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   Abstract — Essential proteins  with  biological  func-
tions are necessary for the survival of organisms. Compu-
tational recognition methods of  essential  proteins  can re-
duce the workload and provide candidate proteins for bio-
logists.  However,  existing  methods  fail  to  efficiently
identify essential  proteins,  and generally do not fully use
amino acid sequence information to improve the perform-
ance of essential protein recognition. In this work, we pro-
pose an end-to-end deep contextual  representation learn-
ing framework called DeepIEP to automatically learn bio-
logical  discriminative  features  without  prior  knowledge
based on protein network heterogeneous information. Spe-
cifically,  the model  attaches amino acid sequences  as  the
attributes of each protein node in the protein interaction
network, and  then  automatically  learns  topological  fea-
tures from protein interaction networks by graph embed-
ding algorithms. Next, multi-scale convolutions and gated
recurrent  unit  networks  are  used  to  extract  contextual
features from gene  expression  profiles.  The  extensive  ex-
periments  confirm  that  our  DeepIEP  is  an  effective  and
efficient feature learning framework for identifying essen-
tial proteins and contextual features of protein sequences
can improve the recognition performance of essential pro-
teins.

   Key words — Essential  proteins, Protein interac-

tion networks, Gene expression profile, Deep neural net-
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 I. Introduction
Proteins are generally involved in the life activities

of  organisms  and  essential  proteins  are  often  found  in
protein  complexes  [1],  [2]. Essential  proteins  are  indis-

pensable  proteins  for  the  survival  and evolution of  the
organism cell [3], and their absence or dysfunction could
cause some diseases and even lead to the inability of the
body  or  organism  to  survive  [4],  [5].  From  a  practical
perspective,  essential  proteins  are  closely  related  to
pathogenic  genes  [6],  thus  the  prediction  of  essential
proteins  is  of  great  significance  for  the  discovery  of
pathogenic genes.  Therefore,  accurately  identifying  es-
sential proteins not only indicates the minimal require-
ments  for  the  cell  growth  regulation  mechanisms  but
also accelerates  the  discovery  of  disease  genes  and  po-
tential drug targets.

Biological  experimental  methods  [3]  could  identify
essential  proteins accurately,  such as RNA interference
[7] and conditional knockouts [8], but however, they are
time-consuming and  expensive.  Thus,  developing  com-
putational  algorithms  is  very  important  for  identifying
essential proteins.  To date,  many computational  meth-
ods and centrality methods have been proposed success-
ively  to  infer  potential  essential  proteins.  The research
work of  Jeong et al.  [9] indicates that there is  a posit-
ive  correlation  between  the  topological  properties  of
proteins  in  protein-protein  interaction  (PPI)  networks
and protein essentiality. Subsequently, a lot of central-
ity methods were designed to identify essential proteins
by the interconnectivity of proteins in PPI networks by
topological  features  of  PPI  networks,  such  as  degree
centrality  (DC)  [10],  betweenness  centrality  (BC)  [11],
closeness centrality (CC) [12], subgraph centrality (SC)
[13],  eigenvector  centrality  (EC)  [14],  and  information
centrality (IC) [15].  Gene expression profiles  are  useful 
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to identify essential proteins [16], and proteins are some
products of gene expressions. Moreover, the localization
of proteins  in  cells  is  usually  related  to  protein  func-
tions and most essential  biological  processes take place
in  certain  subcellular  localization  [16]–[18],  and  the
methods  [19]–[21]  were  proposed  to  identify  essential
proteins by combining network topological features with
different biological information.

With the rapid development of high-throughput se-
quencing techniques, many protein sequences and prop-
erties have been obtained, which make it possible to de-
velop efficient machine learning algorithms for identify-
ing essential proteins. Some machine learning-based re-
cognition methods have been used for identifying essen-
tial proteins, such as local random walks [22], SVM [23],
Naïve Bayes [19], and ensemble learning [24]. Although
centrality  and  machine  learning-based  methods  have
obtained remarkable recognition results of essential pro-
teins, they  still  have  room for  improvement.  For  cent-
rality  methods  or  machine  learning-based  algorithms,
the  biggest  challenge  is  the  feature  representation  of
biological  information  [6],  [16], such  as  network  topo-
logy of the PPI network, gene expression, and subcellu-
lar localization. In centrality methods [10], [13], [25], re-
searchers often designed the score function to represent
the  importance  of  each  piece  of  biological  information
and then combined their  functions into an equation to
determine  the  essentiality  of  a  protein.  Although  the
methods have achieved good results, however, the cent-
rality methods need a lot of  prior knowledge to design
the  good  score  function,  and  does  not  characterize  the
comprehensive biological information.

In recent years, deep neural networks-based recog-
nition models  have  achieved  state-of-the-art  perform-
ance for identifying essential proteins [6], [16], [26], [27],
such as convolution neural networks (CNN), long short-
term memory (LSTM), and multilayer perceptrons. The
deep neural models are capable of fitting various signal
data by the substantially increased depth and enlarged
width  of  models,  but  they  did  not  extract  multi-scale
contextual  features.  Besides,  the  effect  of  the  amino
acid sequence has been well studied in many protein-re-
lated prediction tasks, such as protein interactions [28],
protein secondary structures [29], and essential proteins
[16],  [26].  Moreover,  the  amino  acid  sequence  feature
also  affects  the  function  and  structure  of  the  protein,
and most  proteins  with  the  same  function  have  relat-
ively similar amino acid sequence features. Existing rep-
resentation methods do not fully capture the high non-
linearity and preserve various proximities in both topo-
logical structure  and  node  attributes  of  the  PPI  net-
works. Moreover, sophisticated hand-crafted features re-
quire massive prior knowledge, and they could not fully

reflect intrinsic  interaction  patterns  of  protein  se-
quences.

Oligomers  of  the  length k (k-mer)  are  convenient
and widely  used  as  a  feature  encoding  tool  for  model-
ing properties and functions of biological sequences [30].
The  one-hot  encoding  method is  a  widely  used  feature
representation  tool  [31],  but  feature  vectors  of k-mers
are high-dimensional and sparse based on one-hot meth-
ods.  Co-occurrence  statistics  of k-mers contain  import-
ant information from protein sequences, and k-mer em-
bedding can be used to represent contextual features of
protein sequences.  Besides,  Node2Vec  network  embed-
ding  [32] has  attracted  much attention  in  scalable  fea-
ture  learning  of  node  classification  and  link  prediction
for networks.  However,  protein  nodes  are  often  associ-
ated  with  rich  attributes  in  protein  biological  systems,
and deep attributed network embedding (DANE) [33] is
an efficient feature learning algorithm that can capture
the  high  nonlinearity  and  preserve  various  proximities
in both topological structure and node attributes of net-
works. Thus, we adopt the DANE to automatically ex-
tract  structure  and  attribute  features  based  on  amino
acid  sequence  features  and  topological  features  of  PPI
networks and then map a protein into a continuous em-
bedding simultaneously.

To  tackle  the  above  problems,  we  propose  a  deep
neural  model  called  DeepIEP  to  automatically  learn
biological  features  without  prior  knowledge  based  on
graph embedding. Particularly, we used deep DANE [33]
to map each protein of PPI networks into a low-dimen-
sional embedding representation by fully leveraging the
topological structure of PPI and node attribute inform-
ation.  Then,  multi-scale  convolutions  and  bidirectional
gated  recurrent  unit  networks  (GRU)  are  applied  to
capture biological sequence dependency relationships in
gene expression profile data. Briefly, the main contribu-
tions of this work are as follows:

1) A  deep  supervised  learning  framework  is  de-
signed to  automatically  extract  discriminative  repres-
entation features based on three different types of biolo-
gical information  including  PPI  network,  gene  expres-
sion data,  and  protein  sequence  information  from  pro-
tein heterogeneous networks.

2)  A  deep  attributed  graph  embedding  is  used  to
extract a low-dimensional graph embedding representa-
tion  of  each  protein  and  can  generate  an  informative
representation of protein-protein interaction network to-
pologies, where it combines topology and amino acid se-
quence information automatically.

3)  Multi-scale  convolutions  are  used  to  capture
multiple spatial patterns from gene expression data and
gated recurrent units are used to extract long-term de-
pendency  information.  Next,  the  spatial  patterns  and
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long-term  dependency  information  are  combined  with
graph embedding from the PPI network and protein se-
quences.

The remainder of this paper is organized as follows:
Section II introduces related works. Section III explains
the details of DeepIEP. Section IV presents the experi-
ments and results. Section V gives the conclusion.

 II. Related Works
The  section  summarizes  related  works  based  on

computational algorithms  for  essential  protein  recogni-
tion.

 1. Computational  algorithm-based  essential
protein recognition

Existing  computational  methods  mainly  include
centrality-based methods,  traditional machine learning-
based  methods,  and  deep  learning-based  methods  for
identifying essential proteins. Centrality-based methods
focus  on  topological  features  which  are  obtained  from
biological networks [8], [9], [11], [12], and the computa-
tion  methods  are  sensitive  to  protein  networks  and
missing data [19]. To improve the performance of essen-
tial  protein recognition,  centrality-based methods often
integrate  biological  features  into  topological  features.
The biological features are related to sequence features
obtained  from  genome  or  transcriptomics  data,  and
functional features  such  as  subcellular  location  or  mo-
lecular functions.  For example,  Tang et al.  [34]  and Li
et al.  [35] generated features from gene expression pro-
files and fused them with network topology features to
obtain the representation of essential proteins. Then, Li
et al.  [18] proposed a novel fusion method by integrat-
ing subcellular location, orthologous, and PPI, which is
better than the above centrality methods. Zhu et al. [21]
proposed  an  iterative  model  of  multi-feature  fusion  to
predict essential proteins by fusing biological and topo-
logical information of proteins, and Wang et al. [22] de-
signed a novel  method called RWAMVL to predict es-
sential proteins based on the random walk and the ad-
aptive multi-view label learning.

Traditional machine  learning-based  methods  usu-
ally integrate multiple information for identifying essen-
tial  proteins.  For  example,  Plaimas et  al.  [36] integ-
rated  network  topological  features  and gene  expression
information  and  used  support  vector  machines  (SVM)
to  identify  essential  proteins.  Huang et  al.  [37] integ-
rated network topology features and sequence informa-
tion, and used SVM as classifiers. Zhong et al. [20] used
gene  expression  information  as  biological  attributes  of
proteins  via  different  topological  centrality  methods,
and then used random forest (RF), decision trees (DT),
and SVM as the classifier. The methods integrate topo-
logical features and biological information to reduce the

influence  of  noise  data  and  topological  networks  and
then improve  the  identification  performance  of  essen-
tial  proteins.  However,  they  require  prior  knowledge
and  complex  feature  engineering.  Besides,  deep  neural
networks have a strong feature learning ability to mod-
el nonlinear relationships and can integrate various het-
erogeneous data, and they have been widely used in the
field of biological information processing [38]. Recently,
some deep learning-based methods have been proposed
for the essential protein recognition task. For example,
Zeng et  al.  [16]  proposed  a  remarkable  deep  recurrent
model  called  DeepEP-LSTM  for  identifying  essential
proteins  based  on  CNN,  long  short-term  memory
(LSTM), and node2vec [32], and the successful perform-
ance  further  verified  advantages  of  deep  models  for
identifying essential proteins. What is more, deep neur-
al networks require little prior knowledge and no labori-
ous  feature  engineering,  but  the  deep  models  do  not
fully exploit the information of the PPI networks.

 2. Deep  neural  networks-based  essential
protein recognition

Due  to  the  powerful  representation  ability,  deep
CNN-based models have been widely used in computer
vision and computational biology [16], [27], [30], [39]–[41],
and have obtained some great breakthroughs. However,
the further improvement of their performance typically
faces  the  following  challenges:  CNN-based  models  are
hard to train and their intrinsic properties are sensitive
to the input; due to the limited representation power of
a  single  convolution,  it  largely  neglects  the  multi-scale
and  long-term  dependency  patterns.  The  gradients  of
the  loss  function  gradually  decrease  or  even  disappear
after flowing through many layers,  where the trainable
parameters (i.e., the layers close to the input layer) can-
not be optimized effectively.

Besides, with the powerful abilities to capture long-
range  dependencies,  recurrent  neural  networks  (RNN)
have been widely applied in premature ventricular con-
traction (PVC) detection [42] and heart sound classific-
ation [43]. For example, Alkhodari et al. [43] developed
a  deep  LSTM  model  to  extract  spatial  and  temporal
features  from  the  sound  recordings  and  conduct  the
classification of heart sounds. Then, Wang et al. [42] de-
signed an improved deep gated recurrent unit model by
introducing  a  scale  parameter  into  bidirectional  GRU
for PVC signals  recognition,  and the  model  can allevi-
ate the problem of information redundancy. LSTM and
GRU were two popular types of RNN, and they all used
the gate mechanism to control  how much the previous
information  is  combined  with  the  current  input  from
the  raw  data.  However,  RNN-based  deep  models  need
more training time and computational power than con-
volutional operations during feature learning, and tradi-

870 Chinese Journal of Electronics 2023



tional RNN could not be computed in parallel for vari-
ous  tasks.  Compared  to  LSTM,  GRU  could  achieve
comparable performance  with  less  parameters.  There-
fore, we first exploit multi-scale convolutions to extract
multiple spatial features of gene expression data in par-
allel.  Then,  bidirectional  GRU is  used  to  extract  long-
term dependencies  from gene expression data based on
spatial features of multi-scale convolutions.

 III. Method
This  section  first  introduces  the  architecture  of

DeepIEP, DANE,  CGRU,  and  feature  fusion  compon-
ents,  respectively.  Then,  parameter  learning  is  further
introduced. Table  1 shows the  main  notations  and de-
scriptions.

 1. Architecture of DeepIEP
As  shown  in Fig.1,  the  sequence  of  the  protein  is

attached to the corresponding node of PPI networks as
attribute information, and then the amino acids are fed

into DeepIEP. The input of DeepIEP includes the PPI
network, protein  sequences,  and  gene  expression  pro-
files.  The  feature  extraction  part  is  composed  of  the
DANE  component  and  convolutional  gated  recurrent
unit (CGRU) component. The deep attributed network
embedding  (DANE)  component  automatically  learns

   
Table 1. The main symbols and descriptions

Symbols Descriptions

H The discriminative features extracted by DeepIEP
hi The hidden representation encoded by the encoder

HST The spatial temporal interaction features
ζ The loss function

HTF The topological information features
Pij The joint distribution between the nodes
Z The attribute matrix of the protein

σ (·) A nonlinear function
E The adjacency matrix of edges in the PPI network
Θ All learnable parameters of DANE
xi The i-th input protein data

 

 

Protein

σ Output

Decoder Decoder

Encoder Encoder

Node attributes Network topology

DANE CGRU
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Protein sequence
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Fig. 1. An architecture of DeepIEP. The input of DeepIEP includes the PPI network, protein sequences, and gene expression pro-

files.
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contextual features based on the PPI network and maps
each node  into  a  low-dimensional  vector.  CGRU  ex-
tracts  discriminative  local  and  long-term  dependency
features from gene expression profiles. Particularly, the
input of  DeepIEP  includes  PPI  networks,  protein  se-
quences,  and  gene  expression  profiles.  The  contextual
representation learning part  is  composed of  the DANE
component and  CGRU  component.  The  DANE  com-
ponent is  based  on  PPI  networks  attached  protein  se-
quence  as  the  attribute  of  each  node  and  maps  each
node  with  attributes  to  a  low  dimensional  vector.
Briefly, a  deep  attributed  network  embedding  frame-
work is  used to  capture  the complex structure  and at-
tribute information of protein-protein interaction (PPI)
networks with  sequence  features,  and  the  CGRU com-
ponent is composed of multi-scale convolutions and bid-
irectional  GRU,  which  are  used  to  extract  informative
features from gene expression profile. Next, the predict-
or combines spatial-temporal features to identify essen-
tial proteins.

H

The  discriminative  features  extracted  by  DeepIEP
are  formulated  as  from the  PPI  networks,  gene  ex-
pression data, and protein sequence information of pro-
tein heterogeneous networks:
   H = fFI (HST ;HTF )

HST = fGRU (fMC (ICE))
HTF = fDANE (IPPI)

(1)

HST

HTF

ICE

IPPI

fFI

fMC

fGRU

fDANE

where  represents spatial-temporal  interaction  fea-
tures.  represents  topological  information  features
of PPI networks and amino acid information.  rep-
resents  input  features  of  the  CGRU  component. 
represents input features of the DANE component. 
represents the non-linear transformation function of the
feature  fusion  in  the  essential  protein  predictor. 
represents  the  non-linear  transformation  function  of
multi-scale  convolutions.  represents  the  non-lin-
ear  transformation  function  of  bidirectional  GRU.

 represents the  non-linear  transformation  func-
tion of the deep attributed graph embedding algorithm.

 2. Deep  attributed  network  embedding  of
proteins

G = (Z,E) Z = [Zij ] ∈n×m

Zi

i

E = [Eij ] ∈n×2

The PPI network is a highly complex network, and
contains  a  rich  structure  and  attributes  information
about proteins. The researchers [6],  [16] have indicated
that the PPI network is useful to identify essential pro-
teins. Specifically, the PPI network with n nodes can be
represented as , where  is the
attribute matrix of the protein in the PPI network, and
m  is  the  length  of  node  vectors.  represents the  at-
tribute  of  the -th  protein  from  the  attribute  matrix.

 is  the adjacency matrix of  edges in the
PPI  network.  The  amino  acid  sequence  of  a  protein  is

k

k

s k

Zi = [s1, s2, . . . , sq] q

first split into a -mer sequence via a sliding window [44],
where we divided each amino acid sequence into k-mer
subsequences  by  using  the  window  of  length  with
stride . An -mer embedding of the protein sequence is
formulated  as ,  where  represents
the length of the k-mer sequence.

i j

Eij Eij

i j

i

j Mi. Mj.

E = Ë + Ë2 + · · ·+ Ët

Ë

E
i j

Zi· Zj·

f : {Z,E} → H

The  first-order  proximity  of  two  nodes  and  is
determined by . A larger  denotes larger proxim-
ity  between  the -th  node  and  the -th one.  Con-
sequently,  the  high-order  proximity  of  protein  nodes 
and  is  determined  by  the  similarity  of  and ,
and  is  the high-order proximity
matrix  of  PPI networks,  and  is the  1-step probabil-
ity transition matrix that is obtained from the row-wise
normalization of the adjacency matrix . The semantic
proximity  of  node  and  node  is  determined  by  the
similarity of  and . To fully extract the topologic-
al structure and node attributes of a protein, we adop-
ted  DANE [33]  to  learn  the  attributes  and  topological
features of  PPI  networks,  and  DANE  obtain  a  map-
ping of nodes .

E Z

M

Z

DANE is  about  to  learn  the  low-dimensional  rep-
resentation of each node based on the adjacency matrix

 and the attribute matrix , and the learned embed-
ding can preserve the proximity existing from the topo-
logical  structure  and  node  attributes.  DANE  incudes
two branches which are composed of a multi-layer non-
linear  function.  The  first  branch  captures  the  highly
non-linear network structure of PPI networks and maps
the input  to a low-dimensional embedding represent-
ation,  and  the  second  branch  maps  the  input  to  a
low-dimensional embedding  representation.  The  archi-
tecture of DANE is shown in Fig.2 [33]. To extract non-
linear features of the PPI network, DANE [33] uses au-
toencoders  to  learn  network  information  of  PPI  and
properties of  protein  sequences  respectively.  Each  au-
toencoder is composed of an input layer, a hidden layer,
and an output layer. Taking a protein sequence attrib-
ute as the input, the feature learning process of the au-
toencoder is formulated as the formulas:
  {

hi = σ
(
W 1xi + b1

)
x̂i = σ

(
W 2hi + b2

) (2)

xi ∈ Rd i

hi ∈ Rd′

x̂i

σ (·)

Θ =
{
W 1,W 2,WK , . . . , b1,

b2, . . . , bK
}

minΘ
∑n

i=1 ∥x̂i − xi∥22

where  represents  the -th  input  protein  data.
 represents  the  hidden  representation  encoded

by the encoder.  is the reconstructed data point from
the decoder.  represents  a  nonlinear  function,  such
as  sigmoid,  ReLu,  and  Tanh.  All  learnable  parameters
of  DANE are formulated as 

, and the parameters are updated by minim-
izing the reconstruction error as .

872 Chinese Journal of Electronics 2023



Consistent and

complementary loss

First order proximity loss

First order proximity loss

Attributes

Topological
structure

High order

proximity loss

Semantic

proximity loss

 
Fig. 2. The architecture of DANE. The input is the topolo-

gical structure and the node attribute.
 

Z

N

For  DANE,  the  input  of  the  first  branch  is  the
high-order  proximity  matrix  to  capture  the  non-linear-
ity in the topological information of PPI networks. The
input of the second branch is the attribute matrix  to
capture  the  non-linearity  in  the  attribute.  The  two
branches of DANE use  layers in the encoder and the
computation process of hidden representation is formu-
lated as
  

h1
i = σ

(
W 1xi + b1

)
hN
i = σ

(
WNhN−1

i + bN
)

x̂i = σ
(
WN+1hN

i + bN+1
) (3)

N
hN
i

i

HM

HZ

HTF

HM

HZ HTF =fDANE (Z)=
[
HM ;HZ

]

ζf = −
∑

Eij
logPM

ij −∑
Eij

logPZ
ij

ζh =
∑n

i=1

∥∥∥M̂i−
Mi∥22

Z

Ẑ ζs =
∑n

i=1

∥∥∥Ẑi−Zi∥22

ζc =∑
i(logPij−

∑
Eij

log (1− Pij))

ζloss

Moreover, there exist  layers in the decoder, and
 represents the  desired  low-dimensional  feature  em-

bedding  of  the  node.  Consequently,  we  denoted  the
representation  from  the  topological  structure  as 
and denoted the representation from attributes as .
Finally,  the  topological  information  features  of
PPI networks  and  amino  acid  information  are  gener-
ated by fusing topological structure  and attributes

 for each protein, . To
preserve  the  first-order  proximity  in  the  topological
structure  and  attributes  simultaneously,  we  minimized
the  negative  log  likelihood  as 

.  To preserve  the  high-order  proximity,  we

minimized  the  reconstruction  loss  as 
. To  preserve  the  semantic  proximity,  we  minim-

ized  the  reconstruction  loss  between  the  input  and
the output  of the decoder as . To
combine  the  topological  structure  and  attributes,  we
maximized  the  following  likelihood  estimation 

 . Consequently,  to  pre-
serve the proximity and extract the consistent and com-
plementary representation information for the PPI net-
works,  the  objective  function  jointly  optimized  as

follows:
 

ζloss = ζs + ζh + ζf + ζc, (4)

Pij i

j Pij =
1

1+e

(
−HM

i.

(
(HZ

j.)
T

))
where  is  the  joint  distribution  between  node  and
node  and it is formulated as  .

 3. Convolutional  gated  recurrent units of
gene expression profile

M∗

Protein  is  the  product  of  gene  expression,  so  gene
expression  profiles  can  provide  inevitable  help  for  the
identification  of  essential  proteins.  To  extract  spatial-
temporal interaction features from gene expression pro-
files, we developed the CGRU component by multi-scale
CNN and bidirectional GRU. Gene expression informa-
tion  of  a  protein  has  3  consecutive  periods,  and  each
period has 12-time points. It can be regarded as a mat-
rix , and each row represents a period of gene expres-
sion information. The matrix is formalized as
 

M∗ =

 α1 α2 · · · α12

β1 β2 · · · β12

γ1 γ2 · · · γ12

 (5)

αi

i βi

γi

where  is the data of gene expression in the first con-
secutive period and  time point.  is the data of gene
expression in  the  second consecutive  period and i  time
points.  is  the  data  of  gene  expression  in  the  third
consecutive period and i time points.

M∗
fConvI

M∗i
i

In the CGRU component, the multi-scale convolu-
tion operation includes three types of convolutional lay-
ers  with  different  kernel  sizes  (Conv1,  Conv2,  and
Conv3) and a pooling layer (Pooling). The gene expres-
sion information matrix  is fed into the first layer of
convolution,  which is  formulated as  (I=1,  2,  3).
Each row of  the matrix  represents the vector cor-
responding to the -th period in the input data. Convo-
lutional  operations  are  used  to  extract  different  scale
features of a gene expression profile.

The computation process of convolution operations
is defined as
 

fConvI
(M∗i:i+j−1) = δ (WI ·M∗i:i+j−1 + bI) (6)

 

Rconv = fconv3 (fconv2 (fconv1)) (7)

M∗i,M∗i+1, . . . ,M∗i:i+j−1

M∗i:i+j−1 WI

bI δ(·)

Rs

where  represents  the  period
 of a gene expression profile,  represents the

convolutional kernel,  is the bias term,  is the Relu
activation function [45]. After convolutional operations,
the feature output of convolutional filters is sent to the
pooling  layer,  and  the  pooling  layer  is  used  to  extract
the  most  important  features  of  the  matrix  without
changing  the  shape,  and  this  obtains  the  multi-scale
complex hidden interaction  and the process is formu-
lated as the formula:
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Rs = fpool (Rconv) (8)

fpoolwhere  is the maximum pooling operation.

Rs = [x1, x2,

. . . , xT ] , xi ∈ Rk

ht t

Compared with traditional LSTM [30], bidirection-
al GRU [29] can not only avoid vanishing gradients and
obtain better recognition performance with fewer para-
meters. Considering the success  and computational  ad-
vantages  of  GRU  neural  networks  in  sequential  data,
we employ GRU to capture the long-term dependencies
in gene expression profiles from two different directions.
Bidirectional  GRU  cells  combine  two  GRU  cells,  one
moves forward  from the  start  of  the  sequence  and  an-
other  moves  forward  from  the  end  of  the  sequence.
Thus, the output of each step depends on both the past
and  the  future  data  in  bidirectional  GRU,  which  can
extract long  contexts  in  complete  sequences.  Particu-
larly,  we  treat  the  multi-scale  spatial  features  of  gene
expression  profiles  as  the  input  of  bidirectional  GRU,
and  the  spatial  features  are  denoted  as 

, and then are  passed into  bidirection-
al GRU for extracting long dependency features. In bid-
irectional  GRU, the hidden state  at  step  is calcu-
lated as the formula:
 

ht = fGRU

(
xt,
−−→
ht−1,

←−−
ht−1

)
(9)

−−→
ht−1

←−−
ht−1

t− 1

ht

where  and  are the front-to-back context and
the  back-to-forward  context  at  time  respectively.
Then,  is formulated as
 

ht =
[−→
ht ,
←−
ht

]
(10)

  −→
ht = GRU

(
xi,
−−→
ht−1

)
(11)

  ←−
ht = GRU

(
xi,
←−−
ht−1

)
(12)

HST = [h1, h2, . . . , hT ]

Finally,  DeepIEP  obtains  a  long-term  dependency
features  from the  gene  expres-
sion sequences.

 4. Feature fusion

WFI bFI

HTF

HST

H

In  the  feature  fusion  component,  the  learnable
weights and biases are  and . For each protein,
we  combine  the  feature  obtained  through  the
DANE  component  with  the  feature  obtained
through the CGRU component, and obtained the glob-
al  dependency  features  that  can  determine  essential
proteins.
 

H = fFI [HST ,HTF ] + bFI (13)

Wy by

Finally, DeepIEP uses a fully connected layer to in-
fer  the  category  possibility  of  each  protein,  and  the
learnable weight and bias are  and . The process is
formulated as the formula:

 

y = fsigmoid (H) =
1

1 + eWy·H+by
(14)

 5. Parameter learning

ξloss =

−
∑n

i=1 y
′
i log (yi) + (1− y′i) log (1− y′i)

θ

logP θ

In this  work,  the  essential  protein  recognition is  a
binary  classification  task.  The  binary  cross  entropy
function  is  the  loss  function  of  DeepIEP  since  it  is  a
commonly used function for binary classification. There-
fore,  the  loss  function  can  be  formulated  as 

.  The  training
parameters of DeepIEP are defined as , and the target
of the training process is used to maximize the log-like-
lihood  probability  based  on  all  parameters  of
DeepIEP and  reduce  the  loss  values  between  true  la-
bels and predicted labels. The log-likelihood probability
is formulated as
 

θ →
∑
N

logP (y′i|Ni, θ) (15)

N
y′i Ni

where  is the number of the training signal data and
 is a correct label of a sequence . Adam [46] is selec-

ted  as  the  optimizer  to  minimize  the  loss  function,
which is an algorithm for first-order gradient-based op-
timization of  stochastic  objective  functions  via  adapt-
ive estimates of lower-order moments.

Algorithm 1  describes  the  feature  learning  process
of DeepIEP.

Algorithm 1　The feature learning of DeepIEP

IPPI Zi

ICE

Input:  The  PPI  network ,  protein  sequences ,  and
gene expression profiles .

HOutput:  Discriminative  contextual  features  for identify-
ing essential proteins.

Begin
HST1: Calculate  spatial-temporal  interaction  features  of

Gene  expression  information  via  multi-scale  convolutions
and bidirectional GRU;

HTF

2: Calculate topological information features of PPI networks
and amino acid information  via deep attributed graph
embedding algorithm;

HST HTF

H

3: Combine  with  to obtain discriminative contextu-
al features  via fully connected layers;

End

 IV. Experiments and Results
This section  introduces  datasets,  parameter  set-

tings, evaluation  metrics,  results  and  comparison  ana-
lysis, the ablation study, and discussion respectively.

 1. Datasets
To verify the effectiveness of DeepIEP, we conduc-

ted  extensive  experiments  and  compared  them  with
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baseline models in terms of Accuracy, Precision, Recall,
F-measure, and AUC. For the essential  protein predic-
tion  experiments,  we  adopted  PPI  networks  of  the
S.  cerevisiae  dataset  [16],  essential  protein  data,  and
gene expression data.  Besides,  amino acid sequences  of
proteins  are  collected from the NCBI website  (https://
www.ncbi.nlm.nih.gov/).

1) PPI network dataset & essential protein dataset
Two PPI network datasets including BioGRID-PPI

and  DIP-PPI  are  downloaded  from  the  BioGRID  [47]
and DIP [48]  datasets,  and then the duplicate protein-
protein  interactions  are  eliminated  from  the  datasets.
The vast majority of data on DIP is from yeast, Helico-
bacter pylori, and human. The data of DIP is from Sac-
charomyces cerevisiae,  Caenorhabditis  elegans,  Droso-
phila melanogaster,  and  Homo  sapiens.  Next,  the  pro-
teins are removed, where their amino acid sequence can-
not be  found  on  the  NCBI  website.  Finally,  the  Bio-
GRID-PPI  dataset  includes 5506 nodes, 52226 pairs  of
protein-protein interactions, and 1192 essential proteins.
The DIP-PPI dataset  includes 4722 nodes, 15093 pairs
of  protein-protein  interactions,  and 1125 essential pro-
teins.

2) Gene expression dataset
The  gene  expression  data  is  extracted  from  GEO

(Gene  Expression  Omnibus)  [49] with  accession  num-
ber  GSE3431.  Briefly,  the  dataset  contains 6777 pro-
teins  and  36-time  points  totally  and  has  3  consecutive
metabolic cycles and each cycle with 12-time points in a
cycle.

3) Sequence dataset
We  downloaded  the  amino  acid  sequences  of  each

protein from NCBI and removed duplicated proteins in
the PPI network dataset [16]. Moreover, proteins are re-
moved  when  the  amino  acid  sequence  is  not  found  in
the PPI network, and we eliminated proteins whose se-
quence length is greater than 3000.

 2. Evaluation metrics and model parameters
All  the deep models  of  this  work are implemented

in  Tensorflow,  and  the  10-fold  cross-validation  is  used
to  evaluate  the  performance  and  the  robustness  of  the
models. Our models can be downloaded from the website
(https://github.com/yxinshidai/pro.git). For  the  hyper-
parameters of models,  the settings are taken from [16],
[26],  [27],  [40],  and are slightly fine-tuned to select  the
optimal  parameters  via  the  grid  searching  strategy
manually. The main parameters of DeepIEP are shown
in Table 2.

Acc

Pre Rec Fmesasure

To  compare  their  performance  between  DeepIEP
and  baselines,  this  work  uses  accuracy  ( ),  precision
( ), recall ( ), F-measure ( ) and area un-
der the receiver operating characteristic curve (AUC) as
evaluation metrics.  They  are  formulated  as  the  formu-
las:

  

Acc =
TP + TN

TP + TN + FP + FN

Pre =
TP

TP + FP

Rec =
TP

TP + FN

Fmeasure =

(
1 + β2

)
· Pre ·Rec

β2 · Pre +Rec

(16)

TP TN

FN FP

β

β

where  and  represent the number of samples of
essential  and  non-essential  proteins  that  are  correctly
classified,  while  and  represent  the  number  of
samples of essential and non-essential proteins that are
incorrectly  classified,  and  is  the  adjustment  weight
between  the  precision  rate  and  the  recall  rate.  The
parameter of  is 1 in the experiment.

 3. Experimental  results  and  comparison
analysis

This section  introduces  a  comparison  of  experi-
mental results with centrality-based methods, tradition-
al  machine learning-based methods,  and deep learning-
based methods, respectively.

1) Comparison with centrality-based methods
To evaluate  the  representation ability  of  DeepIEP

for topological characteristics of PPI networks, we first
selected  centrality-based  methods  as  baseline  methods
as Zeng et  al.  [16]  did,  which include degree centrality
(DC)  [10],  betweenness  centrality  (BC)  [11],  closeness
centrality  (CC)  [12],  eigenvector  centrality  (EC)  [14],
network  centrality  (NC)  [50] and  local  average  con-
nectivity  (LAC)  [51].  These  centrality-based  methods
largely  depend  on  the  reliability  of  PPI  networks.  We
calculated scores  of  proteins  and  ranked  them  in  des-
cending order  via  the  scores,  and then we selected the
top 1192 of  BioGRID-PPI  and 1125 proteins  of  DIP-
PPI ranked by these methods as their predicted essen-
tial proteins. The rest of the proteins are considered to
be  non-essential  proteins.  Finally,  in  comparison  with
the  true  labels  of  essential  proteins  and  non-essential
proteins,  a  confusion  matrix  was  obtained  to  calculate
metrics. Fig.3 and Fig.4 report experimental results on
BioGRID-PPI and  DIP-PPI  datasets.  These  experi-
mental  results  show  that  our  model  performed  better

   
Table 2. Parameter settings of DeepIEP

Parameters Settings

Number of iterations 50
Batch size of datasets for DeepIEP 64

Optimizer for the loss function Adam
Learning rate 0.001

Feature dimension of DANE and GCRU 64,6
Number of different convolutional filters 8,8,8

Kernel size of different convolutions 1,3,5
Number of hidden units for Bidirectional GRU 6
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than all  centrality-based methods for identifying essen-
tial proteins.
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Fig. 3. Performance  comparison  of  DeepIEP and centrality

methods on BioGRID-PPI dataset.
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Fig. 4. Performance  comparison  of  DeepIEP and centrality

methods on DIP-PPI datasets.
 

Fig.3 shows  that  all  the  evaluation  metrics  of
DeepIEP  are  higher  than  baselines  including  DC,  BC,
CC,  EC,  NC,  and  LAC.  The  centrality  methods  used
various  topological  features  of  PPI  networks.  Our
DeepIEP obtained  remarkable  performance  with  0.901,
0.841,  0.743,  and  0.783,  respectively  on  BioGRID-PPI
datasets  in  terms  of  accuracy,  precision,  recall,  and F-
measure. On average, DeepIEP achieved better predict-
ive results  with  accuracy  increasing  by  19.05%,  preci-
sion score  increasing  by 49.45%,  recall  score  increasing
by  38.05%,  and  F-measure  score  increasing  by  43.37%
respectively on BioGRID-PPI than all  baseline models.
The  reason  may  be  that  scoring  functions  rely  on  a
large  amount  of  prior  knowledge  in  centrality-based
methods and they fail to consider the intrinsic biologic-
al characteristics of proteins. Thus, DeepIEP can auto-
matically  capture  contextual  representation  features  of
proteins  from  PPI  networks  and  then  further  conduct
accurate identification of essential proteins.

Fig.4 shows that evaluation metrics of DeepIEP are
higher than baselines including DC, BC, CC, EC, NC,
and LAC. Our DeepIEP obtained remarkable  perform-
ance with 0.910, 0.847, 0.754, and 0.792, respectively on
DIP-PPI datasets in terms of accuracy, precision, recall,
and  F-measure.  On  average,  DeepIEP  achieved  better
predictive  results  with  accuracy  increasing  by  14.83%,
precision score  increasing  by  40.40%,  recall  score  in-
creasing by 28.80%, and F-measure score increasing by
34.27%  respectively  on  DIP-PPI  than  baselines.  The
results indicate that DeepIEP can capture complex con-

textual  features  from  PPI  networks  and  improve  the
performance of essential protein recognition.

2)  Comparison  with  traditional  machine  learning-
based methods

To  evaluate  the  feature  learning  ability  of
DeepIEP,  we  selected  four  machine  learning  methods
including decision tree (DT), random forest (RF), sup-
port  vector  machine  (SVM),  and Adaboost  as  baseline
methods.  The  models  merged  pattern  features  learned
by the DANE component and CGRU component as the
input  and  identify  the  essential  proteins. Table  3 re-
ports the experimental results of DeepIEP and baselines
on BioGRID-PPI and DIP-PPI datasets. Table 3 shows
that DeepIEP  obtained  remarkable  performance  of  es-
sential protein  prediction  in  terms  of  Accuracy,  Preci-
sion,  Recall,  F-measure,  and AUC,  and the  results  are
superior to machine learning-based methods in all eval-
uation  metrics.  On  average,  DeepIEP  achieved  better
predictive  results  with  accuracy  increasing  by  16.10%,
precision score  increasing  by  31.85%,  recall  score  in-
creasing by 51.05%, F-measure score increasing by 47.80%
and  AUC  score  increasing  by  16.70%  respectively  on
BioGRID-PPI than baseline  models,  and achieved bet-
ter  recognition  results  with  accuracy  increasing  by
16.25%,  precision  score  increasing  by  30.95%,  recall
score  increasing by 51.90%, F-measure  score  increasing
by 48.70%  and  AUC  score  increasing  by  13.60%  re-
spectively on  DIP-PPI  than  baseline  models.  Experi-
mental  results  show  that  our  DeepIEP  framework  can
not only automatically extract more discriminative fea-
tures than  machine  learning-based  methods  from  pro-
tein networks, but also effectively identify essential pro-
teins based on contextual representations.

3) Comparison with deep learning-based methods
We selected four remarkable deep neural networks

as baseline models to show the effectiveness and superi-
ority of  our  DeepIEP  framework  for  identifying  essen-
tial  proteins.  The  details  of  the  models  are  as  follows:
DeepEP: Zeng et al.  [26] developed a deep neural  con-
volutional  framework  called  DeepEP  to  combine  two
biological  information  based  on  convolutional  neural
networks  that  used  the  node2vec  technique  and  a
sampling technique to identify essential proteins. Deep-
EP-LSTM: Zeng et al. [16] used bidirectional LSTM to
design a deep learning framework called DeepEP-LSTM
for identifying essential proteins by integrating biologic-
al information  of  PPI  networks,  gene  expression  pro-
files,  and subcellular  localization information.  DeepHE:
Zhang et al. [27] proposed a deep multilayer perceptron-
based model called DeepHE to predict human essential
genes  by  integrating  features  derived  from  sequence
data and PPI networks. ADRSNet: Altwaijry et al. [40]
designed  an  Arabic  handwriting  recognition  system  by
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using a convolutional neural network, which is denoted
as ADRSNet,  and  it  was  inherently  suitable  for  prob-
lems with  high  dimensionality.  Besides,  we  further  de-
signed two variant models of DeepIEP as baseline mod-
els:  1)  IEPHDL  includes  bidirectional  gated  recurrent
units  and  multilayer  perceptron  which  is  composed  of

three  fully  connected layers.  2)  DeepANN is  composed
of  attention networks  and multilayer  perceptron which
include three fully connected layers. Table 4 and Table
5 report  the  experimental  results  of  DeepIEP  and
baseline models  on  BioGRID-PPI  and  DIP-PPI  data-
sets, respectively.

  
Table 4. Performance comparison of DeepIEP and baselines on BioGRID-PPI datasets

Datasets Model Accuracy Precision Recall F-measure AUC
BioGRID-PPI DeepEP 0.826 0.584 0.524 0.552 0.816

BioGRID-PPI DeepHE 0.828 0.663 0.410 0.507 0.678

BioGRID-PPI DeepEP-LSTM 0.848 0.721 0.427 0.536 0.831

BioGRID-PPI ADRSNet 0.719 0.295 0.141 0.165 0.510

BioGRID-PPI IEPHDL 0.887 0.862 0.683 0.758 0.852

BioGRID-PPI DeepANN 0.851 0.730 0.549 0.587 0.818

BioGRID-PPI DeepIEP 0.901 0.841 0.743 0.783 0.842
 
 

  
Table 5. Performance comparison of DeepIEP and deep models on DIP-PPI datasets

Datasets Model Accuracy Precision Recall F-measure AUC

DIP-PPI DeepEP 0.836 0.641 0.538 0.541 0.762

DIP-PPI DeepHE 0.814 0.667 0.417 0.511 0.677

DIP-PPI DeepEP-LSTM 0.852 0.703 0.458 0.574 0.839

DIP-PPI ADRSNet 0.795 0.526 0.617 0.536 0.734

DIP-PPI IEPHDL 0.871 0.848 0.625 0.716 0.843

DIP-PPI DeepANN 0.845 0.712 0.583 0.542 0.800

DIP-PPI DeepIEP 0.910 0.847 0.754 0.792 0.851
 
 

Table 4 indicates that our DeepIEP framework ob-
tained the best performance in terms of accuracy, preci-
sion,  recall,  F-measure,  and  AUC  on  BioGRID-PPI
datasets.  DeepIEP averagely achieved better predictive
results with accuracy increasing by 7.45%, precision in-
creasing  by  19.85%,  recall  increasing  by  28.73%,  F-
measure increasing by 26.55%, and AUC increasing by
9.12%  respectively.  Specifically,  DeepIEP  achieved  the
performance  improvement  with  accuracy  increasing  by
5.30%,  precision  increasing  by  12.0%,  recall  increasing
by 31.60%, F-measure increasing by 24.70%, and AUC
increasing by 1.10% than DeepEP-LSTM on BioGRID-
PPI datasets. The possible reason is that DeepIEP can
automatically capture more contextual and discriminat-
ive features than DeepEP-LSTM based on protein net-

work information from the PPI network and the topolo-
gical  structure and attributes of  proteins are useful  for
improving the performance of  identifying essential  pro-
teins. Besides,  DeepIEP  achieved  the  performance  im-
provement with  accuracy  increasing  by  7.50%,  preci-
sion increasing by 26.10%, recall  increasing by 22.30%,
F-measure  increasing  by  23.30%,  and  AUC  increasing
by 2.20% than DeepEP on BioGRID-PPI datasets. The
above experiments imply that the features of protein se-
quences can significantly improve the performance of es-
sential protein  identification,  and  DeepIEP  could  cap-
ture more complex and spatial-temporal features.

Besides,  to  evaluate  the  generalization  ability  of
DeepIEP,  we  further  conducted  the  essential  protein
prediction  on  DIP-PPI  datasets  and  compared  perfor-

   
Table 3. Performance comparison between DeepIEP and baselines on two PPI datasets

Datasets Model Accuracy Precision Recall F-measure AUC
BioGRID-PPI DT 0.73 0.33 0.26 0.29 0.60

DIP-PPI DT 0.72 0.55 0.30 0.34 0.70

BioGRID-PPI RF 0.78 0.47 0.12 0.26 0.65

DIP-PPI RF 0.80 0.54 0.18 0.27 0.75

BioGRID-PPI SVM 0.73 0.80 0.28 0.32 0.72

DIP-PPI SVM 0.70 0.51 0.25 0.31 0.68

BioGRID-PPI Adaboost 0.72 0.49 0.27 0.35 0.73

DIP-PPI Adaboost 0.77 0.55 0.21 0.30 0.73

BioGRID-PPI DeepIEP 0.901 0.841 0.743 0.783 0.842

DIP-PPI DeepIEP 0.910 0.847 0.754 0.792 0.851
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mance  with  state-of-the-art  deep  learning  predictors.
Table 5 reports their experimental results. DeepIEP ob-
tains  the  best  performance  than  baselines  on  DIP-PPI
datasets.  Compared  to  the  deep  learning  methods,
DeepIEP  averagely  achieved  better  predictive  results
with accuracy increasing by 7.45%, precision increasing
by 16.42%,  recall  increasing  by  21.43%,  F-measure  in-
creasing by  22.20%  and  AUC  increasing  by  7.52%  re-
spectively. Particularly, compared to DeepHE, DeepIEP
achieved the results with accuracy increasing by 9.60%,
precision  increasing  by  18.00%,  recall  increasing  by
33.70%, F-measure increasing by 28.10%, and AUC in-
creasing  by  17.40%  respectively.  Compared  to  ADRS-
Net, DeepIEP  achieved  the  results  with  accuracy  in-
creasing by 11.50%, precision increasing by 32.10%, re-
call  increasing  by  13.70%,  F-measure  increasing  by
25.60%,  and  AUC  increasing  by  11.70%  respectively.
The  above  analysis  fully  indicates  that  our  DeepIEP
framework is an effective and efficient deep neural mod-
el for identifying essential proteins.

 4. Ablation study
This section introduces an ablation study to evalu-

ate the robustness and efficiency of models.

1) Impact of the graph embedding method
To verify the efficiency of DANE in feature extrac-

tion,  we  selected  an  attribute  network  representation
learning  (ANRL)  method  [52] as  a  feature  representa-
tion method  for  PPI  networks.  In  experiments,  we  re-
placed DANE of DeepIEP with ANRL. ANRL also used
protein  sequence  features  as  the  attribute  features  of
the  network  nodes  on  the  PPI  network.  The  encoding
methods  of  protein  sequences  include  integer  [53], k-
mer,  and k-mer-bow [30]. Table 6 reports experimental
results of DeepIEP with different encoding methods on
DIP-PPI datasets.

From  the  results  of Table  6, our  DeepIEP  frame-
work  obtained  remarkable  results  based  on k-mer em-
bedding  information  for  identifying  essential  proteins.
When ANRL is used to capture the topological informa-
tion  of k-mer  in  the  PPI  network,  the  performance  of
DeepIEP decreased by 9.0%, 18.5%, 37.0%, 47.5%, and
23.2% respectively from Accuracy, Precision, Recall, F-
measure and AUC. Obviously, DANE can capture more
discriminative  information  than  ANRL  for  topological
structure and node attributes from the PPI networks.

  
Table 6. Experimental results of DeepIEP with different protein sequence representation

Feature-model Sequence-encoding Accuracy Precision Recall F-measure AUC
ANRL Integer 0.798 0.617 0.182 0.281 0.576

ANRL k-mer 0.801 0.624 0.320 0.203 0.575

ANRL k-mer-bow 0.803 0.682 0.371 0.274 0.576

DANE Integer 0.884 0.795 0.622 0.697 0.789

DANE k-mer 0.901 0.841 0.743 0.783 0.842

DANE k-mer-bow 0.887 0.845 0.617 0.702 0.791
 
 

2) Impact of different feature input
This  part  analyzes  the  impact  of  different  input

features on DeepIEP and confirms whether it  is  neces-
sary to  use  protein  sequence  features  and gene  expres-
sion data as node’s attribute feature at the same time.
We conducted three experiments to show the necessity
of  protein  sequence  features  and  gene  expression  data
for  essential  protein  recognition.  The  parameters  of
DeepIEP  are  shown  in Table  2 on  DIP-PPI  datasets.
Firstly,  only  gene  expression  information  is  used  as
node  feature  input  of  DeepIEP  and  the  accuracy  of
DeepIEP  is  0.834.  Secondly,  only  protein  sequence  is
used  as  node  feature  input,  and  the  accuracy  of
DeepIEP is 0.890. Finally, using gene expression inform-
ation and protein sequence as node feature input at the
same  time,  the  accuracy  of  DeepIEP  is  0.901.  Thus,
DeepIEP obtained the best predictive results for identi-
fying essential  proteins  when  using  gene  expression  in-
formation and protein sequences as attribute features of
nodes,  and  the  results  show  the  importance  of  protein
sequence features for identifying essential proteins.

3) Dimension of graph embedding
In DeepIEP, the DANE component is used to cap-

ture high nonlinearity information and preserve various
proximities both topological  structure  and node attrib-
utes  of  the  PPI  networks. Fig.5 reports the  perform-
ance of DeepIEP based on feature representations with
different dimensions. It can be seen from Fig.5 that the
dimension of  embedding has a great  impact  on the re-
cognition performance  of  DeepIEP  for  essential  pro-
teins. For DeepIEP, when k-mer embedding was set to
64  and  our  model  obtained  a  remarkable  performance
with Accuracy of 0.901, Precision of 0.841, Recall of 0.743,
F-measure  of  0.783,  and  AUC of  0.842  respectively  on
BioGRID-PPI.  When  dimensions  are  greater  than  64,
the recognition performance of the model gradually de-
creases.  Consequently,  the  dimension  of  DANE output
is set to 64 for accurately identifying essential proteins.

 5. Discussion
The PPI network usually has thousands of vertices

and tens  of  thousands  of  edges  and  the  output  of  de-
signed score functions is just a real number such as DC
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[10], BC [11], CC [12], EC [14], NC [50] and LAC [51],
and it is difficult to represent complete topological fea-
tures by a real number. For machine learning-based al-
gorithms,  their  selected  biological  properties  could  not
represent the  complete  features  of  biological  informa-
tion, such  as  DT,  RF,  SVM,  and  Adaboost.  Further-
more, there is a lack of efficient algorithms to automat-
ically  select  contextual  features  from various  biological
data. To  obtain  a  discriminative  embedding,  the  net-
work  embedding  and  deep  model  need  to  consider:
1) The PPI network is incomplete and inherently noisy
via  high-throughput  technologies,  and  the  topological
based methods ignored the intrinsic biological property
of essential proteins. 2) The underlying structure of the
topological  structure  and attributes  are  highly  non-lin-
ear, and  the  proximity  in  an  attributed  network  de-
pends both on the topological structure and the attrib-
ute.  3)  Consistent  and  complementary  information  in
the topological  structure  and  attributes  provide  differ-
ent  views  for  each  protein  node  in  the  PPI  networks.
However, these  centrality-based  methods  largely  de-
pend  on  the  reliability  of  PPI  networks,  and  these
methods fail to consider intrinsic biological characterist-
ics of proteins. To address the limitations of traditional
methods,  deep  attributed  network  embedding  (DANE)
[33]  is  effective  and  efficient  for  identifying  essential
proteins  in  both  topological  topological  structure  and
node attributes of the PPI network.

Due  to  the  powerful  learning  capability  of  deep
models,  some  CNN  and  LSTM-based  methods  have
been proposed  to  automatically  learn  informative  fea-
ture patterns such as DeepEP [26], DeepEP-LSTM [16],
DeepHE [27],  and ADRSNet  [40],  which can avoid  the
trouble  of  artificially  designing  various  special  features
for  biological  signal  processing  and  analysis.  Although
the  computational  methods  have  presented  promising
results of essential protein recognition, and however the
methods  rely  heavily  on  convolutional  operations  to
capture local complex discriminative features of the raw
protein data. The deep models do not fully extract com-
plex hierarchical dependency features and high proxim-
ities of protein sequences, and seldom utilize multiscale
convolutional operations to generate the contextual fea-
ture  representation  for  the  prediction  task.  Thus,  we

design the efficient deep framework to automatically ex-
tract  spatial-temporal  context  features  for  accurately
identifying essential proteins.

Although  DeepIEP  shows  a  great  performance  for
identifying essential  proteins,  there  exist  some  limita-
tions.  For  example,  the  class  is  imbalance  problem,
where  the  number  of  non-essential  proteins  usually  far
exceeds that of essential proteins. The classifiers aim at
maximizing the overall classification accuracy and tend
to misclassify minority classes as majority classes. Pro-
tein properties  are diverse and have the characteristics
of  a  spatial  hierarchy,  such  as  secondary  structures,
solvent accessibility,  and  backbone  angles.  In  the  fu-
ture, we  will  evaluate  the  efficacy  of  DeepIEP  in  mi-
crobe-disease  associations  [54], and  lncRNA-disease  as-
sociations  [55], and  further  explore  more  effective  al-
gorithms to integrate different biological information of
proteins for  identifying essential  proteins,  and evaluate
the efficacy  of  our  model  in  some  special  species.  Be-
sides,  we  will  explore  interpretable  neural  networks  to
model  protein  interaction  networks  based  on  Bayesian
neural networks and design an efficient strategy for re-
ducing the effect of imbalance problems.

 V. Conclusions
With the  development  of  high-throughput  sequen-

cing  techniques,  massive  protein  sequences  have  been
obtained, which  makes  it  possible  for  us  to  adopt  re-
markable intelligent  algorithms.  In  this  work,  we  com-
bine sequence features extracted from protein sequence,
gene  expression information,  and features  learned from
the  PPI  network,  and  then  propose  an  effective  deep
learning framework,  which  is  called  DeepIEP,  to  cap-
ture the high nonlinearity and preserve various proxim-
ities  of  topological  structure  and  node  attributes  from
PPI  networks.  Moreover,  the  deep  attributed  network
embedding algorithm is an effective and efficient tool to
improve the  performance  of  identifying  essential  pro-
teins,  which includes  the  extraction of  low-dimensional
representations by preserving the structure and the at-
tribute information. Experimental results show that fus-
ing  biological  features  can  improve  the  effectiveness  of
methods for identifying essential proteins, and DeepIEP
achieves state-of-the-art performance compared to shal-
low machine  learning  methods  and  existing  deep  mod-
els.

References
 W. He, L. Zhang, O. D. Villarreal, et al., “De novo identific-
ation of essential protein domains from CRISPR-Cas9 tiling-
sgRNA knockout screens,” Nature Communications, vol.10,
article no.articleno.4541, 2019.

[1]

 P.  Y.  Zhang,  M.  T.  Zhang,  H.  Liu, et  al., “Prediction  of[2]

 

0

0.2

0.4

0.6

0.8

1.0

32 64 128 256 512

Accuracy Precision Recall

F-measure AUC

 
Fig. 5. Performance of DeepIEP based on feature represent-

ations of different dimensions.
 

Deep Contextual Representation Learning for Identifying Essential Proteins via Integrating Multisource... 879



protein subcellular localization based on microscopic images
via  multi-task multi-instance learning,” Chinese Journal  of
Electronics, vol.31, no.5, pp.888–896, 2022.
 X. Q. Yang, X. J. Lei, and J. Zhao, “Essential protein pre-
diction  based  on  shuffled  frog-leaping  algorithm,” Chinese
Journal of Electronics, vol.30, no.4, pp.704–711, 2021.

[3]

 M. R.  Fan,  M.  Li,  Z.  F.  Liu, et  al., “Crystal  structures  of
the  PsbS  protein  essential  for  photoprotection  in  plants,”
Nature  Structural & Molecular  Biology,  vol.22,  no.9,
pp.729–735, 2015.

[4]

 M. Li, R. Q. Zheng, H. H. Zhang, et al., “Effective identific-
ation of  essential  proteins  based  on  priori  knowledge,  net-
work topology and gene expressions,” Methods, vol.67, no.3,
pp.325–333, 2014.

[5]

 X. Y. Li, W. K. Li, M. Zeng, et al., “Network-based meth-
ods  for  predicting  essential  genes  or  proteins:  A  survey,”
Briefings in Bioinformatics, vol.21, no.2, pp.566–583, 2020.

[6]

 L. M. Cullen and G. M. Arndt, “Genome-wide screening for
gene  function  using  RNAi  in  mammalian  cells,” Immuno-
logy & Cell Biology, vol.83, no.3, pp.217–223, 2005.

[7]

 T. Roemer, B. Jiang, J. Davison, et al., “Large-scale essen-
tial  gene  identification  in Candida  albicans and applica-
tions to antifungal drug discovery,” Molecular Microbiology,
vol.50, no.1, pp.167–181, 2003.

[8]

 H.  Jeong,  S.  P.  Mason,  A.  L.  Barabási, et  al., “Lethality
and  centrality  in  protein  networks,” Nature,  vol.411,
no.6833, pp.41–42, 2001.

[9]

 M.  W.  Hahn  and  A.  D.  Kern, “Comparative  genomics  of
centrality and essentiality in three eukaryotic protein-inter-
action networks,” Molecular Biology and Evolution,  vol.22,
no.4, pp.803–806, 2005.

[10]

 M.  P.  Joy,  A.  Brock,  D.  E.  Ingber, et  al., “High-between-
ness  proteins  in  the  yeast  protein  interaction  network,”
Journal  of  Biomedicine  and  Biotechnology,  vol.2005,  no.2,
article no.594674, 2005.

[11]

 S.  Wuchty  and  P.  F.  Stadler, “Centers  of  complex
networks,” Journal  of  Theoretical  Biology,  vol.223,  no.1,
pp.45–53, 2003.

[12]

 E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph cent-
rality  in  complex  networks,” Physical  Review  E,  vol.71,
no.5, article no.056103, 2005.

[13]

 P. Bonacich, “Power and centrality: A family of measures,”
American Journal of Sociology, vol.92, no.5, pp.1170–1182,
1987.

[14]

 K. Stephenson and M. Zelen, “Rethinking centrality: Meth-
ods  and  examples,” Social  Networks,  vol.11,  no.1,  pp.1–37,
1989.

[15]

 M. Zeng,  M.  Li,  Z.  H.  Fei, et  al., “A deep learning frame-
work for  identifying  essential  proteins  by  integrating  mul-
tiple types of biological information,” IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, vol.18,
no.1, pp.296–305, 2021.

[16]

 E. Nasiri, K. Berahmand, M. Rostami, et al., “A novel link
prediction algorithm  for  protein-protein  interaction  net-
works by attributed graph embedding,” Computers in Bio-
logy and Medicine, vol.137, article no.104772, 2021.

[17]

 G. S. Li, M. Li, J. X. Wang, J. et al., “Predicting essential
proteins  based  on  subcellular  localization,  orthology  and
PPI  networks,” BMC Bioinformatics,  vol.17,  no.S8,  article
no.279, 2016.

[18]

 A. M. Gustafson, E. S. Snitkin, S. C. J. Parker, et al., “To-
wards  the  identification  of  essential  genes  using  targeted
genome  sequencing  and  comparative  analysis,” BMC Gen-
omics, vol.7, article no.265, 2006.

[19]

 J. C. Zhong, J. X. Wang, W. Peng, et al., “Prediction of es-
sential  proteins  based  on  gene  expression  programming,”

[20]

BMC Genomics, vol.14, no.S4, article no.S7, 2013.
 X. Y. Zhu, Y. C. Zhu, Y. H. Tan, et al., “An iterative meth-
od for predicting essential proteins based on multifeature fu-
sion and linear neighborhood similarity,” Frontiers in Aging
Neuroscience, vol.13, article no.799500, 2022.

[21]

 L. Wang, J. X. Peng, L. N. Kuang, et al., “Identification of
essential proteins based on local random walk and adaptive
multi-view  multi-label  learning,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol.19, no.6,
pp.3507–3516, 2022.

[22]

 Y. C. Hwang, C. C. Lin, J. Y. Chang, et al., “Predicting es-
sential genes based on network and sequence analysis,” Mo-
lecular BioSystems, vol.5, no.12, pp.1672–1678, 2009.

[23]

 J. Y. Deng, L. Deng, S. C. Su, et al., “Investigating the pre-
dictability of  essential  genes across distantly related organ-
isms  using  an  integrative  approach,” Nucleic Acids  Re-
search, vol.39, no.3, pp.795–807, 2011.

[24]

 A.  K.  Payra  and  A.  Ghosh, “Identifying  essential  proteins
using  modified-monkey  algorithm  (MMA),” Computational
Biology and Chemistry, vol.88, article no.107324, 2020.

[25]

 M. Zeng, M. Li, F. X. Wu, et al., “DeepEP: A deep learn-
ing  framework  for  identifying  essential  proteins,” BMC
Bioinformatics, vol.20, no.S16, article no.506, 2019.

[26]

 X.  Zhang,  W.  X.  Xiao,  and  W.  J.  Xiao, “DeepHE: Accur-
ately predicting human essential genes based on deep learn-
ing,” PLoS  Computational  Biology,  vol.16,  no.9,  article
no.e1008229, 2020.

[27]

 M. H. Chen, C. J. T. Ju, G. Y. Zhou, et al., “Multifaceted
protein-protein interaction  prediction  based  on  Siamese  re-
sidual  RCNN,” Bioinformatics,  vol.35,  no.14,  pp.i305–i314,
2019.

[28]

 Y. B. Guo, B. Y. Wang, W. H. Li, et al., “Protein second-
ary structure  prediction  improved  by  recurrent  neural  net-
works integrated with two-dimensional convolutional neural
networks,” Journal  of  Bioinformatics  and  Computational
Biology, vol.16, no.5, article no.1850021, 2018.

[29]

 Y.  B.  Guo,  D.  M.  Zhou,  R.  C.  Nie, et  al., “DeepANF:  A
deep attentive neural framework with distributed represent-
ation for chromatin accessibility prediction,” Neurocomput-
ing, vol.379, pp.305–318, 2020.

[30]

 M.  Ghandi,  D.  Lee,  M.  Mohammad-Noori, et  al., “En-
hanced  regulatory  sequence  prediction  using  gapped k-mer
features,” PLoS  Computational  Biology, vol.10,  no.7,  art-
icle no.e1003711, 2014.

[31]

 A.  Grover  and  J.  Leskovec, “node2vec:  Scalable  feature
learning  for  networks,” in Proceedings  of the  22nd  ACM
SIGKDD International  Conference  on  Knowledge  Discov-
ery and Data Mining, San Francisco, CA, USA, pp.855–864,
2016.

[32]

 H. C. Gao and H. Huang, “Deep attributed network embed-
ding”,  in Proceedings  of  the  Twenty-Seventh  International
Joint  Conference  on  Artificial  Intelligence,  Stockholm,
Sweden, pp.3364–3370, 2018.

[33]

 X.  W.  Tang,  J.  X.  Wang,  J.  C.  Zhong, et  al., “Predicting
essential  proteins  based  on  weighted  degree  centrality,”
IEEE/ACM  Transactions  on  Computational  Biology  and
Bioinformatics, vol.11, no.2, pp.407–418, 2014.

[34]

 M.  Li,  H.  H.  Zhang,  J.  X.  Wang, et  al., “A  new  essential
protein discovery  method  based  on  the  integration  of  pro-
tein-protein  interaction  and  gene  expression  data,” BMC
Systems Biology, vol.6, article no.15, 2012.

[35]

 K.  Plaimas,  R.  Eils,  and  R.  König, “Identifying  essential
genes in  bacterial  metabolic  networks  with  machine  learn-
ing  methods,” BMC  Systems  Biology,  vol.4,  article  no.56,
2010.

[36]

 D.  S.  Huang  and  C.  H.  Zheng, “Independent  component[37]

880 Chinese Journal of Electronics 2023



analysis-based  penalized  discriminant  method  for  tumor
classification  using  gene  expression  data,” Bioinformatics,
vol.22, no.15, pp.1855–1862, 2006.
 R. Fakoor, F. Ladhak, A. Nazi, et al., “Using deep learning
to enhance cancer diagnosis and classification,” in Proceed-
ings  of  the  30th  International  Conference  on  Machine
Learning, Atlanta, GA, USA, pp.3937–3949, 2013.

[38]

 Y. B. Guo, W. H. Li, B. Y. Wang, et al., “DeepACLSTM:
Deep  asymmetric  convolutional  long  short-term  memory
neural  models  for  protein  secondary  structure  prediction,”
BMC Bioinformatics, vol.20, article no.341, 2009.

[39]

 N. Altwaijry and I.  Al-Turaiki, “Arabic handwriting recog-
nition  system  using  convolutional  neural  network,” Neural
Computing  and  Applications,  vol.33,  no.7,  pp.2249–2261,
2021.

[40]

 Z. Cheng, L. Liu, G. L. Lin, et al., “ReHiC: Enhancing Hi-C
data resolution via residual convolutional  network,” Journ-
al  of  Bioinformatics  and  Computational  Biology,  vol.19,
no.2, article no.2150001, 2021.

[41]

 M.  Alkhodari  and  L.  Fraiwan, “Convolutional and  recur-
rent neural networks for the detection of valvular heart dis-
eases  in  phonocardiogram  recordings,” Computer  Methods
and  Programs  in  Biomedicine,  vol.200,  article  no.105940,
2021.

[42]

 J.  B.  Wang, “Automated detection  of  premature  ventricu-
lar contraction based on the improved gated recurrent unit
network,” Computer Methods  and  Programs  in  Biomedi-
cine, vol.208, article no.106284, 2021.

[43]

 The  PLOS  Computational  Biology  Staff, “Correction: En-
hanced  regulatory  sequence  prediction  using  gapped k-mer
features,” PLoS  Computational  Biology, vol.10,  no.7,  art-
icle no.e1004035, 2014.

[44]

 V.  Nair  and  G.  E.  Hinton, “Rectified  linear  units  improve
restricted boltzmann machines,” in Proceedings of the 27th
International  Conference  on  Machine  Learning, Haifa,  Is-
rael, pp.807–814, 2010.

[45]

 D. P. Kingma and J.  Ba, “Adam: A method for stochastic
optimization,” in Proceedings of the 3rd International Con-
ference on Learning Representations, San Diego, CA, USA,
2015.

[46]

 C. Stark, B. J. Breitkreutz, T. Reguly, et al., “BioGRID: A
general  repository  for  interaction  datasets,” Nucleic  Acids
Research, vol.34, no.S1, pp.D535–D539, 2006.

[47]

 I.  Xenarios,  L.  Salwinski,  X.  J.  Duan, et  al., “DIP,  the
Database of Interacting Proteins: A research tool for study-
ing cellular networks of protein interactions,” Nucleic Acids
Research, vol.30, no.1, pp.303–305, 2002.

[48]

 B.  P.  Tu,  A.  Kudlicki,  M.  Rowicka, et  al., “Logic  of  the
yeast  metabolic  cycle:  Temporal  compartmentalization  of
cellular processes,” Science, vol.310, no.5751, pp.1152–1158,
2005.

[49]

 J. X. Wang, M. Li, H. Wang, et al., “Identification of essen-
tial  proteins  based  on  edge  clustering  coefficient,”
IEEE/ACM  Transactions  on  Computational  Biology  and
Bioinformatics, vol.9, no.4, pp.1070–1080, 2012.

[50]

 M. Li,  J.  X.  Wang,  X.  Chen, et  al., “A local  average  con-
nectivity-based  method  for  identifying  essential  proteins
from the network level,” Computational Biology and Chem-
istry, vol.35, no.3, pp.143–150, 2011.

[51]

 Z. Zhang, H. X. Yang, J. J. Bu, et al., “ANRL: attributed
network representation learning via  deep neural  networks”,
in Proceedings  of  the  Twenty  Seventh  International  Joint
Conference  on  Artificial  Intelligence,  Stockholm,  Sweden,
pp.3155–3161, 2018.

[52]

 H.  Öztürk,  A.  Özgür,  and  E.  Ozkirimli, “DeepDTA:  Deep
drug-target  binding  affinity  prediction,” Bioinformatics,
vol.34, no.17, pp.i821–i829, 2018.

[53]

 L. Wang, H. Li, Y. Q. Wang, et al., “MDADP: A webserv-
er integrating database and prediction tools for microbe-dis-
ease associations,” IEEE Journal of Biomedical and Health
Informatics, vol.26, no.7, pp.3427–3434, 2022.

[54]

 P. Y. Ping, L. Wang, L. N. Kuang, et al., “A novel method
for  LncRNA-Disease  association  prediction  based  on  an
lncRNA-Disease  association  network,” IEEE/ACM Trans-
actions  on  Computational  Biology  and  Bioinformatics,
vol.16, no.2, pp.688–693, 2019.

[55]

LI Weihua   received  the  Ph.D.
degree from  Yunnan  University,  Kun-
ming, China.  She  is  currently  an  Asso-
ciate Professor  in the School  of  Informa-
tion  Science  and  Engineering  at  Yunnan
University, Kunming,  China.  Her  re-
search  interests  include  bioinformatics,
data mining and knowledge engineering.
(Email: liweihua@ynu.edu.cn)

LIU Wenyang   received  the  B.S.
degree from  Henan  Polytechnic  Uni-
versity,  Jiaozuo,  China.  He  received  the
M.S. degree in the School of Information
Science and Engineering at Yunnan Uni-
versity, Kunming, China. His research in-
terests include  neural  networks,  intelli-
gent computing, and bioinformatics.
(Email: wyl20180901@163.com)

GUO Yanbu   (corresponding au-
thor)  received  the  Ph.D.  degree  from
Yunnan University, Kunming, China. He
is  currently  a  Lecturer  in  the  College  of
Software Engineering  at  Zhengzhou  Uni-
versity  of  Light  Industry,  Zhengzhou,
China. His current interests include neur-
al networks,  biomedical,  and  health  in-
formatics.

(Email: guoyanbu@zzuli.edu.cn)

WANG Bingyi     received  the
Ph.D.  from  Chinese  Academy  of
Forestry, Kunming,  China.  He  is  cur-
rently an Associate Research Fellow with
the Institute  of  Highland Forest  Science,
Chinese  Academy of  Forestry,  Kunming,
China.  His  research  interests  include
bioinformatics  and  molecular  regulation.
(Email: wangbykm@163.com)

QING Hua   received  the  Ph.D.
degree  from  South  China  University  of
Technology,  Guangzhou,  China.  She  is
currently  a  Lecturer  in  the  College  of
Software Engineering  at  Zhengzhou  Uni-
versity  of  Light  Industry,  Zhengzhou,
China. Her research interests include ma-
chine learning and signal processing.
(Email: huaqing@zzuli.edu.cn)

Deep Contextual Representation Learning for Identifying Essential Proteins via Integrating Multisource... 881


