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   Abstract — Recent years, the theory of characterist-
ic modes has emerged as a powerful analysis technique in
antenna engineering, providing a means to reveal the nat-
ural resonant  properties  of  objects  and  providing  a  vari-
ety of modal parameters. Based on these modal paramet-
ers,  advanced  techniques  have  been  developed  based  on
the theory of characteristic modes to address a wide range
of  electromagnetic  radiation,  scattering,  and  coupling
problems.  This  review  provides  an  overview  of  some  of
the latest  characteristic  mode-based  techniques  for  wide-
band design,  circular  polarization,  radiation  pattern  con-
trol,  scattering  control,  and  mutual  coupling  control.  In
addition,  future  perspectives  are  discussed,  highlighting
the  potential  of  characteristic  modes  for  addressing  even
more complex electromagnetics problems.

   Key words — Characteristic modes, Antenna, Wide-

band, Scattering, Mutual coupling.

 I. Introduction
In  the  past  decade,  characteristic  modes  (CMs)

have become a popular topic in the microwave society,
and  tremendous  progress  has  been  made  in  both  the
theory and application aspects of the CMs. The origin-
al idea of the CMs, which was proposed by Garbacz [1],
[2], is to represent the electromagnetic field in the exter-
ior  region  by  a  set  of  incoming  and  outgoing  types  of
characteristic  fields.  The  characteristic  fields  have  a
close  relation  to  the  actual  physical  structure.  Each
characteristic  field  has  an  associated  characteristic
value and the value of characteristic values reflects the
resonant property (e.g., resonant frequency) and the av-
erage stored  energy  relation  of  an  object.  These  inter-
esting properties of CMs make it a useful modal theory
for resonant radiation and scattering problems. A MoM

(method  of  moments)  based  method  was  proposed  by
Harrington  [3],  [4]  for  computing  the  CMs  of  perfect
electric  conductors.  This  pioneering  numerical  algo-
rithm simplifies the computation of CMs with arbitrary
shapes. The  CMs  provide  additional  information,  in-
cluding characteristic values, modal significance, charac-
teristic  angle,  characteristic  current,  and  characteristic
field. These modal parameters give an in-depth physic-
al interpretation of the resonant phenomenon of an ar-
bitrary  structure.  Inspired  by  Harrington’s  work,  the
computation  of  CMs  is  extended  to  include  dielectric
bodies  [5]–[11],  impedance  sheets  [12],  slots  [13],  etc.
These  works  greatly  enrich  the  usefulness  of  CMs  in
many complex electromagnetic (EM) problems.

The  applications  of  CMs  were  revisited  in  [14].
After  that,  many  CM-based  techniques  are  developed
and show their  powerful  capabilities  in  antenna  engin-
eering.  Reference  [15]  showed  the  potential  application
of  CMs to the MIMO multi-antenna system. The CM-
based loading strategies [16], [17] were used to optimize
the bandwidth and pattern of  the antenna element.  In
[18],  it  showed that the bandwidth of  antennas can be
enhanced by combining multiple CMs. The CMs are in-
dependent of excitation which means the modal analys-
is can be performed without preset excitation. From the
modal  current  distribution,  the  position  and  type  of
feeders can be determined with pure modal results [19]
which greatly simplifies the design of feeders. The phase
property revealed by the characteristic angle facilitates
the circular polarization design [20].  In [21],  [22],  using
the orthogonality of CMs, the isolation of two antennas
with a  shared radiator  was  guaranteed.  These  pioneer-
ing  works  established  the  basic  CM-based  techniques
for  antenna  design  and  optimization.  Many  advanced 
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CM-based techniques were proposed in recent years and
the  number  of  published  articles  was  seeing  rapid
growth as can be seen in Fig.1. The aim of this article
is to review the state-of-the-art CM-based techniques in
antenna engineering. These CM-based techniques cover
a wide  aspect  of  applications  including  bandwidth  en-
hancement, circular  polarization  design,  multiport  an-
tennas,  pattern  optimization  and  synthesis,  scattering
control,  and  mutual  coupling  control.  This  review
provides  the  latest  developments  in  the  application  of
CMs  and  guidelines  on  the  application  of  CMs  to  a
variety of EM problems.
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Fig. 1. The  number  of  journal  articles  published  in IEEE

TAP, IEEE AWPL, and IET MAP with the keywords
of characteristic modes (The data is  extracted from
the  Engineering  Village  with  unrelated  articles
filtered out).

 

 II. Theory of Characteristic Modes

Ei

J

Ei

The theory  of  characteristic  modes  is  initially  for-
mulated  by  considering  the  problem  of  perfect  electric
conductors under incident electric field . The surface
integral equation can be expressed as an operator equa-
tion with respect to surface current  and incident field

 [3].
  [

L (J)−Ei
]
tan = 0 (1)

tan
S

Z (J) = [L (J)]tan

The  subscript “ ” denotes the  tangential  com-
ponents on the conductor surface . Defining a new op-
erator  as  and separating  its  Her-
mitian parts [3], the characteristic equation for CMs is
 

X(Jn) = λnR(Jn) (2)

X (·) R (·)where the operators  and  are
 

R =
1

2
(Z + Z∗) (3)

 

X =
1

2j
(Z − Z∗) (4)

Jn n λn is  the th  characteristic  current  and  is  the
associated characteristic value. The superscript “*” rep-

J

E H

resents the  conjugate  operator.  By  solving  the  charac-
teristic equation (2), the surface current  and the radi-
ated/scattered  field /  can be  represented  as  sum-
mations,
 

J =

N∑
n=1

anJn (5)

 

E =

N∑
n=1

anEn,H =

N∑
n=1

anHn (6)

an n

En Hn n

Jn

⟨J∗
n, RJn⟩ = 1

Jn

where  is  the  modal  weighted  coefficient  of  the th
CM.  and  are the modal far-field of the th CM.
The characteristic currents  are normalized so that it
radiates  unit  power  (i.e., ).  It  can  be
proved  that  the  characteristic  current  satisfies  the
following orthogonality:
 

⟨J∗
m, RJn⟩ = δmn (7)

 

⟨J∗
m, XJn⟩ = λnδmn (8)

 

⟨J∗
m, ZJn⟩ = (1 + jλn) δmn (9)

δmn m ̸= n

m = n ⟨·, ·⟩
J S

where  is the Kronecker delta (0 if , and 1 if
)  and  denotes  the  symmetric  inner  product

of two vectors. The complex power balance for  on 
is given by
 

P = ⟨J∗, ZJ⟩
= ⟨J∗, RJ⟩+ j⟨J∗, XJ⟩

=

˛
S∞

E ×H∗ · dS

+ jω

˚
V

(µH ·H∗ − ϵE ·E∗) dV (10)

S∞ V

S∞

m n

where  is a closed surface at infinity and  is the re-
gion enclosed by . Adding (10) to its conjugate with

 and  interchanged, the orthogonality for far-field is
 

1

η

˛
S∞

Em ·E∗
n dS = δmn (11)

 

η

˛
S∞

Hm ·H∗
n dS = δmn (12)

m = n

Equations (7)–(9), (11), and (12) show the import-
ant properties of  CMs that the CMs are orthogonal to
each  other.  Substituting  (7)–(9)  into  (10)  with ,
the characteristic value becomes
 

λn = ω

˚
V

(µHn ·H∗
n − ϵEn ·E∗

n) dV (13)

λn λn 2ω

λn = 0

Equation  (13)  gives  the  physical  interpretation  of
the characteristic value .  is  times the total av-
erage  stored  magnetic  energy  minus  the  total  average
stored electric  energy.  If ,  the  reactive  power  of
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n

λn > 0

λn < 0

the -th mode is equal to 0 and this mode is called res-
onant mode. In the case of , the stored magnetic
field energy dominates over the stored electric field en-
ergy, and this mode is known as the inductive mode. In
the case of , the stored electric field energy dom-
inates  over  the  stored  magnetic  field  energy,  and  this
mode is known as the capacitive mode.

an

Using  the  orthogonality  of  equations  (7)–(9),  the
modal weighted coefficient  is calculated with
 

an =
⟨Ei,Jn⟩
1 + jλn

(14)

From (14),  three  important modal  parameters  can
be defined [23] as follows.

Vn1) Modal excitation coefficient :
 

Vn = ⟨Ei,Jn⟩ (15)

Vn

Ei

The  parameter  quantifies  the  interaction  between
the incident field  and CMs, providing an indication
of mode excitation.

MSn2) Modal significance :
 

MSn =

∣∣∣∣ 1

1 + jλn

∣∣∣∣ (16)

MSn provides  insight  into  the  resonant  characteristics

MSn nof the CMs. When  = 1, the th CM is considered
to be  in  resonance,  and the  associated frequency is  re-
ferred to as the resonant frequency.

αn3) Characteristic angle :
 

αn = 180◦ − tan−1(λn) (17)

αn Jn

En S

αn n

αn

αn

where  represents the fixed phase lag between  and
the  tangential  component  of  on  surface .  It  also
signifies  the  resonant  characteristics  of  CMs.  When

 = 180°, the th CM is considered to be in resonance.
Furthermore,  the cases where 90°< <180° and 180°<

<270°  correspond  to  the  inductive  and  capacitive
modes, respectively.

Ei

λn MSn
αn

Based  on  the  aforementioned  formulations,  it  is
evident  that  the  CMs  obtained  from  equation  (2)  are
independent  of  external  excitation .  Consequently,
the CMs only depend on the geometry, size, and mater-
ial of the structure. The theory of characteristic modes
for other structures, including the dielectric bodies, im-
pedance  sheets,  etc.,  are  studied  in  literature  [5]–[13],
which is omitted here for conciseness. Fig.2 presents the
computed CM results for a rectangular metal patch, il-
lustrating its  modal  parameters.  The  resonant  charac-
teristics of arbitrary conductor bodies can be effectively
characterized  by  three  parameters,  namely , ,
and . Each parameter possesses a distinct physical in-
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Fig. 2. Example of characteristic mode analysis for a rectangular metal patch. The modal analysis can derive the excitation-inde-

pendent  parameters  including  characteristic  value,  modal  significance,  characteristic  angle,  characteristic  current,  and
characteristic field. Once the external excitation field is specified, the surface current distribution and radiation field can
be expressed as modal current expansion and modal field expansion, respectively. These expansions include excitation-de-
pendent parameters, modal weighted coefficient, and modal excitation coefficient, which can be calculated by equations (14)
and (15).
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Vn

terpretation  and finds  numerous  practical  applications.
The excitation-related parameter  is also  an import-
ant  criterion  for  the  feeder  placement  in  the  antenna
design. Applications regarding the CMs are discussed in
the following sections.

 III. Application to Radiation Problems
The main  function  of  antennas  is  to  radiate  elec-

trical signals  into  free  space.  Thus,  the  radiation  per-
formance of  antennas  is  the  most  concern  in  most  ap-
plications. The  radiation  performance  of  antennas  in-
cludes  impedance  bandwidth,  polarization,  radiation
pattern, gain, etc.  In the case of array antennas, isola-
tion plays a crucial role, reflecting the mutual coupling
between individual antenna elements. According to spe-
cific  radiation  performance  objectives,  the  CM-based
antenna designs  mainly  include  four  categories:  imped-
ance  bandwidth  enhancement,  circular  polarization
designs,  multiport  antennas,  and  pattern  optimization
and synthesis.

 1. Impedance bandwidth enhancement
Modern  communication  systems  demand  a  broad

physical bandwidth  to  enhance  channel  capacity,  for-
cing antenna  systems  to  operate  across  a  wide  fre-
quency range. The impedance bandwidth has long been

a research topic in antenna engineering [24], [25]. In the
classical modal theory, the antennas are typically oper-
ated in  their  fundamental  mode,  which  inherently  re-
stricts  the  working  bandwidth.  Moreover,  the  classical
modal  theory  is  derived  for  canonical  antennas  with
simple geometric  shapes,  making  its  extension  to  com-
plex antenna structures a challenging job. The theory of
characteristic modes  offers  a  numerical  method to  per-
form the modal  analysis  for  complex antennas and the
CM-based impedance  bandwidth  enhancement  tech-
niques have been studied in recent years.

The basic idea of CM-based impedance bandwidth
enhancement techniques is illustrated in Fig.3. For nar-
rowband antennas,  characteristic  mode analysis  is  con-
ducted to extract the modal properties of the antennas.
Through modal tuning, multiple CMs are brought into
proximity,  forming  a  potential  wide  frequency  band.
Subsequently, based  on  the  knowledge  of  modal  cur-
rent  distribution,  appropriate  excitation  locations  are
determined  to  achieve  the  desired  bandwidth.  Modal
tuning  and  excitation  placement  are  two  important
factors in  CM-based  impedance  bandwidth  enhance-
ment. Both modal tuning and excitation placement play
vital roles in CM-based impedance bandwidth enhance-
ment.
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multimode operation
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Fig. 3. The basic flow of CM-based impedance bandwidth enhancement techniques.

 

Since most of narrowband antennas are operated in
their  fundamental  mode,  using  the  higher-order  modes
of  the  antenna  structure  is  a  straightforward  way  for
impedance  bandwidth  enhancement  which  expects  to
fully utilize the CMs of one structure. Using the higher-
order modes requires a comprehensive understanding of
the operating mechanics of different CMs and fine-tun-
ing of several CMs. Reshaping the antenna geometry [26],
[27]  serves  as  a  fundamental  approach  for  CM tuning.
As  shown  in Fig.4 Wang et  al.  proposed  a  wideband
dual-polarized slot antenna which combines two CMs of
an  H-shaped  slot.  The  H-shaped  slot  was  reshaped  to
alter the electric length of the current path and the two
desired CMs were moved to the desired frequency band.
With four differential  fed capacitive coupling elements,
the proposed  dual-polarized  antenna  achieved  a  relat-
ive  bandwidth  of  48%,  in  contrast  to  the  initial  H-
shaped slot  antenna,  which  provides  only  13.6%  relat-
ive bandwidth.

An  alternative  method  to  enhance  the  impedance

S11 < −10 dB

bandwidth  involves  the  artificial  introduction  of  new
modes [28]–[30]. The introduction of new modes is typ-
ically achieved by adding parasitic  elements.  By modi-
fying the  shape  of  the  parasitic  element  and  the  spa-
cing between the parasite element and the original  an-
tenna, the parasitic element can operate at a frequency
near  the  resonant  frequency  of  the  original  structure.
The  impedance  bandwidth  can  be  enhanced  by  the
multi-mode operation.  In  [29],  a  dipole  and a  parasitic
loop were combined to produce an omnidirectional pat-
tern.  The  dipole  operated  at  2  GHz  and  the  parasitic
loop  was  set  to  operate  at  2.75  GHz  which  realized  a
wide  impedance  bandwidth  of  1.85–2.9  GHz  (44.2%,

). The coupling between the parasitic ele-
ment  and  the  original  structure  can  be  controlled
through  the  adjustment  of  spacing,  thereby  enhancing
the  impedance  bandwidth.  Additionally,  references  [28]
and [30] showed that impedance bandwidth can be en-
hanced by properly  adjusting  the  inductive  or  capacit-
ive coupling between the parasitic element and the driv-
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en element.
Loading is another commonly employed method for

tuning the CMs. The procedure of this method is simil-
ar  to  the  reshaping  method  while  the  modal  tuning  is
achieved through loading. In [31], the original ring slot
was  loaded  with  two  shorted  slot  lines.  A  combined
mode was moved to near the original mode of the ring
slot,  resulting  in  an  increased  fractional  bandwidth  of
18.2%.

Metasurface (MTS) antennas are also a novel type
of  antenna  with  low-profile  and  wideband  properties.
The  MTS  antennas  contain  periodic  arranged  sub-
wavelength units.  Modal analysis  for a truncated MTS
reveals that it typically resonates at quasi TM30 mode
and has a high gain-bandwidth product [32]. Using the
multimode  resonance  of  CMs,  the  MTS  antennas  can
reach a wide impedance bandwidth of 45% in [33] and 79%
in [34].

 2. Circular polarization designs
The  circularly  polarized  wave  can  be  decomposed

into two orthogonal linearly polarized waves with equal
amplitude and a 90° phase difference. The basic proced-

αn

ure of  CM-based  circular  polarization  design  is  depic-
ted  in Fig.5.  Characteristic  mode  analysis  can  directly
reveal the potential orthogonal linearly polarized modes
that  can  be  chosen  to  generate  a  circularly  polarized
wave.  Another  interesting  property  is  that  the  phase
difference of characteristic angle  has a direct link to
the  phase  difference  between  the  characteristic  fields
and  the  characteristic  currents  [23].  This  property
greatly facilitates  the  design of  circularly  polarized an-
tennas. The  circular  polarization  condition  is  now  ex-
pressed  as  the  equal  magnitude  of  modal  significance
and  a  90°  phase  difference  of  the  characteristic  angle.
Carefully  modal  tuning  is  required  to  ensure  that  the
selected CMs satisfy  the new circular  polarization con-
dition. Finally, the feeders are appropriately positioned
based on the characteristic current distribution.

A typical application of this property is illustrated
in Fig.6. By adjusting the slots on U-slot and E-shaped
patches [20], the two orthogonal modes can meet the re-
quired magnitude and phase criterion for circular polar-
ization design. This application demonstrates that the 90°
phase  difference  in  characteristic  angles  is  reflected  in
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Fig. 4. Evolution of the H-shaped slot antenna, mode 1 and mode 2 are moved to the desired frequency band by properly reshap-

ing the H-shaped slot.
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the phase difference in the far-field.
Loading is a commonly used method for tuning the

magnitude and phase of CMs. In [35], two clock-shaped
strips were loaded onto the metal annular ring. By ad-
justing the  angle  between  the  two  hands  and  employ-
ing a multimode design, the designed antenna achieved
a  wide  3  dB  axial  ratio  (AR)  bandwidth  of  2.4–3.73
GHz. Similarly, in [36], stubs were selectively loaded on
one  pair  of  edges  of  the  square  patch  to  perturb  the
TM12 mode  while  it  had  little  influence  on  the  ortho-
gonal  TM21  mode.  Furthermore,  in  [37],  a  cross-slot
coupling  structure  was  loaded  to  uniform  metasurface
antenna which introduce new modes and broaden the 3
dB AR bandwidth to 31.3%.

0.33λ× 0.33λ

0.29λL × 0.29λL

Cutting is another method for modal tuning by ar-
tificially cutting out part of the antenna geometry. In [38],
a  long  slot  was  cut  on  the  quarter  patch  antenna  and
the circularly  polarized  pattern  was  realized  in  a  com-
pact  size  of .  In  [39],  C-shaped  slotted
monopole antenna was studied. By combining five CMs
and  carefully  design  of  the  cutting  shape,  broadband
circular  polarization  of  91%  3  dB  AR  bandwidth  was
realized with a compact size of .

For  MTS  antennas,  the  unsymmetrical  design  of
the MTS can also be utilized to tune the CMs. In [40],
an H-shaped MTS was adopted to tune the phase differ-

ence of two orthogonal CMs, and 14.3% 3 dB AR band-
width  was  realized.  In  [41], nonuniform  MTS was  em-
ployed to adjust the phase difference of CMs, achieving
a 3 dB AR bandwidth of 17.43%.

MSn αn

All  the  aforementioned  designs  are  based  on  the
modal  analysis  of  the  original  structure.  The  derived
modal  parameters,  including  and ,  reveal  the
potential  resonant  modes  and  the  phase  relationship.
And  the  characteristic  current  distribution  provides
guidelines  for  mode-tuning  and  excitation  positioning.
This insightful  method  forms  a  systematic  design  pro-
cedure that greatly facilitates the design burden.

 3. Multiport antennas
The  emergence  of  the  theory  of  characteristic

modes  has  stimulated  some  CM-based  new  antenna
designs.  Multiport  antennas  greatly  benefit  from CMs.
Multiport  antennas  are  antennas  with  more  than  one
port  and  the  ports  share  the  same  radiator.  Multiport
antennas become popular since the growing demand for
multiple-input  multiple-output  (MIMO)  systems.  The
MIMO systems  require  multiple  inputs,  multiple  out-
puts, low correlation, and diversity to improve the over-
all  system  performance  [42].  The  number  of  antennas
becomes a critical factor for improving the MIMO per-
formance. Increasing the number of antennas in a finite-
dimensional array  leads  to  poor  isolation  between  an-
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tennas which will degrade the MIMO performance. The
decoupling of antennas with small spacing is a challen-
ging job.  An  alternate  way  is  to  use  multiport  anten-
nas which  only  occupy  one  physical  element  and  in-
crease  the  overall  number  of  elements  in  a  limited
space.  The  CMs  can  play  an  important  role  in  the
design of multiport antennas, as depicted in Fig.7.

Due  to  the  presence  of  multiple  CMs  within  one

antenna structure,  it  becomes  possible  to  independ-
ently  excite  each  CM  to  form  a  multiport  antenna
where each port excites one distinct CM. The orthogon-
ality  of  CMs  guarantees  the  isolation  between  each
port.  Consequently,  this  property  makes  CMs an  ideal
tool for low-correlation multiport antenna design. Many
CM-based MIMO base station antennas and MIMO ter-
minal antennas have been proposed in the past years.
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The  multimode  multiport  antenna  ( PA) de-
scribed in [43] and [44] have made full use of the poten-
tial  radiation modes to achieve a maximum number of
uncorrelated  ports.  The  modal  analysis  was  performed
to find the significant modes of a metal patch and these
significant  CMs  were  selected  as  the  radiation  modes.
Guided by the modal current distribution, the slot feed-
er was placed in suitable positions to excite each CM. A
four ports case in [43] and a six ports case in [44] were
studied, showing a low correlation (  < 0.05) among all
ports. The low correlation, pattern and polarization di-
versity of the CM-based PA are ideal for MIMO ap-
plications.  Another  application  of  CM-based  multiport
antennas  is  the  in-band  full-duplex  antennas  [45].  The
orthogonality of CMs permits the two isolated ports to
work simultaneously.

The CMs has become an important tool in termin-
al multiport  antennas  design,  including  mobile  hand-
sets and wearable devices. These devices typically have
limited space for antenna placement. For mobile hand-
sets, the chassis is used as the main radiator. The over-
all  dimension  of  the  chassis  is  approximately  0.5–1.5
wavelength of  the  mobile  communication  bands.  Thus,
the  available  modes  are  restricted  especially  in  the
lower band. To increase the number of available modes,
two T-shaped  strips  were  loaded  to  move  the  inter-
ested CMs to the desired frequency band [46]–[48]. The
offset short-circuited pins of strips can further move the
CMs to the lower band. Bezel [49], [50] is another com-
monly  used  method  to  generate  new  modes.  In  higher
frequency bands,  the  design  of  multiport  antennas  be-
comes more challenging due to the increased number of
required  ports.  In  [51], an  effective  method  was  pro-
posed to  address  this  challenge  by  appropriately  com-
bining  over  10  available  CMs  from  the  bezel  and

chassis.  Four  loop  exciters  were  placed  at  four  corners
of  the  chassis  and  the  other  four  slot  exciters  were
placed  at  the  current  null  to  minimize  the  correlation.
By  implementing  this  technique,  eight-ports  antennas
were realized with correlations lower than 0.16.

 4. Pattern optimization and synthesis
The radiation pattern is  an important  property  of

antennas which  control  the  radiation  energy  distribu-
tion in free space. Based on the fundamental concept of
CMs,  the  surface  current  on  the  considered  structure
can be  decomposed  into  a  series  of  orthogonal  charac-
teristic currents. Similarly, the radiation field can be de-
composed into a series of orthogonal characteristic radi-
ation  fields.  Consequently,  the  modal  expansion  of  the
radiation field offers a novel approach to control the ra-
diation  field  through  the  adjustment  and  combination
of different CMs.

Radiation field can be related to two kinds of char-
acteristic parameters, namely, characteristic current dis-
tribution and  the  modal  weighted  coefficients.  There-
fore,  the  CM-based  pattern  optimization  and synthesis
technology can be  categorized into  three  ways:  1)  Dir-
ectly changing  the  modal  current  distribution;  2)  Ap-
propriately setting the excitation structure and design-
ing  the  feeding  network  to  obtain  desired  modal
weighted coefficients; 3) Simultaneously performing the
aforementioned two operations.  The way 1)  mainly  in-
volves modification and loading techniques, which is es-
sentially  the  same  as  the  CM-based  antenna  design.
Therefore,  this  subsection  focuses  on  the  second  way
where  the  expected  radiation  pattern  is  obtained  only
by weighting the inherent CMs of the radiator without
changing the original structure. This basic framework of
CM-based radiation  optimization  and  synthesis  tech-
niques is illustrated in Fig.8.
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There  are  several  design  approaches  for  realizing
the  way  2).  In  the  first  approach,  multiple  ports  are
utilized to independently excite different CMs at prede-
termined  feeding  locations,  and  the  modal  weighted
coefficients corresponding  to  each  mode  are  sub-
sequently  determined  for  each  port.  Then,  the  feeding
amplitudes and phases of each port can be obtained us-
ing the traditional array active pattern synthesis meth-
od.  This  approach  has  been  successfully  used  for  2D
and 3D null steering and antenna design with tilt angle
[52]–[54].  More  specifically,  through  properly  design  of
the  feeding  network,  each  feeding  port  can  excite  only
one characteristic mode. In this case, the complexity of
traditional synthesis  methods  can  be  reduced  by  mak-
ing  full  use  of  the  orthogonality  of  the  characteristic
fields.  For  instance,  in  [55],  the  orthogonality  of  the
characteristic fields was used to avoid the time-consum-
ing matrix  inversion  in  the  least  squares  pattern  syn-
thesis method. Another approach is to directly synthes-
ize  a  specific  number  of  CMs  of  the  radiators  without
considering the  feeding  position,  and  the  feeding  posi-
tion is  subsequently  determined  according  to  the  syn-
thesized modal current distribution [56]–[61]. The selec-
tion of  the  CMs  for  pattern  synthesis  can  be  determ-
ined by the modal significance [56],  pattern correlation
coefficients  [61],  and  other  algorithm  related  technical
indicators.  Considering  the  diversity  of  modes,  there
may be many current distribution solutions that satisfy
the  requirements  of  the  radiation  pattern,  especially  if
there  are  many  significant  modes.  Therefore,  in  the
design of the optimization objectives, not only the radi-
ation  pattern  can  be  constrained,  but  also  the  current
distribution can be further constrained to avoid the op-
timized feeding  position  appearing  in  undesirable  re-

gions.  In  [57],  the  current  constraint  was  set  to  avoid
the  feeding  position  appearing  in  the  fire  control  zone
when the broadside radiation pattern is  excited on the
ship. The  existence  of  multiple  solutions  is  advantage-
ous  for  the  design  of  multi-antenna  systems.  In  [59],
multiple solutions of current distributions without inter-
section  were  selected  to  achieve  the  design  of  aircraft
highly  isolated  multi-antenna  systems.  Conversely,  if
the  current  distribution  solutions  with  intersection  are
selected, a set of excitation structures can be used to re-
construct  the  radiation  pattern  [56].  However,  it  is
worth noting that this method can only solve the load-
ing position of  the excitation structure  qualitatively  at
present, and the feeding vector of the practical feeding
port  needs  to  be  further  optimized  by  the  algorithm
[56].  To  address  this  issue,  references  [60],  [61] pro-
posed  a  technique  based  on  norm  minimization  to
sparsify the  distribution  of  feeding  vectors.  This  tech-
nique aims to utilize fewer feeding points to achieve the
desired modal weighing coefficients, so as to provide ac-
curate  formation  of  feeding  location,  amplitude,  and
phase. The challenge in this technique lies in designing
a suitable feeding network that ensures the consistency
between the excitation vector of the feeding points and
the optimized feeding vector or modal weighting coeffi-
cients.

Another application of CMs in pattern synthesis is
the  design  of  reactively  controlled  directive  arrays  and
reactively  loaded  antennas  [62],  [63]. In  these  applica-
tions,  the  network  characteristic  modes  were  used  as
the  basis  function  to  synthesize  the  radiation  pattern
and calculate the required lumped loads, which can ef-
fectively  avoid  blind  parameter  adjustment  and  time-
consuming full-wave simulation.
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 IV. Application to Scattering Problems
The  theory  of  characteristic  modes  was  originally

proposed for scattering problems. Although most of the
applications of the CMs are focused on radiation prob-
lems, the theory of characteristic modes is still useful in
scattering analysis and control.

The modal decomposition (5) and (6) quantify the
contribution of each CM to the overall current distribu-
tion  or  radiation  field.  This  scattering  decomposition
serves  as  an  important  tool  for  identifying  the  CMs
with the most significant impact. In [64], scattering de-
composition  was  employed  to  analyze  and  control  the
scattering  behavior  of  an  aircraft  through  the  use  of
lossy  dielectric  coating.  The  microwave  absorbers  are
another  type  of  device  used  in  scattering  control.  By
combining multiple CMs, a wideband absorber was pro-
posed in [65] with a 126.66% fractional bandwidth of 90%
absorption.  The  absorptivity  was  over  90%  at  normal
incidence  and  remains  above  85%  for  oblique  incident
angles  within  ±45°.  In  [66],  complementary  patch  and
hole  units  were  stacked  to  produce  an  ultra-wideband
response. A 147.6% fractional bandwidth with 90% ab-
sorption was achieved for oblique incidents within ±25°.
These applications  for  absorbers  are  similar  to  the  im-
pedance bandwidth enhancement in radiation problems,
which  the  multimode  operation  is  utilized  to  enhance
the absorption  bandwidth.  Scattering  problem  for  an-
tennas  presents  unique  properties  compared  to  normal
scattering objects.  Theoretically,  the  scattering  of  an-

tennas can be decomposed into structural mode and an-
tenna mode scattering [67]. Antenna mode scattering is
the reradiated field due to the impedance mismatch and
the residual  part  is  called  the  structural  mode  scatter-
ing. The basic idea of the CM-based scattering analysis
and control is depicted in Fig.9. Recalling the modal de-
composition (5) and (6), this decomposition can be used
to analyze the contribution of each CMs to radiated or
scattering  field.  Thus,  the  CM  decomposition  can  be
used to distinguish the “Radiation mode” and “Scatter-
ing mode” [68],  [69].  This  idea finds application in the
antenna scattering  control  [70],  [71],  [72].  In  [70],  a  T-
shaped  slot  antenna  was  analyzed  with  the  theory  of
characteristic modes.  The  scattering  mode  was  identi-
fied  and  suppressed  by  loading  lumped  inductors  and
slots. At  least  5  dB  radar  cross-section  (RCS)  reduc-
tion was  achieved across  the  operating frequency band
(2–3.7 GHz). In [71], a U-slot patch antenna was stud-
ied with the theory of characteristic modes. By adding a
virtual port, a higher order can be excited and used to
cancel the  scattering  from  other  sources.  Lumped  ele-
ments with the values calculated at a certain frequency
were loaded  at  the  virtual  port.  A  26  dB  RCS  reduc-
tion was obtained at the desired frequency and the fre-
quency can be adjusted with different values of lumped
elements.  In  [72],  modal  current  and  MWC were  used
to step-by-step reduce the RCS of a ring patch antenna.
The  modal  current  hotspots  were  loaded  with  slots  to
suppress its scattering. An average 6 dB reduction was
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realized over a wide frequency band of 0.5–5 GHz.

 V. Application to Electromagnetic Coup-
ling Problems

The  theory  of  characteristic  modes  can  provide
clear insight into the physical problems of coupling, and
its main  application  to  coupling  problems  can  be  di-
vided  into  two  categories.  One  is  for  the  application
scenarios  that  the  performance  of  an  isolated  antenna
needs to  be  considered  in  the  presence  of  other  struc-

tures  (parasite  elements).  The  coupling  relationship
between  isolated  antennas  and other  structures  can  be
considered  by  the  characteristic  mode  analysis,  which
provides guidelines for structural design and parameter
optimization.  Another  category  involves  scenarios  that
require  the  design  of  highly  isolated  antenna  arrays.
The  theory  of  characteristic  modes  can  provide  a
guideline for designing isolated antenna arrays from the
perspective of  resonant  characteristics  of  antenna  ar-
rays. Various applications of CMs to coupling problems
are summarized in Fig.10.
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For the first type of application, one approach is to
introduce  CM-related  equivalent  circuit  schematics  to
characterize  the coupling effect.  In  [30], the  modal  im-
pedance  derived  from  the  characteristic  mode  analysis
was combined with J/K inverters  to establish an equi-
valent circuit,  which  guided  the  design  of  patch  an-
tenna with parasitic structures. Another approach is to
employ the theory of substructure characteristic modes
[73],  which  is  a  further  improvement  on  the  classical
characteristic mode  theory.  In  this  theoretical  frame-
work,  the  structures  that  do  not  belong  to  the  target
body  are  regarded  as  background  structures,  and  the
coupling effect of the background structure on the con-
cerned body is considered by reconstructing the imped-
ance matrix according to the original block matrix. This
idea has been successfully applied to study the effect of
ground plate coupling on the resonant characteristics of
the radiator [74].

For  the  second  application,  the  core  of  improving

isolation is to generate a weaker current distribution at
the  desired  ports  when  other  ports  are  excited.  The
characteristic mode  analysis  provides  the  following  ap-
proaches for the realization of this core objective.

The most straightforward approach is to excite dif-
ferent CMs for each port. Benefit from the orthogonal-
ity  of  CMs,  the  ports  designed  in  this  way  naturally
have  good  isolation.  Reference  [21]  introduced  a  more
special case of mobile phone antenna design, that is, the
fundamental  mode  of  chassis  was  excited  by  monopole
while this mode was not excited by other ports,  there-
fore  realizing  a  high  isolation  dual  antennas  design.
However,  independently  exciting  a  single  mode  is  a
challenging  task  when  there  are  multiple  significant
modes, because attempting to excite desired CMs inev-
itably excites high-order CMs. In order to improve the
purity of  CMs  excited  by  ports,  a  novel  balanced  in-
ductive coupling element was proposed in [75]. This art-
icle  pointed  out  that  the  balance  feed  structure  has
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higher mode excitation purity than the traditional non-
balanced  structure.  Although  the  coupling  problem  is
not reported in detail in this paper, its consideration of
the purity of mode excitation is consistent with the ap-
proach described  in  this  subsection.  Therefore,  reason-
able excitation structure design has the potential to im-
prove port isolation. Another implementation approach
is to design a decoupling network at the back of prede-
termined feeding ports  [76].  In [76], the back-end feed-
ing  network  was  carefully  designed  according  to  the
CMs information  excited  by  the  feeding  points,  realiz-
ing the function of single port excites a single mode. In
[77], the modal energy occupied coefficient derived from
the  theory  of  characteristic  modes  was  proposed  to
guide the  MIMO antenna  design.  This  reference  para-
meter provided a guideline for exciting different groups
of characteristic modes. It is worth noting that exciting
different  modes  to  achieve  high  isolation  is  not  always
effective. Reference [78] made this point clear from the
correlation  coefficient  of  current.  In  [79],  the  authors
further  analyzed  the  upper  bounds  and  design
guidelines  for  realizing  uncorrelated  ports  based  on
characteristic mode analysis. Several approaches for dir-
ect suppression of undesired modes have been proposed
in  [80]–[86].  In  [80],  a  slotting  technique  was  proposed
to change the modal current path and move the reson-
ant point of the undesired mode out of the working fre-
quency band, thus inhibiting the undesired characterist-
ic current. In references [80]–[82], the short-circuit pins
were loaded at the position where the undesired modes
have  strong  electric  field  distribution  and  the  desired
modes have weak electric field distribution so as to sup-
press  undesired  modes  without  affecting  the  desired
modes [80]. Techniques for loading lumped components
are  also  often  used  to  suppress  unwanted  modes.  In
[83]–[85], the parameter characteristic modal mutual ad-
mittance  was  used  to  represent  the  coupling  between
each  port.  By  analyzing  the  current  distribution  of
functional modes  and  non-functional  modes,  the  load-
ing  position  of  lumped  elements  was  determined,  so
that  the  non-expected  modes  were  removed  from  the
working  frequency  band,  realizing  a  high  cross-band
isolation antenna  array  design.  In  addition,  the  tech-
nique was also used to reduce the distortion of the radi-
ation pattern [86].

Another possible approach is to deliberately design
the  structure  of  radiators  such  that  when  one  port  is
excited,  multiple  characteristic  currents  cancel  each
other  at  the  positions  of  other  ports.  Based  on  this
strategy,  a  highly  isolated  MIMO dipole  pair  for  base-
station application was designed [87]. In this design ar-
chitecture, multiple ports shared the same radiator, and
special slot structures were introduced between ports to

adjust different characteristic modes with different cur-
rent directions to the same resonant frequency, so as to
realize  mode  cancellation  and  achieve  high  isolation.
The  approach  of  cancellation  has  also  been  introduced
into  the  design  of  parasitic  decoupling  structures  [74].
In addition, the paper introduced a concept of coupled
characteristic mode [88] to assist the parameter optimiz-
ation of the parasitic structure.

 VI. Conclusions and Future Perspectives
This article reviews the recent development of CM-

based techniques in antenna design. It highlights the ca-
pacity  of  CMs  in  a  wide  range  of  problems  including
bandwidth, polarization,  pattern,  scattering,  and coup-
ling. These  problems cover  most  of  the  design require-
ments  for  antennas  which  demonstrates  the  versatility
of  CMs.  Despite  the  well-developed applications  in  the
context, there are still some challenges in the theory of
characteristic modes  involving  periodic  structure,  elec-
trically large  objects,  complex  materials  (lossy,  aniso-
tropy, etc.). These concepts relate to some potential ap-
plications,  including frequency selective surfaces (FSS),
metamaterials, platform-integrated  multiantenna  sys-
tems, user-effect, scattering control, etc. Predictably, by
overcoming these problems, the theory of characteristic
mode would be a more powerful and efficient tool in an-
tenna engineering.
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