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   Abstract — Parallel simulation  generally  needs  effi-
cient,  reliable  and  order-preserving  communication.  In
this article, a zero-copy, reliable and order-preserving in-
tra-node  message  passing  approach  named  ZeROshm  is
proposed. This mechanism partitions shared memory into
segments  assigned  to  processes  for  receiving  messages.
Each  segment  consists  of  two  levels  of  index  L1  and  L2
that recordes the order of messages in the host segment,
and the  processes  also  read  from  and  write  to  the  seg-
ments  directly  according  to  the  indexes,  thereby  elimin-
ating allocating and copying buffers.  As experimental  re-
sults show, ZeROshm exhibits nearly equivalent perform-
ance to  message  passing  interface  (MPI)  for  small  mes-
sage and superior performance for large message. Specific-
ally,  ZeROshm costs  less  time  by  43%,  40% and  55% re-
spectively  in  pure  communication,  communication  with
contention  and  real  PHOLD  simulation  within  a  single
node. Additionally,  in  hybrid  environment,  the  combina-
tion  of  ZeROshm  and  MPI  also  shorten  the  execution
time  of  PHOLD  simulation  by  about  42% compared  to
pure MPI.

   Key words — Zero-copy, Order-preserving, Shared
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 I. Introduction
Communication plays an essential role in any par-

allel simulation, where the main procedure is to process
events  (messages)  in  causal  order.  Connecting  multi-
core processors into a cluster (called multi-core cluster,
MCC)  has  been  a  dominant  computing  architecture
which  is  used  to  run  parallel  simulation.  Compared  to
the cluster  connecting single-core  processors,  MCC can
provide  deeper  communication  hierarchy,  i.e.,  cores
within a  processor  transfer  data  through  special  chan-

nels among  them,  which  can  achieve  fast  communica-
tion  through  proper  layout  of  tasks.  Threads  within  a
process  can  share  data  without  transforming  addresses
by operating  system,  thereby  multi-threaded  applica-
tion has been the primary choice for communication-in-
tensive  applications,  to  make  full  use  of  fast  channels
among cores [1]–[4].

Parallel simulation proposes requirements to under-
lying  communication,  including  1)  Reliability,  it  never
lose any data, and a message reaches its destination be-
fore the end of simulation, which is a mandatory condi-
tion  to  the  correctness  of  simulation;  2)  Order-pre-
serving, it receives messages in sent-out order between a
pair of sender and receiver, which is a optional need to
the  correctness,  as  time  management  can  control  the
process  of  disordered  messages  in  causal  order  at  the
price of extra overheads, e.g. delay and computation of
synchronizing  messages;  3)  Zero-copy,  it  never  copies
the whole  body  of  the  message,  which  is  not  mandat-
ory but can reduce cost and overheads significantly.

In modern operating system (OS), a process gener-
ally uses different logic address, which prevents sharing
data among processes directly even if those reside in an
individual  physical  machine  (node).  As  a  result,  inter-
process  communication  (IPC)  is  employed  to  transfer
data among processes.

The  message  passing  interface  (MPI)  is  the  most-
widely used IPC, and it employs the so called two-sided
communication [5] to transfer data from one process to
another,  which  copies  data  twice.  Shared  memory  is
proved  to  be  the  fastest  IPC medium [6],  [7]  within  a
single  machine.  The  present  dominant  communication
mid-wares based on shared memory can be classified in-
to two categories: 1) Simply employing shared memory 
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as  transient  space,  leading  to  copy  operation  between
the  source  and  destination  process,  e.g.  MPI;  2)  Data
reside in shared memory, while are read and written in
first-in-first-out (FIFO) order, which can lead to viola-
tion  of  data  order  when  a  process  is  switched  during
reading and writing the data, e.g. ZIMP [8] and shared
memory based RTI [9]. Moreover, the FIFO policy may
lead to damage to performance of parallel simulation, as
demonstrated in Fig.1.
 

0 1 2 3 4 5 6 7

e1 (1)

e4 (4)

e2 (2) e3 (3)

A

B 
Fig. 1. Example of FIFO policy.
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In Fig.1,  the  process  B has  sent  3  messages  (with
timestamp in  brackets)  to  process  A,  after  that  mes-
sage  is reclaimed and returned to contain , in this
circumstance process A prefers to receive  in prior to

 and , which in essence gives lower priority to mes-
sages  with  lower  timestamp.  As  a  result  correct  lower
bound of time-stamp (LBTS) [10] can be computed only
when  the  message  with  global  minimum  timestamp  is
received,  which  consequently  increases  the  execution
time of simulation.

In  this  work,  a  zero-copy,  reliable  and  order-pre-
serving mechanism (ZeROshm) was proposed on shared
memory  for  large  scale  parallel  simulation  oriented  to
MCC. In ZeROshm, shared memory is partitioned into
segments by which a process exchanges and stores mes-
sages, and each segment consists of two levels of index
L1 and L2 that both control the use of space in the host
segment  and  record  the  order  of  messages.  Thereinto,
L1 index marks the start and end point of L2 index in
use,  and  L2  index  directs  to  the  space  that  contains
pending  messages,  as  a  result  it  never  copy  message
body.  Sending  and  receiving  message  operates  on  L1
and  L2  index,  and  a  process  reads  from and  writes  to
shared  memory  directly,  thereby  eliminating  allocating
and copying buffers. As experimental results show, ZeR-
Oshm  exhibits  nearly  equivalent  performance  to  MPI
for  small  message  and  superior  performance  for  large
message. Specifically, ZeROshm costs less time by 43%,
40% and 55% respectively in pure communication, com-
munication  with  contention  and real  simulation  within
a single  node.  In hybrid environment,  the combination
of ZeROshm and MPI also shows better performance by
about 42% than pure MPI.

The rest of this article is organized as follows. Sec-
tion  II  provides  an  overview  of  previous  studies  and
their limitations. We describe the structure and proced-

ures of ZeROshm in Section III, and then prove the cor-
rectness  and  analyze  the  cost  of  ZeROshm  in  Section
IV.  Experimental  results  and  evaluation  is  represented
in Section V, followed by conclusion in Section VI.

 II. Related Work
Compared to  general  applications,  parallel  simula-

tion is  special  in terms of  requirements to communica-
tion, i.e., it needs reliable and order-preserving commu-
nication  for  correctness  and  performance  [10].  In  fact,
order-preserving is  not  a  rigid  requirement  on  commu-
nication  for  correctness  in  modern  simulation  systems,
as  both  conservative  and  optimistic  policy  can  handle
the  disordered  arrival  of  messages.  In  conservative
policy, all logic processes (LPs) wait until a new LBTS
is updated, and the calculation of LBTS must trace all
messages, which prevents violation of causal order. Op-
timistic simulation rolls back to a past time point when
violation  of  causal  error  is  detected,  e.g.  a  straggler
message  arrives.  However  those  solutions  to  disordered
message leads  to  significant  degeneration  in  perform-
ance  for  simulation  execution  through  prolonging  the
time of  computing LBTS (keeping LPs idle  meantime)
in  a  conservative  simulation  and  bringing  in  extra
straggler message in optimistic policy. Zero-copy attrib-
ute of  communication  mechanism  can  significantly  de-
crease the  cost  of  transferring  messages,  thereby  im-
prove the  performance  of  applications  including  paral-
lel simulation.

As  we  know,  transmission  control  protocol/inter-
net protocol (TCP/IP) is the most typical reliable and
order-preserving mechanism used in network communic-
ation,  which  is  also  effective  for  IPC  within  a  node.
However, copying buffer is always employed in TCP/IP
protocol. Standard MPI is based on TCP/IP, while it is
possible  to  avoid  copying  by  skillfully-designed  layout
and usage  of  data  to  be  transferred  in  special  applica-
tions.  Hoefler et  al.  [11]  proposed zero-copy algorithms
for fast Fourier transform and conjugate gradient using
MPI datatypes and observed significant speedups up to
a  factor  of  3.8.  The  MPI  3.0  standard  [12]  introduces
new process-level interfaces to allocate space directly on
shared  memory  (i.e.,  MPI_Win_allocate_shared)  and
to  synchronize  processes  to  access  those  data  (i.e.,
MPI_Win_sync and  MPI_Win_shared_query),  mak-
ing  it  possible  to  eliminating  coping  buffer.  As  tested
and analyzed in [5] and [13], compared to the two-side
version (namely  MPI-2.x),  MPI  3.0  promotes  commu-
nication  performance  of  transferring  data  up  to  85%.
The shared  memory  version  MPI  provides  basic  sup-
port to construct zero-copy communication, while extra
control  of  receiving  those  data  is  necessary  to  achieve
order-persevering.
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Aublin et  al.  proposed  ZIMP [8]  which  constructs
channels (actually a circular buffer) on shared memory,
and then a process can allocate memory from channels
and  others  processes  also  read  from  channels  without
any  copying.  Moreover,  it  also  achieves  one-to-many
communication. As tested and reported, ZIMP consist-
ently  improves  the  performance  of  the  state-of-art
mechanisms by up to one order of magnitude. However,
messages  in  ZIMP  are  organized  into  a  circular  buffer
and  receivers  read  messages  in  arbitrary  order,  which
leads to possibility of breaking down the message order-
ZIMP is not order-preserving.

Swenson et  al.  [14]  proposed  a  new  approach  to
support  zero-copy  inter-process  communication.  Each
logic process (LP) holds an allocator which can allocate
memory (called “heap item”) from shared memory, and
smart  pointer  to  heap  item  is  sent  to  receiver.  Each
heap item holds the identifier of host LP which can be
used  to  reversible  allocation  in  case  of  rollback.  They
compared the performance among MPI full copy, Boost
shared memory  object  (also  zero-copy)  and  their  ap-
proach,  and concluded:  1)  The  execution  time  of  zero-
copy approach is nearly constant regardless of data size;
2)  The  general-purposed  design  and implementation  of
Boost  leads  to  noticeable  degeneration  in  performance;
3) MPI full  copy performs better when massage size is
small (approximately 3,000 bytes).

Each logic process in [14] holds an array of shared
heap  pointers  (called “HeapCluster”)  to  identify  the
sender LP of a message, whereas the memory consump-
tion and the time of recognizing smart pointer are pro-
portional  to  the  number  of  LPs  in  the  simulation.  In
other works, high memory consumption and long recog-
nizing time should be inevitable as the number of  LPs
increases without extra optimization.

 III. ZeROshm Design
We are achieving zero-copy, reliable and order-pre-

serving  communication  on  shared  memory.  To  cover
these requirements, we consider as follows:

1) Accessible: a shared memory block should be al-
located  and  initialized  properly  in  prior  to  simulation
execution;

2)  Zero-copy:  all  messages  should  reside  in  shared
memory,  and  processes  within  a  node  write  and  read
message directly by pointer or reference;

3) Reliable: messages can reach the destination and
keeps unchanged before read;

4)  Order-preserving:  the  order  of  sending  message
to a  process  should  be  recorded,  and  the  receiver  pro-
cess reads messages according the recorded order.

Before the allocation of shared memory, it is neces-
sary to know the number of processes in each node and

the distribution of those processes which is used to cal-
culate the size of shared memory block and distinguish
local and remote messages.

 1. Construction of routing map
As a  process  communicates  to  both  local  and  re-

mote processes, it needs route messages before actually
sending them out.  This can be done by querying rout-
ing map which tells the host node of an individual pro-
cess.  Suppose  we  have  2  nodes,  node0  and  node1,  and
create 8 processes in total and evenly distribute them to
run  simulation,  which  forms  hybrid  (distributed  and
shard memory) communication architecture as shown in
Fig.2.
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Fig. 2. Hybrid communication architecture.
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At  first,  each  process  reports  the  hostname  of  its
host  node  and  identifier  number  (also  named  in
MPI) to the controller, say ; and then  groups the
reports by hostnames; after that we can have  sets (
is  the  number  of  nodes),  and  each  set  contains  the
ranks of  process  in  that  node;  and finally,  the sets  are
serialized  into  a  special  message  tagged Topology and
sent to all processes. When another process receives the
Topology message,  it  constructs  a  map R containing

,  where  can  be  0  (local)  or  −1  (re-
mote), by  comparing  the  local  hostname  and  host-
names in the message. The process  in Fig.2 can own
a routing map item  and .

 2. Allocation
c

0, 1, . . . , c− 1

For  a  node  containing  processes  numbered  by
,  we  call  the  processes  a  family,  and  one

process is assigned as family controller,  which is in ac-
cordance  with  the  design  of  NTW-MT  [1],  [2]  and
double-indexed  shared  memory  [15].  Family  controller
can allocate  a  block  of  shared  memory,  and  each  pro-
cess  use  a  part  of  the  block  as  so  called  a  segment  to
contain messages sent to it, the access to which is con-
trolled by the structure shm_entry as shown in Fig.3.

The  structure shm_entry  consists  of  three  parts,
including reading area prefixed by “r”, writing area pre-
fixed  by “w”,  and  message  storage  area.  The  reading
area  and  the  writing  area  have  the  same  components,
including a  mutex,  two  integers,  and  an  array  of  in-
tegers,  which  contribute  to  recording  message  orders.
For  each  area,  taking  the  reading  area  as  an  example,
rMutex  cares  of  exclusive  access  to  the  reading  area,
rBeginIndex and rEndIndex (L1 index) respectively in-
dicates  the  start  and  end  point  of  pending  indexes  in
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sizeof(·)

Lentry = 2× sizeof(mutex) + 4× sizeof(integer)+
2× SHM_N_MSG× sizeof(interger) SHM_N_MSG×
sizeof(message)
Lnode = c× Lentry

⟨rank, seg⟩ seg

0, 1, . . . , c− 1

offsetseg = seg × Lentry
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rPendingMsgIndexes (L2 index) that stores the indexes
of  pending  messages  in  actualMsgs,  and  actualMsgs
contains SHM_N_MSG empty messages. Then the size
of the block can be easily computed according to back-
ground  platform.  Suppose  the  operator  com-
putes  the  size  of  variables,  the  size  of  an  shm_entry
equals 

 + 
,  then  the  family  controller  allocates

 memory in total. Once when the block
is allocated  and  partitioned,  family  controller  also  de-
cides the segment assignment , where  in-
dicates  the  segment  number  and  can  be ,
and then each member can calculate the segment offset
in the block . Finally, the family
controller  sends  segment  assignment  to  all  members,
and each member update its own routing map by repla-
cing the second value in routing map item with the seg-
ment  number  of  family  members.  In Fig.2,  suppose 
and  is assigned to used the first and second segment
respectively, then  updates the routing map items like

 and .
 3. Initialization

0, 1, . . . ,

The family members attach to shared memory and
initialize  variables  in  their  own  shm_entry:  construct
and  initialize  mutex,  set  rBeginIndex,  rEndIndex  and
wBeginIndex to 0, set wEndIndex to SHM_N_MSG−1,
set all integers in rPendingMsgIndexes to 0, set integers
in wAvailableMsgIndexes to  SHM_N_MSG−1
in turn, at last clear all message space.

 4. Path of sending and receiving messages
LPs interact with each other by message. Suppose

LPx LPy LPx

LPy

Py LPy

Py

an  sends a message to ,  firstly queries the
identifier  of  by name service,  after  that  it  contin-
ues  to  query  the  host  process  of  by  partition
service which  controls  distribution  of  LPs  among  pro-
cesses,  and  then  queries  the  communication  path  to
process  according to the routing map which has been
constructed,  as  demonstrated  in Fig.4.  As  sending  and
receiving message via MPI has been fully introduced in
wide literature, we are mainly representing the proced-
ures of ZeROshm in this article.
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Fig. 4. Conversion path for sending a message.
 

 5. Send messages
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seg

To send a message to family member  which uses
the -th  segment,  the  sender  directly  writes  to
the  -th segment as described in Algorithm 1, where
all  variables  resides  in  the  shm_entry  of  the  receiver
process, i.e.  -th shm_entry.

Algorithm 1　Steps of sending messages

1: Lock wMutex, and load wBeginIndex and wEndIndex;
2: if wBeginIndex == wEndIndex then
3: 　Unlock wMutex {no available space};
4: 　Wait for available space and try again;
5: else
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Fig. 3. Structure shm_entry for control the access to a segment.
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6: 　pos ← wBeginIndex {L1 index};
7: 　wBeginIndex++;
8: 　wBeginIndex mod SHM_N_MSG;
9: 　Unlock wMutex;
10: 　index ← wAvailableMsgIndex[pos] {L2 index};
11: 　e ← actualMsgs[index];
12: 　e ->shm_pos ← index;
13: 　Sender writes message to the space pointed by e;
14: 　Lock rMutex;
15: 　rPendingMsgIndexes[rEndIndex] ← index;
16: 　rEndIndex++;
17: 　rEndIndex mod SHM_N_MSG;
18: 　Unlock rMutex;
19: end if

mod
mod

pos

pos

index

index

index

In Algorithm 1,  the  main  steps  of  sending  a  mes-
sage include finding space and submitting it to receiver.
In  L1  index,  the  index  interval  [wBeginIndex 
SHM_N_MSG,  wEndIndex  SHM_N_MSG]  tells
the start  and  end  position  which  stores  available  in-
dexes in wAvailalbeMsgIndexes, then the sender fetches
the first  available  index,  i.e.  wBeginIndex,  and records
it by a temporary variable . In L2 index, the index
interval  available  in  wAvailableMsgIndexes,  the  sender
fetches the integer with offset  and records to a tem-
porary  variable ,  then  the  actual  space  is  the

-th element in actualMsgs. It should be noted that
a message has a component shm_pos set by  for
space reclaiming as represented in the algorithm in Sec-
tion III.7.

After the space is found, the sender can write mes-
sage content to shared memory, then submit it by writ-
ing the message index into the reading area, hence the
message becomes perceptible to the receiver process.

 6. Receive messages
Each  process  also  looks  up  its  own  reading  area

and receives  all  perceptible  messages  as  listed  in  Al-
gorithm 2.

Algorithm 2　Steps of receiving messages

1: Lock rMutex, and load rBeginIndex and rEndIndex;
2: if rBeginIndex == rEndIndex then
3: 　 Unlock  rMutex  and  return  {no  perceptible  message};
4: else
5: 　pos ← rBeginIndex;
6: 　rBeginIndex++;
7: 　rBeginIndex mod SHM_N_MSG;
8: 　Unlock rMutex;
9: 　index ← rPendingMsgIndexes[pos];
10:  e ← actualMsgs[index];
11:  Enqueue e into the destination LP;
12: end if

Receiving messages also includes twice access to in-

dexes.  It  should  be  noted  that  algorithm  of  receiving
messages  in  Algorithm  2  returns  a  pointer  of  message
which  locates  at  shared  memory  (thereby  no  buffer
copy  is  needed),  and  the  received  message  becomes
pending event of  the destination LP after  properly  en-
queued.

 7. Reclaim message space
The  space  occupied  by  messages  is  reclaimed  in

fossil  collection  (optimistic  policy)  or  once  when  the
message  is  processed  (conservative  policy).  The  main
steps of reclaiming message space is to return index in-
to wAvailableMsgIndexes as listed in Algorithm 3.

Algorithm 3　Setps of reclaiming message space

1: Lock wMutex;
2: wAvailableMsgIndexes[wEndIndex] = e.shm_pos;
3: wEndIndex++;
4: wEndIndex mod SHM_N_MSG;
5: Unlock wMutex.

Free space  is  added  to  the  end  of  available  mes-
sages, and thus can be allocated again in the algorithm
of sending messages. In fact the access to actualMsgs is
definitely  controlled  by  L1  and  L2  indexes,  hence  the
order of  empty  messages  does  not  matter  the  proced-
ures of ZeROshm at all.

Here  we  summarize  how  ZeROshm  satisfies  the
zero-copy,  reliable  and  order-preserving  requirements
proposed at the beginning of Section III.

1)  Accessible:  All  processes  attach  to  shared
memory and thereby can access all data there.

2)  Zero-copy:  Message  resides  in  the  shared
memory block, hence reading and writing message is op-
erated by pointers, as a result no data is copied during
the whole procedure.

3)  Reliable:  Messages  are  tightly  aligned,  and  all
writing  checks  the  bound  of  adjacent  messages  to  get
rid of any breakdown to message body.

4)  Order-preserving:  The  r-prefixed  indexes,  i.e.
rBeginIndex  and  rPendingMsgIndexes,  forms  a  cyclic
queue  which records  the  orders  of  message  sent  to  the
host  process;  The  w-prefixed  indexes,  i.e.  wBeginIndex
and wAvailableMsgIndex, also forms a cyclic queue and
accepts  free  space  at  any  time,  which  is  suitable  for
asynchronous fossil collection in optimistic simulation.

 IV. Correctness Proof and Cost Analysis
As analyzed in Section II, parallel simulation gener-

ally  needs  reliable  and  order-preserving  message
passing. In this section, we prove the reliability and or-
der-preserving  property,  and  also  analyze  the  cost  of
ZeROshm.
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 1. Proof to reliability and order-preserving
Definition 1　A message passing mechanism is re-

liable  if  any message  can arrive  its  specific  destination
and the content keeps unchanged.

Definition  2　 A  message  passing  mechanism  is
order-preserving  if  messages  sent  firstly  are  received
firstly between a pair of sender and receiver.

Theorem 1 (Reliability)　ZeROshm achieves reli-
able message passing.

Proof　 The reliability  of  ZeROshm  highly  de-
pends on  stable  access  to  shared  memory,  here  we  as-
sume operating system provides stable service to shared
memory, lock and unlock operation in ZeROshm (error
and fault can be detected).

• Reachability:  In ZeROshm, any process can ac-
cess  the  full  space  of  shared  memory,  hence  a  sender
process  find  room  (equivalent  to  index)  and  push  the
index  into  the  pending  message  queue  (also  resides  in
shared  memory)  of  receiver,  then  the  receiver  process
can read the message according to the indexes in queue.

ebroken
eoccupy

0, 1, . . . ,

• Fidelity: A message should not be broken down
by another writing before reclaimed by the receiver, and
this  can  be  proved  by  contradiction.  Note  that  space
in actualMsgs is strictly aligned in message format and
mutexes prevent concurrent operation on an individual
segment,  then  a  message,  say  is  broken  down
only if the later writing of message, say , gets the
same  index  in actualMsgs, i.e.  line  11  in  Algorithm 1.
And  given  that  all  L2  indexes  are  set  to 
SHM_N_MSG−1, which are different from each other,
then the later writing gets the same L1 index, i.e. line 10
in Algorithm 1, and then it also gets the same value of
wBeginIndex,  i.e.  line  6.  However,  wBeginIndex  keeps
increasing and moded by SHM_N_MSG: It reaches the
same position until it exceeds SHM_N_MSG and turns
back. As both wBeginIndex and wEndIndex are moded
by SHM_N_MSG, wBeginIndex must stride across the
wEndIndex  position,  which  would  be  prevented  by
judgment between them (line 2 in Algorithm 1) .

• No loss of message: Given that all reading from
and  writing  to  the  shared  memory  is  reliable  and  the
processes  within  a  node  would  have  the  same  view  of
orders  of  memory  access,  any  message  written  by  the
sender process in actualMsgs and indexed at a position
in rPendingMsgIndexes  can  be  perceived  and  accessed
by the receiver process in a reversed manner.

N B E
a, b ∈ [0, N) a

b

As modulus  operator  is  used in  ZeROshm, we use
the concept “left” to mark position of indexes in cyclic
queues.  For modulus ,  let  and  as the start and
end position,  for  any  integers ,  we  say  is
on the left of  if
  {

a < b, B < E
B < a < b, a < b < E, b < E&a > B, B > E

and the symmetry (i.e., the concept “right”) can be in-
ferred.

Lemma 1 (L2 index position)　For any segment,
rBeginIndex  (rEndIndex)  is  on  the  left  (right)  of  any
perceptible messages in rPendingMsgIndexes.

Proof　Under  the  control  of  memory  consistency
[16],  processes  residing  in  the  same  node  should  hold
the  same order  of  writings  to  memory,  which prevents
disorder  of  readings.  In  Algorithm  1,  each  submission
increases rEndIndex  (line  16),  then rEndIndex  locates
the right of the latest message in rPendingMsgIndexes,
naturally. For reading messages from shared memory in
Algorithm 2,  rBeginIndex  is  initialized  to  0  and  in-
creases  only  if  it  reads  a  message  (line  6  in  Algorithm
2), then rBeginIndex must locates the left  of  the earli-
est message in rPendingMsgIndex.

Theorem 2 (Order-preserving)　ZeROshm is  or-
der-preserving.

A
e1 e2 B

B e2
e1.pos e2.pos

Proof　Proof by contradiction. Suppose process 
sent message  and  in turn to process , while pro-
cess  received message  first.  The index of  the two
messages  and  in rPendingMsgIndexes can
be in two cases as follows:

e1.pos < e2.pos B e2
e2.pos

rBeginIndex > e1.pos− rBeginIndex
e1

:  Process  received  first,  which
indicates rBeginIndex  passed  the  position  first,
then we have  is on
the right of , which violates Lemma 1.

e1.pos > e2.pos

e1

: It follows the second branch of the
left  definition,  and rBeginIndex  also  locates  on  the
right of .

 2. Cost analysis

∑c
i=1 i ·O(CAS) = O(c2)O(CAS)

O(CAS)

The  primary  cost  of  ZeROshm  comes  from  the
overhead  of  locking  on  mutex  and  integer  operations.
For sending message, it involves 2 locking and 2 unlock-
ing of mutex, 5 integer assigning, 2 integer increment, 2
integer  modulus  and  writing  of  message  content,  then
the total time should be the sum of the above compon-
ents.  The  cost  of  integer  operations  can  be  generally
considered as constant in a specific run, while the time
of  locking  depends  on  the  number  of  processes  that
compete an individual  mutex,  in the worst  case a pro-
cess  waits  until  it
locks the mutex successfully, where  is the over-
head of a single locking.

Receiving a message involves 1 locking and unlock-
ing  of  mutex,  3  integer  assigning,  1  integer  increment
and 1 modulus.  Here we can infer that,  for small  mes-
sages, it is possible that ZeROshm costs more time than
traditional copy-based  communication  in  specific  cir-
cumstances,  e.g.  MPI,  since  copying  of  small  buffer  is
adequately optimized and message merging is generally
in use.
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 V. Experiment and Evaluation
Attribute to ZeROshm, NTW-MT [1] now uses hy-

brid communication, i.e., intra-node message is sent via
zero-copy  access  to  shared  memory  while  inter-node
message  is  sent  by  MPI.  In  this  section,  we  test  and
analyze  the  effect  of  ZeROshm  to  communication  and
real simulation.

 1. Effect to communication
ZeROshm is  designed  for  intra-node  communica-

tion, thus we set a bunch of processes within a node to
exchange messages and collect the total time, and then
calculate the average time of receiving a single message.
The  hardware  and  software  environment  is  listed  in
Table  1.  We  use  non-blocking  MPI  interfaces,  to  be
more specific,  it  uses  MPI_Isend to send out the mes-
sage  and  calls  MPI_Wait  to  wait  completion,  and  it
firstly calls MPI_Iprobe to check if there are messages
to receive and uses MPI_Irecv to receive data actually.
All  global  parameters  of  MPI  environment  are  set  by
default value.
  
Table 1. Environment used in intra-node communication

Item Configuration
CPU Intel i7 with 8 cores

Frequency 1.8 GHz
Cache 32 KB, 256 KB and 8192 KB

Memory 16 GB
OS Linux 4.8.0 - 36 - generic x86_64

GCC 5.4.0
MPI MPICH 3.3

 
 

 1) Pure point-to-point message passing
To  reduce  the  impact  of  contention  on  segments,

we set only a pair of processes in this scenario, and each
process sends and receives 10,000 messages and the time
is averaged from 5 runs as demonstrated in Fig.5.
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Fig. 5. Time of transferring a message.

 

As shown in Fig.5, MPI costs less time (about 20%
on average) than ZeROshm for small message, e.g., 256
and 1024 bytes. As analyzed in Section IV, the primary

cost of ZeROshm is the overhead of locking on mutex,
and sending a message involves twice locking on mutex,
which  could  introduce  higher  overhead  than  allocating
small buffer by MPI that uses internal memory pool [17]
to get rid of the overhead of small-sized (generally less
than page  size)  allocation  from  heap.  In  this  circum-
stances,  the  extra  overhead  of  ZeROshm  from  OS  is
higher than MPI, as a result ZeROshm costs more time
than  MPI  for  small-sized  messages.  However,  the  time
of transferring large message via MPI shows a sharp in-
crease, i.e., it almost doubles as message size doubles up
especially  when  message  size  exceeds  page  size  (4096
bytes in our environment). The primary explanation to
the sharp increase lies in that MPI takes much time to
allocate  large  buffer  for  transiting  message,  and  it  can
be  naturally  inferred  MPI  costs  much  more  time  for
larger  size  than the  ones  in Fig.5.  The  time consumed
by  ZeROshm  almost  shows  linear  increase  as  message
size. Note  that  this  scenario  involves  only  two  pro-
cesses, thus  the  contention  on  segments  is  low;  there-
fore,  the  locking  on  mutex  and  integer  operations  cost
constant time  as  described  in  Section  IV,  and  the  in-
creased  time  is  used  for  writing  message  content  to
shared memory.

 2) Contention involved
When a  few  processes  access  shared  memory  con-

currently,  contention  on  segments  can  happen,  which
increases  overhead  of  locking  on  mutexes  directly.  In
this scenario, we vary the number of processes and mes-
sage size  to  show  the  impact  of  contention  as  demon-
strated  in Figs.6 and 7. For  simplicity,  we  only  con-
sider two message size, 1024 bytes and 16384 bytes, as
representatives of  small  and  large  size.  To  create  con-
tention,  all  processes  are  organized  into  a  virtual  ring,
and each process receives message from and sends mes-
sage to one of  its  neighbor,  i.e.,  the previous and next
process in the ring, which leads to at most 3 processes
accessing an individual segment simultaneously.
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Fig. 6. Time of transferring a message when contention in-

volved.      
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From Fig.6,  both  MPI  and  ZeROshm takes  much
more time to transfer a single message when contention
happens.  For  small  messages,  MPI  costs  less  time
(about 13% on average) than ZeROshm when few pro-
cesses  are  involved  (consistent  with  that  in  the  pure
point-to-point  communication  circumstance),  while  the
two curves shows a reverse case when a few processes,
say 7  processes,  are  introduced.  One  primary  explana-
tion  to  the  crossover  is  as  follows,  since  allocation  of
buffer is  critical  operation,  the  overhead  of  simultan-
eous  allocation  of  buffers  increases  as  the  number  of
processes increases in MPI, while ZeROshm never alloc-
ates buffers during the whole procedure. For large mes-
sages,  MPI  always  takes  more  time  than  ZeROshm
(about  40%  on  average,  and  shows  higher  difference
when  a  few  processes  are  included),  since  overhead  of
allocating  large  buffer  and  contention  is  much  high  as
analyzed in Section V.

n

n− 1

1, 2, . . . ,

n− 1 0

0

As  stated  in  Section  IV,  uncertainty  of  ZeROshm
lies in locking on mutex, i.e., the waiting time of access
to  segments  can be  long  when a  few processes  tries  to
lock on an individual segment. Suppose  processes are
used,  process  0  sends  message  to  the  remaining 
processes  in  turn,  while  process  numbered  by 

 sends message to process  simultaneously, which
constructs a worst case for process  as shown in Fig.7.

The curves (worst case) in Fig.7 show similar trend
to that in Fig.5, except for larger value which indicates
that it takes more time to wait for exclusive control to
mutexes.

 2. Effect to simulation
 1) Intra-node communication
Communication  latency  plays  an  essential  role  to

performance of simulation [18]. In this section, we turns
to  evaluate  the  effect  of  ZeROshm  to  real  simulation.
The  overall  architecture  of  our  simulator  is  same  as
NTW-MT  [1],  [2],  while  intra-node  communication  is
improved by ZeROshm, thereby eliminating twice copy
of  intra-node  messages  between  process  space  and  the

shared memory.

(my_id+ radius)modN
N my_id ∈ [0, N − 1]

radius ∈ (0, N)

1 + time_scale time_scale ∈
(0, 1)

PHOLD is a classical model in parallel and distrib-
uted simulation for testing simulators and related tech-
niques. Each PHOLD instance, namely LP in this simu-
lation, receives and sends message to others. Selection of
destination  is  determined  by ,
where  is the total number of LPs, 
is identifier of an LP,  is a parameter for
controlling  distance.  The  step  between  processing  and
sending message is , where 

 is a parameter for controlling simulation rate.

radius

time_scale

The  environment  used  in  this  experiment  is  same
as  in Section  V.1  and  listed  in Table  1.  We  launch  3
processes which includes 1 controller process taking care
of  global  control  of  simulation,  e.g.  synchronization
among all  processes,  and  2  worker  processes  that  con-
tains  2  processing  threads  for  processing  events,  and
readers  can  refer  to  NTW-MT [1],  [2]  for  more  details
about the use of  process and thread. We create 10,000
PHOLD instances and distribute them evenly among all
processing threads.  The  simulation  employs  conservat-
ive time policy and ends when global LBTS exceeds the
end time which can be configured before execution. The
parameter  is set  to  200,  300,  and  400  respect-
ively,  is  set  to  0.8,  and  the  experimental
results are demonstrated in Fig.8.
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Fig. 8. Wallclock  time  of  executing  PHOLD  model  within

node.      
 

In Fig.8, for small message size, the wallclock time
does  not  show  noticeable  difference  between  MPI  and
ZeROshm, which  indirectly  indicates  both  of  them ex-
hibits similar performance on communication. However,
for large message size, MPI costs much more time than
ZeROshm (about 55% on average), and the primary ex-
planation includes: 1) MPI costs much more time than
ZeROshm to transfer large messages as analyzed in Sec-
tion V; and 2) high cost of MPI also leads to high com-
munication  latency  which  subsequently  results  in  high
latency  for  computing  global  LBTS  and  processing
threads stay idle until latest LBTS is updated, thereby
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Fig. 7. Time of transferring a message in worst cases.
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it  takes  more  total  time  to  process  all  events.  In  real
simulation,  ZeROshm  is  not  sensitive  to  message  size
either,  i.e.,  the  two  curves  (small  and  large  message
size) almost overlaps, whereas messages size appears to
a key parameter on performance of MPI. The wallclock
time  increases  linearly  as  the  end  time  of  simulation,
which indicates our simulator architecture achieves fine
scalability.

 2) Hybrid communication
A bunch of physical nodes is generally employed to

execute  large  scale  simulation,  which  creates  a  hybrid
environment of both intra-node and inter-node commu-
nication. In this section, we conduct experiments to test
performance  of  ZeROshm  in  hybrid  environment.  We
use multiple virtual nodes in Aliyun cloud environment
(www.aliyun.com), and  the  configuration  (elastic  com-
puting service ecs.c7.2xlarge) is listed in Table 2.
  

Table 2. Environment used in hybrid communication

Item Configuration
CPU cores 8

CPU frequency 2.7 GHz
Memory 16 GB

OS Linux 5.4.0-81-generic x86_64
GCC version 9.3.0

MPI MPICH 3.4.2
 
 

radius

We have two contrast configuration in this section,
one  is  to  compare  the  performance  between  pure  MPI
2.x and the combination of MPI 2.x and ZeROshm, and
the  other  is  to  compare  the  First-Fit  policy  (FFshm)
and  ZeROshm  in  hybrid  communication.  Each  worker
process  contains  2  processing  threads,  thereby  each
node can hold 2 worker processes at most (3 threads per
process × 2 processes = 6 threads < 8 cores), we varies
the total number of threads by configuring the number
of processes. The placement of process among nodes fol-
lows the default (evenly) distribution. As we employed
4 nodes, the number of processing threads can be 16 at
most (4 threads per node) to get rid of extra overheads
of  scheduling  threads  from OS.  Since  real  models  may
transfer many parameters among LPs, the message size
is set to large, the parameter  is set to 400, and
the execution time is shown in Fig.9.

In Fig.9,  ZeROshm  exhibits  superior  performance
than both of the other two contrast: 1) ZeROshm shows
shorter execution  time  by  about  42% on  average  com-
pared to pure MPI 2.x, attribute to no need to allocat-
ing and copying buffer for each message. 2) The execu-
tion time of combination of MPI 2.x and FFshm is ap-
proximately 5.7 times of that of combination of MPI 2.x
and ZeROshm,  which  agrees  with  the  analysis  in  Sec-
tion  I.  Messages  with  lower  timestamp  may  get  lower
probability  to  be  received,  as  a  result  it  takes  longer

time to calculate a correct LBTS, consequently threads
waits for the latest LBTS to advance simulation, wast-
ing a lot of execution time. 3) When a few threads are
used,  the  performance  begins  to  decline  as  the  latency
of  computing  LBTS  increases.  The  optimal  number  of
threads  for  this  experiment  may  be  around  10  from
visual observation.
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Fig. 9. Wallclock time  of  executing  PHOLD  model  in  hy-

brid environment.
 

 VI. Conclusions
In this paper, we propose a zero-copy, reliable and

order-preserving  communication  mechanism  ZeROshm
over  shared  memory  for  intra-node  message  passing  to
reduce overhead  and  latency,  which  also  supports  hy-
brid communication  along  with  standard  MPI  imple-
mentation for  very  large  simulation.  ZeROshm  parti-
tions shared memory into segments by which a process
stores and exchanges messages,  and each segment con-
sists of two levels of index L1 and L2 that both control
the  use  of  space  in  the  host  segment,  i.e.,  L1  index
marks  the  start  and end point  of  L2  index  in  use  and
L2  index  directs  to  the  space  that  contains  pending
messages.  Sending  and  Receiving  message  operates  on
L1 and L2 index, and process reads from and writes to
shared  memory  directly,  thereby  eliminating  allocating
and copying buffers.  We proved that ZeROshm is reli-
able  and  order-keeping  under  stable  access  to  shared
memory. We also tested the effect of ZeROshm to pure
communication and real simulation within a single node
and in  hybrid  environment.  Compared  to  MPI,  ZeR-
Oshm  is  not  sensitive  to  message  size,  i.e.,  ZeROshm
shows almost equivalent performance for small message
size (less than page size of OS), and much lower cost for
large message size. ZeROshm employs mutex to control
exclusive operation on segments, which leads to possib-
ility of contention, and the time of transferring a single
message shows a  linear  increase  as  the  number  of  pro-
cess accessing an individual segment simultaneously. In
real simulation of PHOLD model, ZeROshm also exhib-
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its  superior  performance  to  MPI,  it  costs  similar
wallclock  time  for  small  message  size  and  much  less
(about 55%) for large message size than MPI. For large
scale simulation  in  hybrid  environment,  the  combina-
tion  of  MPI  and  ZeROshm  costs  less  execution  time
about 42% than the pure MPI.

Nmsg=1.5×NLP_per_process NLP_per_process

SHM_N_MSG ≥ Nmsg

ZeROshm  pre-allocates  space  that  can  stores  at
most SHM_N_MSG messages in each segment, thereby
intra-node  communication  can  fail  when  the  space  is
full at that moment. There can be two ways to resolve
this  failure:  1)  Pre-allocate  enough  space  according  to
the  scale  of  real  simulation,  as  reference  [1]  reported,
the  number  of  pending  message  is  generally  less  than

, where  is num-
ber  of  LPs  residing  in  a  process,  thus  we  recommend

 or  even  larger;  2)  Wait  until
some space is returned. It should be noted, in some cir-
cumstance, e.g., processing of an event produces two or
more new events (the total number of events keeps ex-
panding), this failure can still  happen in the first way.
The  second  way  can  prevent  this  failure,  whereas  the
waiting time can be long, which leads to degradation in
performance.

The  order-preserving  and  zero-copy  attribute  of
communication can  affect  the  performance  of  simula-
tion  that  employs  optimistic  or  hybrid  time  policy,
which will be tested in future.
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