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   Abstract — Weakly supervised semantic segmentation
using  only  image-level  labels  is  critical  since  it  alleviates
the  need  for  expensive  pixel-level  labels.  Most  cutting-
edge methods adopt two-step solutions that learn to pro-
duce  pseudo-ground-truth  using  only  image-level  labels
and then train off-the-shelf fully supervised semantic seg-
mentation  network  with  these  pseudo  labels.  Although
these  methods  have  made  significant  progress,  they  also
increase the complexity of the model and training. In this
paper, we propose a one-step approach for weakly super-
vised image semantic segmentation—attention guided en-
hancement  network  (AGEN),  which  produces  pseudo-
pixel-level labels  under  the  supervision  of  image-level  la-
bels  and  trains  the  network  to  generate  segmentation
masks in an end-to-end manner.  Particularly,  we employ
class activation  maps  (CAM)  produced  by  different  lay-
ers of the classification branch to guide the segmentation
branch  to  learn  spatial  and  semantic  information.
However, the CAM produced by the lower layer can cap-
ture  the  complete  object  region  but  with  many  noises.
Thus,  the  self-attention  module  is  proposed  to  enhance
object  regions  adaptively  and  suppress  irrelevant  object
regions,  further  boosting  the  segmentation  performance.
Experiments on  the  Pascal  VOC  2012  dataset  demon-
strate that AGEN outperforms alternative state-of-the-art
weakly supervised semantic segmentation methods exclus-
ively relying on image-level labels.

   Key words — Weakly-supervised  learning, Semant-

ic  segmentation, Convolutional  neural  networks, Self-at-
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 I. Introduction
Semantic  segmentation  [1],  [2]  aims  at  predicting

the classification results of every pixel in an image and
is one of the most critical tasks in the field of computer

vision.  Deep  convolutional  neural  networks  (DCNNs)
have made  significant  improvements  in  the  perform-
ance of  fully  supervised  semantic  segmentation  in  re-
cent years. However, the performance of these fully su-
pervised methods is heavily dependent on the availabil-
ity  of  large-scale  datasets  with  pixel-level  labels  for
training, which results in large consumption of time and
labor. Many works [3]–[8] are devoted to supervised se-
mantic segmentation with weaker annotations obtained
in a more accessible and cost-effective manner to allevi-
ate the burden of expensive data gathering using pixel-
level labels.

Among  those  mentioned  above  weakly  supervised
annotations, we  devote  attention  to  the  most  challen-
ging  semantic  segmentation  task,  which  adopts  image-
level annotations that can be collected in a great quant-
ity  most  cheaply.  Under  the  supervision  of  pixel-level
annotation,  the  semantic  segmentation  method  can
learn  the  reliable  boundary  information  of  objects  and
their relationship in the image. By contrast, the image-
level  annotations  demonstrate  the  presence  of  specific-
class objects in the map without providing information
on  their  border  and  location,  which  are  essential  to
training  semantic  segmentation  methods.  As  a  result,
the  first  critical  task  is  to  create  a  correspondence
between the image-level label and the pixel location in-
formation of  the  image.  To  this  end,  a  popular  ap-
proach, class activation maps (CAM) [9], was proposed
to  localize  the  most  discriminative  regions  from a  pre-
trained image classification network. However, only the
sparse  and  incomplete  areas  with  the  best  recognition
ability  may  be  obtained  since  these  class  activation
maps come from the classification network and only fo- 
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cus on classification accuracy rather  than object  integ-
rity.  Thus  there  is  a  significant  disparity  between  the
pseudo-ground truth  produced  by  classification  net-
works  and  the  pixel-level  labels.  To  narrow  this  gap,
most current  weakly  supervised  methods  of  image  se-
mantic  segmentation  adopt  a  two-step  framework,
which  firstly  adopts  class  activation  maps  as  initial
seeds to generate high-quality pseudo-pixel-level  labels,
and  then  fed  these  pseudo  labels  as  ground-truth  into
off-the-shelf fully supervised semantic segmentation net-
work  [2]  for  training.  Although  these  methods  have
made significant progress,  they result  in an increase in
model and training complexity, such as additional train-
ing cycles [3], [4], numerous models training [5], [6], and
off-the-shelf saliency methods [7], [8]. While early meth-
ods [10], [11] often adopt one step framework consisting
of  one  network structure. Most  of  these  methods  per-
form  semantic  segmentation  within  the  multi-instance
learning (MIL)  framework  and  combine  with  other  re-
stricted  optimization  methodologies,  which  is  easy  to
implement  without  additional  bells  and  whistles.  The
segmentation accuracy of these approaches, on the oth-
er hand,  is  significantly  below  that  of  the  fully  super-
vised method.

This  paper  presents  an  efficient  one-step  method
for image-level  weakly  supervised  semantic  segmenta-
tion —attention-guided  enhancement  network  (AGEN)
that  can  be  trained  end-to-end.  The  proposed  AGEN
consists  mostly  of  two  parallel  branches:  classification
and  segmentation. The  classification  branch  is  utilized
to produce  pseudo-pixel-level  labels  with  the  supervi-
sion  of  image-level  labels.  The  segmentation  branch  is
adopted to  produce  semantic  segmentation  results  un-
der  the  supervision  of  pseudo-pixel-level  labels.  Lower
layers  of  the  neural  network  can  extract  more  spatial
information (e.g.,  edge  and  boundary),  and  upper  lay-
ers have more abstract semantic information [2], [12], [13].
We  propose  attention  guided  module  (AGM),  which
can use class activation maps produced in lower layers
to guide segmentation branch learn spatial information
and  produced  by  upper  layers  to  guide  segmentation
branch learn semantic information in a bottom-up man-
ner. Although the class activation maps produced lower
layers have more spatial information, there are also gen-
erate a large scale of noises which harming the perform-
ance of segmentation. To address this issue, we present
the  context  attention  module  (CoAM),  which  captures
context-reliance between class-aware  feature  maps  pro-
duced  by  the  different  layers  of  the  network  model,
which  enable  adaptively  enhance  object  regions  and
suppress  irrelevant  object  regions  for  further  improve
the performance of segmentation.

Finally, we optimize the proposed Attention guided
enhancement network by minimizing the joint loss func-

tion and produce segmentation results in an end-to-end
fashion. Additionally,  we  demonstrate  in  the  experi-
ments that our approach is  validated against the chal-
lenging  PASCAL  VOC  2012  segmentation  benchmark
[14]  for  image-level  weakly  supervised  image  semantic
segmentation.

The  following  are  the  major  contributions  of  our
work:

• We  present  a  one-step  strategy  for  weakly  se-
mantic segmentation  using  an  attention-guided  en-
hancement  network  (AGEN)  that  can  be  trained  end-
to-end.

•  We  introduce  attention  guided  module  (AGM)
and  context  attention  module  (CoAM)  in  the  AGEN.
AGM can  guide  the  network  to  learn  spatial  and  se-
mantic information in a bottom-up fashion, and CoAM
can optimize  AGM  to  improve  segmentation  perform-
ance further.

•  On  the  PASCAL  VOC  2012  benchmark,  our
method  relies  entirely  on  image-level  labels,  yielding
state-of-the-art  results  for  weakly  supervised  semantic
segmentation and  outperforming  other  weakly  super-
vised  algorithms  that  use  two-step  structures  or  extra
information.

 II. Related Works
Deep  convolutional  neural  networks  [15]  (DCNN)

have achieved excellent results in a variety of  comput-
ing tasks [1], [12], [13], [16], but training them requires
a considerable number of fully annotated datasets. Sig-
nificantly, the task of semantic segmentation [1], [2] de-
mands  fully  supervised  pixel-level  labels,  which  are
costly to  obtain.  In  order  to  reduce  the  burden  of  ob-
taining costly pixel-level labels,  a range of methods for
semantic  segmentation  using  various  types  of  weakly
supervised labels have been proposed [17]–[23]. This pa-
per  discussed  weakly-supervised  semantic  segmentation
using  just  image-level  labels  that  are  the  most  cost-ef-
fective to collect.

Recently, most  image-level  weakly  supervised  se-
mantic segmentation algorithms based on CAM [9] can
generate initial  object seed areas under the supervision
of  image-level  labels  and  use  the  regions  to  generate
pseudo-ground truth for training the semantic segment-
ation network. Kolesnikov et al. [20] proposed to integ-
rate  three  principles,  including  the  seed,  expand,  and
constrains (SEC), into a unified framework to train se-
mantic segmentation models. However, the SEC concen-
trates  exclusively  on  small  and  sparse  seed  regions  of
objects, which provide  insufficient  supervision informa-
tion for training the semantic segmentation network. A
number of methods have been proposed in recent years
to  tackle  this  problem,  which  may  be  classified  into
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static and dynamic masks respectively.
The main feature of this method is that the pseudo

label will not change with the training of the segmenta-
tion network. A series of erasing-based approaches [21]–
[23] are proposed to expand the object seed regions, in
which Wei et al. [3] is the first to propose an adversari-
al erasing strategy that iteratively erases the most dis-
criminative  regions  and  then  drove  the  classification
network to find new object regions, Chaudhry et al. [21]
utilizes the saliency detector [24] to find new salient ob-
ject  regions  in  erasing  manner,  Li et  al. [22]  proposes
guided attention inference networks (GAIN) to provide
self-guidance  on  the  classification  for  improving  the
erasing strategy, and Hou et al. [23] proposes self-eras-
ing  network  (SeeNet)  that  contained  two  self-erasing
strategies to  suppress  object  regions  spread  to  back-
ground regions [1], [5], [8], [9], [25]. Jiang et al. [26] of-
fer  the  online  attention  accumulation  (OAA)  method
for gradually promoting the generation of whole object
regions  by  accumulating  attention  maps  with  different
classification  network  training  epochs  SEAM  proposed
by Wang et  al. [27] to  improve  the  prediction  consist-
ency  for  given  the  image  with  various  transformed,
boost the classification network to produce high-quality
object seed regions.

For  the  dynamic  mask,  generating  pseudo-pixel-
level  labels  during  training  a  fully  supervised  semantic
segmentation network. That is while optimizing the se-
mantic  segmentation  network,  and  the  pseudo-ground-
truth  are  constantly  updated  [4].  Deep  seed  region
growing (DSRG) [28] is a method that combines tradi-
tional algorithms  with  deep  convolutional  neural  net-
works  to  dynamically  and  gradually  extend  the  object
seed regions  during  the  training  of  its  semantic  seg-
mentation network. To enhance segmentation perform-
ance, Shimoda et al. [29] propose self-supervised differ-
ence detection (SSDD) to estimate the noises in the seg-
mentation  results  produced  by  conditional  random
fields (CRF). Fan et al. [30] present a cross-image affin-
ity module  for  capturing relationships  between two in-
dependent images containing objects of the same class,
hence giving extra information for incomplete object re-
gions.

All the methods mentioned above require sophistic-
ated multi-step training procedures for producing high-
quality segmentation results. In contrast, we propose a
one-step approach for image-level weakly semantic seg-
mentation,  which  simplifies  the  process  of  generating
segmentation results.

 III. Approach
We will  go  through  each  component  of  the  pro-

posed  attention  guided  enhancement  network  in  detail

in this section. Firstly, we give an overview of AGEN’s
end-to-end structure. Second, we introduce the AGM to
boost segmentation branch performance. Then, the con-
text attention module is presented to enhance the qual-
ity of class attention maps created by the AGM, hence
enhancing  the  segmentation  method  performance  even
more. Finally, we give the details of AGEN loss.

 1. Overview of AGEN structure
This  paper  proposes  an  end-to-end  image-level

weakly  supervised  semantic  segmentation  method,
which  enables  dynamically  generating  class  activation
maps as supervision for a bottom-up guidance training
segmentation network. As shown in Fig.1, the proposed
attention-guided enhancement network mainly contains
two parallel  branches:  classification  branch A and seg-
mentation branch B, respectively. Branch A shares the
first  two  layers  parameters  of  the  backbone  network
with branch B and minimizes the joint loss function L
(L = Lclass + Lseg)  to  update  all  network  parameters
simultaneously  during  training,  where Lclass represents
classification loss  of  branch A, and Lseg represents seg-
mentation loss of branch B.

The classification branch A is used to produce the
class activation map, which serves as pseudo-pixel-level
labels, for the training segmentation branch. Similar to
the previous methods [5], [21], we also adopt the class-
aware feature maps produced by the last convolutional
layer of the classification branch to generate object re-
gion  maps,  which  proved  by  [31] identical  to  the  pro-
duction  process  of  class  activation  maps  proposed  by
[9]. Specifically, we adopt modified VGG-16 [32] as the
backbone  of  our  branch  A,  in  which  two  3  × 3  filters
with 1024 channels  and one  1  × 1  filter  with C chan-
nels  (where C is the  number  of  foreground classes)  re-
place the fully connected layers. Then, a global average
pooling (GAP) operation is performed on the class-spe-
cific feature mappings to generate a tensor representing
the  map.  Finally,  the  result  of  classification  prediction
is  obtained  by  a  sigmoid  function,  which  is  defined  as
follows:
 

pc =
1

1 + eGAP(Fc)
(1)

c ∈ C Fc

c

where  represents the target category,  denoted
the th  feature  map  from  the  last  class-aware  1  ×  1
convolutional layer.

Fc

c

For  given  an  image  I,  we  first  input  into  a
ReLU layer, and then the class activation maps of tar-
get category  can be obtained as follows:
 

Mc = US(ReLU(Fc)) (2)

where US(·) denotes a feature map that has been up-
sampled to the same size as the input image I through
bi-linear interpolation.
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To make sure the prediction value of each pixel in
I range from 0 to 1, the CAM produced by (2) are nor-
malized as follows:
 

M f
c =

Mc

max(Mc)
(3)

M f
cAlthough  is optimized by minimizing the fore-

ground  target  classification  loss,  many  background
pixels are crucial for the training segmentation branch.
For  obtaining  a  class  activation  map  of  background,
we adopt  a  similar  way in  [5], which  is  defined  as  fol-
lows:
 

Mb(i) = {1−max
c∈C

M f
c(i)}∂ (4)

M f
c(i)

M f c

i ∂ ≥ 1

i

M f-b

M f Mb

H

where  denoted the  prediction  value  of  the  fore-
ground object  class  activation maps  for  category 
at position ,  is the hyper-parameter that can ad-
just the value of the pixel  background label. Then, the
overall  class  activation  maps  is obtained  by  con-
catenating  and , and we retrieve the highly con-
fident regions  by setting values of pixels more enorm-
ous  than  a  threshold δ.  Finally,  the  pixel-level  pseudo
labels  of  each  training  image  are  obtained  for  training
the segmentation branch.

The  segmentation  branch  B  adopts  the  pseudo
ground truth produced by classification branch A as su-
pervision for training, which shares the first two layers
of the  classification  branch,  and  the  remain  layers  ad-
opt  the  ResNet  38  [33]  network  architecture.  Finally,
optimize  the  whole  network  of  our  proposed  approach
by  minimizing  the  classification  loss  and  segmentation
loss simultaneously,  and  then  generate  the  segmenta-
tion  result  under  the  guidance  of  the  attention  guided

module.
 2. Attention guided module
Only  adopting  pseudo-pixel-level  labels  produced

by the classification branch as supervision for the train-
ing segmentation branch cannot get the expected result.
As we know, a classification network is usually to find a
common semantic pattern for a specific class to identi-
fy the object in the image, so it produces the class ac-
tivation maps  only  highlighting  the  most  discriminat-
ive  object  regions,  which  are  small  and  sparse.  Lower
layers  of  the  neural  network  can  extract  more  spatial
information of the object (e.g., edge and boundary), and
upper layers  can  acquire  more  abstract  semantic  in-
formation [2], [12], [13]. We propose AGM, as shown in
Fig.1 (AGM-3,  AGM-4  and  AGM-5),  which  adopts  a
bottom-up mechanism. Using class activation maps pro-
duced by lower  layers  of  classification  branch to  guide
segmentation  branch  spatial  information  learning  and
using the upper layers to produce class activation maps
as supervision  for  enhancing  segmentation  branch  se-
mantic information  learning.  The  detail  of  the  pro-
posed AGM is described as follows:

FA3 , FA4 , FA5 FB3 , FB4 , FB5

AGM utilizes  the  intermediate  feature  maps  pro-
duced by classification branch A to generate class activ-
ation  maps  as  a  guide  for  improving  segmentation
branch B.  As  shown in Fig.1,  the  intermediate  feature
maps  (  and )  produced  by
classification branch A and segmentation branch B, re-
spectively, are  fed  into  AGM-3,  AGM-4,  AGM-5.  Par-
ticularly, each AGM also contains two branches: Classi-
fication branch C and segmentation branch D, as shown
in Fig.2.

The classification branch C comprises cascaded lay-
ers:  two  3  ×  3  convolutional  layers  with  256  channels

 

B3 B4 B5 B6
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Seg loss
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label
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label
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F
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F
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F
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B3
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F
B4

F
B3

F
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bike
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C
N

N

AGM-3 AGM-4 AGM-5

 
Fig. 1. The overall framework of the proposed attention guided enhancement network.
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FA3 , FA4 and FA5

FA
c

and a 1 × 1 convolutional layer with C channels corres-
ponding to the number of classes,  followed by a global
average pooling (GAP) and a sigmoid layer. The first 3 ×
3 convolutional layer is used to unify the different num-
bers  of  the  channel  of  the  input  feature  maps
( ), and AGM-3, AGM-4, AGM-5 share
the last two convolutional layers of branch C.  is ob-
tained by the last class-aware 1 × 1 convolutional lay-
er of branch C. The segmentation branch D consists of
three convolutional layers: two 3 × 3 convolutional lay-
ers with 512 channels and one 1 × 1 convolutional lay-
er with C+1 channels (where C is the number of object
categories and one background class). The first convolu-

FB
c

FA
c

tional layer of branch D also adapts the different num-
bers  of  the  channel  in  features  maps FB produced  by
branch  B  at  different  layers  and  the  two  last  layers
shared by AGM at different stages. The class-aware 
produced by branch D, which is resized to the same size
as input image I, generates segmentation maps S. Then,
we use (2) and (3) with  as input to produce pseudo-
pixel-level labels  as  supervision  for  training  segmenta-
tion branch D. Finally, the AGM is optimized by min-
imizing  the  classification  and  segmentation  loss  of
branches C and D, encouraging the attention guided en-
hancement  network  to  learn  spatial  object  information
of the image in a bottom-up fashion.

 
Classification branch C

GAP

CAM

FA F
A
c F 

B
c F 

B

Cls

loss

……
areo
bike
bird

train
tv

Pseudo

label
Seg 
loss

Segmentation branch D

 
Fig. 2. Illustration of the proposed attention guided module.

 
 3. Context attention module
Although  the  class  activation  maps  produced  by

the lower  layer  have  more  spatial  information  of  ob-
jects which can act as supervision to guide the segment-
ation branch to segment the complete object in the in-
put image, some true negative regions are falsely high-
lighted, which harms the performance of the segmenta-
tion branch.  To  address  this  issue,  we  propose  a  con-
text  attention  module  (CoAM) that  leverages  the  self-
attention mechanism [34] to find dependencies between
class-aware feature  maps  generated  by  the  classifica-
tion branch at various phases. Class-aware feature maps
produced  by  the  lower  layer  can  capture  the  complete
object  region  but  with  some  noises,  and  produced  by
the upper layer only identify small and sparse discrim-
inative object regions but which is reliable. As shown in
Fig.1, we adopt CoAM in class-aware feature maps pro-
duced  by  different  layers  of  classification  branch  in  a
top-down fashion, which is denoted as follows:
 

F An−1
c = CoAM(F An−1

c ,F An
c ) (5)

F
An−1
c FAn

c

FAn
c F

An−1
c

where  and  denoted  class  activation  maps
produced by adjacent layers of classification branch, in
which  is up-sampled to be the same size as 
through bi-linear interpolation.

F
An−1
c ∈

RC×H×W FAn
c ∈ RC×H×W

The detail of CoAM operation are described as fol-
lows: As illustrated in Fig.3, the module takes the 

 and  as input. Then, two class-

RC×N

N = H ×W

A ∈ RN×N

F
An−1
c FAn

c

aware  feature  maps  are  further  reshaped  into ,
where  is the number of the pixel location.
Then,  the  context  attention map  is  obtain-
ed by performing the matrix product between the reshap-
ed class-aware feature maps of  and , where each
position score of context attention maps can be defined
by
 

ai,j = exp((FAn−1

c,i )TFAn
c,j ) (6)

 
W

W W

C

C

H

H H

C

F
An
c

F
An−1
c_eF

An−1
c

Reshape

Reshape
Reshape

HW×C

HW×C

C×HW

HW×HW
Softmax

Context attention
 map

 
Fig. 3. Illustration of the proposed context attention module.

 
{i, j} ∈ {1, 2, . . . , N}

F
An−1
c

FAn
c ai,j F

An−1
c

FAn
c i j

ai,j

where  denoted the  index of  pixels
position from reshaped class-aware feature maps 
and .  measures  the  affinity  of  reshaped 
and  at positions  and ,  in which the more simil-
ar feature of the two positions is enhanced, and the ir-
related feature of them is suppressed. Then we normal-
ize  the  by  adopting  softmax  operation  to  ensure
that the total of all the weights associated with a pixel
is one unit: 
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āi,j =
ai,j∑N

j=1
ai,j

(7)

F
An−1
c F

An−1
c RC×N

F
An−1
c

RC×H×W

F
An−1
c

To  improve  the  original  class-aware  feature  maps
, we reshape  to  and perform a mat-

rix  multiplication  between  and  the  transpose  of
A. Then, the result is reshaped back to to get
the enhanced .
 

F
An−1

c_e,i = λ

N∑
j=1

(āi,j · FAn−1

c,j ) (8)

F
An−1
c

F
An−1
c

where λ is  the  weight  parameter  initialized  to  0  and
gradual-learned during the training process.  Finally,  as
seen  in Fig.1, we  execute  an  element-by-element  sum-
ming of the original class-aware feature mappings 
which can maintain the initial behavior of :
 

F
An−1

c,i = F
An−1

c_e,i + F
An−1

c,i (9)

F
An−1
c F

An−1
c_e

F
An−1
c

It  can be informed that from (9),  each position of
final  is  the  weighted  sum of  and  original
class-aware feature maps  at every position. Thus,
CoAM can  learn  contextual  information  from  a  differ-
ent  stage  of  class-aware  feature  maps  produced by the
classification branch at each location, which enable ad-
aptively enhance object regions and suppress irrelevant
object regions.

 4. Loss design of AGEN
The proposed  attention  guided  enhancement  net-

work  mainly  contains  two  types  of  loss:  classification
loss  and  segmentation  loss.  For  classification  loss,  we
adopt Sigmoid cross-entropy loss as a multi-label classi-
fication loss function:
 

lcls(p, q) = −
C∑

c=1

[qc log pc + (1− qc) log(1− pc)] (10)

where q denoted  the  image-level  classification  labels,
and p is  the classification score of objects produced by
(1). The proposed network got four classification scores
(pA, pAGM-5, pAGM-4, pAGM-3),  as  shown  in Fig.1, pro-
duced by classification branch A, AGM-5, AGM-4 and
AGM-3 respectively.  Then the classification loss is  cal-
culated as
 

Lcls = lcls
(
pA, q

)
+ lcls

(
pAGM−5, q

)
+lcls

(
pAGM−4, q

)
+ lcls

(
pAGM−3, q

)
(11)

We employ  balanced  seeding  loss  [25],  [28] for  se-
mantic  segmentation,  which  considers  the  imbalanced
distribution of confident foreground and background re-
gions.  Let C and Ĉ are  denoted  the  set  of  foreground
classes and the background class which is formulated as: 

lseg (Hc, S) =− 1∑
c∈C

|Hc|

∑
c∈C

∑
u∈Hc

logSu,c

− 1∑
c∈Ĉ

|Hc|

∑
c∈Ĉ

∑
u∈Hc

logSu,c (12)

Su,c

| · |

where Hc represented a collection of object regions cor-
responding to class c and were generated by the classi-
fication branch. S represents the segmentation map pro-
duced  by  the  segmentation  branch,  in  which  de-
noted  the  conditional  probability  of  any  label c∈C at
any location u of the segmentation map.  is the car-
dinality  of  pixels.  The  proposed  method got  four  pairs
Hc and S,  which  were  produced  by  AGM-3,  AGM-4,
AGM-5  and  overall  network  (classification  branch  A
and segmentation branch B),  as shown in Fig.1.  Thus,
the total segmentation loss is defined by
 

Lseg= lseg

(
Hc

AGM−3, SAGM−3
)
+ lseg

(
Hc

AGM−4, SAGM−4
)

+lseg
(
Hc

AGM−5, SAGM−5
)
+lseg

(
Hc

Cla, SSeB
)

(13)

We also use Lboundary boundary constrain loss  [20],
[25],  [28] to  encourage  the  segmentation  maps  match-
ing with the object boundary which is the mean KL-di-
vergence between outputs of the segmentation network
and the conditional random field [35] defined as
 

Lboundary =
1

N

N∑
u=1

C+1∑
c=1

Ru,c(I, S
SeB)) log

Ru,c(I, S
SeB)

SSeB
u,c

(14)

where I is  the  input  image  and Ru,  c (I, SSeB) denoted
the output of  fully connected CRF, in which SSeB rep-
resent the  segmentation  mask  produced  by  segmenta-
tion branch.  Finally,  the  whole  parameters  of  the  net-
work are updated at  the same time by minimizing the
total loss function Ltotal:
 

Ltotal = Lcls + Lseg + Lboundary (15)

 IV. Experiments
 1. Experimental setup
 1) Dataset and evaluation metrics
Our  method  was  tested  on  the  difficult  PASCAL

VOC  2012  image  segmentation  benchmark  [14],  which
included 21  semantic  class  labels,  20  foreground  cat-
egories and one background category. With 1464, 1449,
and 1456 images, the dataset is divided into three parts:
training (train), validation (val), and testing (test). Fol-
lowing  the  same  strategy  as  earlier  weakly  supervised
semantic  segmentation  approaches  [3],  [25],  [28],  we
used an extended training set of 10582 images supplied
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by [36] to train our network. In this experiment, we use
just  image-level  labels  as  supervision  for  training  the
network.  We  use  the  mean  intersection  over  union  to
evaluate the proposed approach’s performance across all
image  classes,  including  the  background  class.  For  an
in-depth  analysis  of  the  method  experiment,  only  the
validation set for which the ground truth is available is
used.  We  compare  our  proposed  method  to  existing
state-of-the-art  approaches  in  both  the  validation  and
test sets.

 2) Implementation details
The proposed  attention  guided  enhancement  net-

work is implemented on the publicly available PyTorch
[37] framework.  The training images  are  randomly res-
ized within the range of [321, 481] and then cropped to
321 × 321 as input images of the network. We use the
pre-trained  weights  on  Image-Net  [38]  and  randomly
initialize  the  remaining  parameters  of  the  proposed
method. The entire parameters of AGEN are then fine-
tuned  on  the  challenging  PASCAL  VOC  2012  images
dataset [14] with the initial learning rate of 0.001 (0.01
for the attention guided module), and the learning rate
is  decreased  by  a  factor  of  10  after  every  ten  epochs.
The network is trained using a stochastic gradient des-
cent (SGD)  optimizer  with  mini-batch,  and  the  train-
ing is terminated after 35 epochs. The batch size is set
to 15, and the weight decay parameter is set to 5E−4.
The  parameter  of  SGD optimizer  momentum is  set  to
0.9. To obtain the reliable object regions Mf-b based on
class-aware  feature  maps  produced  by  classification
branches, we  set  the  parameters  ∂ in  (4)  to  8.  The
threshold δ is set to 0.4 for AGM-3 and AGM-4, choos-
ing  the  pixels  belonging  to  the  top  40% of  the  largest
value for each class, and the threshold δ of AGM-5 and
classification  branch  A  is  set  to  0.3.  Finally,  during
training, any unassigned and conflicting  pixels  are  dis-
regarded. During training, all the classification branches
and segmentation branches update the entire attention
guided enhancement  network.  During  testing,  we  util-

ize  the  segmentation  branch  B  to  generate  semantic
segmentation results. All the experiments are implemen-
ted  on  a  single  NVIDIA  GeForce  RTX  2080Ti  GPU
with 11 GB memory.

 2. Ablation studies
 1) Effectiveness of proposed AGEN
We implement a series of ablation experiments us-

ing the  Pascal  VOC  2012  val  dataset  in  various  set-
tings  to  assess  the  effectiveness  of  each  element  of  the
attention guided  enhancement  network.  In  our  experi-
ments,  the “baseline” denoted the proposed end-to-end
network  without  attention  guided  module  and  context
attention  module,  just  containing  the  classification
branch  A  and  segmentation  branch  B. Table  1 shows
the  performance  of  mIoU  scores,  which “OA” denoted
add  only  one  AGM on  the  baseline  (i.e.,  AGM-4)  can
obtain a performance gain of nearly 3%. The main im-
provement  is  that  the  OA  module  can  extract  more
spatial information of the object from the lower layer of
the network and generate pseudo ground truth to guide
segmentation  learning  spatial  information.  The “SC”
means  adding  a  CoAM  based  on  the  OA,  which  can
capture  the  context-dependence  between  class-aware
feature  maps  generated  by  classification  branch  A and
AGM-4 respectively, so as to enhance the pixels of the
object region and suppress the noise of the class-aware
feature maps and get more than 1.5% performance im-
provement  compared  to  the  OA.  The “MA” denotes
adding multi-AGM on the baseline (i.e., AGM-3, AGM-
4, AGM-5 ), and “AC” denotes CoAM is adopted based
on MA in accumulated fashion, which improves the per-
formance up  to  58.5%  and  63.1%  mIoU  on  the  PAS-
CAL  VOC 2012  val  set  respectively.  The  performance
of MA and AC achieve 2.9% and 5.6% improvement re-
spectively  compared  with  the  OA  and  SC  adopted  at
the single stage of the network, which evaluates the ef-
fectiveness  of  adopting AGM and CoAM at the multi-
stage of the network.

  
Table 1. The ablation experiments for each part of AGEN

Baseline OA SC MA AC mIoU(%)
√ 52.8
√ √ 55.6
√ √ √ 57.3
√ √ √ 58.5
√ √ √ √ 63.1

 
 

 2) Analysis of AGM at different stages
To evaluate the effectiveness of the AGM at differ-

ent stages in the network, we additionally implement a
series of ablation experiments. As shown in Table 2, we
only adopt  AGM in  the  proposed  network  at  the  low-
est  stage  (AGM-3)  and  at  the  upper  stage  (AGM-5),

which achieved  0.5%  and  1.1%  performance  improve-
ment  compared  with  baseline,  respectively.  It  can  be
observed that the performance gain of the proposed net-
work by  add  AGM-3  or  AGM-5  has  not  been  signific-
antly  improved  compared  with  only  adopted  AGM-4
(2.8%)  in  the  network.  Because  class  activation  maps
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produced by the lower layer have more spatial informa-
tion, it  also  brings  much  noise  harming  the  perform-
ance of segmentation. Moreover, CAM produced by the
upper  layer  extracts  more  semantic  information  but  is
insufficient to guide the network to generate high-qual-
ity segmentation results, as shown in Fig.4. We also ad-
opt different  multi-AGM in  our  network,  the  perform-
ance of the network gets improved compared to single-
AGM,  as  shown  in Table  2.  Among  these  groups,  we
note that including AGM at three stages into the pro-
posed  network  produces  the  most  outstanding  results,
increasing performance by up to 58.5 percent mIoU.
  

Table 2. The ablation experiments for
AGM at different stages

Baseline AGM-3 AGM-4 AGM-5 mIoU(%)
√ 52.8

√ √ 53.3

√ √ 55.6

√ √ 53.9

√ √ √ 56.3

√ √ √ 55.7

√ √ √ 56.6

√ √ √ √ 58.5
 
 

 3) Comparison of CoAM at different stages
We conducted  experiments  to  evaluate  adding  ac-

cumulated CoAM base on the MA at different stages on
the segmentation performance. Table  3 shows that  ad-
opts CoAM in the upper layer (i.e., AGM-5) of the net-
work gives a performance gain of 0.3%. While incorpor-
ating accumulated CoAM into AGM-4 and AGM-3 res-
ults in a considerable performance gain of 2.2% and 4.6%
mIoU,  respectively,  compared  to  MA.  As  shown  in
Fig.4,  the  CoAM  may  boost  significant  object  regions
while suppressing irrelevant ones, demonstrating the ef-
ficiency  of  the  CoAM  and  emphasizing  the  need  to
merge  AGM and  CoAM to  direct  the  network  toward
producing high-quality segmentation results.

 3. Comparsion with state-of-the-arts
This  section  compares  our  approach  to  various

state-of-the-art algorithms for image-level weakly super-
vised  semantic  segmentation  in  terms  of  mIoUs  using
the  PASCAL  VOC  2012  validation  and  test  datasets.
Firstly,  we  detailedly  compare  the  proposed  method
with  other  previous  end-to-end  state-of-the-arts,  and
the results are presented in Table 4. Although there are
many various weakly supervised semantic segmentation
methods,  to the best of  our knowledge,  only just three
approaches of  this  task  adopt  an  end-to-end  architec-
ture with only image-level supervision, which is EM-Ad-
apt [10], CRF-RNN [11], and RRM [39] respectively. It

can be observed from Tabel  4 that our AGEN outper-
forms  the  early  end-to-end  method  (EM-Adapt  and
CRF-RNN)  by  large  margins  in  terms  of  mIoUs  on
every  class  of  the  PASCAL  VOC  dataset.  EM-Adapt
utilizes the Expectation-Maximization algorithm to op-
timize the  network,  and  CRF-RNN  fuses  three  differ-
ent computation processes into a segmentation network
by a CRF as the recurrent network. The latest end-to-
end method (RRM) gets the best performing one which
is based on small and spares object regions and adds a
shallow loss  function  to  update  the  network.  However,
our  end-to-end  AGEN  enhances  performance  by  over
0.5% and  0.4%  mIoUs  on  val  and  test  datasets  com-
pared with the  best  performance of  the  approach.  The
improvement of performance only comes from the char-
acteristics  of  the  AGEN itself  without  additional  bells
and whistles.  AGEN utilize  class  activation  maps  pro-
duced by  the  lower  layer  of  the  network  to  guide  seg-
mentation branch learning spatial information and pro-
duced by the upper layer to guide segmentation branch
learning semantic information, and adopt CoAM optim-

 

(a) Image

(b) AGM-3

(c) AGM-4

(d) AGM-5

(e) Branch A

(f) CoAM-5

(g) CoAM-4

(h) CoAM-3

 
Fig. 4. Visual comparison of class activation maps produced

by the proposed method at different stages.
 

   
Table 3. The ablation experiments for CoAM at

different stages

MA CoAM-5 CoAM-4 CoAM-3 mIoU(%)
√ 58.5
√ √ 58.8
√ √ √ 60.7
√ √ √ √ 63.1
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ize itself.
To  demonstrate  the  efficacy  and  scalability  of  the

proposed  method,  we  extend our  AGEN to  a  two-step
approach similar to RRM. The proposed two-step meth-
od adopts segmentation results produced by end-to-end
AGEN as pixel-level pseudo labels for training and eval-
uating the off-the-shelf fully convolutional network Dee-
pLab-ASPP  [1].  As  shown  in Table  5,  we  denote  the
two-step  AGEN  as  AGEN-VGG  and  AGEN-ResNet
based on VGG-16 [32]  and ResNet-101 [40]  backbones,
respectively.  Although  some  approaches  used  more
maps  for  training  (11k,  50k,  and  970k,  respectively),
others used extra information such as pixel-level labels,
videos,  instance  saliency,  and  saliency  maps.  Our  two-
step solution, based only on VGG-16, likewise increases
performance  by  0.7%  and  1.4%  on  the  val  and  test
datasets, respectively, compared to the prior approach’s
most  outstanding  performance  [26].  Additionally,  we
also  present  the  comparison  of  our  two-step  approach
with other methods based on ResNet. There are meth-
ods  [5],  [27],  [29]  that  are  based  on  ResNet-38  [33],
which  are  more  powerful  than  ResNet-101.  As  can  be
observed, the most directly comparable methods [5], [6],
[27],  [29],  [39]  are  those  that  do  not  require  additional
training sets  or  supervision.  Among  these  prior  meth-
ods,  reliable  region  mining  (RRM)  [39]  gets  the  best
performance  similar  to  adopting  our  one-step  network
to  produce  pseudo-ground-truth.  Our  AGEN-ResNet
achieves an mIoU value of  66.2 percent for the val  set
and 66.9 percent for the test set, which outperforms the
RRM. Furthermore, it can be stated that our improved
performance  is  not  the  result  of  additional  training
datasets  or  more  excellent  knowledge  as  supervision.
The performance improvement is primarily due to one-
step  AGEN,  which  creates  high-quality  pixel-level
pseudo labels  to  supervise  training  segmentation  net-
works.

 4. Qualitative results
Fig.5 shows  some  qualitative  segmentation  results

achieved by  our  attention  guided  enhancement  net-
work  on  the  PASCAL  VOC val  dataset.  As  shown  in
the first six columns, our end-to-end AGEN can gener-
ate  accurate  and  comprehensive  segmentation  results
for  diverse  pictures  with  distinct  classes.  We  also
present the segmentation results of the two-step AGEN
(i.e.,  AGEN-VGG  and  AGEN-ResNet),  trained  with
pseudo-pixel-level  labels  produced  by  the  end-to-end
AGEN. From the fourth and fifth rows in Fig.5, it can
be seen that  two-step AGEN obtain better  results  due
to the  powerful  segmentation  network,  and  demon-
strate the efficacy and scalability of the proposed meth-
od.  Although  despite  the  good  results,  as  seen  in  the
last column of Fig.5, there are still a few typical failure
instances.  Interweaving  objects  cause  the  most  failure
cases in  complex  contexts  are  confused  and  misidenti-
fied.

 V. Conclusions
In  this  paper,  we  present  a  one-step  strategy  for

weakly supervised image semantic segmentation that re-
lies entirely  on  picture-level  annotations  for  supervi-
sion—an attention-guided enhancement network (AGEN)
trained  end-to-end.  The  AGEN  contains  two  major
modules: the Attention guided module (AGM) and the
context  attention  module  (CoAM).  AGM can  produce
class activation maps from different layers to guide the
AGEN  to  learn  spatial  and  semantic  information  in  a
bottom-up fashion, while CoAM is capable of capturing
the  context-dependencies  between  class-aware  feature
maps produced by AGM at different stages to enhance
object regions and suppress irrelevant object regions to
improve  the  performance  of  segmentation  further.  We
also extend our AGEN to a two-step approach for val-
idating efficacy and scalability.  On the PASCAL VOC
2012  semantic  segmentation  benchmark,  experimental
findings  reveal  that  the  proposed  method  achieves
state-of-the-art performance,  demonstrating  the  effic-
acy of our AGEN.

   
Table 4. Comparison with other end-to-end state-of-the-arts in term of mIoU(%) on the

PASCAL VOC 2012 val and test sets

Dataset: val
Method bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

EM-Adapt [13] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 68.4 54.6 33.8
CRF-RNN [14] 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 69.8 55.4 52.8

RRM [39] 87.9 75.9 31.7 78.3 54.6 62.2 80.5 73.7 71.2 30.5 67.4 40.9 71.8 66.2 70.3 72.6 49.0 70.7 38.4 69.7 55.1 62.6
AGEN 88.1 79.8 33.1 77.3 56.2 63.4 78.5 76.0 78.6 27.9 67.5 31.3 75.3 70.4 72.9 67.2 44.7 71.5 35.4 72.1 56.0 63.1

Dataset: test
Method bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

EM-Adapt [13] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
CRF-RNN [14] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7

RRM [39] 87.8 77.5 30.8 71.7 36.0 64.2 75.3 70.4 81.7 29.3 70.4 52.0 78.6 73.8 74.4 72.1 54.2 75.2 50.6 42.0 52.5 62.9
AGEN 88.4 79.6 33.4 76.9 56.6 64.0 78.3 75.3 79.4 27.5 68.4 30.9 75.7 70.2 73.2 67.7 45.2 72.3 36.1 73.4 56.8 63.3
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Fig. 5. Qualitative results of segmentation on the PASCAL

VOC 2012 val set achieved by proposed approaches.
(a) Input  images;  (b)  Ground  truth;  (c)  Segmenta-
tion results  of  end-to-end AGEN; (d)  Segmentation
results  of  two-step  AGEN-VGG;  (e)  Segmentation
results of two-step AGEN-ResNet.
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