–531, 2012.

[4]

 T. Hoefler, J. Dinan, D. Buntinas, et al., “Leveraging MPI’s
one-sided communication interface for shared-memory pro-
gramming,” in Recent Advances in the Message Passing In-
terface, J. L. Träff, S. Benkner, and J. J. Dongarra, Eds.
Springer, Berlin, Heidelberg, pp.132–141, 2012.

[5]

 A. Venkataraman and K. K. Jagadeesha, “Evaluation of[6]

inter-process communication mechanisms,” Technical. re-

port, Department of Computer Science, University of Wis-

consin-Madison, 2015. http://pages.cs.wisc.edu/~adityav/

Evaluation_of_Inter_Process_Communication_Mechan-

isms.pdf

 D. Kranz, K. Johnson, A. Agarwal, J. et al., “Integrating

message-passing and shared-memory: Early experience,”

ACM SIGPLAN Notices, vol.28, no.7, pp.54–63, 1993.

[7]

 P. L. Aublin, S. Ben Mokhtar, C. L. Gilles, et al., “ZIMP:

Efficient inter-core communications on manycore machines,”

Technical report, Grenoble University, 2011. http://lig-

membres.imag.fr/aublin/zimp/zimp_TR.pdf

[8]

 M. Li, “Research and implement on adaptive communica-

tion mechanism of high-performance RTI,” Master thesis,

Nat. Univ. Defense Technol., Changsha, China, 2011. (in

Chinese)

[9]

 R. M. Fujimoto, Parallel and Distribution Simulation Sys-

tems. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[10]

 T. Hoefler and S. Gottlieb, “Parallel zero-copy algorithms

for fast fourier transform and conjugate gradient using MPI

datatypes,” in Recent Advances in the Message Passing In-

terface, R. Keller, E. Gabriel, M. Resch, et al., Eds. Spring-

er, Berlin, Heidelberg, pp.132–141, 2010.

[11]

 M. P. Forum, MPI: A Message-Passing Interface Standard,

University of Tennessee, Hall Knoxville, TN, USA, 2021.

[12]

 X. M. Zhu, J. C. Zhang, K. Yoshii, et al., “Analyzing MPI-

3.0 process-level shared memory: A case study with stencil

computations,” in 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, Shen-

zhen, China, pp.1099–1106, 2015.

[13]

 B. P. Swenson and G. F. Riley, “A new approach to zero-

copy message passing with reversible memory allocation in

multi-core architectures,” in 2012 ACM/IEEE/SCS 26th

Workshop on Principles of Advanced and Distributed Simu-

lation, Zhangjiajie, China, pp.44–52, 2012.

[14]

 Z. W. Lin, X. H. Li, Y. Mao, et al., “DISHM: A zero-copy

intra-node communication approach in large scale simula-

tion,” in 2019 IEEE 19th International Conference on

Communication Technology (ICCT), Xi’an, China,

pp.578–582, 2019.

[15]

 S. V. Adve and K. Gharachorloo, “Shared memory consist-

ency models: A tutorial,” Computer, vol.29, no.12, pp.66–76,

1996.

[16]

 T. L. Li, Y. P. Yao, W. J. Tang, et al., “An efficient multi-

threaded memory allocator for PDES applications,” Simula-

tion Modelling Practice and Theory, vol.100, article

no.102067, 2020.

[17]

 R. M. Fujimoto, “Research challenges in parallel and dis-

tributed simulation,” ACM Transactions on Modeling and

Computer Simulation, vol.26, no.4, article no.22, 2016.

[18]

Towards Order-Preserving and Zero-Copy Communication on Shared Memory for Large Scale Simulation 1075

LI Xiuhe was born in 1975. He
received the Ph.D. degree in electronic
engineering from The PLA Electronic
Engineering Institute. He is a Professor
of National University of Defense Tech-
nology (NUDT). His current research in-
terests include theoretical innovation and
application of electromagnetic environ-
ment, computational system confronta-

tion simulation and effectiveness evaluation, and multisource
sensor information fusion technology. (Email: xhli75@163.com)

SHEN Yang was born in 1978.
He received the Ph.D. degree in Opera-
tional Research from The PLA Electron-
ic Engineering Institute. He is an asso-
ciate professor of National University of
Defense Technology. His research in-
terests include modelling and simulation
of electromagnetic environment and test
evaluation. (Email: eeishy@163.com)

LIN Zhongwei (corresponding
author) received the B.S., M.S. and
Ph.D. degrees in computer science and
technology from NUDT in 2009, 2011
and 2016 respectively, and visited the
Department of Computer Science of Mc-
Gill University, Montreal, Canada as
joint Ph.D. candidate from 2013 to 2015.
He is a Lecturer with College of Electron-

ic Engineering, NUDT. His research interests include computer

simulation, high performance computing, and artificial intelli-
gence. (Email: zwlin@nudt.edu.cn)

ZHAO Shunkai was born in
1987. He received the B.E degree in net-
work engineering and M.S. degree in mil-
itary science from Electronic Engineering
Institue of PLA. His research interests in-
clude simulation and electronmagnetism.
(Email: 364393242@qq.com)

SHI Qianqian was born in 1996.
She received the M.S. degree in electro-
magnetic field from Army Engineering
University of PLA, China. Her research
interests include dynamic spectrum man-
agement and reinforcement learning.
(Email: 1974604993@qq.com)

DAI Shaoqi was born in Hefei,
China. He received the B.E. and M.S. de-
grees in electronic engineering from Na-
tional University of Defense Technology,
Changsha, China. His research interests
include information and communication
engineering and complex electromagnetic
environment.
(Email: daishaoqi12@nudt.edu.cn)

1076 Chinese Journal of Electronics 2023

