Chinese Journal of Electronics
Vol.32, No.4, July 2023

Self-Adaptive Discrete Cuckoo Search
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Abstract — Making house calls is very crucial to deal
with the competitive pressures of the service business and
to improve service quality. We design a model called ser-
vice routing problem with time windows and stochastic
service time (SRPTW-SST) that is based on vehicle rout-
ing problem with time windows. A self-adaptive discrete
cuckoo search algorithm with genetic mechanism (sDCS-
GM) is proposed for the model SRPTW-SST. Moreover,
we design a selection mechanism to improve the logical-
ity of the algorithm based on the strong randomness of
the Lévy flight. We introduce a genetic mechanism and
design a neighborhood search mechanism for improving
the robustness of the algorithm. In addition, an adaptive
parameter adjustment method is designed to eliminate
the impact of fixed parameters. The experimental results
show that the sDCS-GM algorithm is more robust and ef-
fective than the state-of-the-art methods.

Key words — Service routing problem with time
window, Stochastic service time, Cuckoo search, Vehicle

routing problem with time window, Lévy flight.

I. Introduction

The vehicle routing problem with time windows
(VRPTW) is a classic discrete combinatorial optimiza-
tion problem [1]. The key challenges remain lowering
transportation costs and increasing customer satisfac-
tion. Therefore, this work proposes a model of the ser-
vice routing problem with time windows and stochastic
service time (SRPTW-SST) based on VRPTW. With
heuristic algorithms being the most popular due to their
unique qualities and benefits, the focus of this work was
on heuristic approaches for SRPTW-SST, such as ge-
netic algorithm (GA) [2], flower pollination algorithm

(FPA) [3], invasive weed optimization (IWO) [4], etc.
Yang et al. [5] unveiled the cuckoo search algorithm
(CS), a new swarn intelligence algorithm inspired by
the social behavior of cuckoo birds.

In this paper, a self-adaptive discrete cuckoo search
algorithm with genetic mechanism (sDCS-GM) is pro-
posed for VRPTW and SRPTW-SST, in which a Lévy
flight-based selection criterion and a deletion and sup-
plementation-based neighborhood search strategy are
designed to improve the search performance of the al-
gorithm. Combining the discovery probability Pa and 2-
opt, the search capability of the algorithm for local ex-
ploitation is improved. The experimental results show
that the sDCS-GM algorithm is more robust and effect-
ive than the multi-adaptive particle swarm optimiza-
tion (MAPSO) [6], genetic algorithm with adaptive sim-
ulated annealing mutation (GASA) [7], and other state-
of-the-art methods. The main contributions are as fol-
lows:

1) A novel realistic model named SRPTW-SST
based on VRPTW is designed.

2) sDCS-GM is presented for the VRPTW and
SRPTW-SST problems.

3) Two selection criteria are designed based on
Lévy flight and discovery probability Pa, respectively.

4) A parameter adaptive strategy based on the fit-
ness and the iterations is designed to assign Pa values.

II. The Problem of SRPTW-SST

As a typical NP-hard problem, VRPTW has at-
tracted the attention of more and more researchers. In
order to obtain higher economic benefits, the company
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that provides the service needs to send fewer techni- Zqi Z Xijr <Q (VEeV) (6)
cians to complete more work in a day. A typical ex- ieC  jeC.j#i

ample of SRPTW-SST is shown in Fig.1.
The time windows constraints are defined by (7)—(9)

as following:

wtj = max {6ti —lt; — ttij,O} (VZ,] eC,i 7é ]) (7)

According to the actual service time required by
customers, st; is improved to

sst; = st; 4+ randperm [—a, a] (10)

Fig. 1. A classic example of VRPTW. where sst; is the actual service time, a € [—10,10], the
formula (8) is adjusted to

Table 1 lists the symbols and their meanings used
in the VRPTW and SRPTW-SST models. It; + sst; + tti; +wt; <ty (Vi,j € Vyi# j) (11)

Table 1. Basic Notions

III. Proposed Method for SRPTW-SST

Symbol Meanings Symbol Meanings
V Set of all vehicles 9i | Demand of customer C; 1. Genetic mechanism
¢ Set of all customers Iti _|Latest arrival time at C; This mechanism mainly involves selection operator,
N | Number of customers | st Service time at C; crossover operator, and mutation operator shown in Al-
Q Capacity of vehicle | a%i Arrival time at C; gorithms 1-3. There are K vehicles and N customers,
T'Dij |Distance from Cj to Cj| Wi Wait time at C; the coding length is K + N — 1. Two random integers 7
ttij | Time from C; to Cj | S8ti | Stochastic service time and 73, 71,72 € [1, K + N — 1]. No longer sets the cros-
cti | Barliest arrival time - - sover and mutation probability to reduce the number of

parameters.
The formulation of the VRPTW model is shown as

Algorithm 1 Selection operator

min f (z) = Z Z Z TDij Xijn (1) cum fit = cumsum (fit);
keViewjeC Nsel = max (floor (N x Gap + 0.5), 2);
where f (x) represents the shortest driving distance of tr = “JLVT:Q“ X (rand+ (0: Nsel — 1)’);
all vehicles. The X;;; =1 means that the vehicle £ can Obtain M f and Mt based on Nsel and N;
pass through the road between customers C; and Cj. Sort index to a random order;
Get a selected list;
> Xiok=>_ Xojr=1(VkeV) ()
i jeo Algorithm 2 Crossover operator
Y Xigr= Y, Xu<1(vieCVkeV) (3) fori=1: Nsel
JEC,j#i JEC,j#i ri,7r2 € [1,num_cJ;
Z Z X 1 (Vjeo) tempA = A (r1,r2); tempB = B (r1,72);
ijk = J
keV icCitj K (4) A(r1,r2) = tempB; B (r1,12) = tempA,;

Adjust the same indexes in A and B respectively;

YY) Xir=1(VieQ) (5) end for

keV jeC,j#i

Algorithm 3 Mutation operator
fori=1: Nsel

ri,r2 € [1,num_cJ;

Equations (2)—(5) are defined to satisfy the restric-
tion conditions that only K wvehicles are used to serve
customers and each customer is served by one vehicle
once. The maximum capacity of each vehicle is spe-
cified by

z(i,m1 :12) = 2 (4,72 1 11);
end for
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2. DCS Algorithm tinuous optimization problems in (12).
1) Local search based on 2-opt .
As shown in Algorithm 4, 40% of (K'+N —1) nodes LFvalue = u x [v] ™" (12)

is randomly selected to perform breakpoint operations.

Algorithm 4 Local search based on 2-opt
fori=1: N
Select m point (Id);
forj=1:m
newX (i, (§) : (j +1)) = reverse (X (i, (j) : (7 +1)));
end for

end for

2) 3-opt method

As shown in Fig.2, after the variant of 3-opt meth-
od, there is the possibility of obtaining multiple off-
spring. Although keeping individuals with better fitness
values is currently the best choice, it has to be con-
sidered that near the individuals with better fitness is
the local optimal route. This can increase the probabil-
ity that the algorithm will fall into a local optimum. On
the contrary, there will be the following situation: indi-
viduals with poor fitness will develop into individuals
with better fitness in the subsequent optimization pro-
cess. Therefore, this paper devises a technique: If r>sp,
then X; is an individual with optimal fitness, otherwise
it is a suboptimal individual.

1 2 1 2 1 2
8 308 7\93 8 Q\m
7 47 /o 47 i/J 4
6 5 6/ 5 6/ g
(a) Original route (b) Variant 1 (¢) Variant 2

1 2 1 2
e Q\Q L e N \3
\\ 7z >\/ \\ 7z >\/
7 ) /5 4 7 ) / 4
6 5 6 5

(d) Variant 3 (e) Variant 4

Fig. 2. The variant of 3-opt.

3) Lévy flight

Lévy flight will generate short step lengths in most
of the time of the random process and will be accom-
panied by occasional long step lengths. It can be clearly
found that a short step size can help the algorithm to
improve the calculation accuracy during local exploita-
tion, and a long step size can help the algorithm get rid
of the problem of local optimization in the global ex-
ploration stage. CS algorithm relies on the advantages
of the combination of long and short step length of
Lévy flight to achieve ideal performance for solving con-

where 8 =15, u~ N (0,02) and v ~ N (0,1). The o is
expressed as

I (1+ f)sin (8 x 7/2) }é (13)

. {r«l +8)/2) x f x 26-D/2

where T is the gamma function.

3. Self-adaptive mechanism

This paper designs a parameter adaptive mechan-
ism for the probability of discovery to minimize or even
eliminate the above-mentioned influences and draw-
backs. Only the change of Pa with the change of the
number of iterations is considered [8]. This mechanism
is not conducive to the balance of search capabilities
between global exploration and local search. Therefore,
while considering that the parameter Pa changes with
the number of iterations, this paper also takes into ac-
count the changes in fitness, as shown in (14).

. 0
Iter —iter m
Pad = |1.1 —si maxlter —uer T it
“ [ S ( max Iter ) X ffit)
(14)

where Iter represents the current number of iterations,
max Iter represents the maximum number of iterations,
0 =0.6. f(fit) = exp (— (fititer/ fititer—1))-

4. Neighborhood search

How to better apply this part to solving discrete
combinatorial optimization problems becomes particu-
larly essential. In order to achieve the goal of improv-
ing the algorithm’s optimization ability as much as pos-
sible, this paper designs a neighborhood search mechan-
ism based on random removal and supplement in Al-
gorithms 5 and 6.

Algorithm 5 Neighborhood search
fori=1: N
Decode;
Implement remove operator;

for j = 1: length(removed)
Obtain the optimal insertion point;
Insert into the original route;

end for

Adjust the new route;

Evaluate the fitness of the new population;

Record optimal results;

end for

Algorithm 6 Remove operator

Choose one customer randomly;

fori=1:num_re
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Calculate relevance § between a removed customer
and all other customers;

Sort the remaining customer by relevance d;
Get the removed list;

end while

n = size(Nwc);

fori=1:n
R = Nvc;;

for j =1:num_re

if R == removed;
The corresponding R is left blank;
end if
end for

Adjust the new route;
end for

The design of the relevance § between customer
nodes is inspired by the Euclidean distance, the relev-
anc d = 1/(e 4+ ), and € and ¢ can be stated as

D (deiy1,7rej41)

©~ max (D (deiy1,2 : end)) 15)

0, ifieVCandjeVC
p=19

otherwise
where D represents the distance matrix, de and re rep-
resent the matrix of removed nodes and remaining
nodes, respectively. V' C' represents the list of customers
served by the current vehicle.
5. sDCS-GM algorithm
Through the analysis of the CS algorithm, as well
as the elaboration and demonstration of the improve-
ment ideas mentioned above, this paper proposes an
sDCS-GM algorithm for solving VRPTW and SRPTW-
SST problems in Algorithm 7.

(16)

fori=1:N
Update Pa’ with equation (16);
if rand < Pa’
Implement the local search based on 2-opt;
else
Implement neighborhood search;
end if
end for
Evaluate the fitness of the new population;
Decode;
Record optimal results;
end while

Algorithm 7 The framework of sDCS-GM
Require: max/ter: the maximum number of iterations;
N: the number of population; Pa: the discov-
ery probability.

Ensure: z: an optimal solution; fit: the optimal fitness.
Initialize the population;
Evaluate the fitness of the initial population;
Encode;
while iter < maxIter
Execute the selection operator;
Update [ F with equation (12);
if LF < cA
Implement the variant of 3-opt;
Implement crossover operator;
Implement muttation operator;
else
Implement the local search based on 2-opt;
Implement muttation operator;
Implement crossover operator;
end if
Evaluate the fitness of the new population;

IV. Experiment and Results

In this section, the proposed sDCS-GM algorithm
is applied to solve the VRPTW and SRPTW-SST prob-
lems, and relevant experimental data are collected
andanalyzed.

1. Experiment setting

In order to highlight the effectiveness of the sDCS-
GM algorithm, it is chosen to compare with the multi-
adaptive particle swarm optimization (MAPSO) [6], ge-
netic algorithm with adaptive simulated annealing
mutation (GASA) [7] and discrete cuckoo search al-
gorithm (DCS). The relevant parameters of each al-
gorithm are shown in Table 2. The MAPSO, GASA,
DCS, and sDCS-GM algorithms were independently run
30 times for 42 VRP-TW instances with 100 customers.
In addition, the efficiency of sDCS-GM is compared to
that of the bees algorithm (BA) [9], hybrid shuffled frog
leaping algorithm (HSFLA) [10], hybrid ant colony al-
gorithm and brain storm optimization (HACS-BSO) [11],
and multi-objective discreet learnable evolution model
(MODLEM) [12].

Table 2. Simulation parameters for each algorithm

Symbol Value Meanings
maxlIter 500 Maximum iteration
Common - -
N 50 Population size
num_ Re 5 Number of removed
sDCS-GM Pa 0.25 Intial discovery probability
sp 0.2 Selection probability
pc 0.8 Crossover probability
pm 0.8 Mutation probability
P. 0.9 Selection parameter
GASA - —
a1, ag 0.8, 2 Cooling coefficient
Ly, Lo 10, 8 Disturbance rounds
To, Th 2000, 1 | Initial and final temperature
MAPSO 14 0 Initiél Velocit.y'
c1, C2 1.2, 1.2 Acceleration coefficients
2. VRPTW

1) Comparison with the different CS
To demonstrate the effectiveness of the proposed
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genetic mechanism and neighborhood search, this sec-
tion compares the proposed sDCS-GM approach to sev-
eral versions of DCS algorithms, such as discrete cuckoo
search algorithm (DCS), cuckoo search with genetic

mechanism (CS-GM), and cuckoo search with neighbor-
hood search (CS-NS). The experimental results of the
four algorithms are shown in Table 3, where BKS de-
notes the best-known solution.

Table 3. Comparison of results of sDCS-GM with CS-GM, CS-NS, and DCS

Sets | BKS DCS | CS-GM | CS-NS |sDCS-GM || Sets | BKS DCS | CS-GM | CS-NS | sDCS-GM
Ave | 4300.53 | 4099.02 184 28.94 A : 13 | 1671.49 | 1674.1
o1 | sos.gn | Ave [4300.53 [ 4009.0 | 8348 828.9 R101 | 1642.85 | AAve | 353835 | 33871 [ 1671.49 | 167418
Min | 3933.74 | 3895.44 | 816.18 | 828.94 Min | 3372.48 | 3225.29 | 1649.30 | 1654.07
Ave | 4281.46 | 4127.73 | 832.39 | 828.49 Ave | 3523.90 | 3375.88 | 1514.03 | 1501.99
C102 | 828.94 = R102 | 1472.62 |—
Min | 4034.10 | 3883.67 | 816.26 | 815.44 Min | 3329.43 | 3237.67 | 1482.80 | 1482.18
Ave | 4304.63 | 4066.94 | 827.1 15.44 Ave | 3495.4 193 | 125831 | 1256.61
103 | sos.06 | Ave [430463 [ 4066.94 | §27.13 | 815 R103 | 121362 | Ve | 3495.48 | 336498 | 12583 6
Min | 4093.34 | 3932.27 | 812.99 | 815.44 Min | 3321.20 | 3262.02 | 1221.54 | 1234.36
Ave | 3649.15 | 3430.70 | 821.36 | 807.04 Ave | 3449.41 | 3225.91 | 1039.32 | 1030.47
C104 | 824.78 = R104 | 976.61 |
Min | 3345.98 | 3181.74 | 804.82 | 804.28 Min | 3057.53 | 3035.16 | 1016.06 | 1005.39
Ave | 4292.12 | 4082.1 10.41 22. A 26.64 67 | 1430. 1427.6
G105 | sason |Ave [429 082.19 | 840 822.85 | o "1 o0 7 [Ave | 352664 | 839767 | 1430.35 5
Min | 3966.25 | 3900.48 | 819.56 | 822.85 Min | 3240.17 | 3255.21 | 1391.46 | 1385.99
Ave | 4295.41 | 4071.47 | 849.52 | 820.61 Ave | 3499.25 | 3336.51 | 1296.61 | 1289.92
C106 | 828.91 | : R106 | 1240.47 | <
Min | 4035.97 | 3912.41 | 826.85 | 820.61 Min | 3256.69 | 3249.38 | 1245.99 | 1259.83
Ave | 4264.37 | 4109.1 51 | 820.61 Ave | 3475.71 1.47 | 1140. 1128.06
o7 | sos.gn | Ave [426437 410916 | 8355 R107 | 107354 | AV | 34757 | 335147 0.85
Min | 3875.93 | 3699.07 | 818.66 | 820.61 Min | 3331.70 | 3190.48 | 1105.62 | 1086.24
Ave | 4432.22 | 4139.89 | 652.75 | 620.99 Ave | 3708.95 | 3532.91 | 1164.27 | 1184.34
€201 | 591.56 | i R201 | 1147.80 |- :
Min | 4179.41 | 3893.82 | 623.39 | 591.56 Min | 3455.58 | 3406.73 | 1122.43 | 1159.34
Ave | 4364.28 | 4143. p) 629.82 A 1 32 | 1088. 1073.39
202 | 59156 |Ave | 436428 3.50 | 666.45 R202 | 103455 | v | 367480 | 353852 | 108835
Min | 4090.10 | 3929.68 | 62887 | 591.56 Min | 3476.72 | 3422.93 | 1055.17 | 1057.23
Ave | 4240.01 | 3840.69 | 670.08 | 638.52 Ave | 3360.43 | 3066.29 | 927.34 | 916.36
€203 | 591.17 i , R203 | 874.87 |
Min | 3776.74 | 3683.64 | 614.64 | 603.37 Min | 3004.84 | 2891.31 | 901.19 | 893.82
A 18 157.62 2. 647.61 Ave | 2859.85 | 2611. . 775.27
201 | 590,60 |Ave | 334899 | B157.62 | 662.70 R201 | 735,80 | v | 2859.85 | 361187 | 79780
Min | 3157.15 | 2981.10 | 618.66 | 590.60 Min | 2676.66 | 2534.28 | 772.17 | 758.97
205 | sssss | Ave | 441273 (423188 | 658.04 | 60285 | | " "[Ave| 375191 | 347135 1006.02 | 1006.66
% MMin | 4105.78 | 4074.76 | 621.74 | 588.88 “® [Min | 3366.56 | 3309.15 | 976.16 | 931.84
Ave | 4387.80 | 4159. 1. 636.70 Ave | 3459.02 | 3151.74 | 930.93 1.
206 | sssag | Ave | 438780 415986 | 66138 R206 | s7o.g0 | Ave | 3459.02 [ B15LT 931.59
Min | 4145.66 | 3866.51 | 616.14 | 588.49 Min | 3306.71 | 2918.82 | 867.67 | 901.53
Co0r | sss00 | Ave | 4350.04 [4142.61 | 610.01 | 62019 | o " "[Ave| 309657 | 281181 | 86530 | 856.08
““7 MMin | 3906.01 | 3857.93 | 582.63 | 588.29 % [Min | 2851.37 | 2648.41 | 827.18 | 824.53
Ave | 4511.48 | 4461.17 | 1709.10 | 1699.46 Ave | 4861.12 | 4623.45 | 1297.85 | 1305.
RC101 | 162358 [ve | 451148 | 4461.17 | 1709.10 RC201 | 1265.56 |ve | 486 623.45 305.87
Min | 4179.15 | 4276.62 | 1664.53 | 1648.57 Min | 4487.61 | 4472.81 | 1268.90 | 1267.97
Ave | 4593.83 | 4351.02 | 1545.67 | 1507.27 Ave | 4775.28 | 4630.20 | 1141.98 | 1134.53
RC102 | 1461.23 | RC202 | 1095.64 |-
Min | 4153.73 | 4103.42 | 1506.84 | 1471.16 Min | 4549.74 | 4440.15 | 1110.45 | 1103.56
Ave | 4529.02 | 4344.18 | 1348.97 | 1345.87 Ave | 4437.70 | 4086.72 . 970.59
RO103 | 126167 | Ave | 4529.02 [ 434418 | 13489 RC203 | 928,51 |Ave | 443770 [ 4086.72 | 98533
Min | 4326.67 | 4096.27 | 1268.41 | 1280.69 Min | 4219.00 | 3844.75 | 951.93 | 945.39
108 | 113545 | Ave [ 4503.85 | 4260.71 | 121101 | 1183.75 |[ T " 7[Ave | 3737.60 | 3447.50 | 84883 | 835.67
“*° Min | 4123.74 | 3724.73 | 1153.28 | 1127.65 “° [Min | 3522.40 | 3308.22 | 830.60 | 805.42
Ave | 4532.46 | 4275.61 | 1604.19 | 1595.88 Ave | 4844.63 | 4474.70 | 1200 1191.64
RC105 | 1518.58 |ve | 4532.46 | 4275.61 | 1604.19 RC205 | 115755 |ve | 4844.63 | 4474.70 | 1200.59
Min | 424880 | 4028.78 | 1559.27 | 1557.99 Min | 4443.93 | 4237.60 | 1171.66 | 1164.85
106 | 137160 | Ave | 445104 [ 4325.05 | 1453.66 | 1489.13 |[ T " "[Ave | 4773.55 | 4510.86 | 1096.29 | 110422
7 [Min | 4129.44 | 3657.25 | 1366.39 | 1408.39 O [Min | 4392.61 | 4313.23 | 1049.72 | 1072.32
Ave | 4407.98 | 4151.00 | 1311.16 | 1299.88 Ave | 4668.09 | 4132.40 | 1000.01 | 1009.
RC107 | 1212.83 [ve | 4407.98 09 | 1311.16 RC207 | 966.08 |ove | 4008.09 ) 413240 009.65
Min | 4058.11 | 4009.58 | 1190.20 | 1241.39 Min | 4173.77 | 3947.37 | 949.97 | 966.08

Table 3 shows that the genetic mechanism can sig-
nificantly improve the performance of the DCS al-
gorithm. Neighborhood search can significantly reduce
the vehicle travel distance, and the CS-NS method
shows strong competitiveness and superiority compared
with the DCS and CS-GM methods. Even compared
with the sDCS-GM method, more desirable results can

be obtained for a few instances. However, overall the
sDCS-GM method exhibits more satisfactory stability
along with better performance of the search for superi-
ority. Therefore, the experimental results demonstrate
that GM and NS have different degrees of performance
improvement for the DCS method. Compared with the
sDCS-GM method, it is also shown that the GM can ef-
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fectively improve the stability of the NS strategy.

2) Comparison with the MAPSO and GASA

The experimental results obtained by MAPSO,
DCS, GASA, and the proposed sDCS-GM method are
shown in Table 4, including the minimum and average
values, for 42 VRPTW instances.

In Table 4, the proposed sDCS-GM method is able
to obtain shorter driving routes than MAPSO, GASA
and DCS method paths for most of the instances. For
C101-C107, the distances obtained by the proposed
method are all less than or equal to the best-known
solution BK S, for example, C101, C104, which is a per-

formance that the comparison method does not achieve.
For C201-C207, although both the proposed algorithm
and MAPSO algorithm are able to obtain BKS for some
instances, MAPSO is more stable. In addition, for C205
and C206, the proposed algorithm is able to obtain
more optimal driving routes. For R101-R207, although
the proposed algorithm does not obtain BKS values,
the difference with BK S is small. In addition, only the
MAPSO algorithm performs better than the proposed
algorithm for R104, R106 and R205 instances. And for
RC101-RC207, the MAPSO algorithm only performs
better than the proposed algorithm at RC103.

Table 4. Comparison of results of sDCS-GM with MAPSO, GAASAM, and DCS for VRPTW

Sets BKS MAPSO | GASA DCS | sDCS-GM Sets BKS MAPSO | GASA DCS | sDCS-GM
Ave | 924.58 842.69 | 4300.53 828.94 Ave | 1714.25 | 1750.61 | 3538.35 | 1674.18
C101 828.94 - R101 | 1642.88 -
Min | 846.48 832.16 | 3933.74 | 828.94 Min | 1692.89 | 1643.27 | 3372.48 | 1654.07
Ave | 886.62 854.22 | 4281.46 828.49 Ave | 1541.01 | 1607.78 | 3523.90 | 1501.99
C102 | 828.94 - R102 | 1472.62 -
Min | 847.26 829.11 | 4034.10 815.44 Min | 1529.47 | 1504.80 | 3329.43 | 1482.18
Ave | 888.99 928.73 | 4304.63 815.44 Ave | 1271.38 | 1328.16 | 3495.44 | 1256.61
C103 | 828.06 - R103 | 1213.62 -
Min | 853.22 832.10 | 4093.34 | 815.44 Min | 1267.35 | 1218.80 | 3321.21 | 1234.36
Ave | 857.50 837.71 | 3649.15 807.04 Ave | 979.44 | 1229.94 | 3449.41 1030.47
C104 | 824.78 - R104 | 976.61 -
Min | 831.97 828.72 | 3345.98 804.28 Min | 977.93 | 1083.48 | 3057.53 1005.39
Ave | 863.94 871.82 | 4292.12 822.85 Ave | 1437.12 | 1448.02 | 3526.64 | 1427.65
C105 | 828.94 - R105 | 1360.78 -
Min | 828.37 838.52 | 3966.25 822.85 Min | 1423.12 | 1361.76 | 3240.17 | 1385.99
Ave | 853.50 867.96 | 4295.41 820.61 Ave | 1279.85 | 1329.54 | 3499.25 1289.92
C106 | 828.91 - R106 | 1240.47 -
Min | 825.16 838.33 | 4035.97 | 820.61 Min | 1255.31 | 1272.64 | 3256.69 1259.83
Ave | 853.51 846.36 | 4264.37 | 820.61 Ave | 1137.47 | 1145.77 | 3475.71 | 1128.06
C107 | 828.94 - R107 | 1073.34 -
Min | 825.28 828.94 | 3875.93 820.61 Min | 1132.12 | 1119.93 | 3331.70 | 1086.24
Ave | 591.91 | 747.60 | 4432.22 620.99 Ave | 1263.12 | 1211.69 | 3708.95 | 1184.34
C201 591.56 - R201 | 1147.80 -
Min | 591.56 | 607.69 | 4179.41 591.56 Min | 1203.16 | 1159.32 | 3455.58 | 1159.34
Ave | 597.63 | 662.71 | 4364.28 629.82 Ave | 1146.68 | 1124.65 | 3674.80 | 1073.39
C202 591.56 - R202 | 1034.35 -
Min | 592.63 602.65 | 4090.10 591.56 Min | 1057.35 | 1063.47 | 3476.72 | 1057.23
Ave | 591.56 | 676.62 | 4240.01 638.52 Ave | 899.87 996.65 | 3360.43 916.36
C203 591.17 - R203 | 874.87 -
Min | 591.56 | 594.78 | 3776.74 603.37 Min | 895.35 912.29 | 3004.84 893.82
Ave | 596.16 | 705.05 | 3348.99 647.61 Ave | 811.36 826.45 | 2859.85 775.27
C204 | 590.60 - R204 | 735.80 -
Min | 590.60 | 596.09 | 3157.15 590.60 Min | 762.67 768.66 | 2676.66 758.97
Ave | 655.91 712.55 | 4412.73 602.85 Ave | 980.43 | 1068.17 | 3751.91 1006.66
C205 588.88 - R205 | 954.16 -
Min | 645.79 615.07 | 4105.78 588.88 Min | 897.57 | 1015.30 | 3366.56 981.84
Ave | 593.83 | 661.55 | 4387.80 636.70 Ave | 968.32 | 1041.82 | 3459.02 931.59
C206 588.49 - R206 | 879.89 -
Min | 590.28 606.19 | 4145.66 588.49 Min | 925.64 971.61 | 3306.71 901.53
Ave | 593.04 | 773.52 | 4350.04 629.19 Ave | 866.24 904.83 | 3096.57 | 856.08
C207 | 588.29 - R207 | 799.86 -
Min | 583.88 | 616.64 | 3906.01 588.29 Min | 821.04 | 848.25 | 2851.37 824.53
rRe101 | 162358 Ave | 1703.33 | 1819.46 | 4511.48 | 1699.46 RC201 | 1265.56 Ave | 1310.82 | 1430.10 | 4861.12 | 1305.87
' Min | 1691.57 | 1703.74 | 4179.15 | 1648.57 ' Min | 1272.88 | 1258.19 | 4487.61 | 1267.97
. Ave | 1508.98 | 1636.85 | 4593.83 | 1507.27 .| Ave | 1141.84 | 1228.03 | 4775.28 | 1134.53
RC102 | 1461.23 - RC202 | 1095.64 -
Min | 1497.62 | 1505.92 | 4153.73 | 1471.16 Min | 1108.27 | 1130.22 | 4549.74 | 1103.56
Ave | 1306.31 | 1397.66 | 4529.03 1345.87 Ave | 986.01 | 1049.99 | 4437.70 970.59
RC103 | 1261.67 - RC203 | 928.51 -
Min | 1269.61 | 1327.77 | 4326.67 | 1280.69 Min | 949.75 952.80 | 4219.01 945.39
Ave | 1209.05 | 1394.59 | 4503.85 | 1183.75 . Ave | 843.80 | 1099.19 | 3737.60 835.67
RC104 | 1135.48 - RC204 | 786.38 -
Min | 1173.88 | 1213.62 | 4123.75 | 1127.65 Min | 816.32 847.61 | 3522.40 805.42
Ave | 1602.12 | 1708.65 | 4532.46 | 1595.88 Ave | 1196.40 | 1356.11 | 4844.63 | 1191.64
RC105 | 1518.58 - RC205 | 1157.55 -
Min | 1558.60 | 1618.97 | 4248.80 | 1557.99 Min | 1160.23 | 1238.91 | 4443.93 | 1164.85
A 1450.1 1486. 4451.94 | 1439.1 A 1181. 1416. 4773. 1104.22
RC106 | 1371.69 Ye 50.13 86.58 51.9 39.13 RC206 | 1054.61 \./e 81.03 6.09 | 4773.55 0
Min | 1419.03 | 1245.20 | 4129.44 | 1408.39 Min | 1151.88 | 1263.83 | 4392.61 | 1072.32
Ave | 1722.93 | 1402.08 | 4407.98 | 1299.88 Ave | 1045.08 | 1489.65 | 4668.09 | 1009.65
RC107 | 1212.83 - RC207 | 966.08 -
Min | 1681.47 | 1306.54 | 4058.11 | 1241.39 Min | 984.08 | 1422.69 | 4173.77 | 966.08
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Dlsothers - DlSours

Dis_Gap = x 100% (17)

Disours

Best — Average

Robust = x 100% (18)

Average

In Table 5, the values calculated from (22) show
that the proposed sDCS-GM algorithm and MAPSO al-
gorithm perform more consistently, for example, sDCS-
GM (C1, R2 and RC2), MAPSO (C2, R1 and RC1).

In Table 6, Dis _Gap between GASA and the pro-
posed sDCS-GM algorithm are all greater than O.
Dis _Gap between both DCS and the proposed sDCS-
GM algorithm is greater than 110. Overall, the sDCS-

GM exhibits much better performance in terms of sta-
bility than the comparative algorithms such as MAPSO
and GASA. To highlight the superiority and competit-
iveness of the proposed sDCS-GM algorithm in terms of
convergence speed, we make convergence curves for
some of the instances, as shown in Fig.3. We make a
roadmap of the shortest driving path obtained by the
proposed sDCS-GM algorithm for some instances, as
shown in Fig.4.

This paper compares the sDCS-GM algorithm
against other state-of-the-art algorithms such as the
HSFLA, BA, ACS-BSO, and MODLEM in order to
demonstrate its competitiveness and superiority. The

Table 5. Comparison results of the robust (%) for VRPTW

Sets |[MAPSO|GASA| DCS [sDCS-GM|| Sets |[MAPSO|GASA| DCS [sDCS-GM|| Sets |[MAPSO|GASA| DCS |sDCS-GM
C101 | —8.45 | —1.25 | —8.53 0.00 R101 | —1.25 | —6.13 | —4.69 | —1.20 RC101 | —0.69 | —6.36 | —7.37 | —2.99
C102 | —4.44 | —2.94 | —5.78 | —1.57 R102 | —0.75 | —6.40 | —5.52 | —1.32 RC102 | —0.75 | —8.00 | —9.58 | —2.39
C103 | —4.02 |—10.40] —4.91 0.00 R103 | —0.32 | —8.23 | —4.98 | —1.77 RC103 | —2.81 | —5.00 | —4.47 | —4.84
C104 | —2.98 | —1.07| —8.31| —0.34 R104 | —0.15 |—11.91|—11.36| —2.43 RC104 | —2.91 |—12.98| —8.44 | —4.74
C105 | —4.12 | —3.82 | —7.59 0.00 R105 | —0.97 | —5.96 | —8.12 | —2.92 RC105 | —2.72 | —5.25 | —6.26 | —2.37
C106 —3.32 | —3.41 | —6.04 0.00 R106 —1.92 | —4.28 | —6.93 —2.33 RC106 | —2.14 |—16.24| —7.24 —2.14
C107 | —3.31 | —2.06 | —9.11 0.00 R107 | —0.47 | —2.25 | —4.14 | —-3.71 RC107 | —2.41 | —6.81 | —7.94 | —4.50
Average| —4.38 | —3.57 | —7.18 | —0.27 ||Average| —0.83 | —6.45 | —6.53 | —2.24 ||Average| —2.06 | —8.66 | —7.33 | —3.42
C201 —0.06 |—18.71| —5.70 —4.74 R201 —4.75 | —4.32 | —6.83 —2.11 RC201 | —2.89 |—12.02| —7.68 —2.90
C202 | —0.84 | —9.06 | —6.28 | —6.08 R202 | —7.79 | —5.44 | —5.39 | —1.51 RC202 | —2.94 | —7.96 | —4.72 | —2.73
C203 0.00 |—12.10|—10.93| —5.51 R203 | —0.50 | —8.46 |—10.58| —2.46 RC203 | —3.68 | —9.26 | —4.93 | —2.60
C204 | —0.93 |—15.45| —5.73 | —8.80 R204 | —6.00 | —6.99 | —6.41 | —2.10 RC204 | —3.26 |—22.89| —5.76 | —3.62
C205 | —1.54 |—13.68| —6.96 | —2.32 R205 | —8.45 | —4.95|—10.27| —2.47 RC205 | —3.02 | —8.64 | —8.27 | —2.25
C206 | —0.60 | —8.37| —5.52 | —7.57 R206 | —4.41 | —6.74 | —4.40 | —3.23 RC206 | —2.47 |—10.75| —7.98 | —2.89
C207 | —1.54 |—20.28|—10.21| —6.50 R207 | —5.22 | —6.25 | —7.92| —3.69 RC207 | —5.84 | —4.50 |—10.59| —4.32
Average| —0.79 |—13.95| —7.33| —5.93 || Average| —5.30 | —6.17 | —7.40 | —2.51 ||Average| —3.44 |—10.86| —7.13 | —3.04
Table 6. Comparison results of the cost gap (%)
Sets MAPSO GASA DCS Sets MAPSO GASA DCS
C101 11.54 1.66 418.80 R101 2.39 4.57 111.35
C102 7.02 3.11 416.78 R102 2.60 7.04 134.62
C103 9.02 13.89 427.89 R103 1.18 5.69 178.16
C104 6.25 3.80 352.16 R104 —4.95 19.36 234.74
C105 4.99 5.95 421.62 R105 0.66 1.43 147.02
C106 4.01 5.77 423.44 R106 —0.78 3.07 171.28
C107 4.01 3.14 419.66 R107 0.83 1.57 208.11
C201 —4.68 20.39 613.73 R201 6.65 2.31 213.17
C202 —5.11 5.22 592.94 R202 6.83 4.78 242.35
C203 —7.36 5.97 564.03 R203 —1.80 8.76 266.72
C204 —7.94 8.87 416.77 R204 4.65 6.60 268.89
C205 8.80 18.20 631.98 R205 —2.61 6.11 272.71
C206 —6.73 3.90 589.15 R206 3.94 11.83 271.30
C207 —5.75 22.94 591.37 R207 1.19 5.70 261.72
RC101 0.23 7.06 165.47 RC201 0.38 9.51 272.25
RC102 0.11 8.60 204.78 RC202 0.65 8.24 320.91
RC103 —2.94 3.85 236.51 RC203 1.59 8.18 357.22
RC104 2.14 17.81 280.47 RC204 0.97 31.53 347.26
RC105 0.39 7.07 184.01 RC205 0.40 13.80 306.55
RC106 0.76 3.30 209.35 RC206 6.96 28.24 332.30
RC107 2.14 17.81 239.11 RC207 3.51 47.54 362.35
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average values of the five algorithms’ results are shown
in Table 7. This demonstrates that the sDCS-GM al-

gorithm has a significant competitiveness and superior-
ity.

Table 7. Comparison of results of sDCS-GM with other state-of-the-art methods

Sets HSFLA BA ACS-BSO | MODLEM | sDCS-GM Sets HSFLA BA ACS-BSO | MODLEM | sDCS-GM
C101 | 828.94 | 828.94 828.94 829.04 828.94 R201 | 1252.88 | 1185.57 1336.05 1252.47 1184.34
C102 828.94 | 828.94 828.94 829.04 828.49 R202 | 1192.27 | 1103.15 1128.05 1191.80 1073.39
C103 828.06 | 828.94 828.06 828.17 815.44 R203 939.95 | 958.94 1020.10 939.60 916.36
C104 824.78 | 858.90 828.78 828.88 807.04 R204 826.31 818.44 834.92 731.40 775.27
C105 | 828..94 | 828.94 824.94 829.04 822.85 R205 994.80 | 1020.53 1105.38 964.20 1006.66
C106 828.94 | 828.94 828.94 829.04 820.61 R206 906.59 | 960.29 949.11 887.70 931.59
C107 828.94 | 828.94 828.94 829.04 820.61 R207 891.14 | 905.70 812.35 807.10 856.08
RC201 | 1407.22 | 1308.76 1514.41 1407.04 1305.87 RC205 | 1298.26 | 1210.68 1360.91 1297.75 1191.64
RC202 | 1365.96 | 1167.00 1326.71 1365.75 1134.53 RC206 | 1146.87 | 1112.38 1237.21 1146.42 1104.22
RC203 | 1050.14 | 1014.79 1166.91 1049.72 970.59 RC207 | 1061.50 | 1059.62 1039.59 759.33 1009.65
Sum 1 1 1 0 10 Sum 0 0 0 5 5

3. SRPTW-SST

In this paper, an SRPTW-SST based on VRPTW
is designed for realistic requirements. The instances is
also transformed into SC, SR and SRC according to (10).
The experimental results obtained by the proposed
sDCS-GM method with MAPSO, GASA, and DCS, in-
cluding the average and optimum values, are shown in
Table 8. Tables 9 and 10 show the robustness of the

sDCS-GM method and the gap between the sDCS-GM
method and other competitors, respectively. To high-
light the superiority and competitiveness of the pro-
posed sDCS-GM algorithm, we make convergence
curves for some of the instances, as shown in Fig.5.
Combined with the analysis of the experimental
results, the sDCS-GM algorithm is in the absolute lead

compared with the DCS algorithm. For SC101-SC207,

Table 8. Comparison of results of sDCS-GM with MAPSO, GASA, and DCS for SRPTW-SST

Sets MAPSO GASA DCS sDCS-GM Sets MAPSO GASA DCS sDCS-GM
sciol Ave 867.38 847.51 4318.31 842.09 SR101 Ave 1676.05 1774.57 3475.13 1696.26
Min 837.27 830.10 4110.27 820.73 Min 1599.07 1739.21 3200.92 1589.34
SC102 Ave 861.52 843.31 4332.27 841.96 SR102 Ave 1608.71 1580.98 3501.11 1513.61
Min 821.73 827.38 4080.82 820.73 Min 1478.11 1565.26 3330.09 1467.33
SC103 Ave 842.58 840.97 4175.51 818.18 SR103 Ave 1349.35 1338.19 3432.01 1258.26
Min 822.67 827.43 3901.45 815.44 Min 1234.84 1310.39 3137.54 1201.93
SC104 Ave 821.22 868.70 3619.72 808.55 SR104 Ave 1032.11 1132.56 3450.96 1054.90
Min 809.54 847.97 3236.52 803.54 Min 985.57 1105.83 3281.07 991.21
SC105 Ave 843.35 895.26 4338.09 831.77 SR105 Ave 1446.36 1506.07 3438.92 1428.58
Min 824.09 869.17 4081.95 820.61 Min 1395.70 1465.70 3174.24 1370.21
SC106 Ave 853.92 921.30 4305.16 850.70 SR106 Ave 1312.15 1367.00 3453.23 1295.83
Min 825.23 885.93 3960.34 821.38 Min 1264.53 1335.30 3221.55 1254.75
SC107 Ave 838.21 899.89 4281.93 823.84 SR107 Ave 1174.05 1209.46 3490.89 1123.69
Min 823.50 872.68 3986.99 820.61 Min 1092.61 1160.08 3232.06 1086.62
SC201 Ave 618.30 713.55 4414.03 636.03 SR201 Ave 1222.14 1252.84 3674.73 1180.61
Min 591.56 679.65 4153.47 591.56 Min 1151.13 1221.24 3541.25 1149.78
$C202 Ave 639.65 703.86 4309.56 639.07 SR202 Ave 1149.31 1139.18 3745.02 1071.10
Min 631.59 678.73 4016.91 591.56 Min 1040.51 1107.80 3606.84 1029.73
SC203 Ave 630.72 715.68 4131.18 636.19 SR203 Ave 1030.61 993.30 3350.41 915.11
Min 606.66 688.34 3503.74 588.49 Min 907.77 959.62 3076.64 886.93
SC204 Ave 641.03 727.25 3346.12 649.88 SR204 Ave 781.21 852.04 2847.29 778.49
Min 620.35 703.09 3159.13 599.29 Min 755.90 818.15 2666.31 742.71
SC205 Ave 645.11 700.87 4390.64 634.17 SR205 Ave 1011.44 1083.73 3772.80 1008.68
Min 628.14 673.53 4119.04 588.88 Min 989.49 1042.19 3428.79 973.63
SC206 Ave 622.30 716.09 4346.67 639.52 SR206 Ave 935.76 1004.58 3480.67 934.68
Min 597.35 690.36 4119.77 588.49 Min 909.59 974.99 3233.91 903.39
SC207 Ave 619.25 704.04 4399.85 625.70 SR207 Ave 835.92 927.90 3041.98 859.64
Min 590.39 676.16 4109.49 588.29 Min 819.19 898.82 2842.69 816.33
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Table 8 (Continued)

Sets MAPSO GASA DCS sDCS-GM Sets MAPSO GASA DCS sDCS-GM
SRC101 A\.le 1810.71 1785.80 4448.19 1702.88 SRC201 A\./e 1333.58 1379.15 4824.91 1306.32
Min 1680.21 1753.08 4104.93 1604.73 Min 1306.84 1354.06 4511.92 1279.19
Ave 1485.51 1599.27 7553.72 1526.88 Ave 1216.37 1213.60 4791.81 1137.58
SRC102 - - - SRC202 -
Min 1448.64 1566.39 4313.63 1469.40 Min 1110.84 1175.51 4529.40 1101.73
SRC103 A\.Ie 1314.60 1416.40 4453.75 1334.29 SRC203 A\./e 985.01 1055.87 4395.03 974.50
Min 1252.97 1384.02 4191.75 1245.15 Min 956.11 1012.98 4104.63 945.76
SRC104 A\.]e 1181.77 1265.53 4363.48 1180.34 SRC204 A\.le 843.3? 894.30 3707.85 827.98
Min 1111.99 1237.31 4129.67 1108.75 Min 807.46 866.16 3424.50 801.54
SRC105 A\.Ie 1564.71 1625.21 4505.62 1559.65 SRC205 A\./e 1220.95 1262.58 4795.70 1188.42
Min 1448.30 1599.93 4325.25 1443.79 Min 1171.99 1225.74 4497.73 1154.90
Ave 1412.20 1519.57 | 4464.37 1437.99 Ave 1111.41 1178.57 | 4843.75 1099.56
SRC106 i : SRC206 i
Min 1354.70 1485.17 | 4163.37 1351.50 Min 1086.34 1144.10 4654.30 1064.02
SRC107 A\'Ie 1291.59 1365.29 4389.08 1291.30 SRC207 A\./e 1033.69 1087.23 4665.67 1006.00
Min 1229.23 1332.60 3951.22 1228.92 Min 996.56 1057.60 4415.26 979.06
Table 9. Comparison results of the robust (%) for SRPTW-SST
Sets |MAPSO|GASA| DCS |sDCS-GM|| Sets |MAPSO|GASA| DCS [sDCS-GM Sets |[MAPSO|GASA| DCS |sDCS-GM
SC101 | —3.47 | —2.05 | —4.82 —2.54 SR101 | —4.59 |—1.99 |—7.89] —6.30 SRC101| —7.207 | —1.83 | —7.72 —5.76
SC102 | —4.62 | —1.89 | —5.80 —2.52 SR102 | —8.12 | —0.99 |—4.88| —3.06 SRC102| —2.482 | —2.06 |—42.89| —3.76
SC103 | —2.36 | —1.61 | —6.56 —0.33 SR103 | —8.49 | —2.08 |—8.58| —4.48 SRC103| —4.688 | —2.29 | —5.88 —6.68
SC104 | —1.42 | —2.39 |—10.59| —0.62 SR104 | —4.51 | —2.36|—4.92| —6.04 SRC104| —5.905 | —2.23 | —5.36 —6.07
SC105 | —2.28 | —2.91 | —5.90 —1.34 SR105 | —3.50 | —2.68 |—7.70| —4.09 SRC105| —7.439 | —1.56 | —4.00 —7.43
SC106 | —3.36 | —3.84 | —8.01 —3.45 SR106 | —3.63 | —2.32 |—6.71| —3.17 SRC106| —4.072 | —2.26 | —6.74 —6.01
SC107 | —1.76 | —3.02 | —6.89 —0.39 SR107 | —6.94 | —4.08 |—7.41| —3.30 SRC107| —4.829 | —2.39 | —9.98 —4.83
Average| —2.75 | —2.53| —6.94 —1.60 ||Average| —5.68 | —2.36 |—6.87| —4.35 ||Average| —5.23 |—2.09 |—11.80| —5.79
SC201 | —4.33 [—4.75] —5.90 | —6.99 || SR201 | —5.81 | —2.52|—3.63] —2.61 |SRC201| —9.81 | —1.82] —6.49| —2.08
SC202 | —1.26 |—3.57| —6.79 | —7.43 || SR202 | —9.47 | —2.75|—3.69| —3.86 |SRC202| —8.68 | —3.14| —5.48 | —3.15
SC203 | —3.82 |—3.82|—15.19] —7.50 | SR203 | —11.92 | —3.39 |—8.17| —3.08 |SRC203| —2.93 | —4.06| —6.61 | —2.95
SC204 | —3.23 |—3.32] —559| —7.78 | SR204 | —3.24 | —3.98|—6.36] —4.60 |SRC204| —4.26 | —3.15| —7.64 | —3.19
SC205 | —2.63 | —3.90| —6.19| —7.14 || SR205 | —2.17 | —3.83|—9.12| —3.47 |SRC205| —4.01 | —2.02| —6.21| —2.82
SC206 | —4.01 | —359| —522| —7.98 | SR206 | —2.80 | —2.95|—7.09] —3.35 |[SRC206| —2.26 | —2.93| —3.91 | —3.23
SC207 | —4.66 | —3.96| —6.60 | —5.98 | SR207 | —2.00 | —3.13 |—6.55| —5.04 ||SRC207| —3.59 | —2.73| —5.37 | —2.68
Average| —3.42 | —3.85| —7.35 | —7.26 ||Average| —5.34 | —3.22|—6.37| —3.72 | Average| —5.08 | —2.96| —5.96 | —2.87
Table 10. Comparison results of the cost gap (%)

Sets MAPSO GASA DCS Sets MAPSO GASA DCS
SC101 3.00 0.64 412.81 SR101 —1.19 4.62 104.87
SC102 2.32 0.16 414.55 SR102 6.28 4.45 131.31
SC103 2.98 2.78 410.34 SR103 7.24 6.35 172.76
SC104 1.57 7.44 347.68 SR104 —2.16 7.36 227.14
SC105 1.39 7.63 421.55 SR105 1.24 5.42 140.72
SC106 0.38 8.30 406.07 SR106 1.26 5.49 166.49
SC1o7 1.74 9.23 419.75 SR107 4.48 7.63 210.66
SC201 —2.79 12.19 593.99 SR201 3.52 6.12 211.26
SC202 0.09 10.14 574.35 SR202 7.30 6.36 249.64
SC203 —0.86 12.50 549.36 SR203 12.62 8.54 266.12
SC204 —1.36 11.90 414.88 SR204 0.35 9.45 265.75
SC205 1.73 10.52 592.34 SR205 0.27 7.44 274.03
SC206 —2.69 11.97 579.68 SR206 0.12 7.48 272.39
SC207 —1.03 12.52 603.19 SR207 —2.76 7.94 253.87
SRC101 6.33 4.87 314.60 SRC201 2.09 5.58 269.35
SRC102 —2.71 4.74 394.72 SRC202 6.93 6.68 321.23
SRC103 —1.48 6.15 233.79 SRC203 1.08 8.35 351.00
SRC104 0.12 7.22 269.68 SRC204 1.86 8.01 347.82
SRC105 0.32 4.20 188.89 SRC205 2.74 6.24 303.54
SRC106 —1.79 5.67 210.46 SRC206 1.08 7.19 340.52
SRC107 0.12 7.22 239.90 SRC207 2.75 8.07 363.78
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the Dis Gap values indicates that the proposed al-
gorithm has 3—6 times the performance of the DCS al-
gorithm.

In Fig.5, it is obvious that the DCS algorithm con-
verges slowly during the iterative process and only
shortens the distance partially than the initialized driv-
ing path. The MAPSO method outperforms the pro-
posed sDCS-GM algorithm in terms of the average of 30
experimental data, but sDCS-GM can also get very

good results in terms of the Min. The proposed sDCS-
GM algorithm still performs well in terms of stability
and robustness. Compared with the MAPSO algorithm,
the sDCS-GM algorithm is superior in the SC1, SR1,
SR2 and SRC2 series of instances. Compared with the
GASA algorithm, the difference between the two is
small, although it does not dominate across the board.
Overall, the proposed sDCS-GM algorithm has more de-
sirable robustness.

5000 5000 5000
45008 oo 4500 Pesgococoooosocscoooo
4000 +1\/[ 4000 ) TS o — 4000 - MAPSO
4, 3500 —~GASA ., 3500 » MAPSO ., 3500 ——GASA
§ 3000 —-DCS § 3000 ——GASA § 3000 —--DCS
= 2500 -=-sDCS-GM = 2500 —--DCS = 2500 -=-sDCS-GM
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Fig. 5. Comparison of convergence performance of SC103, SC104, SC202, SR104, SR107, SR203, SRC104, SRC107, and SRC204.

In terms of convergence speed, the proposed sDCS-
GM algorithm and the GASA algorithm are able to ob-
tain a relatively more ideal driving path in the early it-
erative stage for the same initial travel, which means
that the former has a faster convergence speed. The
MAPSO algorithm has difficulty in obtaining a more
optimal path in a shorter time despite the shorter ini-
tial driving path, which means that the MAPSO al-
gorithm lacks the ability to get rid of the local optimum.

V. Conclusions

This paper designs an SRPTW-SST model to bet-
ter meet the realistic requirements in real-world scenari-
os. To solve SRPTW-SST, an improved sDCS-GM al-

gorithm is proposed. In simulation experiments, all of
the following strategies were proved to be successful
and reasonable. Comparisons with MAPSO and GASA
algorithms are made to highlight the superiority and
competitiveness of the sDCS-GM algorithm. In addi-
tion, comparisons are made with state-of-the-art al-
gorithms such as HSFLA, BA, ACS-BSO, and MOD-
LEM. The experimental results also demonstrate the ef-
fectiveness and competitiveness of the proposed sDCS-
GM algorithm.
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