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   Abstract — Research  on  speech  enhancement  algo-
rithms in  the  airborne  environment  is  of  great  signific-
ance to the security of airborne systems. Recently, the re-
search focus of speech enhancement has turned from con-
ventional  unsupervised algorithms,  like  the  log  minimum
mean square error estimator (log-MMSE), to the state-of-
the-art  masking-based  long  short-term  memory  (LSTM)
method. However, each method has its characteristics and
limitations, so they cannot always handle  noise  well.  Be-
sides, the requirements of clean speech and noise data for
training a supervised speech enhancement model are diffi-
cult  to  satisfy  in  the  real-world  airborne  environment.
Therefore, in this work, to fully utilize the advantages of
those two different methods without any data restrictions,
we  propose  a  novel  adaptive  gain  mask  (AGM)  based
teacher-student training  approach  for  speech  enhance-
ment. In our method, the AGM, as a robust learning tar-
get for the student model, is devised by incorporating the
estimated  ideal  ratio  mask  from  the  teacher  model  into
the procedure of the log-MMSE approach. To get an ap-
propriate tradeoff  between  the  two  methods,  we  adapt-
ively update the AGM using a recursive weighting coeffi-
cient.  Experiments  on  the  real  airborne  data  show  that
the  proposed  AGM-based  method  outperforms  other
baselines in terms of all essential objective metrics evalu-
ated in this paper.

   Key words — Adaptive  ideal  mask, Teacher-stu-

dent learning, Long short-term memory (LSTM), Speech

enhancement.

 I. Introduction
Airborne noise,  a  series  of  non-stationary  broad-

band random  pulses,  significantly  impairs  the  commu-
nication  between  the  cabin  and  the  ground  personnel

[1]. The single-channel speech enhancement [2]–[6] aims
to suppress  the complicated background noises  and re-
cover  clean  speech  from  the  observed  noisy  speech.
Most  of  the  early  algorithms  for  speech  enhancement
are  based  on  signal  processing  [7]–[9].  Generally,  they
work in the time-frequency (T-F) domain and estimate
a spectral gain, based on the probability of speech sig-
nal absence or presence, to remove the additive noise in
the noisy speech magnitude spectrum. This real-valued
spectral gain is usually referred to as a T-F representa-
tion of the speech presence probability because its val-
ues smoothly vary from 0 to 1. In other words, the ac-
curacy of the spectral gain is the key point for improv-
ing speech  enhancement  performance.  The  oldest  spec-
tral gain function is the suppression rule of the Wiener-
type filter [10], which tries to minimize the mean-square
error criterion  for  speech  enhancement.  Other  com-
monly used spectral gain-based approaches are the min-
imum mean square error-based (MMSE) estimator [11]
and log  minimum  mean  square  error  (log-MMSE)  es-
timator [12], all of which have been proposed to imple-
ment  the  short-time  spectral  amplitude  estimation  of
the speech signal.  These  MMSE methods are  based on
statistical  models,  such  as  the  Gaussian  distribution
model  [13]  and  non-Gaussian  distribution  models  [14].
Due to adding these statistical theories, the log-MMSE
estimator, as a superior version of the MMSE estimator,
is thought to perform better than other classical meth-
ods in terms of noise reduction and speech preservation.
Yet all mentioned algorithms are considered to be unsu-
pervised  techniques  that  cannot  deal  with  non-station-
ary noises  due  to  relying  too  much  on  statistical  as- 
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sumptions.
Recently,  inspired  by  the  computational  auditory

scene  analysis  (CASA),  the  time-frequency  masking-
based deep  learning  methods  have  achieved  great  suc-
cess in speech enhancement areas [15]. In such enhance-
ment algorithms [16]–[18], all of these T-F masks, such
as  the  ideal  binary  mask  (IBM),  the  ideal  ratio  mask
(IRM), or  the  phase  sensitive  mask  (PSM),  are  adop-
ted as the good learning target for the current learning
technologies.  Besides,  another  function  of  those  target
masks is as an indicator of the speech signal presence or
absence, similar to the role of spectral gain in the afore-
mentioned  conventional  methods,  thus  they  also  could
regard  as  the  a  posteriori  speech  presence  probability
representation in the speech enhancement work [19]. In
addition,  some  past  related  studies  have  demonstrated
that  the  IRM-based  deep  learning  method  with  strong
data-driven  capability  has  already  achieved  a  state-of-
the-art  noise  reduction  performance  [20]–[22]. Specific-
ally, a deep neural network (DNN) was exploited to es-
timate  the  IRM  and  this  approach  could  significantly
improve the  performance  of  speech  enhancement,  ow-
ing to the powerful modeling ability of DNN [23],  [24].
However,  the  fully  connected  DNN  cannot  model  the
long-term relationship between the neighboring frames,
even  if  it  has  sophisticated  deep  architectures.  In  [25],
the authors proposed a recurrent neural network (RNN)
to  capture  contextual  information  by  using  its  unique
recursive  structures  between  the  historical  frames  and
the  future  frames.  Then  the  long  short-term  memory
(LSTM) recurrent neural network, as an improved mod-
el based on RNN, was proposed and successfully used in
speech enhancement tasks for obtaining superior listen-
ing speech quality [26], [27].

From those above deep learning-based methods,  it
can be found that using a proper training target can in-
crease  the  naturalness  of  the  enhanced  utterance  and
remove  noise  segments  as  much  as  possible.  However,
since many masking-based targets, like IRMs, are gener-
ated by the ratio of the clean speech energy to the mix-
ture energy  at  each  T-F  unit,  those  methods  are  con-
strained by some prerequisites, such as the clean train-
ing data or pure noise. Those constraints for the train-
ing  data  may  lead  to  higher  mismatch  problems
between the  training  and  test  conditions,  and  also  in-
crease  the  difficulty  and  cost  of  the  speech  data
sampling step. To relieve those limitations, in [28],  the
authors proposed a teacher-student learning framework
to improve the accuracy of the automatic speech recog-
nition (ASR) task. Specifically, this method defined an
improved learning target  by combining the advantages
of the IRM and the gains in the improved minima con-
trolled recursive averaging algorithm (IMCRA) [29]. By

using the  teacher-student  learning  framework,  the  stu-
dent  model  training  can  be  easily  scaled  to  arbitrary
data.  However,  this  method  is  highly  computational
complexity  because  the  IMCRA  approach  needs  two
smoothing operations  and minimum tracking iterations
for  updating the continuous noise spectral.  In [30],  the
researchers use a teacher-student framework to obtain a
high  precision  for  voice  activity  detection  (VAD),  in
which vast unconstrained data can be employed to train
the student model.

Based on the above introduction, the conventional
log-MMSE  approach  and  masking-based  deep  learning
have  presented  different  strengths  and  weaknesses  in
the  single-channel  speech  enhancement  task.  For  the
unsupervised method, the log-MMSE method is a stat-
istical  estimator  to  minimize  the  mean-square  error
between  the  log-amplitude  spectra  of  the  original  and
the predicted speech, while it often fails to handle non-
stationary  noises  well  due  to  excessively  depending  on
the  mathematical  assumptions  between  speech  and
noise.  For  masking-based  deep  learning  technique,  it
seems to perform well in removing non-stationary back-
ground noises. However, it requires clean speech or syn-
thetically noised data for training, and its performance
is usually degraded by the mismatch between the train-
ing and test scenarios.

On the other hand, it is generally known that rely-
ing  too  much  on  given  pairs  of  clean  speech  (target)
and noisy  (input)  inevitably  prevents  the  speech  en-
hancement model  from  generalizing  to  real-world  ap-
plications  because  a  limited  number  of  training  data
simulated  by  the  publicly  available  datasets  cannot
match all unseen sounds. And the collection of the cor-
responding clean  utterances  or  noise-only  data  is  com-
paratively  costlier  than  noisy  data.  Previous  studies
[28],  [30]  have  demonstrated  that  the  teacher-student
learning framework,  which  has  been  successfully  ap-
plied to speech recognition and VAD, can alleviate this
data  constraint  for  deep  learning.  Therefore,  our  work
introduces  the  teacher-student  framework  and  aims  to
fully  utilize  the  advantages  of  the  classical  log-MMSE
spectral  amplitude  estimator  and  the  deep  learning
technology to find a proper learning target for improv-
ing the long short-term memory based airborne speech
enhancement performance  with  less  stereo-data  con-
straint.

For that, in this paper, we propose a new adaptive
gain mask (AGM) based teacher-student training meth-
od for the LSTM speech enhancement framework in the
airborne environment. In our method, the AGM is used
as a better learning target for the student model.  Spe-
cifically, the proposed AGM target is designed by incor-
porating the estimated IRM from the teacher model in-
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to  the  procedure  of  the  log-MMSE  approach.  Then,
during the calculation of the AGM, we add a self-adapt-
ive  weighting  function  to  dynamically  bridge  the  gap
between  those  two  approaches  for  generating  a  robust
AGM  estimate.  Moreover,  at  the  adaptive  weighting
stage, an  adjustable  scale  factor  is  proposed  to  inde-
pendently control the value range of the weighting func-
tion  which  can  further  help  the  AGM  target  to  have
good  enhancement  performance.  Next,  to  relieve  the
data limitation problem, we employ a student model to
estimate the  AGM target  which is  directly  used to  re-
construct the waveform. This allows our student model
can  relax  the  requirements  on  clean  speech  and  noise
training data.  Finally,  we  explore  the  speech  enhance-
ment performance of the proposed method using LSTM
structures.

On  the  whole,  the  technical  significance  of  this
work  is  to  provide  a  novel  method  that  can  not  only
improve the performance of speech enhancement in the
adverse airborne  environment  but  also  reduce  depend-
ence  on  clean  and noise  training  data  pairs.  The  main
contributions of this work are summarized as follows:

• The  proposed  adaptive  gain  mask  target  is  ro-
bust to noise and capable of providing better speech en-
hancement  performance  for  the  whole  teacher-student
framework.

• The newly derived adaptive weighting operation
can help  the  whole  framework  to  fully  merge  the  ad-
vantages of  the  state-of-the-art  deep  learning  techno-
logy and unsupervised log-MMSE algorithm, which can
further improve the quality of enhanced speech.

• The  student  model  can  obtain  substantial  im-
provements  by  using  noisy  data  instead  of  exclusively
relying on clean speech or noise data.

Experiments on real-world airborne data show that
the  proposed  method  yields  huge  improvements  in
speech enhancement  over  the  reference  methods.  Fur-
thermore, the realistic  noisy data without the underly-
ing  clean  speech  and background noise  can  be  directly
employed to  further  improve  the  generalization  capa-
city of our student model to unexpected adverse envir-
onments,  which  means  our  method  generalizes  well  to
real-world applications. In some sense, our work is also
of  great theoretical  guiding significance to improve the
enhancement performance in practical applications.

The remainder of this paper is organized as follows.
In Section II,  we briefly present the IRM-based speech
enhancement network  and  the  classical  log-MMSE  fil-
ter as preliminaries. Section III gives an overview of the
proposed AGM-based  teacher-student  method  and  de-
scribes  how  the  adaptive  weighting  procedure  works.
Section  IV  and  Section  V  present  the  experimental
setup, the  performance  evaluation,  and  the  results,  re-

spectively. Finally, we summarize this paper in Section
VI.

 II. Preliminaries
 1. The IRM-based deep learning for  speech

enhancement
y(t)Let the noisy speech signal  be described in the

time-frequency (T-F) domain as
 

Y (k, l) = X(k, l) +N(k, l) (1)

X(k, l) N(k, l) Y (k, l)

k

l

where ,  and  denote  the  complex
short-time Fourier transform (STFT) coefficients of the
desired  clean  speech,  noise,  and  the  corrupted  speech
signal, respectively. Here,  is the frequency bin index,
and  corresponds to the frame index.

MIRM(k, l)

The IRM is widely used as a mask to represent the
speech-dominant  or  noise-dominant  meta  information
on each T-F unit. According to the additive noise mod-
el  in  (1),  the  ideal  ratio  mask  can be  ex-
pressed as follows:
 

MIRM(k, l) =
X2(k, l)

X2(k, l) +N2(k, l)
(2)

X̂(k, l)

M̂IRM(k, l)

In the existing IRM-based deep learning algorithms
for speech enhancement, an estimate of the clean spec-
trum  can be obtained from a neural network dir-
ectly by estimating a T-F mask :
 

X̂(k, l) = M̂IRM(k, l) · Y (k, l) (3)

From [28] and [31], a typical way of training such a
masking-based network is to employ the mean squared
error (MSE) loss of the form:
 

LMSE =
∑
k,l

∥∥∥M̂IRM(k, l)−MIRM(k, l)
∥∥∥2
2

(4)

X̂(k, l)

Then  this  MSE  loss  is  optimized  using  the  mini-
batch back-propagation method. Finally,  the estimated

 from this  network  can  be  transformed  into  the
enhanced  speech  in  the  time  domain  via  the  inverse
short-time Fourier transform.

 2. Log-MMSE approach to  speech enhance-
ment

Glog-MMSE(k, l)

ξ(k, l)

γ(k, l)

The log-MMSE noise suppression algorithm presen-
ted in [12] is briefly summarized in this section. Intuit-
ively, this suppressor optimally estimates the short-time
magnitude  spectrum  of  the  clean  speech  via  using  a
spectral  gain . During  the  process  of  cal-
culating the spectral gain, a key role is played by the a
priori  signal-to-noise-ratio  (SNR)  and the a pos-
teriori SNR , which can be defined as
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ξ(k, l) =
|X(k, l)|2

λn(k, l)
(5)

and
 

γ(k, l) =
|Y (k, l)|2

λn(k, l)
(6)

λnrespectively, where  is the noise power spectrum.
λn

λ̂n

For estimating , an unbiased MMSE-based noise
estimation algorithm [32] was introduced, in which the
estimate  can be  updated  based  on  the  noisy  utter-
ances:
 

λ̂n(k, l) = αdλ̂n(k, l−1) + (1−αd)[PUMMSEλ̂n(k, l−1)

+ (1−PUMMSE)|Y |2]
(7)

 

PUMMSE = {1 + exp(−asig(γ − csig))}−1 (8)

 

asig =
ξH1

1 + ξH1

, csig = log
(
P (H0)

P (H1)
(1 + ξH1

)

)
1 + ξH1

ξH1

(9)

αd

PUMMSE

ξH1

P (H0) P (H1)

where  is a smoothing coefficient, and it is set to 0.8
according  to  [32].  is the  speech presence  prob-
ability estimated  by  the  unbiased  MMSE-based  estim-
ator.  denotes the fixed optimal a priori  SNR value
when the speech signal is active. And  and 
are respectively the a priori probability for speech spec-
tra  absence  and  presence.  From  [32], the  worst  situ-

P (H1) = P (H0) = 0.5

ation  was  considered,  where  both  the  likelihoods  of
speech  absence  and  presence  became  identical,  i.e.,

.  Then  the  log-MMSE  suppressor
gain function can be given by
 

Glog-MMSE(k, l)=
ξ(k, l)

1 + ξ(k, l)
exp

{
1

2

ˆ ∞

v(k,l)

e−t

t
dt

}
(10)

 

v(k, l)=
ξ(k, l)

1 + ξ(k, l)
γ(k, l) (11)

where integral  in  (10)  is  known  as  the  exponential  in-
tegral. Finally, the enhanced speech can be achieved by
applying  the  spectral  gain  to  each  spectral  component
of the observed noisy speech as follows:
 

X̂(k, l) = Glog-MMSE(k, l) · Y (k, l) (12)

 III. Proposed Method
The  overall  architecture  of  the  proposed  AGM-

based teacher-student  LSTM  training  framework  is  il-
lustrated in Fig.1.  It  mainly consists  of  three  modules,
respectively shown in three different dashed bins in this
figure. The first module is the teacher training module,
the second module is used to compute the adaptive gain
mask, and the third one is the student training module.
The dotted lines represent the causal process of getting
the ideal  AGM,  while  the  solid  lines  denote  the  learn-
ing process of a single module.

 
First module: teacher training Second module: AGM calculation Third module: student training

AGM

Student model training

Simulated or realistic airborne noisy speech

Teacher

model

The log-MMSE

estimator

The time-varying

weighting factor

calculation δp

δp Update

The adjustable

scale factor β

AGM calculation

Ideal AGM

δp (1−δp)

IRM

Teacher model training

Simulated noisy speech

··· ··· ···

··· ··· ···

··· ··· ···

··· ··· ···

··· ··· ···

··· ··· ···

× ×

 
Fig. 1. Illustration of the proposed AGM-based teacher-student training framework.

 

As shown in Fig.1, the purpose of the teacher mod-
el is to provide an IRM estimate, which is intended to
calculate the AGM target for the student model  train-
ing by combing with the conventional log-MMSE filter.
Further, the second module in Fig.1, which is a well-de-
signed online  calculation procedure,  aims to  more  flex-

ibly and  quickly  utilize  the  advantages  of  those  meth-
ods to update the AGM. Finally, under the guidance of
the teacher model, training the student model can only
require  noisy  speech  without  clean  speech  data.  It  is
also the main motivation for building a student model.
The  details  of  training  the  whole  framework  and  their
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corresponding contributions  are  elaborated  in  the  fol-
lowing.

 1. Teacher training framework

M̂IRM(k, l)

As depicted in the first module in Fig.1, the teach-
er model (e.g., LSTM) is exploited to learn the regress-
ive  transformation  from  the  simulated  input  training
data to the IRM generated by the training data pairs.
In  general,  a  deep  network  has  the  powerful  modeling
capacity to capture the acoustic context information in
the T-F domain  for  obtaining  an  accurate  IRM estim-
ate.  In  [28],  the  estimated  IRM  from  the
deep teacher model, or the spectral gain of the unsuper-
vised  method,  can  represent  the  a  posteriori  speech
presence probability at each T-F bin. Hence, we believe
the  teacher  model,  which  employs  a  neural  network
with deep architecture,  has  strongly  complementary  to
the  conventional  log-MMSE  approach  for  improving
noise reduction performance.

In our teacher model, the input is the widely used
noisy log-power spectra (LPS) feature because LPS can
simulate  the  perceptual  characteristics  of  the  human
auditory system.  And the  supervised  fine-tuning  is  ap-
plied to minimize the loss function of the teacher mod-
el in (4).

 2. Adaptive gain mask estimation
In  this  subsection,  we  explain  the  motivations  for

designing the  proposed AGM and elaborate  on how to
compute  it  from  the  T-F  spectral  mask  and  the  log-
MMSE noise suppressor.

For  the  masking-based  methods,  the  enhanced
speech is  usually  reconstructed  by  utilizing  the  estim-
ated mask where T-F unit values are usually mapped to
the interval [0, 1]. The accuracy of the estimated mask
value plays a vital  role  in the quality of  enhancement.
From  [12],  the  log-MMSE  approach  can  deal  with
quasi-stationary  noise  by  minimizing  the  MSE  of  the
log-magnitude spectra,  and due to  using the  statistical
signal  processing  theory,  its  spectral  gain  can  provide
sophisticated statistical  information  about  the  interac-
tions  between  speech  and  background  interference.  No
doubt, the  log-MMSE  suppressor,  like  other  unsuper-
vised  methods,  has  difficulties  in  dealing  with  non-sta-
tionary  noises.  For  the  deep  learning-based  supervised
algorithms,  it  handles  non-stationary  interference  well
by using  the  prior  knowledge  learned  from  the  simu-
lated  training  dataset,  while  it  unavoidably  brings
about  a  high  mismatch  problem  between  the  training
and  test  dataset.  Consequently,  the  AGM is  proposed
to investigate the joint effect of the spectral gain in the
log-MMSE approach and the IRM in the deep learning
method  for  speech  enhancement,  which  is  one  of  the
AGM motivations.

Another  key  motivation  is  to  more  fully  and

δP

autonomously  concatenate  the  advantages  of  those
methods  for  designing  an  accurate  mask  estimation
which is used as a better learning target in the next sec-
tion. Clearly, the weighting coefficient plays a vital role
to bridge the gap between those two methods. However,
in most studies, this key coefficient is arbitrarily set to
be  a  common  fixed  value.  The  consequence  of  using  a
constant is that the process of computing the mask tar-
get  treats  both  noise-dominant  and  speech-dominant
frames equally which may reduce the mask’s sensitivity
to detect speech. Therefore, in this section, we propose
a time-varying nonlinear weighting coefficient  to re-
place the conventional fixed weighting factor.

ξ(k, l) γ(k, l)

ξ(k, l)

Firstly,  from  (10),  the  gain  function  estimated  by
the log-MMSE method mainly depends on the a priori
SNR ,  and  is  updated  in  (6).  To  improve
the accuracy of estimation in adverse scenarios, the ini-
tial guess for the clean speech amplitude generated from
the teacher model is utilized to estimate :
 

ξ̂(k, l) =

∣∣∣M̂IRM(k, l) · Y (k, l)
∣∣∣2

λn(k, l)
(13)

ξ̂(k, l) ξ̂(k, l)

λn(k, l)

µ

where  is  the estimated version of . As dis-
cussed in Section II.2,  can be obtained by using
the  unbiased  MMSE-based  noise  estimator.  For  most
traditional  unsupervised  speech  enhancement  methods,
such  as  the  constrained  Wiener  filtering  [8]–[9],  their
performance can  be  further  enhanced  via  using  a  Lag-
range  multiplier  into  the  spectral  gain.  Motivated  by
this, we add the Lagrange multiplier into the tradition-
al  log-MMSE  filter  gain  function  for  adjusting  the
tradeoff between noise reduction and speech distortion.
Specifically, we insert (13) into (10) and do further cal-
culations  using  a  specific  Lagrange  multiplier  to
define a new log-MMSE filter gain function as follows:
 

Glog-MMSE(k, l)=
ξ̂(k, l)

µ+ ξ̂(k, l)
exp

{
1

2

ˆ ∞

v̂(k,l)

e−t

t
dt

}
(14)

 

µ(k, l) = µ0 − (SNRdB)/s (15)
 

v̂(k, l)=
ξ̂(k, l)

µ+ ξ̂(k, l)
γ(k, l) (16)

SNRdB µ0 s

M̂IRM(k, l)

MAGM(k, l)

where  denotes the noisy SNR.  and  are two
empirically chosen constant which is set to 4.2 and 6.25,
respectively.  Next,  the  estimated  IRM  from
the  teacher  model  is  incorporated  to  define  the  AGM
( ):
 

MAGM(k, l)=δP M̂IRM(k, l)+(1−δP )Glog-MMSE(k, l) (17)

MAGMNotably,  the  values  of  can  be  restricted  in
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MAGM

δP

l − 1

M̂IRM(k, l) Glog-MMSE(k, l)

the range  of  [0,  1],  similarly  to  the  IRM target,  there-
fore  can be regarded as a novel ideal mask. Dur-
ing  inference,  as the  time-varying  weighting  coeffi-
cient  is  derived  by  the  average  AGM at  all  frequency
bins  of  the  frame ,  which  can  make  a  balance
between  and ,  and  it  can  be
calculated by the following weighting function:
 

δP =
1

1 + β × (M̄AGM(l − 1)− 1)
2 (18)

M̄AGM(l − 1)

β

β δP

β

β

δP
M̂IRM(k, l) Glog-MMSE(k, l)

where  indicates  the  average  AGM  of  the
previous  frame.  is  an  adjustable  scale  factor.  Note
that  will help to expand the range of  values which
actually  controls  the  AGM estimation,  and  resultantly
the degradation of enhancement performance in the ad-
verse airborne environments can be controlled by select-
ing  appropriate  values.  The  variation  of  the  time-
varying  weighting  function  using  different  values  is
shown in Fig.2. Notably, the value range of all weight-
ing  factors  is  limited  in  [0,  1]  because  it  represents
the ratio between  and .
 

β=0.5
β=1.0
β=1.5

0.30
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0.70

δ P
 v
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u
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The average of  AGM(l-1) 

β

Fig. 2. The time-varying weighting function of the AGM es-
timation for different  values.

 

δP β

β

δP
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β

As shown in Fig.2, the minimum or maximum val-
ues of  can be independently modified by adjusting 
values, which  certainly  will  help  to  accomplish  an  op-
timal  tradeoff  between  the  log-MMSE  filter  and  IRM-
based  deep  learning  algorithm.  Moreover,  by  using ,
the  updated  process  of  is  steadily  varied  with  the
historical information of AGM. Thus, we can generate a
better learning target  for enhancing the adaptab-
ility and robustness  of  the  student  model  in  the  unex-
pected acoustic scenario. After conducting tests, the fi-
nal value of  is set to 1.5, because it can achieve a sat-
isfying performance  in  the  later  experiments  (cf.  Sec-
tion V.1).

The procedure of AGM estimation is elaborated in
Algorithm 1. Clearly, the AGM is a ratio mask repres-
entation  that  can  simultaneously  describe  the  masking
properties of  the human auditory system and the stat-

M̂IRM(k, l)

Glog-MMSE(k, l)

istical  properties  of  the  interactions  between  speech
spectrum  and  noise.  More  importantly,  the  flexible
characteristic  of  the  time-varying  weighting  coefficient
provides  the  preferred  proportion  between 
and  at  each  T-F  bin,  which  help  our
AGM target become a better mask expression and res-
ultantly makes  a  contribution  to  improving  enhance-
ment performance.

Algorithm 1　The process of AGM estimation

Y (k, l) β

M̂IRM(k, l)
λn(k, l)

Input: :  a  noisy  speech  spectrum; :  an  adjustable
scale  factor; :  the  IRM  estimated  by  the
trained  teacher  model; : the  noise  power  spec-
trum estimation using the unbiased MMSE-based meth-
od of Section II.2;

MAGM(k, l)Output: : the estimated AGM
δP (k, 0) = 0.6Initialize: ;

1: Start the following calculation process from the first T-
F unit;

γ(k, l) = |Y (k,l)|2
λn(k,l)

2: Calculating the a posteriori SNR: ;
3: Calculating the a priori SNR:

ξ̂(k, l) =
|M̂IRM(k,l)·Y (k,l)|2

λn(k,l)
　　 
4: Calculating a spectral gain of Log-MMSE method:

Glog-MMSE(k, l)=
ξ̂(k,l)

µ+ξ̂(k,l)
exp

{
1
2

´∞
v̂(k,l)

e−t

t
dt
}

　　 
5: Updating the proposed time-varying weighting factor:

δP = 1

1+β×(M̄AGM(l−1)−1)2
　　 

β　 where the  is set to 1.5 according to the results in Sec-
tion V.1;
MAGM(k, l) = δP M̂IRM(k, l) + (1− δP )Glog-MMSE(k, l)6: ;

7: Repeat through all T-F units.

 3. Student training framework
According  to  the  definition  of  the  conventional

mask target, it can be observed that the training work
of the masking-based neural network, such as the IRM-
based  teacher  model,  demands  the  time-synchronized
dataset  with  separately  known  clean  and  noise  data.
However, these training data pairs are extremely scarce
in the airborne environment because collecting noise in
the airborne environment is more difficult than in oth-
er  scenarios  and  the  existing  public  noise  repositories
have little  airborne  noise.  To  relieve  this  data  con-
straint, in this section, we employ our AGM as a learn-
ing target  for  the  student  model.  Specifically,  the  re-
gression student model using a deep network is directly
employed to estimate the frame-level AGM targets from
noisy LPS features.

MAGM

As illustrated in Fig.1, the dotted line presents the
process of obtaining the ideal AGM ( ). The para-
meters  in  the  student  model  are  randomly  initialized,
and  then  optimized  by  the  stochastic  gradient  descent
algorithm  taking  the  MSE  criterion  in  a  mini-batch
mode:
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LSMSE =
∑
k,l

∥∥∥M̂AGM(k, l)−MAGM(k, l)
∥∥∥2
2

(19)

M̂AGM(k, l)where  is the estimated AGM from the stu-
dent  model.  In  the  testing  stage,  the  student  model  is
directly exploited  to  decode  and reconstruct  the  wave-
form.

The main contribution of the student model in our
work  is  expected  to  achieve  higher  speech  quality  and
better  speech  preservation  without  any  constraints  on
the underlying clean training data. Specifically, instead
of  directly  using  the  clean  and  noise  data  pairs  (e.g.,
IRM target in (2)), the learning target AGM of the stu-
dent model  is  calculated by the noisy speech spectrum
and the well-trained teacher model. Consequently, with
the  guidance  of  the  teacher  model,  we  can  replace  the
complex training data pairs with the simple noisy data
to train  the  student  model,  which  alleviates  the  de-
mands for clean speech utterances and foreground noise.
This is quite valuable for realistic acoustic applications.
In addition, for the conventional IRM-based algorithm,
its enhancement  performance  is  usually  severely  de-
graded when there is a high mismatch between the sim-
ulated development set and the test data of the realist-
ic airborne applications. In contrast, our student model
has  good robustness  because its  output target  AGM is
flexible  enough  to  adaptively  merge  auxiliary  guidance
from  the  teacher  model  and  the  statistical  knowledge
between clean and noisy signals from the log-MMSE ap-
proach. Furthermore,  owing  to  the  inherent  character-
istics  of  the  data-driven  technique,  the  student  model
does  not  exploit  any  statistical  assumptions  about
speech or noises. These merits are also of vital import-
ance in practical application.

 IV. Experimental Setup
 1. Training and test set
To  assess  the  speech  enhancement  performance  of

the proposed  method  under  different  acoustic  applica-
tion  scenarios,  we  build  our  noise  dataset,  as  listed  in
Table 1, which consists of both various airborne noises
and  common noises.  As  shown  in Table  1,  we  provide
two  types  of  noisy  speech  development  datasets,
namely, the public  training set and the airborne train-
ing  set.  The  public  training  set  is  comprised  of  some
widely  used  noises  acquired  from  two  public  corpora,
while the airborne training set  is  built  by several  real-
istic airborne noises sampled from aircraft A. All experi-
ments in this paper adopt both the public and airborne
training set as the training data except for some works
in  Section  V.4.  Notably,  the  key  difference  between
those two datasets is that the airborne training set con-
tains  real-world  interferences,  meaning  that  it  can  be

used as a noisy speech-only dataset in Section V.4. And
our test set consists of the airborne noises sampled from
aircraft  B  and  other  noises  extracted  from the  Aurora
corpus [33].

For all experiments in this paper, we use the Tim-
it corpus [34] as the clean speech training and test set,
which  contains 6300 clean  utterances  spoken  by  630
speakers  from  different  dialect  divisions  of  American
English.  We use 4000 clean  utterances  from the  Timit
training set to construct our training set. Then the 200
clean  speech  signals  from  the  complete  Timit  test  set
are  corrupted  by  unmatched  test  noises  in Table  1 at
five SNR levels (−7, −5, 0, 5, and 10 dB) to build our
test set. Hence, the 12000 training utterances and the 1000
testing utterances are generated in total.
  

Table 1. Composition of the noise dataset
in the experiments

Dataset Noise source Noise type Noise
number

Public
training set

Noisex92 [35]
115

Nonspeech [36]

Airborne
training set

Real-time acquisition
in the cockpit of

aircraft A

Engine fire alarm,
aircraft taxiing noise,
aircraft take-off noise,
aircraft landing noise,
aircraft fault noise,

and stall alarm.

11

Dataset Noise source Noise type Noises
number

Test set

Real-time acquisition
in the cockpit of

aircraft B

Aircraft tail noise,
high-frequency metal

scratching noise,
propeller noise,

and space noise in
the aircraft cabin.

11

Aurora [33]
 
 

 2. Training setting
For  both  the  training  and  test  datasets,  the

sampling frequency rate is 16 kHz. The frame length for
the  discrete  Fourier  transform  (DFT)  is  32  ms  (512
samples) with a frame shift of 16 ms (257 samples). For
each frame, a Hamming window is applied. Then the 257-
point LPS feature vectors are extracted to use as the in-
puts of all deep models.

In this paper, we attempt to provide some LSTM-
based speech enhancement experiments to evaluate the
performance  of  the  proposed  algorithm.  Specifically,
“IRM-LSTM” is the above-mentioned IRM-based meth-
od  in  Section  II.1,  which  is  also  used  as  the  teacher
model  in  our  experiments.  We  also  select  two  well-
known ratio masks (namely IBM [18] and PSM [17]) as
the reference targets.  Their corresponding reference su-
pervised  methods  are  respectively  denoted  as “IBM-
LSTM” and “PSM-LSTM”,  in  which  a  single  LSTM
model is employed to estimate IBM or PSM. Notably, “A
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GM-TS-LSTM” denotes  the  proposed  AGM-based
method  using  the  same  LSTM  architectures  for  both
teacher and student models.  For a fair comparison, we
adopt  the  same  LSTM  model  architecture  for  those
methods in all experiments.

10log10(ξH1
) = 15 dB

The  architecture  of  the  baseline  LSTM  has  two
hidden layers with 1024 units and a fully connected lay-
er. Note that the input of the LSTM model in all exper-
iments  is  the  257-dimensional  LPS  features  without
frame expansion. The activation function of the output
layer  is  linear.  Moreover,  the  Adam  algorithm  [37]  is
employed to optimize LSTM parameters in 4000 epochs,
and the batch size is 500 samples. All algorithms in our
work  use  the  above-mentioned  experimental  settings,
and all  the tuning parameters in the unbiased MMSE-
based noise estimation algorithm are set according to [32].
Specifically, in our work, we employ the empirical fixed
value  in  the  unbiased  MMSE-
based  approach.  All  experiments  were  conducted  with
Pytorch  on  a  workstation  equipped  with  an  Intel  R
CoreTMi7 CPU at 3.8 GHz.

 3. Evaluation metrics
In  this  paper,  we  will  report  speech  enhancement

evaluation  results  based  on  three  traditional  objective
measures,  namely,  the  perceptual  evaluation  of  speech
quality  (PESQ)  [38],  the  Log-likelihood  ratio  (LLR)
[39],  and  the  logarithmic  spectral  distance  (LSD)  [40].
The PESQ with the range [−0.5, 4.5] is mainly used to

evaluate noise reduction, and a higher PESQ illustrates
better  speech  quality.  The  LLR  with  the  range  [0,  2]
measures  the  mismatch  between  the  formants  of  the
clean and the enhanced signal. And the LSD is the log-
arithmic  spectral  distance  measure  for  assessing  signal
similarity. In  short,  the  LLR and  the  LSD can  be  ex-
pressed  as  the  evaluation  metric  for  speech  distortion.
For both LLR and LSD, a lower score indicates better
perceptual intelligibility of the speech signal.

 V. Experimental Results and Analysis
 1. Comparison of the adjustable scale factor

β

β

β

β

β ∈ [0.5, 1, 1.5]

%

From  the  aforementioned  theoretical  analysis  in
Section  III.2,  the  adjustable  scale  coefficient  is  quite
important  for  the  proposed  AGM-based  teacher-stu-
dent framework.  The  weighting  function  in  (18)  em-
ploys the appropriate  values can create a better learn-
ing target  which  improves  the  enhancement  perform-
ance  of  our  framework.  Therefore,  in  this  section,  to
verify the accuracy of the selected adjustable scale coef-
ficient , Table  2 shows  the  average  results  of  all  the
evaluation  metrics  for  the  AGM-based  teacher-student
framework with different  values.  In Table 2, the ad-
justable  scale  coefficients  are  examined.
All results in Table 2 are presented with a 95  confid-
ence interval. All tests are based on the same AGM-TS-
LSTM architecture  for  speech  enhancement,  and  other
experimental settings are the same.

  

β

Table 2. The average PESQ, LSD and LLR score comparison for the proposed AGM-TS-LSTM
framework with varying  values (0.5, 1, and 1.5)

PESQ (score)
SNR (dB)

10 5 0 −5 −7 Avg
β = 0.5 2.7066±0.07 2.3703±0.08 2.0165±0.09 1.6658±0.1 1.5392±0.11 2.0597±0.094
β = 1 2.8551±0.07 2.5139±0.07 2.1463±0.08 1.7705±0.1 1.6234±0.11 2.1818±0.09
β = 1.5 2.9029±0.078 2.5559±0.08 2.1707±0.088 1.7764±0.1 1.6224±0.11 2.2057±0.093

LSD (score)
SNR (dB)

10 5 0 −5 −7 Avg
β = 0.5 2.4998±0.189 2.6134±0.18 2.7173±0.17 2.7785±0.16 2.7842±0.16 2.6786±0.17
β = 1 2.2753±0.188 2.353±0.18 2.4267±0.17 2.4644±0.159 2.4623±0.15 2.3963±0.17
β = 1.5 2.2322±0.189 2.3069±0.179 2.3741±0.169 2.3986±0.158 2.3946±0.15 2.3413±0.17

LLR (score)
SNR (dB)

10 5 0 −5 −7 Avg
β = 0.5 0.386±0.04 0.5497±0.05 0.7559±0.06 0.985±0.068 1.0763±0.068 0.7506±0.6
β = 1 0.3661±0.04 0.5291±0.05 0.7339±0.06 0.9592±0.065 1.0472±0.065 0.7271±0.05
β = 1.5 0.332±0.04 0.4917±0.049 0.6931±0.058 0.918±0.06 1.009±0.06 0.6889±0.05

 
 

β

β

β

β = 1.5

As  depicted  in Table  2,  we  can  find  that  the
PESQ, LSD,  and LLR scores  are  highly  related to  the
factor . As a result, the speech distortion and residual
noise  can  be  balanced  by  choosing  an  appropriate 
value. Specifically, compared with using other  values,
the  AGM-TS-LSTM,  using ,  achieves  the  best
PESQ, LSD and LLR results at each SNR. Meanwhile,

β β = 0.5

β

for a lower  value ( ), the phenomena of speech
spectral distortion and poor noise suppression are more
serious. Thus, in this paper, the adjustable scale factor
 is set  to 1.5 which helps the whole adaptive weight-

ing way to obtain better enhancement performance.
 2. Comparison of the weighting coefficient
In this section, to evaluate the effectiveness of the
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δP

δP

δP

%

proposed AGM  with  a  time-varying  nonlinear  weight-
ing  coefficient  in  speech  enhancement,  we  make  a
fair  comparison  of  the  performance  of  our  teacher-stu-
dent framework with respect to . Fig.3 shows the av-
erage  PESQ,  LSD,  and  LLR  scores  for  the  proposed
teacher-student  framework  with  different  values  of 
on  the  test  dataset.  Each  value  in Fig.3 is  presented
with a 95  confidence interval.

δP

δP

In Fig.3,  we  employ  three  typical  constant  values
(0.9,  0.8,  0.7) of  to design a learning target for the
student model,  denoted  as  AGM1,  AGM2,  AGM3,  re-
spectively.  And “AGM” represents the  proposed learn-
ing target for the student model which is calculated by
using the proposed  in (18). Accordingly, their corres-
ponding  enhancement  framework  named “AGM1-TS-
LSTM”, “AGM2-TS-LSTM”, “AGM3-TS-LSTM”,  and
“AGM-TS-LSTM” (proposed  method),  respectively.
The  teacher  and  student  model  of  our  method  is  the
LSTM model, and they all adopt the same other para-
meter settings.

δP

From Fig.3, we observed that the AGM-TS-LSTM,
using  in (18),  gives  a  considerable  performance  im-
provement in terms of PESQ, LSD, and LLR. Specific-
ally, the PESQ result of our AGM-TS-LSTM is greatly
superior to other AGM-based methods, and our AGM-
TS-LSTM  provides  the  lowest  LSD  and  LLR  scores,
meaning that it has the least signal distortions.

δP

δP

These findings  indicate  the  teacher-student  frame-
work  using  a  fixed  value  cannot  bridge  the  gap
between the merits and defects of the log-MMSE meth-
od and IRM-based deep learning algorithm. In contrast,
the teacher-student framework based on the AGM tar-
get  calculated  by  in  (18)  achieves  the  desired
tradeoff between  good  noise  reduction  and  high  listen-
ing intelligibility,  even in  a  low-SNR complex airborne
noise  environment.  It  demonstrates  the  effectiveness  of
the proposed adaptive weighting method.

 3. Performance comparison  of  speech  en-
hancement

%

In order to demonstrate the advantages of the pro-
posed method  under  the  mismatched  airborne  applica-
tion  environment  and  unseen  social  activity  scenario,
Table  3 provides  a  comparison  of  the  average  PESQ,
LSD, and LLR scores on the test dataset by the LSTM-
based  reference  algorithms  at  all  SNR levels  across  14
unseen  noise  types.  Each  value  in Table  3 is  provided
with  a  95  confidence  interval.  For  the  first  block  of
Table 3, “b1–b4” denotes 4 types of highly non-station-
ary realistic airborne noise, and “car, train, restaurant,
airport,  exhibition,  subway  and  street” from the  Au-
rora  database  represent  mismatched  society  noise
samples. All  methods  adopt  the  same  LSTM architec-
ture, and other experimental settings are the same.
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Fig. 3. The average  PESQ,  LSD and  LLR score  comparis-
on for the proposed teacher-student framework with
different  values (0.7, 0.8, 0.9 and a time-varying

 in (18)).
 

7.86% 4.94%

As shown in Table 3, it can be found that the en-
hanced speech generated by the AGM-TS-LSTM meth-
od achieves the best objective quality and intelligibility
scores among those generated by the reference methods.
Specifically,  our  AGM-TS-LSTM  gives  superior  PESQ
scores to those three methods. When compared with the
PSM-LSTM  and  IBM-LSTM,  the  LSD  score  of  our
AGM-TS-LSTM gives  an  average  decrease  of  0.18  and
0.12,  which  account  for  and  improve-
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17.64% 2.44%
ments,  respectively.  For  LLR,  our  method  achieves  a

 and  relative improvement over the IBM-
LSTM and PSM-LSTM. Its high performance confirms
that  the  proposed  AGM  target  can  obtain  a  superior
noise reduction performance than IBM or PSM targets,
and  can  avoid  speech  distortion  as  much  as  possible.
Besides, when compared to the IRM-LSTM, the AGM-
TS-LSTM  yields  conspicuous  improvements  in  these
three  measures.  It  reveals  the  strong  complementarity
between the  spectral  gain  estimated by the  log-MMSE
method  and  the  predicted  IRM from  the  LSTM-based
regression  algorithm.  In  addition,  due  to  this  strong

complementarity, our  method  can  always  get  a  satis-
factory result in terms of PESQ, LSD, and LLR, which
also indicates that the proposed AGM target under the
collaboration  between  those  two  methods  has  better
performance stability than the conventional IBM, IRM,
and PSM target,  especially  in  the  unexpected airborne
condition.

%

Further, to simply and intuitively compare the en-
hancement performance of our approach and other ref-
erence algorithms under low SNRs, Fig.4 shows the av-
erage PESQ, LSD, and LLR scores with a 95  confid-
ence  interval  at  three  low  SNR  levels  (−7,  −5,  and  0

   
Table 3. The average performance comparisons of different LSTM-based methods on the test set

across 11 unseen noise types in Table 1 at all SNR level

Noise type
PESQ

IBM-LSTM PSM-LSTM IRM-LSTM AGM-TS-LSTM
b1 2.7432±0.13 2.7600±0.11 2.7695±0.1 2.8802±0.09

Restaurant 1.9223±0.11 1.9822±0.11 1.9777±0.1 2.0200±0.1
Car 2.0622±0.08 2.1179±0.08 2.0324±0.07 2.1368±0.085
b2 2.3160±0.08 2.2989±0.07 2.2708±0.08 2.4342±0.07
b3 2.0032±0.14 2.0911±0.12 2.1275±0.12 2.2116±0.1

Airport 2.2407±0.09 2.3501±0.09 2.3217±0.09 2.3609±0.095
Train 2.5895±0.08 2.6528±0.06 2.6965±0.07 2.6796±0.063

Exhibition 1.6335±0.11 1.6316±0.12 1.6543±0.1 1.7263±0.063
b4 1.7248±0.1 1.8451±0.1 1.7697±0.11 1.8465±0.1

Subway 1.5858±0.08 1.6215±0.1 1.6236±0.07 1.6210±0.098
Street 2.1655±0.15 2.3036±0.12 2.3047±0.11 2.3450±0.08

Average 2.0897±0.1 2.1504±0.09 2.1407±0.09 2.2057±0.093

Noise type
LSD

IBM-LSTM PSM-LSTM IRM-LSTM AGM-TS-LSTM
b1 2.3600±0.29 2.2411±0.25 2.5415±0.24 2.0768±0.25

restaurant 2.2679±0.15 2.3589±0.15 2.3328±0.14 2.1009±0.15
car 2.1940±0.15 2.2853±0.16 2.4013±0.15 2.1019±0.15
b2 2.2491±0.15 2.3912±0.14 2.3390±0.15 2.1177±0.15
b3 2.1809±0.11 2.4457±0.11 2.5910±0.12 2.2634±0.11

airport 2.3075±0.2 2.3680±0.21 2.3625±0.2 2.2014±0.2
train 2.1503±0.22 2.2230±0.22 2.1883±0.21 2.0694±0.21

exhibition 2.6482±0.12 2.7275±0.12 2.7873±0.12 2.5119±0.11
b4 3.5315±0.18 3.4742±0.18 3.4839±0.18 3.2984±0.17

subway 2.9111±0.13 2.9990±0.12 3.0608±0.12 2.9208±0.12
street 2.2257±0.19 2.2653±0.2 2.2712±0.2 2.0913±0.2

Average 2.4569±0.17 2.5254±0.17 2.5781±0.16 2.3413±0.17

Noise type
LLR

IBM-LSTM PSM-LSTM IRM-LSTM AGM-TS-LSTM
b1 0.8740±0.11 0.6220±0.09 0.8186±0.11 0.6091±0.09

restaurant 0.6904±0.05 0.6267±0.05 0.6504±0.05 0.5836±0.05
car 0.7013±0.05 0.6278±0.05 0.7802±0.06 0.6156±0.05
b2 0.7607±0.04 0.7657±0.05 0.8611±0.05 0.6839±0.04
b3 1.1242±0.08 0.8631±0.07 0.8809±0.07 0.8354±0.06

airport 0.5519±0.06 0.4412±0.07 0.5313±0.06 0.4507±0.05
train 0.4675±0.06 0.3035±0.05 0.3748±0.06 0.3380±0.05

exhibition 1.1267±0.07 1.0976±0.07 1.1267±0.06 1.0086±0.06
b4 1.0041±0.05 0.9285±0.06 1.0151±0.06 0.9504±0.06

subway 1.1120±0.05 1.1212±0.05 1.1845±0.05 1.1354±0.05
street 0.5019±0.05 0.3654±0.05 0.4368±0.06 0.3673±0.05

Average 0.8104±0.061 0.7057±0.06 0.7873±0.062 0.6889±0.05
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dB) across 11 unseen noise types. Obviously, the AGM-
TS-LSTM  method  consistently  achieves  improvements
for the three-evaluation metrics in all low SNRs scenari-
os. For example, when faced with background noises in

the hard  SNR=−5  dB  case,  the  AGM-TS-LSTM  im-
proves significantly the PESQ from 1.63 (IBM-LSTM),
1.72  (IRM-LSTM),  1.73  (PSM-LSTM)  to  1.776.  The
LLR  is  decreased  from  1.06  (IBM-LSTM),  1.03  (IRM-
LSTM),  0.94(PSM-LSTM)  to  0.918(AGM-TS-LSTM),
and the LSD score of  our method is  the lowest.  These
findings  indicate  our  AGM target  is  more  robust  than
other common targets for speech enhancement, even in
heavy noise scenarios.

Overall,  from the  aforementioned  analysis,  we  can
find that the teacher-student training method with the
AGM target  performs  more  aggressive  noise  suppres-
sion  and  less  spectral  distortions  than  a  single  model
with IBM, PSM or IRM targets.

 4. Performance  under  different  training
data

%

As discussed in Section III, one significant advant-
age of our approach is that it can potentially be exten-
ded  to  any  realistic  noisy  dataset  without  any  specific
data  type  (e.g.,  clean  speech  or  noises).  So  far,  in  our
approach,  both  the  teacher  and  student  training  work
always exploit  the  same  training  dataset.  Here,  in  or-
der  to  further  explain  the  main  motivation  for  our
work, we  analyze  the  implications  of  the  realistic  air-
borne speech data augmentation for our model training.
Table 4 shows the average PESQ, LSD, and LLR com-
parisons of training data augmentation for our method
on the test set. Each value in Table 4 is given in mean
± confidence interval (95  confidence). All tests adopt
the  same  LSTM  architecture,  and  other  experimental
settings are the same.

To keep things simple, in this work, we adopt the
same  LSTM model  architecture.  For  the  first  block  of
Table  4, “AGM-TS-LSTM1” denotes  the  proposed
AGM-TS-LSTM method in which only the public train-
ing  set  in Table  1 is  used  for  the  teacher  and  student
model  training.  Contrary  to  this,  in  the  AGM-TS-
LSTM2,  the  student  model  of  our  AGM-TS-LSTM  is
trained on not only the public training set but also the
airborne  training  set  in Table  1.  Notably,  compared
with  the  AGM-TS-LSTM1,  AGM-TS-LSTM2  can  be
considered as a representative example of the data aug-
mentation in which our method can adopt realistic air-
borne noisy speech to train the student model.

As depicted in Table 4, there is a particularly help-
ful  improvement  of  the  enhancement  quality  by  only
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Fig. 4. The average  PESQ,  LSD and  LLR scores  of  differ-

ent LSTM-based algorithms on the test set at three
low SNR levels (−7, −5, and 0 dB).

 

   
Table 4. The average performance comparisons of the training data augmentation for the proposed AGM-TS-LSTM

method on the test set in Table 1 at all SNRs

Method
Training data

PESQ LSD LLR
Teacher model Student model

AGM-TS-LSTM 1 Public training set Public training set 2.1739±0.09 2.3815±0.16 0.7044±0.05
AGM-TS-LSTM 2 Public training set Public + airborne training set 2.1958±0.095 2.3444±0.172 0.6829±0.05
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adding some noisy training speech in our method. Spe-
cifically, when compared with AGM-TS-LSTM1, AGM-
TS-LSTM2 achieves  better  results  in PESQ, LSD, and
LLR.  This  high  performance  of  the  AGM-TS-LSTM2
verifies  that  our  approach  can  improve  speech  quality
and intelligibility without the restrictions on clean and
noisy data  pairs.  This  characteristic  is  crucial  for  air-
borne  speech  enhancement  because  the  need  for  clean
speech  or  noise  data  which  is  difficult  to  meet  in  real
airborne scenarios  can  be  relaxed  by  training  the  stu-
dent model. Moreover, adding some noisy data sampled
from  real-world  airborne  applications  also  can  help  to
alleviate  the  mismatch  problem  between  the  training
and test data.

 5. Enhanced speech spectrograms
To intuitively and simply observe the performance

of  our proposed AGM, in this  section,  we examine the
resultant  enhanced  speech  spectrograms  produced  by
our AGM-based approach and other reference methods
in  Section  IV.2. Fig.5 shows the  magnitude  spectro-
grams  of  two  representative  examples  with  the  b2
(space noise in the aircraft cabin) and train noise types
at  different  SNR  levels  (10  and  −7  dB).  We  also

present the spectrogram of the corresponding noisy and
clean speech in Fig.5 as a reference.

From Fig.5, it can be observed that there is a lot of
noise interference  in  the  speech  segment  of  the  en-
hanced speech  by  the  IBM,  PSM,  or  IRM-based  al-
gorithm  which  fully  reveals  the  drawbacks  of  these
methods  in  reducing  unseen  noise.  As  expected,  the
speech enhanced by AGM-TS-LSTM not only has good
noise removal  but  also  retains  speech  segments.  Spe-
cifically, as shown in the rectangular boxes on the first
line  in Fig.5 (e.g.,  b2  at  10  dB  SNR  case),  it  is  clear
that the AGM-TS-LSTM preserves  better  speech spec-
trum  segmentation  than  other  methods.  Meanwhile,
both  in  the  typical  noise  condition  or  the  extremely
harsh  airborne  noise  condition  (e.g.,  train  or  b2  at  −7
dB SNR level), as shown in the circled area in Fig.5, it
can be seen that our method has better noise reduction
performance than the other methods via using the pro-
posed AGM estimate as a better learning target for the
student  model  training.  That  is  also  clarified  that  our
AGM target  is  more  noise-robust  than  other  standard
masking targets.

 

Clean (b2) Noisy (10 dB) IBM-LSTM PSM-LSTM IRM-LSTM AGM-TS-LSTM

Clean (b2) Noisy (−7 dB) IBM-LSTM PSM-LSTM IRM-LSTM AGM-TS-LSTM

Clean (train) Noisy (10 dB) IBM-LSTM PSM-LSTM IRM-LSTM AGM-TS-LSTM

Clean (train) Noisy (−7 dB) IBM-LSTM PSM-LSTM IRM-LSTM AGM-TS-LSTM 
Fig. 5. Spectrogram comparison of various methods with two representative noise types (b2 and train) at the lowest and highest

SNR levels (−7 and 10 dB).
 

In  general,  all  objective  test  results  in  Section  V
show that the AGM-TS-LSTM has better enhancement
performance than  other  reference  algorithms  in  Air-
borne noise  conditions  or  social  scenarios.  It  demon-
strates  the  effectiveness  of  the  proposed  AGM  target
based on the teacher-student framework.

 VI. Conclusions
In this paper, we proposed an adaptive gain mask-

based teacher-student training approach to improve the
performance  of  LSTM-based  speech  enhancement.  Our
method combined  the  advantage  of  the  log-MMSE  al-
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gorithm  and  IRM-based  deep  learning  techniques  to
design the AGM learning target for the student model.
In  addition,  at  the  stage  of  calculating  AGM,  a  new
time-varying weighting coefficient  was derived to re-
place  the  previous  weighting  constant.  Moreover,  the
performance of the proposed adaptive weighting opera-
tion  could  be  more  stable  by  controlling  the  proposed
adjustable  scale  factor  values. To  test  the  effective-
ness of our method, some experiments on the proposed
method based on the LSTM model were investigated in
terms of objective speech evaluation metrics. By experi-
mental  analysis,  it  was  found  that  the  AGM-based
teacher-student training  method  under  all  noise  condi-
tions  not  only  reduces  unseen  noise  interference  to  a
great extent but also achieves higher listening intelligib-
ility.
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