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   Abstract — Unmanned aerial vehicles (UAVs) can be
effectively used as serving stations in emergency commu-
nications because of their free movements, strong flexibil-
ity,  and  dynamic  coverage.  In  this  paper,  we  propose  a
coordinated  multiple  points  based  UAV  deployment
framework to improve system average ergodic rate, by us-
ing  the  fuzzy  C-means  algorithm  to  cluster  the  ground
users and considering exclusive forest channel models for
the two cases,  i.e.,  associated with a broken base station
or  an  available  base  station.  In  addition,  we  derive  the
upper bound of  the  average  ergodic  rate  to  reduce  com-
putational  complexity.  Since  deep  reinforcement  learning
(DRL)  can  deal  with  the  complex  forest  environment
while  the  large  action  and  state  space  of  UAVs leads  to
slow  convergence,  we  use  a  ratio  cut  method  to  divide
UAVs  into  groups  and  propose  a  hierarchical  clustering
DRL (HC-DRL) approach with quick convergence to op-
timize the UAV deployment. Simulation results show that
the proposed  framework  can  effectively  reduce  the  com-
plexity, and outperforms the counterparts in accelerating
the convergence speed.

   Key words — UAV  deployment, Forest  channel

model, Deep reinforcement learning.

 I. Introduction
When  natural  disasters,  e.g.,  earthquakes,  debris

flow, and fire, occur in forest areas, rescuers need to de-
tect and  deliver  the  on-site  disaster  situation  informa-
tion  back  to  the  command  post,  so  that  headquarters
can make accurate decisions based on the perceived in-

formation. However,  forest  areas  often lack public  net-
work coverage,  and  the  infrastructure  is  usually  dam-
aged by disasters,  leading to paralyzed service.  For in-
stance,  the  probability  of  public  network  coverage  in
the forest of Muli County, Sichuan Province is only 30%.
Therefore,  there  is  an  urgent  need  for  a  new  way  to
provide temporary  network  coverage  when  forest  dis-
asters occur.  Unmanned  aerial  vehicle  (UAV)  is  con-
sidered  as  a  promising  temporary  serving  base  station
(BS)  to  provide  communication  coverage  and  improve
network  capacity  [1]. However,  with  the  limited  num-
ber of UAVs and their battery capacity, it is very critic-
al  and  challenging  to  find  an  efficient  deployment
strategy  with  good  performance  in  terms  of  network
coverage, transmission latency, and transmission reliab-
ility [2].

With the continuous maturity of UAV deployment
schemes,  UAVs  are  widely  applied  to  public  safety,
traffic control, environmental monitoring, and other in-
dustries.  In  [3],  the  authors  proposed  a  Line  of  Sight
(LoS) communication link model between the UAV and
the  users,  and  derived  the  altitude  at  which  a  single
UAV  can  be  deployed  for  maximum  coverage.  In  [4],
the authors  optimized  the  three-dimensional  deploy-
ment height of a single UAV to maximize coverage. In
[5], the  authors  proposed  an  optimal  placement  al-
gorithm  for  UAV-BSs  that  maximizes  the  number  of
covered  users  using  the  minimum  transmission  power.
In  [6],  the  authors  proposed  a  deployment  framework 
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based on  user  information  to  achieve  optimal  deploy-
ment  of  UAVs  with  maximum user’s  quality-of-experi-
ence  and  minimum transmission  power.  In  [7], the  au-
thors  proposed  a  new  wireless  network  architecture  of
coordinated multiple  points  (CoMP)  in  the  air  to  de-
ploy  UAVs,  so  as  to  achieve  the  maximum  average
throughput of ground mobile users. In [8], a full-duplex
UAV relay  was  employed  to  improve  the  transmission
distance and  rate,  where  the  UAV  positioning,  beam-
forming,  and  power  control  were  jointly  optimized  to
achieve  a  near-upper-bound  performance.  Due  to  the
limited hardware loading on UAV platforms, non-ortho-
gonal multiple  access  (NOMA)  is  a  promising  techno-
logy to enhance the access capability for UAV base sta-
tions  [9],  [10].  However,  these  researches  only  focus  on
the urban and rural scenarios. When they are applied in
forest  areas,  the  mismatch  between  the  realistic  signal
fading  and  the  used  channel  model  will  degrade  the
transmission performance dramatically.

Unlike the urban and rural environment, the forest
area is covered by dense trees, which makes the multi-
path fading and non-line-of-sight channel very complex.
The  signal  shielding  and  reflection  of  tree  branches  or
leaves  are  different  from  that  of  urban  buildings  [11].
Forests  channel  models  are  usually  classified  into  the
horizontal  channel model and the slant channel model.
Particularly, the horizontal channel models can be fur-
ther  divided  into  the  modified  exponential  decay
(MED)  models  and  the  maximum  attenuation  (MA)
models.  The  MED models,  such  as  Weissberger  model
[12]  and COST-235 model  [13],  are  dating  back to  the
1960s, which  indicates  that  the  foliage  loss  will  expo-
nentially increase with the frequency and the propaga-
tion  distance.  However,  these  exponentially-decaying
models  are  purely  based  on  empirical  measurements,
and thus fit poorly for the practical foliage loss. For this
reason, the MA model in the current ITU recommenda-
tion  ITU-R  P.833-9  for  attenuation  was  proposed  in
[14],  which indicates  the slant channel  models  and can
fit the practical attenuation better in the slant propaga-
tion scene than the horizontal ones [15]. However, these
works only study channel characteristics and do not dis-
cuss how to use the channel models in specific scenarios.

Furthermore,  the environment in the disaster area
is  unknown  and  time-varying.  Traditional  methods  on
optimizing  UAV deployment  are  usually  formulated as
NP-hard  problems  with  high  complexity.  With  the
gradual  development  of  computing  capability  for  UAV
platform, the researchers introduced many artificial  in-
telligence (AI) methods, which are powerful tools to de-
termine  the  UAV  deployment  strategies  in  unknown
and  dynamic  environments.  In  [16], the  authors  pro-
posed a  UAV  relay  scheme  based  on  both  reinforce-

ment  learning  (RL)  and  deep  reinforcement  learning
(DRL) techniques to minimize the energy consumption.
In  [17],  the  authors  jointly  determined  the  trajectory
and power allocation of UAV to serve static users, aim-
ing  to  support  dynamic  user  grouping  and  bring  more
flexibility to network design. Moreover, in [18], the au-
thors  formulated  the  UAV  deployment  problem  as  a
continuous control task and proposed a DRL method to
maximize  the  energy  efficiency  of  the  UAV  network.
However, in the above works, owing to the high dimen-
sion of the state and action space of UAVs, the conver-
gence speed of the DRL algorithm becomes slow. There-
fore,  a hierarchical clustering based deep reinforcement
learning (HC-DRL) approach is proposed in this paper
to  accelerate  the  algorithm  convergence  and  improve
the UAVs’ deployment efficiency.

To tackle the challenges above, this paper investig-
ates  the  multiple-UAV  deployment  problem  in  forest
environment based on the forest exclusive channel mod-
el. In the transmission scheme of CoMP, we adopt joint
transmission (JT) technology,  by using multiple  UAVs
to cooperatively  transmit  data  for  users,  so  as  to  im-
prove the  quality  of  received  signals  for  users  and  en-
hance the system performance. The main contributions
of this paper are summarized as follows:

• First,  we propose a CoMP-based clustering and
deployment  framework  for  multiple-UAVs  to  provide
services to users affected by forest disasters,  taking in-
to  account  two  cases  where  the  base  station  is  broken
and  available,  respectively.  Additionally,  to  accelerate
the convergence, we propose the fuzzy C-means (FCM)
algorithm to  cluster  the  ground  users  for  a  better  ini-
tial  UAVs  positions,  and  derive  an  analytical  upper
bound for the corresponding ergodic rate to reduce com-
putational complexity.

•  Second,  on  the  basis  of  DRL  dealing  with  the
complex forest environment, we use a ratio cut method
to cluster  UAVs  and  further  propose  a  HC-DRL  ap-
proach to  reduce  the  computational  complexity  caused
by large action and state space of UAVs.

•  Third,  we  compare  the  simulation  results  with
the  actual  measurement  results,  which  indicates  that
our proposed FSM model is close to the actual channel.
It is also validated that the proposed framework and al-
gorithm can  effectively  reduce  the  complexity  com-
pared with the other schemes.

The remainder of this paper is organized as follows:
Section II introduces the system model, problem formu-
lation and and transformation. Section III proposes the
HC-DRL scheme.  In Section IV,  the  simulation results
are illustrated and analyzed to demonstrate the superi-
ority of  the  proposed  scheme.  Finally,  Section  V  con-
cludes this paper.
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 II. System Model and Problem
Formulation

In this  section,  we  describe  the  deployment  scen-
ario of UAVs in the forest environment, in terms of two
cases with a broken BS and with an available BS, and
establish  the  system  model.  After  that,  we  derive  the
upper bound of the average ergodic rate to simplify the
model.

 1. System model

N

The UAV-assisted emergency network in the forest
environment is  shown in Fig.1.  There are  users dis-
tributed  on  the  ground,  which  can  be  denoted  by

N = {1, 2, . . . , N}

n sn = {xn, yn, hn}

S = {s1, s2, . . . , sN} K

K = {1, 2, . . . ,K}

k uk = {xk, yk, h}

U = {u1, u2, . . . , uK}

.  Considering  the  impact  of  hills  in
the forest environment, all  the ground users have 3-di-
mensional  positions.  The  3-dimensional  position  of  the
-th user is defined as . Then the 3-di-

mensional  position  of  all  ground  users  can  be  denoted
by . There are  UAVs as tempor-
ary  BSs  for  communication,  which  can  be  denoted  by

.  For  simplicity,  we  assume  that  all
the UAVs fly at a fixed altitude. The 3-dimensional po-
sition of the -th UAV is . Then the de-
ployment  strategy  of  all  the  UAVs  can  be  denoted  by

.
 

CoMP based 
UAV grouping

Ground users 

Case I: BS is broken Case II: BS is available

θθ

The slant channel model 
between the associated 
UAV and ground users

BS-ground users

CoMP based 
UAV grouping

Ground users 

Case I: BS is broken Case II: BS is available

θ

The slant channel model 
between the associated 
UAV and ground users

BS-ground users

UAVs-ground users 
CoMP

d l,i,j

 
Fig. 1. Scenario description for CoMP based UAV deployment in the forest environment.

 

Affected by the disasters, the infrastructure is pos-
sibly broken.  Therefore,  the  UAV  deployment  is  re-
spectively studied in two cases, i.e., the BS is broken or
available. Specifically, there are two feasible communic-
ation modes are available for users when the BS is sur-
vived. They can download emergency related data from
either UAVs or BS. Assume that each user can choose
only one communication mode at most and prefers the
mode of BS-to-user, since BS is more stable than UAVs
that may fly away due to the drained-battery. Further-
more, the CoMP is introduced for the mode of UAV-to-
user to further improve the data rate. All the users are
assumed to work in the frequency division multiple ac-
cess (FDMA) manner so that interference between users
can be ignored.

L
L =

{1, 2, . . . , L}

l

Nl

There are two aspects that should be taken into ac-
count. First, considering the relevance of UAVs, we di-
vide all UAVs into  groups to form CoMP to improve
deployment  efficiency,  which  can  be  denoted  by 

.  Second,  we  assign  ground  users  based  on
UAV CoMP  and  each  UAV  CoMP  serves  its  corres-
ponding  ground  users  independently.  The  number  of
group  users  within  the  covered  area  of  the -th  UAV
CoMP is denoted by .

In the  following,  the  two  cases  are  analyzed,  re-
spectively.

Case  1  In  this  case,  the  ground  users  can  only
access to UAVs.

i l

j

Lul,i,j (dB)

We first  introduce the channel  model  between the
UAVs and ground users.  As mentioned previously,  the
forest  channel  model  generally  fall  into  two categories,
i.e., the horizontal models and the slant models. In view
of the height difference between the UAVs and ground
users,  the  slant  models  are  more  practical.  Therefore,
the  path  loss  between  the -th  UAV  in  the -th  UAV
CoMP  and  the -th  ground  user  served  by  this  UAV
CoMP  is given by [14], [15]
 

Lul,i,j (dB) = LFSPL
l,i,j (d0) + 10α lg

(
dl,i,j
d0

)
+Xσ + LSlant

l,i,j

(1)

dl,i,j i

l j

Xσ

σ

LFSPL
l,i,j (d0) LSlant

l,i,j

where  denotes the distance between the -th UAV
in  the -th  UAV CoMP and  the -th  ground  user  and

 denotes the shadow effect and is a zero-mean Gaus-
sian  random  variable  with  a  standard  deviation  of 
dB. Besides,  and  denote the free space
path loss  (FSPL)  and the  excess  loss  in  the  forest,  re-
spectively. They can be expressed as [14]
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LFSPL
l,i,j = 20 lg (4πfd0/c) (2)

 

LSlant
l,i,j = AfCdEl,i,j (θ +G)

H (3)

f d0 c α θ

A, C, E, G, and H

θ

θ

where , , , ,  and  denote  the  carrier  frequency,
reference distance, light speed, path loss exponent, and
elevation angle between the UAV and ground user, re-
spectively.  are  the  multiplication
coefficient, the exponential coefficient of the carrier fre-
quency, the  exponential  coefficient  of  transmission  dis-
tance,  the  correction  factor  of ,  and  the  exponential
coefficient  of , respectively,  affected  by  the  environ-
ments such as the vegetation types and the vegetation
density.

Lul,j = [Lul,1,j , L
u
l,2,j , . . . , L

u
l,Q,j ]

l j

Lul,i,j =

√
10

−Lu
l,i,j

(dB)

10

l j

γul,j

Define  as the  chan-
nel  vector  from the -th  UAV CoMP to  the -th  user,

where .  Then, the  signal-to-noise
ratio (SNR) between the -th UAV CoMP and the -th
user  can be expressed as [7]
 

γul,j =
P1

ψ
Lul,j

(
Lul,j

)H
(4)

P1 ψ

j l

where  and  denote  the  UAV  transmission  power
and the noise power, respectively. Therefore, the ergod-
ic rate of the -th user served by the -th UAV CoMP is
given by
 

Rul,j = E
[
B log2

(
1 + γul,j

)]
= E

[
B log2

(
1 +

P1

ψ
Lul,j

(
Lul,j

)H)]
(5)

xl,j ∈ {0, 1}

xl,j = 1 j

l xl,j = 0

Let  a  binary  variable  indicate the  co-
operative  relationship  between  UAV  CoMP  and  the
corresponding ground users, where  means user 
is served by UAV CoMP ; otherwise, . It is giv-
en by
 

xl,j =

{
1, PCoMP

l,j < Pthre

0, PCoMP
l,j ≥ Pthre

(6)

Pthre

PCoMP
l,j

j l

Here,  denotes  the  outage  probability  threshold,
and  denotes the outage probability between the
-th ground user and the -th UAV CoMP, which is cal-

culated by [19]
 

PCoMP
l,j = 1− Pr

(
γul,j > γ0

)
= 1− Pr

(
P1

ψ
Lul,j

(
Lul,j

)H
> γ0

)
(7)

γ0where  denotes the SNR threshold.
R1Therefore,  in  Case  1,  the  system  throughput, ,

for all ground users is given by

 

R1 =

L∑
l=1

Nl∑
j=1

(
xl,jR

u
l,j

)
(8)

Case 2  In this case, the ground users can access
to either the BS or the UAVs.

m

n

We assume that a ground user will access to UAVs
only if it is not within the coverage of the base station.
Let  indicate the BS. The power gain between the BS
and the -th user is given by
 

LBm,n (dB) = LFSPL
m,n (d0) + 10α lg

(
dm,n
d0

)
+Xσ + LSlant

m,n

(9)

nHence, the SNR of user  with the BS is expressed
as
 

γBm,n =
P2L

B
m,n

ψ
(10)

LBm,n = 10−
LB
m,n(dB)

10 P2

n

where  and  is  the  transmission
power of BS. Further, the ergodic rate of user  is giv-
en by
 

RBm,n = E
[
B log2

(
1 + γBm,n

)]
= E

[
B log2

(
1 +

P2L
B
m,n

ψ

)]
(11)

ym,nLet a binary variable  show whether a user is
connected to the BS or not, that is,
 

ym,n =

{
1, if γBm,n > γ0

0, otherwise
(12)

zl,j ∈ {0, 1}

Besides,  the  ground  users  can  also  be  connected
with UAVs. The UAV-user connection can refer to Case
1. Specially, if a UAV does not form CoMP with other
UAVs, its service mode to users is the same as that of
the  BS.  Define  to  indicate  whether  the
ground user is served by UAV CoMP, i.e.,
 

zl,j =

{
1, PCoMP

l,j < Pthre, ym,n = 0

0, PCoMP
l,j ≥ Pthre

(13)

In this instance, the ergodic rate of UAV-user can
be calculated by (5).

R2Therefore,  in  Case  2,  the  system  throughput, ,
for all the ground users is given by
 

R2 =
N∑
n=1

ym,nR
B
m,n +

L∑
l=1

Nl∑
j=1

(
zl,jR

u
l,j

)
(14)

 2. Problem formulation
We  consider  the  cases  where  BS  is  broken  and
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β (1− β)

U
L

available with probabilistic  and , respectively.
This paper  aims at  maximizing the system average er-
godic rate by optimizing the deployment strategy  of
all the UAVs and the number of UAV CoMP . There-
fore, the problem can be formulated as
 

P1: max
L,U

R =
1

N
(βR1 + (1− β)R2) (15a)

 

s.t. System throughput (8), (14) for Case 1, 2, resp.
(15b)

 

xl,j , ym,n, zl,j ∈ {0, 1} ,∀l ∈ L,∀j ∈ J ,∀n ∈ N
(15c)

 

L∑
l=1

xl,j ≤ 1,∀l ∈ L,∀j ∈ J (15d)

 

ym,n +

L∑
l=1

zl,j ≤ 1,∀l ∈ L,∀j ∈ J ,∀n ∈ N (15e)

 

PCoMP
l,j < Pthre, ∀l ∈ L,∀j ∈ J (15f)

 

γBm,n > γ0, ∀n ∈ N (15g)

N

Pthre

γ0

where  denotes  the  number  of  ground  users.  In  the
above,  formulas  (15b)–(15e)  restrict  the  connection
status of users, i.e., every user chooses at most only one
communication model, formula (15f) represents that the
required CoMP outage probability  should be satis-
fied, and  formula  (15g)  denotes  that  the  users  associ-
ated with the BS should meet the SNR threshold .

 3. Bound relaxations  and  problem  trans-
formation

Rul,j

Rul,j

It is computation-intensive to calculate  for the
UAV  CoMP  communication  mode.  To  further  reduce
the computational complexity, the upper bound of 
in formula (5) will be derived and used for problem op-
timization in this article.

q > 0 f (x) = log2(1+
px) x > 0

It  can  be  shown that  given , 
 is  concave over .  Then, according to Jensen’s

inequality [17],
 

f (E [x]) ≤ E [f (x)] (16)

E[B log2(1 +
P1

ψ Lul,j(L
u
l,j)

H)]

Lul,j(L
u
l,j)

H Lul,j(L
u
l,j)

H = ||Lul,j ||2

On  the  basis  of  the  above  analysis,  the  upper
bound  in  formula  (5)  is  derived  first.  Obviously,

 is  concave  with  respect  to
, and . Therefore,

 

Rul,j = E
[
B log2

(
1 +

P1

ψ
||Lul,j ||2

)]
≤ B log2

(
1 +

P1

ψ
E
[
||Lul,j ||2

])
(17)

Rul,jHence,  the  upper  bound  of  in (5)  can  be  ex-
pressed as

 

R̄ul,j = B log2

1 +
P1 · E

[
||Lul,j ||2

]
ψ

 (18)

R̄ul,j

R1 R2

As mentioned before, the upper bound, , can be
used  instead  to  reduce  the  computational  complexity.
Since  the  bound  relaxation  is  exploited,  the  system
throughput in Case 1 and Case 2, i.e.,  and , can
be rewritten as
 

R
′

1 =

L∑
l=1

Nl∑
j=1

(
xl,jR̄

u
l,j

)
(19)

 

R
′

2 =

N∑
n=1

ym,nR
B
m,n +

L∑
l=1

Nl∑
j=1

(
zl,jR̄

u
l,j

)
(20)

Hence, the  original  optimization  problem  P1  re-
lated  to  the  average  ergodic  rate  is  transformed to  P2
with  respect  to  the  upper  bound  of  ergodic  sum  rate,
which can be formulated as
 

P2: max
L,U

R =
1

N
[β(R

′

1) + (1− β)(R
′

2)] (21a)

 

s.t. (15c)−(15g), (19), (20) (21b)

 III. Hierarchical Clustering Based DRL
Scheme

In this section, we present the design of Hierarchic-
al  Clustering  based  DRL  (HC-DRL)  scheme  for  UAV
deployment control and discuss its design rationale.

 1. Overall workflow
We  develop  a  hierarchical  clustering  based  DRL

scheme to determine the UAVs’ deployment locations in
low complexity, of which the core idea is to shrink the
state  space  in  the  DRL  process  by  incorporating  two-
tier  clustering,  i.e.,  ground  users  clustering  and  UAVs
clustering. As illustrated in Fig.2, in Step 1, we cluster
the ground users based on FCM and deploy the UAVs
at the center of the user clusters as the initial positions
of  the  UAVs.  We  calculate  the  outage  probability
between UAV and users to obtain the service coverage
of each UAV. In Step 2, we use the ratio cut method to
cluster  the  UAVs  so  that  UAVs  in  a  cluster  can  form
CoMP to serve  corresponding ground users.  In  Step 3,
we merge the corresponding user  clusters  of  the UAVs
which  belong  to  the  same  UAV  cluster,  so  that  each
UAV cluster corresponds to the user cluster one by one.
The key of the scheme is the design of hierachical clus-
tering  and  HC-DRL  algorithm,  which  we  will  discuss
next.

 2. FCM based ground users clustering
A critical issue that is commonly overlooked in ex-
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N

K
ϵ

isting DRL-based UAV deployment algorithms is to ini-
tialize  the  UAVs’ positions,  where  the  initial  positions
of UAVs  are  generated  randomly.  However,  such  ran-
dom initialization may result in unsatisfactory perform-
ance  and  consume  a  relatively  long  time  to  converge.
To  circumvent  this  drawback,  we  propose  to  use  the
FCM [20] clustering-based initialization to generate the
initial  positions  of  UAVs.  Compared  with  the  classic
clustering  algorithm,  such  as K-means,  FCM falls  into
the  soft-clustering  category.  It  utilizes  the  weight
between 0 and 1, rather than the deterministic zero or
one,  to  express  the  association between the  data  point
and different clusters. More specifically, the FCM clus-
tering-based algorithm is employed to group  users in-
to  clusters  by  minimizing  the  following  sum  of
squared error denoted by :
 

ϵ =

K∑
k=1

N∑
n=1

ωqk,n∥sn − ck∥2 (22a)

 

s.t.
K∑
k=1

ωk,n = 1, n = 1, 2, . . . , N (22b)

ωk,n n

k q ck
k

ωk,n ck

where  denotes  the  weight  that  the -th user  be-
longs  to  the -th  cluster.  is  the  exponent.  is  the
cluster center of the -th cluster. The update formulas
of  and  are as follows
 

ck =

∑N

n=1
ωqk,n ·sn∑N

n=1
ωqk,n

(23)

 

ωk,n =

1

∥sn − ck∥
2

q−1

1∑K

k=1

1

∥sn − ck∥
2

q−1

(24)

CK = {c1, c2, . . . , cK}

The FCM  algorithm  is  shown  in  Step  1  of  Al-
gorithm 1.  Therefore,  all  the  initial  positions  of  UAVs
can be expressed as .

Algorithm 1  Hierarchical  clustering for  UAVs and ground
users

S
K itermax q Qmax

Input:  the  position  of  all  ground  users ,  the  number  of
UAVs , , , .

U
L

Output: the initial position of UAVs , the number of UAV
clusters .

Step 1: FCM based Ground User Clustering
K  Divide  all  ground  users  into  clusters  according  to  the

number of UAVs;
ωk,n

∑K
k=1 ωk,n = 1, n = 1, 2, . . . , N ;  Initialize  subject to 

t = 1  Set .
t ≤ itermax  while  do

CK = {c1, c2, . . . , cK}
ck = {xk, yk, hk}

　　Calculate the center positions  of all
the clusters according to (23), where ;

ωk,n　　Update  according to (24);
t = t+ 1　　 ;

  end
Step 2: Ratio Cut based UAV Clustering

k = 1, 2, · · · ,K  for  do
k uk

{xk, yk} ck h

　　Initialize 3-dimensional position of the -th UAV  with
 of  and the fixed height ;

  end
L = Linitial  Obtain the number of UAV clusters  according to

(25);
  repeat
　　Construct the weighted graph of UAVs;

L　　Divide UAVs into  clusters using the ratio cut method;
L = L+ 1　　 ;

Qmax  until the number of UAVs per cluster no more than 

 3. Ratio cut based UAVs clustering
The  considered  problem  in  (21)  can  be  solved  by

using a centralized optimization method. All UAVs are
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UAV1 UAV3

UAV4UAV2

3
1

3

UAV2 UAV4
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cluster 1
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Ground user 
cluster 2

Ground user 
cluster 3

Ground user 
cluster 4

UAV cluster1 UAV cluster2

Step 1: Initial UAV-assisted network Step 2: UAVs clustering
assignment

Step 3: CoMP based UAV deployment

 
Fig. 2. The process for ratio cut method based UAV clustering and UAV deployment.
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regarded  as  an  agent,  and  the  state  of  the  agent  is
defined  as  the  positions  of  all  UAVs.  Obviously,  the
centralized method leads to large-scale action and state
spaces,  resulting in high computational  complexity.  To
overcome  this  challenge,  this  paper  proposes  a  novel
solution based on clustering. Specifically, we divide the
UAVs into  different  clusters,  where  each  cluster  is  re-
garded  as  an  independent  agent  to  implement  a  joint
optimization  of  positions.  Moreover,  the  UAV  clusters
echoe the UAV group to form a CoMP in Section Ⅱ.1.

CK

{xk, yk} ck

L

L

L

Qmax Qmax

Linitial

We take the case where the BS is broken as an ex-
ample.  First,  we  have  obtained  the  center  of  ground
user clusters  based on FCM in Section Ⅱ.1. Consid-
ering  the  fixed  height  of  UAVs,  we  initialize  the  3-di-
mensional  position  of  UAVs  by  utilizing  2-dimensional
position  of . This paper models the UAV net-
work  as  an  undirected  graph  with  edge  weights  using
the spectral clustering method, including the minimum
cut  method  and  ratio  cut  method.  Compared  to  the
minimum cut method, the ratio cut is able to avoid the
single  point  being  remained,  and  thereby  achieves  a
more  balanced  cutting.  Therefore,  we  divide  all  UAVs
into  clusters by means  of  the  ratio  cut  method.  Be-
cause the number of UAV clusters  is related to both
the  system  performance  and  complexity,  should  be
chosen  carefully.  Considering  the  practical  computing
ability, we limit the maximum number of UAVs in each
UAV cluster to  (  can be properly adjusted ac-
cording to the devices’ capability). Then the initial min-
imum number of UAV clusters  is given by
 

Linitial = ⌊ K

Qmax
⌋ (25)

As illustrated in Fig.2, we introduce the process of
ratio cut  method  based  UAV clustering  and  UAV de-
ployment. In Step 1, we have determined the initial 3-
dimensional positions of the UAVs, the coverage of each
UAV, and the results of user clustering. For better dis-
tinction,  we  use  different  colors  to  represent  different
UAV clusters and ground user clusters. Intuitively, the
more  users  that  can  be  served  within  the  overlapping
communication  coverage  of  two  different  UAVs,  i.e.,
users who  meet  the  SNR  requirements,  the  more  im-
portant to jointly optimize the locations of the two ad-
jacent UAVs.

In  Step  2,  we  first  use  UAVs  and  the  number  of
ground users located within the overlapped coverage of
two UAVs to denote the vertex and edge weights of the
graph,  respectively.  For  example,  there  are  three  users
located  in  the  overlapped  area  of  UAV1  and  UAV2;
Therefore,  there  is  an  edge  between  UAV1 and  UAV2
with  an  edge  weight  3.  The  greater  the  edge  weight
between the  two  UAVs,  the  more  users  the  two  adja-

G(V,E) L

A={A1, A2, . . . , AL} l ̸= l′ Al ∩Al′ =
∅ A1 ∪A2 ∪ · · · ∪AL = V

Al Al′

cent UAVs can serve. Then our goal is to cut the graph
 into  subgraphs  that  are  not  connected  to

each  other.  The  set  of  subgraphs  is  expressed  as
, for any , we have 

,  and .  Define  the  weight  sum
between the two subgraphs  and  as
 

W (Al, Al′) =
∑

i∈Al,j∈Al′

ωi,j (26)

The  ratio  cut  method  aims  to  minimize  the
weighted sum between all the subgraphs and their com-
plements, which can be expressed as
 

cut(A1, A2, . . . , AL) = min

(
1

2

L∑
l=1

W (Al, Āl)

|Al|

)
(27)

Āl
|Al| Al

where  denotes the complement of the subgraph, and
 denotes the number of nodes in the subgraph . At

last, the weighted graph is divided into two subgraphs,
and each subgraph is regarded as a cluster, i.e., an inde-
pendent agent in DRL. That is, the deployment scheme
of UAVs  with  more  common  ground  users  will  be  op-
timized jointly.

In Step 3, after clustering the UAVs, we merge the
corresponding ground user  clusters.  Then UAVs in the
same cluster can form CoMP to enhance the communic-
ation service to the ground users. Specially, the method
of CoMP based UAVs clustering can improve the over-
all system performance, but it cannot guarantee the ser-
vice  of  each  user.  For  example,  UAV2 and  UAV3 can
form CoMP to provide service for a user. According to
the ratio cut method, the UAV cluster corresponding to
the  user  is  composed of  UAV3 and UAV4,  and UAV2
will  no  longer  provide  service.  Since  the  user  is  not
within the coverage of UAV4, only UAV3 provides ser-
vice  for  the  user.  Although this  user’s ergodic  rate  de-
creased, the system’s average ergodic rate increased.

Qmax

Notice  that  the  proposed  UAV  clustering  method
will be repeated with an additional UAV cluster, if any
UAV  cluster  contains  UAVs  more  than . Other-
wise, the process of UAV clustering will be terminated.
The details of hierarchical clustering method for UAVs
and ground users are shown in Algorithm 1.

 4. DRL-based UAVs  deployment  adjust-
ment

V
V

V = {1, 2, . . . , V }

Taking  the  UAV cluster  as an  example,  we  de-
note  the  set  of  UAVs  contained  in  the  cluster  as

.  The  key  components  of  DRL,  i.e.,
state,  action,  and  reward,  are  defined  as  follows,  and
their interactions are shown in Fig.3 .

State t　The state at time slot  is expressed as
 

st = [u1 (t) , u2 (t) , . . . , uV (t)] (28)
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uv (t) v

V
where  denotes the position of UAV  clustered in

.  For  simplicity,  we  divide  the  whole  area  into  fine-
grained grids and suppose that UAVs will  be deployed
at the grid center.

Action t　The action at time slot  is expressed as
 

at =
{
a1t , a

2
t , . . . , a

V
t

}
(29)

at

avt = {front, behind, left, right,
stay}

where  denotes  all  the  UAVs  movements  in  the
cluster.  Here,  we  discretize  the  movement  of  the  UAV
into 5 optional directions 

.
Reward t

t

　The  reward  at  time  slot  is  related  to
the  throughput  at  the  last  time  slot ,  which  can  be
defined as follows:
 

rt =


1, if R (t) > R (t− 1)

−0.2, if R (t) = R (t− 1)

−2, if R (t) < R (t− 1)

(30)

D
(st, at, rt, st+1)

θ θ

Q(st; at)

It  is  widely  known  that  Q-learning  works  well  if
the  state  and  action  spaces  of  the  problem  are  small,
and  a  Q  table  can  be  used  to  accomplish  the  update
rule. However, this becomes impossible when the state-
action space becomes very large. In this situation, many
states may  be  rarely  visited,  and  thus  the  correspond-
ing  Q-values  are  seldom  updated,  leading  to  a  much
longer  time to  converge.  Deep Q-network combines  Q-
learning  with  deep  learning.  In  a  deep  Q-network,  we
use  a  replay  memory  to  store  the  training  samples

, and the Q function is approximated by
a deep neural network. The basic idea behind the deep
Q network is a deep neural network (DNN) function ap-
proximator  with  weights  as  a  Q-network.  Once  is
given, Q-values,  will be determined.

θ

D

The Q-network updates its weights  at each itera-
tion  to  minimize  the  following  loss  function  derived
from  the  same  Q-network  with  old  weights  on  a  data
set :
 

Loss (θ) = E
[
(TargetQ−Q (s, a; θ))

2
]

(31)
 

TargetQ = r + ϱmaxa′Q (s�, a′; θ′) (32)

ϱwhere  denotes the discount factor. The proposed HC-
DRL algorithm is shown in Algorithm 2.

Algorithm  2:　 Hierarchical Clustering  Based  Deep  Rein-
forcement Learning (HC-DRL) Algorithm

U
L

Input: the  initial  position  of  UAVs  and  the  number  of
UAV clusters  according to algorithm 1.

U∗

R̄

Output: the  optimal  deployment  position  of  UAVs ,  the
system average ergodic rate .

l = 1, 2, . . . , L  for  do

{θ} {θ′}
　　Randomly  initialize  Q-network  and  target  Q-network  of

each cluster with weights  and ;
D

S

　　For  each  cluster,  initialize  replay  memory  with capa-
city ;

　　for epoch = 1 to I do
s0　　　Initialize the beginning state ;

　　　for t = 1 to T do
ε

at = argmaxa Q (st, at; θ)

　　　　With probability  select a random action, otherwise
select ;

at rt

st+1

　　　　Execute action  in emulator and observe reward 
and new state ;

(st, at, rt, st+1)

D

　　　　Store  the  experience  into the  replay
memory ;

{(si,ai, ri,

si+1)} D

　　　　Get  a  random  minibatch  of M samples 
 from replay memory ;

TargetQ = r + ϱmaxa′Q (s�, a′; θ′)　　　　Set ;
Loss (θ) =　　　　Perform  a  gradient  descent  step  on  the 
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Fig. 3. The detailed framework of HC-DRL.
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E[(TargetQ−Q (s, a; θ))2]

θ

 w.r.t. the  network  para-
meters ;

D′ θ′ = θ　　　　Every  steps reset ;
　　　end
　　end
  end

U∗

R̄

  Obtain  the  optimal  deployment  position  of  UAVs  and
calculate the system average ergodic rate .

 IV. Simulation Results

β

In  this  section,  we  present  simulation  results  to
demonstrate  the  performance  of  the  proposed  scheme
HC-DRL. We list the default simulation parameter set-
tings in Table 1. The simulation environment setting is
presented  as  follows  except  otherwise  stated.  We  take
Muli county of Sichuan Province as an example, where
the  probability  of  public  network  coverage  of  forest  is
only 30%. Therefore, we set  as 0.7.
  

Table 1. Summary of parameters

Parameters Symbol Value
The area size area 1 km × 1 km

The number of users N 100
The number of UAVs K 4

Carrier frequency f 1.4 GHz
The maximum transmission

power of UAV
P1 20 dBm

The maximum transmission
power of BS

P2 22 dBm

The minimum height of users hmin 0 m
The maximum height of users hmax 10 m
Reference distance of FSPL d0 1 m

The height of UAVs h 100 m
The SNR threshold γ0 0 dB

The outage probability threshold Pthre 0.1

The environment parameters A, C, E, G, H 0.25, 0.39, 0.25,
0, 0.05

The pathloss exponent α 3.5
The noise power ψ −140 dBm/Hz

The number of Episode itermax 1000
The number of hidden layer numcell 2

The learning rate ϱ 0.01
The maximum number of UAV

per cluster
Qmax 3

 
 

The simulation  results  consist  of  three  parts:  fo-
liage channel model verification, comparison with other
schemes,  and  influence  of  parameter  setting.  Next,  the
three parts are introduced respectively.

 1. Foliage channel model verification
In this subsection, we describe several foliage chan-

nel  models.  The  SPM  model  is  originated  in  the  cost
and Hata prediction models [21], but it adopts the vari-
able coefficients rather than the fixed coefficients, which
provides more  flexibility  and  applicability.  The  stand-

ard  propagation  model  (SPM) channel  model  was  well
corrected based  on  measured  data  in  Shuangdao  Na-
tional  Forest  Park,  Weihai  City,  Shandong  Province.
We will compare SPM with the following two channels
model:  1)  our  proposed  foliage  slant  model  (FSM);  2)
foliage horizontal maximum attenuation model (FHM).

•  FSM: As  stated  before,  this  model  can  be  re-
ferred to (1).

• FHM: Compared with our proposed model, this
model use the horizontal foliage model rather than slant
one, which is proposed by ITU-R P.833-9 and given by
 

Lul,i,j (dB) = LFSPL
l,i,j (d0)+10α lg

(
dl,i,j
d0

)
+Xσ+L

Horizontal
l,i,j

(33)

LHorizontal
l,i,j  is provided as follows

 

LHorizontal
l,i,j = Am [1− exp (−dl,i,jµ/Am)] (34)

µ

Am

where  denotes the specific attenuation for very short
vegetative  paths  (unit:  dB/m)  and  denotes  the
maximum attenuation for one terminal within a specif-
ic type and depth of vegetation (unit: dB).

The comparison of different models for total loss is
illustrated in Fig.4. As is shown, the gaps between SPM
with correction and FSM, FHM are 0.6 dB, 8.5 dB, re-
spectively.  Obviously,  our  proposed  FSM  is  closer  to
the  SPM  with  correction  and  fits  the  measured  data
points  better  than FHM. The reason is  that there is  a
certain  height  difference  between  the  UAV  and  users,
making the  slant  model  more  suitable  than  the  hori-
zontal one. Therefore, our proposed FSM has more ad-
aptability to the forest environment.
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Fig. 4. Comparison of different models.

 

 2. Comparison with other schemes
First, we compare the system average ergodic rate

solved by  our  proposed  UB-ergodic  rate  with  the  sys-
tem  average  ergodic  rate  solved  by  the  ergodicl  rate.
Then, the other two schemes as following are presented
respectively for the comparison with the proposed HC-
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DRL:
•  Centralized  DRL  (C-DRL):  All  the  associated

UAVs are regarded as an agent and trained jointly. The
action of the agent is set as the directions of the move-
ment of all UAVs.

•  Parallel  single  DRL  (PS-DRL):  Every  UAV  is
regarded  as  a  single  agent  and  trains  independently.
The action of each UAV will not be affected by others.

R̄ul,j
Rul,j

R̄ul,j Rul,j

R̄ul,j Rul,j Rul,j R̄ul,j

Rul,j R̄ul,j

In Fig.5(a),  we  compare  the  results  solved  by  the
proposed UB-ergodic rate with the results solved by the
ergodic  rate.  In  this  scenario,  every  user  is  served  by
CoMP  of  2  UAVs.  As  can  be  seen  from Fig.5(a),  the
system average  ergodic  rate  solved  by  UB-ergodic  rate

 is  the  same  as  the  system  average  ergodic  rate
solved  by  the  ergodic  rate .  Since  the  number  of
UAVs  in  the  scenario  is  relatively  small,  the  gap
between UB-ergodic rate  and the ergodic rate 
does  not  affect  the  deployment  positions  of  UAVs.  As
shown  in Fig.5(b),  we  compare  the  computation  time
between  and .  Compared  with ,  has  a
shorter computation  time  and  performs  better.  There-
fore, we solve the system average ergodic rate by relax-
ing  in (5) and considering  in (18) instead.

Fig.6 illustrates the user distribution. 100 users are

distributed with 3-D Poisson point process (PPP) in the
range of a 1000 m × 1000 m square area. Their height
was  generated  randomly  between 0  m and 10  m given
the  mountains’ terrain  relief.  Considering  the  hills  and
valleys  in  the  forest  environment,  it  is  more  practical
for the three-dimensional positions of users.
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Fig. 6. User distribution with 3-D PPP.

 

Fig.7 compares  the  performance  of  our  proposed
HC-DRL with C-DRL and PS-DRL in terms of system
average ergodic rate.  The result demonstrates that our
proposed  HC-DRL  fairly  balances  system  performance
and convergence  time.  Compared  with  C-DRL conver-
ging  after  about  600  episodes,  our  proposed  HC-DRL
greatly accelerates the convergence speed with only 200
episodes roughly. However, the performance of the pro-
posed  HC-DRL  is  just  slightly  inferior  to  the  C-DRL.
Additionally, our proposed HC-DRL gains much higher
throughput than the PS-DRL scheme, which converges
after about  100  episodes.  This  is  because  that  the  ac-
tions of UAVs in the same cluster are jointly optimized
in  HC-DRL.  It  indicates  that  our  proposed  scheme  is
both  time-saving  and  effective  by  jointly  considering
the system performance and the convergence.
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Fig. 7. System average ergodic rate comparison of different

schemes.
 

 3. Influence of parameter setting
Fig.8 shows the coverage ratio of users for UAV de-
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Fig. 5. Performance  comparison  between  ergodic  rate  and

proposed UB-ergodic rate in CoMP mode.
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ployment schemes with different transmission power. It
is  obvious  that  the  coverage  capacity  is  limited  with
only a single BS. It is feasible to increase the transmis-
sion power of UAVs and the number of UAVs to serve
more  users.  Hence,  based  on  the  practical  situation  of
forest rescue,  the  number  of  UAVs  can  be  chosen  ac-
cordingly to enhance the communication capacity.
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Fig.9(a)  shows  the  system  average  ergodic  rate
with  different  UAV  transmission  power  and  different

outage probability threshold. When the SNR threshold
parameter is set to 10 dB, it shows that higher outage
probability  threshold  can  obtain  better  performance.
The  higher  outage  probability  threshold  leads  to  the
lower probability of user transmission outage, therefore
more users  can  transmit  and  improve  system perform-
ance.  The  performance  of  CoMP  is  better  than  the
method  without  CoMP  (abbreviated  as  Non-CoMP).
This  is  because  CoMP transmission  combines  multiple
UAVs  jointly,  which  increases  the  user  data  rate  and
reduces the outage probability. Fig.9 shows the scheme
for UAV position initialized with the center of the user
cluster  converges  faster  than  random  initialization.
Compared  with  random  initialization  converging  after
about  500  episodes,  cluster  center  initialization  greatly
accelerates the  convergence  speed  with  only  200  epis-
odes  roughly.  When  the  number  of  iterations  is  small,
the  learning  process  may  fall  into  the  local  optimum
and cannot come out, so a better initial position is more
likely to get an accurate result.

Fig.10 shows the effect of the grid size on the sys-
tem throughput and the convergence time. The config-
uration of the computer used in the simulation is as fol-
lows: the CPU uses Intel (R) Core (TM) i5-9300H, and
the  graphics  card  uses  NVIDIA  GeForce  GTX  1066ti. 
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Fig. 9. Performance comparison of ergodic rate and conver-

gence speed  for  UAVs  with  different  initial  posi-
tions and different transmission power.
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Fig. 10. Performance comparison with different grid length.
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The  STEP in Fig.10(b)  indicates  the  number  of  times
each episode of the program runs. As shown, the agent
will find a better deployment scheme and need a longer
convergence time with fine-grained grid division. On the
contrary,  the  agent  converges  faster,  but  the  effect  is
worse  with  coarse-grained  grid  division.  This  is  due  to
that  the  grid  division  is  directly  related  to  the  state
space. The UAVs have more deployable positions and it
is more likely to find the best solution. However, the al-
gorithm complexity will  increase as enlarging the state
space. Therefore,  there exists  a trade-off  between com-
plexity and system performance.  In practical  scenarios,
the grid division scheme requires careful design.

 V. Conclusions
In this paper, we investigated UAV deployment as

serving stations for emergency communication coverage
of  mountainous  forest  areas.  Based  on  forest  coverage
fading, we  proposed  a  CoMP-based  clustering  and  de-
ployment framework by considering both the broken BS
and the available  BS cases.  Then,  we proposed a hier-
archical  clustering  algorithm  to  improve  the  network
performance.  To  reduce  complexity  controlled  by  the
size  of  action  and  state  spaces,  we  developed  an  HC-
DRL scheme and derived a bound relaxation on ergod-
ic  rate.  Our  simulation  results  demonstrated  that  the
proposed scheme  can  effectively  achieve  a  better  per-
formance while reducing computation complexity.
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