Self-Adaptive Discrete Cuckoo Search Algorithm for the Service Routing Problem with Time Windows and Stochastic Service Time

ZHANG Guoyun, WU Meng, LI Wujing, OU Xianfeng, and XIE Wenwu

(School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China)

Abstract — Making house calls is very crucial to deal with the competitive pressures of the service business and to improve service quality. We design a model called service routing problem with time windows and stochastic service time (SRPTW-SST) that is based on vehicle routing problem with time windows. A self-adaptive discrete cuckoo search algorithm with genetic mechanism (sDCS-GM) is proposed for the model SRPTW-SST. Moreover, we design a selection mechanism to improve the logicality of the algorithm based on the strong randomness of the Lévy flight. We introduce a genetic mechanism and design a neighborhood search mechanism for improving the robustness of the algorithm. In addition, an adaptive parameter adjustment method is designed to eliminate the impact of fixed parameters. The experimental results show that the sDCS-GM algorithm is more robust and effective than the state-of-the-art methods.

Key words — Service routing problem with time window, Stochastic service time, Cuckoo search, Vehicle routing problem with time window, Lévy flight.

I. Introduction

The vehicle routing problem with time windows (VRPTW) is a classic discrete combinatorial optimization problem [1]. The key challenges remain lowering transportation costs and increasing customer satisfaction. Therefore, this work proposes a model of the service routing problem with time windows and stochastic service time (SRPTW-SST) based on VRPTW. With heuristic algorithms being the most popular due to their unique qualities and benefits, the focus of this work was on heuristic approaches for SRPTW-SST, such as genetic algorithm (GA) [2], flower pollination algorithm (FPA) [3], invasive weed optimization (IWO) [4], etc. Yang *et al.* [5] unveiled the cuckoo search algorithm (CS), a new swarn intelligence algorithm inspired by the social behavior of cuckoo birds.

In this paper, a self-adaptive discrete cuckoo search algorithm with genetic mechanism (sDCS-GM) is proposed for VRPTW and SRPTW-SST, in which a Lévy flight-based selection criterion and a deletion and supplementation-based neighborhood search strategy are designed to improve the search performance of the algorithm. Combining the discovery probability Pa and 2opt, the search capability of the algorithm for local exploitation is improved. The experimental results show that the sDCS-GM algorithm is more robust and effective than the multi-adaptive particle swarm optimization (MAPSO) [6], genetic algorithm with adaptive simulated annealing mutation (GASA) [7], and other stateof-the-art methods. The main contributions are as follows:

1) A novel realistic model named SRPTW-SST based on VRPTW is designed.

2) sDCS-GM is presented for the VRPTW and SRPTW-SST problems.

3) Two selection criteria are designed based on Lévy flight and discovery probability Pa, respectively.

4) A parameter adaptive strategy based on the fitness and the iterations is designed to assign Pa values.

II. The Problem of SRPTW-SST

As a typical NP-hard problem, VRPTW has attracted the attention of more and more researchers. In order to obtain higher economic benefits, the company

Manuscript Received Apr. 4, 2022; Accepted Sept. 26, 2022. This work was supported by the Scientific Research Fund of Education Department of Hunan Province (22A0471), the Hunan Provincial Natural Science Foundation (2020JJ5218), the Engineering Research Center on 3D Reconstruction and Intelligent Application Technology of Hunan Province (2019-430602-73-03-006049), and the Science and Technology Program of Hunan Province (2019TP1014).

^{@~2023} Chinese Institute of Electronics. DOI:10.23919/cje.2022.00.072

that provides the service needs to send fewer technicians to complete more work in a day. A typical example of SRPTW-SST is shown in Fig.1.

Fig. 1. A classic example of VRPTW.

Table 1 lists the symbols and their meanings usedin the VRPTW and SRPTW-SST models.

Symbol	Meanings	Symbol	Meanings
V	Set of all vehicles	q_i	Demand of customer C_i
C	Set of all customers	lt_i	Latest arrival time at ${\cal C}_i$
N	Number of customers	st_i	Service time at C_i
Q	Capacity of vehicle	at_i	Arrival time at C_i
TD_{ij}	Distance from C_i to C_j	wt_i	Wait time at C_i
tt_{ij}	Time from C_i to C_j	sst_i	Stochastic service time
et_i	Earliest arrival time	-	—

Table 1. Basic Notions

The formulation of the VRPTW model is shown as

$$\min f(x) = \sum_{k \in V} \sum_{i \in C} \sum_{j \in C} TD_{ij} X_{ijk}$$
(1)

where f(x) represents the shortest driving distance of all vehicles. The $X_{ijk} = 1$ means that the vehicle k can pass through the road between customers C_i and C_j .

$$\sum_{i \in C} X_{i0k} = \sum_{j \in C} X_{0jk} = 1 \ (\forall k \in V)$$
(2)

$$\sum_{j \in C, j \neq i} X_{ijk} = \sum_{j \in C, j \neq i} X_{jik} \le 1 \quad (\forall i \in C, \forall k \in V)$$
(3)

$$\sum_{k \in V} \sum_{i \in C, i \neq j} X_{ijk} = 1 \ (\forall j \in C)$$
(4)

$$\sum_{k \in V} \sum_{j \in C, j \neq i} X_{ijk} = 1 \ (\forall i \in C)$$
(5)

Equations (2)–(5) are defined to satisfy the restriction conditions that only K vehicles are used to serve customers and each customer is served by one vehicle once. The maximum capacity of each vehicle is specified by

$$\sum_{i \in C} q_i \sum_{j \in C, j \neq i} X_{ijk} \le Q \ (\forall k \in V)$$
(6)

The time windows constraints are defined by (7)–(9) as following:

$$wt_j = \max\left\{et_i - lt_i - tt_{ij}, 0\right\} \ (\forall i, j \in C, i \neq j)$$
(7)

$$lt_i + st_i + tt_{ij} + wt_i \le lt_j \ (\forall i, j \in V, i \ne j)$$
(8)

$$et_i \le lt_i + wt_i \le lt_j \ (\forall i \in C) \tag{9}$$

According to the actual service time required by customers, st_i is improved to

$$sst_i = st_i + randperm\left[-a, a\right]$$
 (10)

where sst_i is the actual service time, $a \in [-10, 10]$, the formula (8) is adjusted to

$$lt_i + sst_i + tt_{ij} + wt_i \le lt_j \ (\forall i, j \in V, i \ne j)$$
(11)

III. Proposed Method for SRPTW-SST

1. Genetic mechanism

This mechanism mainly involves selection operator, crossover operator, and mutation operator shown in Algorithms 1–3. There are K vehicles and N customers, the coding length is K + N - 1. Two random integers r_1 and r_2 , $r_1, r_2 \in [1, K + N - 1]$. No longer sets the crossover and mutation probability to reduce the number of parameters.

Algorithm 1	Selection operator
cumfit = cum	nsum(fit);
$Nsel = \max($	$floor\left(N\times Gap+0.5\right),2);$
$tr = \frac{cumfit}{Nsel} \times$	(rand + (0: Nsel - 1)');
Obtain Mf a	nd Mt based on $Nsel$ and N ;
Sort index to	a random order;
Get a selecte	d list;

Algorithm 2 Crossover operator
for $i = 1 : Nse1$
$r_1, r_2 \in [1, num_c];$
$tempA = A(r_1, r_2); tempB = B(r_1, r_2);$
$A(r_1, r_2) = tempB; B(r_1, r_2) = tempA;$
Adjust the same indexes in A and B respectively;
end for

Algorithm 3 Mutation operator
for $i = 1 : Nse1$
$r_1, r_2 \in [1, num_c];$
$x(i, r_1: r_2) = x(i, r_2: r_1);$
end for

wh

2. DCS Algorithm

1) Local search based on 2-opt

As shown in Algorithm 4, 40% of (K+N-1) nodes is randomly selected to perform breakpoint operations.

Algorithm 4	Local search based on 2-opt
for $i = 1: N$	
Select m po	pint $(Id);$
for $j = 1 : n$	n
newX	$(i,(j):(j+1)) = reverse\left(X\left(i,(j):(j+1)\right)\right)$
end for	
end for	

2) 3-opt method

As shown in Fig.2, after the variant of 3-opt method, there is the possibility of obtaining multiple offspring. Although keeping individuals with better fitness values is currently the best choice, it has to be considered that near the individuals with better fitness is the local optimal route. This can increase the probability that the algorithm will fall into a local optimum. On the contrary, there will be the following situation: individuals with poor fitness will develop into individuals with better fitness in the subsequent optimization process. Therefore, this paper devises a technique: If r>sp, then X_i is an individual with optimal fitness, otherwise it is a suboptimal individual.

Fig. 2. The variant of 3-opt.

3) Lévy flight

Lévy flight will generate short step lengths in most of the time of the random process and will be accompanied by occasional long step lengths. It can be clearly found that a short step size can help the algorithm to improve the calculation accuracy during local exploitation, and a long step size can help the algorithm get rid of the problem of local optimization in the global exploration stage. CS algorithm relies on the advantages of the combination of long and short step length of Lévy flight to achieve ideal performance for solving continuous optimization problems in (12).

$$LFvalue = u \times |v|^{-\beta^{-1}} \tag{12}$$

where $\beta = 1.5$, $u \sim N(0, \sigma^2)$ and $v \sim N(0, 1)$. The σ is expressed as

$$\sigma = \left\{ \frac{\Gamma\left(1+\beta\right)\sin\left(\beta \times \pi/2\right)}{\Gamma\left((1+\beta)/2\right) \times \beta \times 2^{(\beta-1)/2}} \right\}^{\frac{1}{\beta}}$$
(13)

ere
$$\Gamma$$
 is the gamma function.

3. Self-adaptive mechanism

This paper designs a parameter adaptive mechanism for the probability of discovery to minimize or even eliminate the above-mentioned influences and drawbacks. Only the change of Pa with the change of the number of iterations is considered [8]. This mechanism is not conducive to the balance of search capabilities between global exploration and local search. Therefore, while considering that the parameter Pa changes with the number of iterations, this paper also takes into account the changes in fitness, as shown in (14).

$$Pa' = \left[1.1 - \sin\left(\frac{\max Iter - iter}{\max Iter} \times \frac{\pi}{2}\right)^{\theta}\right] \times f(fit)$$
(14)

where *Iter* represents the current number of iterations, max *Iter* represents the maximum number of iterations, $\theta = 0.6. f(fit) = \exp(-(fit_{iter}/fit_{iter-1})).$

4. Neighborhood search

How to better apply this part to solving discrete combinatorial optimization problems becomes particularly essential. In order to achieve the goal of improving the algorithm's optimization ability as much as possible, this paper designs a neighborhood search mechanism based on random removal and supplement in Algorithms 5 and 6.

Algorithm 5 Neighborhood search
for $i = 1: N$
Decode;
Implement remove operator;
for $j = 1$: length(removed)
Obtain the optimal insertion point;
Insert into the original route;
end for
Adjust the new route;
Evaluate the fitness of the new population;
Record optimal results;
end for

Algorithm 6	Remove	operator
-------------	--------	----------

Choose one customer randomly;

for i = 1: num re

end while

Calculate relevance δ between a removed customer and all other customers;											
Sort the remaining customer by relevance δ ;											
Get the removed list;											
end while											
n = size(Nvc);											
for $i = 1: n$											
$R = Nvc_i;$											
for $j = 1: num_re$											
if $R == removed_i$											
The corresponding R is left blank;											
end if											
end for											
Adjust the new route;											
end for											

The design of the relevance δ between customer nodes is inspired by the Euclidean distance, the relevanc $\delta = 1/(\varepsilon + \varphi)$, and ε and φ can be stated as

$$\varepsilon = \frac{D\left(de_{i+1}, re_{j+1}\right)}{\max\left(D\left(de_{i+1}, 2: end\right)\right)} \tag{15}$$

$$\varphi = \begin{cases} 0, & \text{if } i \in VC \text{ and } j \in VC \\ 1, & \text{otherwise} \end{cases}$$
(16)

where D represents the distance matrix, de and re represent the matrix of removed nodes and remaining nodes, respectively. VC represents the list of customers served by the current vehicle.

5. sDCS-GM algorithm

Through the analysis of the CS algorithm, as well as the elaboration and demonstration of the improvement ideas mentioned above, this paper proposes an sDCS-GM algorithm for solving VRPTW and SRPTW-SST problems in Algorithm 7.

Algorithm 7 The framework of sDCS-GM	
Require: $\max Iter$: the maximum number of iterat N : the number of population; Pa : the dis ery probability.	ions; scov-
Ensure: x : an optimal solution; fit : the optimal fitne	ess.
Initialize the population;	
Evaluate the fitness of the initial population;	
Encode;	
while $iter < \max Iter$	
Execute the selection operator;	
Update LF with equation (12);	
if $LF < cA$	
Implement the variant of 3-opt;	
Implement crossover operator;	
Implement muttation operator;	
else	
Implement the local search based on 2-opt;	
Implement muttation operator;	
Implement crossover operator;	
end if	

Evaluate the fitness of the new population;

for i = 1: NUpdate Pa' with equation (16); if rand < Pa'Implement the local search based on 2-opt; else Implement neighborhood search; end if end for Evaluate the fitness of the new population; Decode; Record optimal results;

IV. Experiment and Results

In this section, the proposed sDCS-GM algorithm is applied to solve the VRPTW and SRPTW-SST problems, and relevant experimental data are collected and analyzed.

1. Experiment setting

In order to highlight the effectiveness of the sDCS-GM algorithm, it is chosen to compare with the multiadaptive particle swarm optimization (MAPSO) [6], genetic algorithm with adaptive simulated annealing mutation (GASA) [7] and discrete cuckoo search algorithm (DCS). The relevant parameters of each algorithm are shown in Table 2. The MAPSO, GASA, DCS, and sDCS-GM algorithms were independently run 30 times for 42 VRP-TW instances with 100 customers. In addition, the efficiency of sDCS-GM is compared to that of the bees algorithm (BA) [9], hybrid shuffled frog leaping algorithm (HSFLA) [10], hybrid ant colony algorithm and brain storm optimization (HACS-BSO) [11], and multi-objective discreet learnable evolution model (MODLEM) [12].

Table 2. Simulation parameters for each algorithm

		1	8				
	Symbol	Value	Meanings				
Common	$\max Iter$	500	Maximum iteration				
Common	N	50	Population size				
	num_Re	5	Number of removed				
sDCS-GM	Pa	0.25	Intial discovery probability				
	sp	0.2	Selection probability				
	pc	0.8	Crossover probability				
	pm	0.8	Mutation probability				
CASA	P_c	0.9	Selection parameter				
GASA	α_1, α_2	0.8, 2	Cooling coefficient				
	L_1, L_2	10, 8	Disturbance rounds				
	T_0, T_1	2000, 1	Initial and final temperature				
MADSO	V	0	Initial velocity				
MAPSO	c_1, c_2	1.2, 1.2	Acceleration coefficients				

2. VRPTW

- 1) Comparison with the different CS
- To demonstrate the effectiveness of the proposed

genetic mechanism and neighborhood search, this section compares the proposed sDCS-GM approach to several versions of DCS algorithms, such as discrete cuckoo search algorithm (DCS), cuckoo search with genetic mechanism (CS-GM), and cuckoo search with neighborhood search (CS-NS). The experimental results of the four algorithms are shown in Table 3, where BKS denotes the best-known solution.

Table 3. Comparison of results of sDCS-GM with CS-GM, CS-NS, and DCS

Sets	BKS		DCS	CS-GM	CS-NS	sDCS-GM	Sets	BKS		DCS	CS-GM	CS-NS	sDCS-GM
C101	000.04	Ave	4300.53	4099.02	834.84	828.94	D101	1049.00	Ave	3538.35	3387.13	1671.49	1674.18
0101	020.94	Min	3933.74	3895.44	816.18	828.94	L 101	1042.00	Min	3372.48	3225.29	1649.30	1654.07
C102	000 04	Ave	4281.46	4127.73	832.39	828.49	D102	1479.69	Ave	3523.90	3375.88	1514.03	1501.99
0102	020.94	Min	4034.10	3883.67	816.26	815.44	R102	1472.02	Min	3329.43	3237.67	1482.80	1482.18
C102	C102 000 00	Ave	4304.63	4066.94	827.13	815.44	D102	1213.62	Ave	3495.43	3364.93	1258.31	1256.61
0103	020.00	Min	4093.34	3932.27	812.99	815.44	1,105		Min	3321.20	3262.02	1221.54	1234.36
C104	894 78	Ave	3649.15	3430.70	821.36	807.04	B104	076 61	Ave	3449.41	3225.91	1039.32	1030.47
0104	024.70	Min	3345.98	3181.74	804.82	804.28	11104	370.01	Min	3057.53	3035.16	1016.06	1005.39
C105	828.04	Ave	4292.12	4082.19	840.41	822.85	B105	1360 78	Ave	3526.64	3397.67	1430.35	1427.65
0105	020.94	Min	3966.25	3900.48	819.56	822.85	11105	1300.78	Min	3240.17	3255.21	1391.46	1385.99
C106	828 01	Ave	4295.41	4071.47	849.52	820.61	B106	1240.47	Ave	3499.25	3336.51	1296.61	1289.92
0100	020.91	Min	4035.97	3912.41	826.85	820.61	10100	1240.47	Min	3256.69	3249.38	1245.99	1259.83
C107	828.04	Ave	4264.37	4109.16	835.51	820.61	B107	1073 34	Ave	3475.71	3351.47	1140.85	1128.06
0107	020.94	Min	3875.93	3699.07	818.66	820.61	10107	1075.54	Min	3331.70	3190.48	1105.62	1086.24
C201	591 56	Ave	4432.22	4139.89	652.75	620.99	B201	1147.90	Ave	3708.95	3532.91	1164.27	1184.34
0201	591.50	Min	4179.41	3893.82	623.39	591.56	11201	1147.00	Min	3455.58	3406.73	1122.43	1159.34
C202	591 56	Ave	4364.28	4143.50	666.45	629.82	B202	103/ 35	Ave	3674.80	3538.32	1088.35	1073.39
0202	031.00	Min	4090.10	3929.68	628.87	591.56	11202	1004.00	Min	3476.72	3422.93	1055.17	1057.23
C203	591 17	Ave	4240.01	3840.69	670.08	638.52	R203	874.87	Ave	3360.43	3066.29	927.34	916.36
0205	031.17	Min	3776.74	3683.64	614.64	603.37			Min	3004.84	2891.31	901.19	893.82
C204	590.60	Ave	3348.99	3157.62	662.70	647.61	R204	735.80	Ave	2859.85	2611.37	797.80	775.27
0204	550.00	Min	3157.15	2981.10	618.66	590.60			Min	2676.66	2534.28	772.17	758.97
C205	588 88	Ave	4412.73	4231.88	658.04	602.85	R205	954.16	Ave	3751.91	3471.35	1006.02	1006.66
0200	000.00	Min	4105.78	4074.76	621.74	588.88			Min	3366.56	3309.15	976.16	981.84
C206	588 49	Ave	4387.80	4159.86	661.38	636.70	R206	879.89	Ave	3459.02	3151.74	930.93	931.59
0200	000.40	Min	4145.66	3866.51	616.14	588.49			Min	3306.71	2918.82	867.67	901.53
C207	588 29	Ave	4350.04	4142.61	619.01	629.19	B207	799.86	Ave	3096.57	2811.81	865.30	856.08
0201	000.20	Min	3906.01	3857.93	582.63	588.29	10201		Min	2851.37	2648.41	827.18	824.53
BC101	1623 58	Ave	4511.48	4461.17	1709.10	1699.46	BC201	1265 56	Ave	4861.12	4623.45	1297.85	1305.87
	1020100	Min	4179.15	4276.62	1664.53	1648.57	100201	1200100	Min	4487.61	4472.81	1268.90	1267.97
BC102	1461 23	Ave	4593.83	4351.02	1545.67	1507.27	BC202	1095 64	Ave	4775.28	4630.20	1141.98	1134.53
100102	1101.20	Min	4153.73	4103.42	1506.84	1471.16	10202	1000.01	Min	4549.74	4440.15	1110.45	1103.56
BC103	1261.67	Ave	4529.02	4344.18	1348.97	1345.87	BC203	928.51	Ave	4437.70	4086.72	985.33	970.59
	1201101	Min	4326.67	4096.27	1268.41	1280.69	100200	020101	Min	4219.00	3844.75	951.93	945.39
BC104	1135.48	Ave	4503.85	4260.71	1211.91	1183.75	BC204	786.38	Ave	3737.60	3447.50	848.83	835.67
	1100.10	Min	4123.74	3724.73	1153.28	1127.65	100201	100.00	Min	3522.40	3308.22	830.60	805.42
BC105	1518.58	Ave	4532.46	4275.61	1604.19	1595.88	BC205	1157.55	Ave	4844.63	4474.70	1200.59	1191.64
	1010.00	Min	4248.80	4028.78	1559.27	1557.99	10200	1101.00	Min	4443.93	4237.60	1171.66	1164.85
BC106	1371.69	Ave	4451.94	4325.05	1453.66	1439.13	BC206	1054.61	Ave	4773.55	4510.86	1096.29	1104.22
	1011.00	Min	4129.44	3657.25	1366.39	1408.39	110200		Min	4392.61	4313.23	1049.72	1072.32
RC107	1212.83	Ave	4407.98	4151.09	1311.16	1299.88	RC207	966.08	Ave	4668.09	4132.40	1000.01	1009.65
	1212.00	Min	4058.11	4009.58	1190.20	1241.39			Min	4173.77	3947.37	949.97	966.08

Table 3 shows that the genetic mechanism can significantly improve the performance of the DCS algorithm. Neighborhood search can significantly reduce the vehicle travel distance, and the CS-NS method shows strong competitiveness and superiority compared with the DCS and CS-GM methods. Even compared with the sDCS-GM method, more desirable results can be obtained for a few instances. However, overall the sDCS-GM method exhibits more satisfactory stability along with better performance of the search for superiority. Therefore, the experimental results demonstrate that GM and NS have different degrees of performance improvement for the DCS method. Compared with the sDCS-GM method, it is also shown that the GM can effectively improve the stability of the NS strategy.

2) Comparison with the MAPSO and GASA

The experimental results obtained by MAPSO, DCS, GASA, and the proposed sDCS-GM method are shown in Table 4, including the minimum and average values, for 42 VRPTW instances.

In Table 4, the proposed sDCS-GM method is able to obtain shorter driving routes than MAPSO, GASA and DCS method paths for most of the instances. For C101–C107, the distances obtained by the proposed method are all less than or equal to the best-known solution BKS, for example, C101, C104, which is a performance that the comparison method does not achieve. For C201–C207, although both the proposed algorithm and MAPSO algorithm are able to obtain BKS for some instances, MAPSO is more stable. In addition, for C205 and C206, the proposed algorithm is able to obtain more optimal driving routes. For R101–R207, although the proposed algorithm does not obtain BKS values, the difference with BKS is small. In addition, only the MAPSO algorithm performs better than the proposed algorithm for R104, R106 and R205 instances. And for RC101–RC207, the MAPSO algorithm only performs better than the proposed algorithm at RC103.

Table 4. Comparison of results of sDCS-GM with MAPSO, GAASAM, and DCS for VRPTW

Sets	BKS		MAPSO	GASA	DCS	sDCS-GM	Sets	BKS		MAPSO	GASA	DCS	sDCS-GM
C101	020 04	Ave	924.58	842.69	4300.53	828.94	D101	1642.88	Ave	1714.25	1750.61	3538.35	1674.18
	020.94	Min	846.48	832.16	3933.74	828.94	1,101		Min	1692.89	1643.27	3372.48	1654.07
C102	000 04	Ave	886.62	854.22	4281.46	828.49	D109	1472.62	Ave	1541.01	1607.78	3523.90	1501.99
0102	020.94	Min	847.26	829.11	4034.10	815.44	R102		Min	1529.47	1504.80	3329.43	1482.18
C102	828.06	Ave	888.99	928.73	4304.63	815.44	D102	1213.62	Ave	1271.38	1328.16	3495.44	1256.61
0105	020.00	Min	853.22	832.10	4093.34	815.44	1,105		Min	1267.35	1218.80	3321.21	1234.36
C104	994 79	Ave	857.50	837.71	3649.15	807.04	D104	070.01	Ave	979.44	1229.94	3449.41	1030.47
0104	024.70	Min	831.97	828.72	3345.98	804.28	1,104	970.01	Min	977.93	1083.48	3057.53	1005.39
C105	828.04	Ave	863.94	871.82	4292.12	822.85	B105	1360 78	Ave	1437.12	1448.02	3526.64	1427.65
0105	020.94	Min	828.37	838.52	3966.25	822.85	11105	1300.78	Min	1423.12	1361.76	3240.17	1385.99
C106	828.01	Ave	853.50	867.96	4295.41	820.61	B106	1940.47	Ave	1279.85	1329.54	3499.25	1289.92
0100	020.91	Min	825.16	838.33	4035.97	820.61	11100	1240.47	Min	1255.31	1272.64	3256.69	1259.83
C107	828.04	Ave	853.51	846.36	4264.37	820.61	B107	1073 34	Ave	1137.47	1145.77	3475.71	1128.06
0107	020.94	Min	825.28	828.94	3875.93	820.61	11107	1075.54	Min	1132.12	1119.93	3331.70	1086.24
C201	501 56	Ave	591.91	747.60	4432.22	620.99	B201	11/7 80	Ave	1263.12	1211.69	3708.95	1184.34
0201	091.00	Min	591.56	607.69	4179.41	591.56	11201	1147.00	Min	1203.16	1159.32	3455.58	1159.34
C202	501 56	Ave	597.63	662.71	4364.28	629.82	D 202	1024.25	Ave	1146.68	1124.65	3674.80	1073.39
0202	091.00	Min	592.63	602.65	4090.10	591.56	11202	1034.33	Min	1057.35	1063.47	3476.72	1057.23
C203	501.17	Ave	591.56	676.62	4240.01	638.52	R203	874.87	Ave	899.87	996.65	3360.43	916.36
0203	591.17	Min	591.56	594.78	3776.74	603.37			Min	895.35	912.29	3004.84	893.82
C204	590.60	Ave	596.16	705.05	3348.99	647.61	R204	735.80	Ave	811.36	826.45	2859.85	775.27
0204	590.00	Min	590.60	596.09	3157.15	590.60			Min	762.67	768.66	2676.66	758.97
C205	588 88	Ave	655.91	712.55	4412.73	602.85	R205	954.16	Ave	980.43	1068.17	3751.91	1006.66
0205	000.00	Min	645.79	615.07	4105.78	588.88			Min	897.57	1015.30	3366.56	981.84
C206	588 /0	Ave	593.83	661.55	4387.80	636.70	B206	879.89	Ave	968.32	1041.82	3459.02	931.59
0200	500.45	Min	590.28	606.19	4145.66	588.49	11200	013.03	Min	925.64	971.61	3306.71	901.53
C207	588 29	Ave	593.04	773.52	4350.04	629.19	R207	700.86	Ave	866.24	904.83	3096.57	856.08
0201	000.20	Min	583.88	616.64	3906.01	588.29		155.00	Min	821.04	848.25	2851.37	824.53
BC101	1623 58	Ave	1703.33	1819.46	4511.48	1699.46	BC201	1265 56	Ave	1310.82	1430.10	4861.12	1305.87
10101	1020.00	Min	1691.57	1703.74	4179.15	1648.57	10201	1200.00	Min	1272.88	1258.19	4487.61	1267.97
BC102	1461 23	Ave	1508.98	1636.85	4593.83	1507.27	BC202	1095.64	Ave	1141.84	1228.03	4775.28	1134.53
100102	1101.20	Min	1497.62	1505.92	4153.73	1471.16	10202	1095.04	Min	1108.27	1130.22	4549.74	1103.56
RC103	1261.67	Ave	1306.31	1397.66	4529.03	1345.87	BC203	928 51	Ave	986.01	1049.99	4437.70	970.59
10100	1201.01	Min	1269.61	1327.77	4326.67	1280.69	10200	928.01	Min	949.75	952.80	4219.01	945.39
BC104	1135 48	Ave	1209.05	1394.59	4503.85	1183.75	BC204	786.38	Ave	843.80	1099.19	3737.60	835.67
10104	1100.40	Min	1173.88	1213.62	4123.75	1127.65	10204	100.00	Min	816.32	847.61	3522.40	805.42
RC105	1518 58	Ave	1602.12	1708.65	4532.46	1595.88	BC205	1157 55	Ave	1196.40	1356.11	4844.63	1191.64
10100	1010.00	Min	1558.60	1618.97	4248.80	1557.99	10200	1107.00	Min	1160.23	1238.91	4443.93	1164.85
BC106	1371 69	Ave	1450.13	1486.58	4451.94	1439.13	BC206	1054.61	Ave	1181.03	1416.09	4773.55	1104.22
	1011.03	Min	1419.03	1245.20	4129.44	1408.39	10200		Min	1151.88	1263.83	4392.61	1072.32
BC107	1212 83	Ave	1722.93	1402.08	4407.98	1299.88	RC207	966.08	Ave	1045.08	1489.65	4668.09	1009.65
	1212.00	Min	1681.47	1306.54	4058.11	1241.39			Min	984.08	1422.69	4173.77	966.08

$$Dis_Gap = \frac{Dis_{\text{others}} - Dis_{\text{ours}}}{Dis_{\text{ours}}} \times 100\%$$
(17)

$$Robust = \frac{Best - Average}{Average} \times 100\%$$
(18)

In Table 5, the values calculated from (22) show that the proposed sDCS-GM algorithm and MAPSO algorithm perform more consistently, for example, sDCS-GM (C1, R2 and RC2), MAPSO (C2, R1 and RC1).

In Table 6, Dis_Gap between GASA and the proposed sDCS-GM algorithm are all greater than 0. Dis_Gap between both DCS and the proposed sDCS-GM algorithm is greater than 110. Overall, the sDCS-

GM exhibits much better performance in terms of stability than the comparative algorithms such as MAPSO and GASA. To highlight the superiority and competitiveness of the proposed sDCS-GM algorithm in terms of convergence speed, we make convergence curves for some of the instances, as shown in Fig.3. We make a roadmap of the shortest driving path obtained by the proposed sDCS-GM algorithm for some instances, as shown in Fig.4.

This paper compares the sDCS-GM algorithm against other state-of-the-art algorithms such as the HSFLA, BA, ACS-BSO, and MODLEM in order to demonstrate its competitiveness and superiority. The

Sets	MAPSO	GASA	DCS	sDCS-GM	Sets	MAPSO	GASA	DCS	sDCS-GM	Sets	MAPSO	GASA	DCS	sDCS-GM
C101	-8.45	-1.25	-8.53	0.00	R101	-1.25	-6.13	-4.69	-1.20	RC101	-0.69	-6.36	-7.37	-2.99
C102	-4.44	-2.94	-5.78	-1.57	R102	-0.75	-6.40	-5.52	-1.32	RC102	-0.75	-8.00	-9.58	-2.39
C103	-4.02	-10.40	-4.91	0.00	R103	-0.32	-8.23	-4.98	-1.77	RC103	-2.81	-5.00	-4.47	-4.84
C104	-2.98	-1.07	-8.31	-0.34	R104	-0.15	-11.91	-11.36	-2.43	RC104	-2.91	-12.98	-8.44	-4.74
C105	-4.12	-3.82	-7.59	0.00	R105	-0.97	-5.96	-8.12	-2.92	RC105	-2.72	-5.25	-6.26	-2.37
C106	-3.32	-3.41	-6.04	0.00	R106	-1.92	-4.28	-6.93	-2.33	RC106	-2.14	-16.24	-7.24	-2.14
C107	-3.31	-2.06	-9.11	0.00	R107	-0.47	-2.25	-4.14	-3.71	RC107	-2.41	-6.81	-7.94	-4.50
Average	-4.38	-3.57	-7.18	-0.27	Average	-0.83	-6.45	-6.53	-2.24	Average	-2.06	-8.66	-7.33	-3.42
C201	-0.06	-18.71	-5.70	-4.74	R201	-4.75	-4.32	-6.83	-2.11	RC201	-2.89	-12.02	-7.68	-2.90
C202	-0.84	-9.06	-6.28	-6.08	R202	-7.79	-5.44	-5.39	-1.51	RC202	-2.94	-7.96	-4.72	-2.73
C203	0.00	-12.10	-10.93	-5.51	R203	-0.50	-8.46	-10.58	-2.46	RC203	-3.68	-9.26	-4.93	-2.60
C204	-0.93	-15.45	-5.73	-8.80	R204	-6.00	-6.99	-6.41	-2.10	RC204	-3.26	-22.89	-5.76	-3.62
C205	-1.54	-13.68	-6.96	-2.32	R205	-8.45	-4.95	-10.27	-2.47	RC205	-3.02	-8.64	-8.27	-2.25
C206	-0.60	-8.37	-5.52	-7.57	R206	-4.41	-6.74	-4.40	-3.23	RC206	-2.47	-10.75	-7.98	-2.89
C207	-1.54	-20.28	-10.21	-6.50	R207	-5.22	-6.25	-7.92	-3.69	RC207	-5.84	-4.50	-10.59	-4.32
Average	-0.79	-13.95	-7.33	-5.93	Average	-5.30	-6.17	-7.40	-2.51	Average	-3.44	-10.86	-7.13	-3.04

Table 5. Comparison results of the robust (%) for VRPTW

Table 6. Comparison results of the cost gap (%)

Sets	MAPSO	GASA	DCS	Sets	MAPSO	GASA	DCS
C101	11.54	1.66	418.80	R101	2.39	4.57	111.35
C102	7.02	3.11	416.78	R102	2.60	7.04	134.62
C103	9.02	13.89	427.89	R103	1.18	5.69	178.16
C104	6.25	3.80	352.16	R104	-4.95	19.36	234.74
C105	4.99	5.95	421.62	R105	0.66	1.43	147.02
C106	4.01	5.77	423.44	R106	-0.78	3.07	171.28
C107	4.01	3.14	419.66	R107	0.83	1.57	208.11
C201	-4.68	20.39	613.73	R201	6.65	2.31	213.17
C202	-5.11	5.22	592.94	R202	6.83	4.78	242.35
C203	-7.36	5.97	564.03	R203	-1.80	8.76	266.72
C204	-7.94	8.87	416.77	R204	4.65	6.60	268.89
C205	8.80	18.20	631.98	R205	-2.61	6.11	272.71
C206	-6.73	3.90	589.15	R206	3.94	11.83	271.30
C207	-5.75	22.94	591.37	R207	1.19	5.70	261.72
RC101	0.23	7.06	165.47	RC201	0.38	9.51	272.25
RC102	0.11	8.60	204.78	RC202	0.65	8.24	320.91
RC103	-2.94	3.85	236.51	RC203	1.59	8.18	357.22
RC104	2.14	17.81	280.47	RC204	0.97	31.53	347.26
RC105	0.39	7.07	184.01	RC205	0.40	13.80	306.55
RC106	0.76	3.30	209.35	RC206	6.96	28.24	332.30
RC107	2.14	17.81	239.11	RC207	3.51	47.54	362.35

Fig. 3. Comparison of convergence performance of C103, C104, C202, R104, R107, R203, RC104, RC107, and RC204.

Fig. 4. Optimal route of several C, R and RC instances by sDCS-GM (C101, C104, C201, R103, R204, R207, RC104, RC203, and RC204.

average values of the five algorithms' results are shown in Table 7. This demonstrates that the sDCS-GM al-

gorithm has a significant competitiveness and superiority.

Table 7. Comparison of results of sDCS-GM with other state-of-the-art methods

Sets	HSFLA	BA	ACS-BSO	MODLEM	sDCS-GM	Sets	HSFLA	BA	ACS-BSO	MODLEM	sDCS-GM
C101	828.94	828.94	828.94	829.04	828.94	R201	1252.88	1185.57	1336.05	1252.47	1184.34
C102	828.94	828.94	828.94	829.04	828.49	R202	1192.27	1103.15	1128.05	1191.80	1073.39
C103	828.06	828.94	828.06	828.17	815.44	R203	939.95	958.94	1020.10	939.60	916.36
C104	824.78	858.90	828.78	828.88	807.04	R204	826.31	818.44	834.92	731.40	775.27
C105	82894	828.94	824.94	829.04	822.85	R205	994.80	1020.53	1105.38	964.20	1006.66
C106	828.94	828.94	828.94	829.04	820.61	R206	906.59	960.29	949.11	887.70	931.59
C107	828.94	828.94	828.94	829.04	820.61	R207	891.14	905.70	812.35	807.10	856.08
RC201	1407.22	1308.76	1514.41	1407.04	1305.87	RC205	1298.26	1210.68	1360.91	1297.75	1191.64
RC202	1365.96	1167.00	1326.71	1365.75	1134.53	RC206	1146.87	1112.38	1237.21	1146.42	1104.22
RC203	1050.14	1014.79	1166.91	1049.72	970.59	RC207	1061.50	1059.62	1039.59	759.33	1009.65
Sum	1	1	1	0	10	Sum	0	0	0	5	5

3. SRPTW-SST

Sets

In this paper, an SRPTW-SST based on VRPTW is designed for realistic requirements. The instances is also transformed into SC, SR and SRC according to (10). The experimental results obtained by the proposed sDCS-GM method with MAPSO, GASA, and DCS, including the average and optimum values, are shown in Table 8. Tables 9 and 10 show the robustness of the

sDCS-GM method and the gap between the sDCS-GM method and other competitors, respectively. To highlight the superiority and competitiveness of the proposed sDCS-GM algorithm, we make convergence curves for some of the instances, as shown in Fig.5.

Combined with the analysis of the experimental results, the sDCS-GM algorithm is in the absolute lead compared with the DCS algorithm. For SC101-SC207,

	MAPSO	GASA	DCS	sDCS-GM	Sets		MAPSO	GASA	DCS	sDCS-GM
Ave	867.38	847.51	4318.31	842.09	SP101	Ave	1676.05	1774.57	3475.13	1696.26
Min	837 27	830.10	4110.27	820 73	SILIUI	Min	1599.07	1739.21	3200.92	1589 34

Table 8. Comparison of results of sDCS-GM with MAPSO, GASA, and DCS for SRPTW-SST

SC101	Ave	867.38	847.51	4318.31 842.09		CD 101	Ave	1676.05	1774.57	3475.13	1696.26
50101	Min	837.27	830.10	4110.27	820.73	SKIUI	Min	1599.07	1739.21	3200.92	1589.34
80100	Ave	861.52	843.31	4332.27	841.96	SD109	Ave	1608.71	1580.98	3501.11	1513.61
50102	Min	821.73	827.38	4080.82	820.73	56102	Min	1478.11	1565.26	3330.09	1467.33
80102	Ave	842.58	840.97	4175.51	818.18	GD 102	Ave	1349.35	1338.19	3432.01	1258.26
50105	Min	822.67	827.43	3901.45	815.44	56105	Min	1234.84	1310.39	3137.54	1201.93
0.0104	Ave	821.22	868.70	3619.72	808.55	CD104	Ave	1032.11	1132.56	3450.96	1054.90
50104	Min	809.54	847.97	3236.52	803.54	5K104	Min	985.57	1105.83	3281.07	991.21
COLOF	Ave	843.35	895.26	4338.09	831.77	CD10	Ave	1446.36	1506.07	3438.92	1428.58
50105	Min	824.09	869.17	4081.95	820.61	5K105	Min	1395.70	1465.70	3174.24	1370.21
0.0100	Ave	853.92	921.30	4305.16	850.70	CD10C	Ave	1312.15	1367.00	3453.23	1295.83
50106	Min	825.23	885.93	3960.34	821.38	5K100	Min	1264.53	1335.30	3221.55	1254.75
80107	Ave	838.21	899.89	4281.93	823.84	SD107	Ave	1174.05	1209.46	3490.89	1123.69
50107	Min	823.50	872.68	3986.99	820.61	56107	Min	1092.61	1160.08	3232.06	1086.62
0,0001	Ave	618.30	713.55	4414.03	636.03	CD 001	Ave	1222.14	1252.84	3674.73	1180.61
50201	Min	591.56	679.65	4153.47	591.56	SR201	Min	1151.13	1221.24	3541.25	1149.78
C C D D D	Ave	639.65	703.86	4309.56	639.07	CD000	Ave	1149.31	1139.18	3745.02	1071.10
50202	Min	631.59	678.73	4016.91	591.56	56202	Min	1040.51	1107.80	3606.84	1029.73
8000	Ave	630.72	715.68	4131.18	636.19	GD 90 9	Ave	1030.61	993.30	3350.41	915.11
50205	Min	606.66	688.34	3503.74	588.49	56205	Min	907.77	959.62	3076.64	886.93
80204	Ave	641.03	727.25	3346.12	649.88	GD 204	Ave	781.21	852.04	2847.29	778.49
50204	Min	620.35	703.09	3159.13	599.29	56204	Min	755.90	818.15	2666.31	742.71
COOL	Ave	645.11	700.87	4390.64	634.17	SD 205	Ave	1011.44	1083.73	3772.80	1008.68
50205	Min	628.14	673.53	4119.04	588.88	56205	Min	989.49	1042.19	3428.79	973.63
S COOR	Ave	622.30	716.09	4346.67	639.52	SDOC	Ave	935.76	1004.58	3480.67	934.68
50200	Min	597.35	690.36	4119.77	588.49	SR200	Min	909.59	974.99	3233.91	903.39
80207	Ave	619.25	704.04	4399.85	625.70	SD 207	Ave	835.92	927.90	3041.98	859.64
50207	Min	590.39	676.16	4109.49	588.29	SR207	Min	819.19	898.82	2842.69	816.33

Table 8 (Continued)
-----------	------------

Sets		MAPSO	GASA	DCS	sDCS-GM	Sets		MAPSO	GASA	DCS	sDCS-GM
SDC101	Ave	1810.71	1785.80	4448.19	1702.88	CD COO1	Ave	1333.58	1379.15	4824.91	1306.32
SACIOI	Min	1680.21	1753.08	4104.93	1604.73	560201	Min	1306.84	1354.06	4511.92	1279.19
SRC102	Ave	1485.51	1599.27	7553.72	1526.88	SRC202	Ave	1216.37	1213.60	4791.81	1137.58
5110102	Min	1448.64	1566.39	4313.63	1469.40	5110202	Min	1110.84	1175.51	4529.40	1101.73
SP.C102	Ave	1314.60	1416.40	4453.75	1334.29	SPC202	Ave	985.01	1055.87	4395.03	974.50
51(0105	Min	1252.97	1384.02	4191.75	1245.15	5110205	Min	956.11	1012.98	4104.63	945.76
SBC104	Ave	1181.77	1265.53	4363.48	1180.34	SRC204	Ave	843.38	894.30	3707.85	827.98
5110104	Min	1111.99	1237.31	4129.67	1108.75	5110204	Min	807.46	866.16	3424.50	801.54
SPC105	Ave	1564.71	1625.21	4505.62	1559.65	SPC205	Ave	1220.95	1262.58	4795.70	1188.42
51(0105	Min	1448.30	1599.93	4325.25	1443.79	51(0205	Min	1171.99	1225.74	4497.73	1154.90
SRC106	Ave	1412.20	1519.57	4464.37	1437.99	SRC206	Ave	1111.41	1178.57	4843.75	1099.56
51(0100	Min	1354.70	1485.17	4163.37	1351.50	5110200	Min	1086.34	1144.10	4654.30	1064.02
SPC107	Ave	1291.59	1365.29	4389.08	1291.30	SPC207	Ave	1033.69	1087.23	4665.67	1006.00
	Min	1229.23	1332.60	3951.22	1228.92	51(0207	Min	996.56	1057.60	4415.26	979.06

Table 9.	Comparison	results	of the	robust	(%)	for	SRPTW-SST
rapic o.	comparison	results	or one	robubt	(,,,)	101	SICI I W SSI

Sets	MAPSO	GASA	DCS	sDCS-GM	Sets	MAPSO	GASA	DCS	sDCS-GM	Sets	MAPSO	GASA	DCS	sDCS-GM
SC101	-3.47	-2.05	-4.82	-2.54	SR101	-4.59	-1.99	-7.89	-6.30	SRC101	-7.207	-1.83	-7.72	-5.76
SC102	-4.62	-1.89	-5.80	-2.52	SR102	-8.12	-0.99	-4.88	-3.06	SRC102	-2.482	-2.06	-42.89	-3.76
SC103	-2.36	-1.61	-6.56	-0.33	SR103	-8.49	-2.08	-8.58	-4.48	SRC103	-4.688	-2.29	-5.88	-6.68
SC104	-1.42	-2.39	-10.59	-0.62	SR104	-4.51	-2.36	-4.92	-6.04	SRC104	-5.905	-2.23	-5.36	-6.07
SC105	-2.28	-2.91	-5.90	-1.34	SR105	-3.50	-2.68	-7.70	-4.09	SRC105	-7.439	-1.56	-4.00	-7.43
SC106	-3.36	-3.84	-8.01	-3.45	SR106	-3.63	-2.32	-6.71	-3.17	SRC106	-4.072	-2.26	-6.74	-6.01
SC107	-1.76	-3.02	-6.89	-0.39	SR107	-6.94	-4.08	-7.41	-3.30	SRC107	-4.829	-2.39	-9.98	-4.83
Average	-2.75	-2.53	-6.94	-1.60	Average	-5.68	-2.36	-6.87	-4.35	Average	-5.23	-2.09	-11.80	-5.79
SC201	-4.33	-4.75	-5.90	-6.99	SR201	-5.81	-2.52	-3.63	-2.61	SRC201	-9.81	-1.82	-6.49	-2.08
SC202	-1.26	-3.57	-6.79	-7.43	SR202	-9.47	-2.75	-3.69	-3.86	SRC202	-8.68	-3.14	-5.48	-3.15
SC203	-3.82	-3.82	-15.19	-7.50	SR203	-11.92	-3.39	-8.17	-3.08	SRC203	-2.93	-4.06	-6.61	-2.95
SC204	-3.23	-3.32	-5.59	-7.78	SR204	-3.24	-3.98	-6.36	-4.60	SRC204	-4.26	-3.15	-7.64	-3.19
SC205	-2.63	-3.90	-6.19	-7.14	SR205	-2.17	-3.83	-9.12	-3.47	SRC205	-4.01	-2.92	-6.21	-2.82
SC206	-4.01	-3.59	-5.22	-7.98	SR206	-2.80	-2.95	-7.09	-3.35	SRC206	-2.26	-2.93	-3.91	-3.23
SC207	-4.66	-3.96	-6.60	-5.98	SR207	-2.00	-3.13	-6.55	-5.04	SRC207	-3.59	-2.73	-5.37	-2.68
Average	-3.42	-3.85	-7.35	-7.26	Average	-5.34	-3.22	-6.37	-3.72	Average	-5.08	-2.96	-5.96	-2.87

Table 10. Comparison results of the cost gap (%)

Sets	MAPSO	GASA	DCS	Sets	MAPSO	GASA	DCS
SC101	3.00	0.64	412.81	SR101	-1.19	4.62	104.87
SC102	2.32	0.16	414.55	SR102	6.28	4.45	131.31
SC103	2.98	2.78	410.34	SR103	7.24	6.35	172.76
SC104	1.57	7.44	347.68	SR104	-2.16	7.36	227.14
SC105	1.39	7.63	421.55	SR105	1.24	5.42	140.72
SC106	0.38	8.30	406.07	SR106	1.26	5.49	166.49
SC107	1.74	9.23	419.75	SR107	4.48	7.63	210.66
SC201	-2.79	12.19	593.99	SR201	3.52	6.12	211.26
SC202	0.09	10.14	574.35	SR202	7.30	6.36	249.64
SC203	-0.86	12.50	549.36	SR203	12.62	8.54	266.12
SC204	-1.36	11.90	414.88	SR204	0.35	9.45	265.75
SC205	1.73	10.52	592.34	SR205	0.27	7.44	274.03
SC206	-2.69	11.97	579.68	SR206	0.12	7.48	272.39
SC207	-1.03	12.52	603.19	SR207	-2.76	7.94	253.87
SRC101	6.33	4.87	314.60	SRC201	2.09	5.58	269.35
SRC102	-2.71	4.74	394.72	SRC202	6.93	6.68	321.23
SRC103	-1.48	6.15	233.79	SRC203	1.08	8.35	351.00
SRC104	0.12	7.22	269.68	SRC204	1.86	8.01	347.82
SRC105	0.32	4.20	188.89	SRC205	2.74	6.24	303.54
SRC106	-1.79	5.67	210.46	SRC206	1.08	7.19	340.52
SRC107	0.12	7.22	239.90	SRC207	2.75	8.07	363.78

the *Dis_Gap* values indicates that the proposed algorithm has 3–6 times the performance of the DCS algorithm.

In Fig.5, it is obvious that the DCS algorithm converges slowly during the iterative process and only shortens the distance partially than the initialized driving path. The MAPSO method outperforms the proposed sDCS-GM algorithm in terms of the average of 30 experimental data, but sDCS-GM can also get very

good results in terms of the *Min*. The proposed sDCS-GM algorithm still performs well in terms of stability and robustness. Compared with the MAPSO algorithm, the sDCS-GM algorithm is superior in the SC1, SR1, SR2 and SRC2 series of instances. Compared with the GASA algorithm, the difference between the two is small, although it does not dominate across the board. Overall, the proposed sDCS-GM algorithm has more desirable robustness.

Fig. 5. Comparison of convergence performance of SC103, SC104, SC202, SR104, SR203, SRC104, SRC107, and SRC204.

In terms of convergence speed, the proposed sDCS-GM algorithm and the GASA algorithm are able to obtain a relatively more ideal driving path in the early iterative stage for the same initial travel, which means that the former has a faster convergence speed. The MAPSO algorithm has difficulty in obtaining a more optimal path in a shorter time despite the shorter initial driving path, which means that the MAPSO algorithm lacks the ability to get rid of the local optimum.

V. Conclusions

This paper designs an SRPTW-SST model to better meet the realistic requirements in real-world scenarios. To solve SRPTW-SST, an improved sDCS-GM algorithm is proposed. In simulation experiments, all of the following strategies were proved to be successful and reasonable. Comparisons with MAPSO and GASA algorithms are made to highlight the superiority and competitiveness of the sDCS-GM algorithm. In addition, comparisons are made with state-of-the-art algorithms such as HSFLA, BA, ACS-BSO, and MOD-LEM. The experimental results also demonstrate the effectiveness and competitiveness of the proposed sDCS-GM algorithm.

References

membrane-inspired multi-objective algorithm for green vehicle routing problem with stochastic demands," *Swarm and Evolutionary Computation*, vol.60, article no.100767, 2021.

- [2] Y. N. Sun, B. Xue, M. J. Zhang, et al., "Automatically designing CNN architectures using the genetic algorithm for image classification," *IEEE Transactions on Cybernetics*, vol.50, no.9, pp.3840–3854, 2020.
- [3] J. S. Liu, L. Liu, and Y. Li, "A differential evolution flower pollination algorithm with dynamic switch probability," *Chinese Journal of Electronics*, vol.28, no.4, pp.737–747, 2019.
- [4] Y. R. Naidu and A. K. Ojha, "Solving multiobjective optimization problems using hybrid cooperative invasive weed optimization with multiple populations," *IEEE Transactions* on Systems, Man, and Cybernetics: Systems, vol.48, no.6, pp.821–832, 2018.
- [5] H. N. Xuan, R. C. Zhang, and S. S. Shi, "An efficient cuckoo search algorithm for system-level fault diagnosis," *Chinese Journal of Electronics*, vol.25, no.6, pp.999–1004, 2016.
- [6] Y. Marinakis, M. Marinaki, and A. Migdalas, "A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows," *Information Sciences*, vol.481, pp.311–329, 2019.
- [7] D. L. Li, Q. Cao, M. Zuo, et al., "Optimization of green fresh food logistics with heterogeneous fleet vehicle route problem by improved genetic algorithm," *Sustainability*, vol.12, no.5, article no.1946, 2020.
- [8] M. Mareli and B. Twala, "An adaptive cuckoo search algorithm for optimisation," *Applied Computing and Informatics*, vol.14, no.2, pp.107–115, 2018.
- [9] M. Alzaqebah, S. Jawarneh, H. M. Sarim, et al., "Bees algorithm for vehicle routing problems with time windows," *International Journal of Machine Learning and Computing*, vol.8, no.3, pp.236–240, 2018.
- [10] J. P. Luo, X. Li, M. R. Chen, et al., "A novel hybrid shuffled frog leaping algorithm for vehicle routing problem with time windows," *Information Sciences*, vol.316, pp.266–292, 2015.
- [11] Y. Shen, M. D. Liu, J. Yang, et al., "A hybrid swarm intelligence algorithm for vehicle routing problem with time windows," *IEEE Access*, vol.8, pp.93882–93893, 2020.
- [12] B. Moradi, "The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model," *Soft Computing*, vol.24, no.9, pp.6741–6769, 2020.

ZHANG Guoyun received the M.S. degree and Ph.D. degree in control theory and control engineering from Hunan University in 2002 and 2006, respectively. His research interests include image processing, and evolutionary computing. (Email: gyzhang@hnist.edu.cn)

WU Meng received the B.S. degree from the Zunyi Normal University in 2020. He is currently pursuing the M.S. degree from the Hunan Institute of Science and Technology. His research interests include evolutionary computing, and image processing. (Email: 1794909836@qq.com)

LI Wujing received the B.S. degree in software engineering and Ph.D. degree in computer science and technology from Sichuan University, Chengdu, China, in 2007 and 2012 respectively. His research interests include image denoising, image restoration, image enhancement, and hyperspectral image processing. (Email: liwj@hnist.edu.cn)

OU Xianfeng (corresponding author) received the M.S. degre in communication and information system from Xinjiang University in 2009, the Ph.D. degree in communication and information system from Sichuan University, Chengdu, China, in 2015. His research interests include image processing and evolutionary computing.

(Email: ouxf@hnist.edu.cn)

XIE Wenwu received the B.S., M.S., and Ph.D. degrees in communication engineering from the Huazhong Normal University in 2004, 2007 and 2017, respectively. His research interests include communication algorithm, internet of thing, and evolutionary computing. (Email: gavinxie@hnist.edu.cn)