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   Abstract — Multi-view  subspace  clustering  under  a
tensor  framework  remains  a  challenging  problem,  which
can be potentially applied to image classification, impaint-
ing,  denoising,  etc.  There  are  some existing  tensor-based
multi-view subspace clustering models mainly making use
of the consistency in different views through tensor nucle-
ar norm (TNN). The diversity which means the intrinsic
difference in individual view is always ignored. In this pa-
per, a new tensorial multi-view subspace clustering model
is  proposed,  which  jointly  exploits  both  the  consistency
and diversity in each view. The view representation is de-
composed  into  view-consistent  part  (low-rank  part)  and
view-specific  part  (diverse  part).  A  tensor  adaptive  log-
determinant  regularization  (TALR)  is  imposed  on  the
low-rank part to better relax the tensor multi-rank, and a
view-specific sparsity  regularization  is  applied  on  the  di-
verse  part  to  ensure  connectedness  property.  Although
the  TALR  minimization  is  not  convex,  it  has  a  closed-
form analytical  solution  and  its  convergency  is  validated
mathematically. Extensive evaluations on six widely used
clustering datasets are executed and our model is demon-
strated to have the superior performance.

   Key words — Diversity, Multi-view subspace  clus-

tering, Tensor  adaptive  log-determinant, View-specific

sparsity, Self-representation.

 I. Introduction
To  make  better  use  of  data,  researchers  prefer  to

depict  the  practical  data  through heterogeneous  views,
which  are  gathered  from  various  domains  and  created
through different  feature  extractors.  Multi-view  sub-
space clustering aims at clustering a given dataset into
groups through  fully  using  the  consistent  and  comple-
mentary information provided by different views. There
are various  applications,  such as  image  clustering,  mo-

tion segmentation, data representation, etc.
It is known that different views depict specific per-

spectives of  data.  Obviously,  multiple  features  integra-
tion  and  the  concealed  structures  extraction  are  the
keys  for  deeply  understanding  the  data.  In  general,
multi-view  clustering  normally  relies  on  the  following
two  principles  [1]–[3].  The  first  one  is  the  consistency
principle,  which  refers  to  maximize  the  commonality
among different features. The second one is the comple-
mentary principle,  which  states  that  each  feature  con-
tains  distinctive  information.  Thus,  we  should  depict
data  in  a  more  concise  and  comprehensive  manner
through multi-view representations.

To  fully  explore  the  multi-dimensional  data  and
better  maintain  the  correlation  between  independent
data,  several  multi-view  clustering  models  under  the
tensorial  framework have been presented [4]–[10] in re-
cent years. Specially, inspired by the typical single view
low-rank  representation  subspace  clustering  model
(LRRSC)  [11],  tensor  low  rank  constraint  is  naturally
extended to depict the low rank structure among multi-
view  data.  More  recently,  several  representative  and
specific  regularization  schemes  were  also  proposed  to
combine  consensus  with  complementary  information
from different views [3], [12]. However, they simply ap-
plied a tensor low rank constraint on the self-represent-
ation  matrices.  Each  view  is  so  specific  that  it  is  not
proper to directly set  a uniform constraint on the spe-
cialized view data. In addition, the study of tensor rank
is still very hot, and some convex solutions [5], [8] and
non-convex solutions [1], [2], [13] have been presented in
recent  years.  Although  tensor  nuclear  norm  [14]  may
lead to relatively lower convex envelop of tensor multi-
rank function, it has strongly punished the large singu- 
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lar values in Fourier domain, which may lead to the in-
accurate approximation of tensor multi-rank in practic-
al applications.

Based on the above observations, in this paper, we
have  given  several  suggestions  to  address  these  issues.
Specifically,  we  first  extract  a  component  from  each
view  to  excavate  the  consistency  among  multi-views,
which  is  implemented  through  a  low  tensorial  rank  to
exploit inherent consistency for different views. Further-
more, to  better  approximate the rank function,  we de-
velop a novel tensor adaptive log-determinant regulariz-
ation to  minimize  the  tensor  multi-rank.  And  the  di-
verse  part  corresponding  to  the  specific  difference  in
each  view  is  separated  to  guarantee  the  view-specific
structures. A view-specific sparsity regularization is ap-
plied on the diverse part to ensure that the self-repres-
entation matrix is usually dense. Our contributions are
summarized as follows:

1) To efficiently utilize both consistent and specif-
ic  knowledge  existing  in  multiple  views,  the  view-con-
sistent and  view-specific  components  are  both  con-
sidered  in  our  model.  A  tensor  adaptive  log-determin-
ant regularizer  is  defined  to  make  use  of  the  consist-
ency  among  different  views.  A  view-specific  sparsity
regularization is  proposed  to  enhance  the  diverse  in-
formation  among different  feature  spaces  and keep the
similar  representations  for  the  features  in  the  same
view.

2) We have deduced a closed-form solution for our
non-convex model. Furthermore, the convergence of our
algorithm  has  been  proved  mathematically,  which
means the  convergence  of  this  non-convex  minimiza-
tion problem is guaranteed.

3) Since the appropriate approximation function is
adaptively obtained according to the intrinsic character-
istics of each dataset, our clustering accuracy is greatly
improved. We conduct a lot of experiments on six chal-
lenging clustering datasets. Compared with eleven latest
convex and non-convex approaches, our proposed meth-
od has reached superior performance.

We introduce the following sections. We give a re-
view of the related work in Section II, and present our
model detailedly in Section III. All experimental results
are presented in Section IV to demonstrate our superi-
or performance. Finally, we reach the conclusion in Sec-
tion  V.  In  Appendix  A  and  Appendix  B,  we  give  the
proof of Theorem 1 and Theorem 2, respectively.

 II. Related Work
Generally, the  current  multi-views  subspace  clus-

tering  (MSC)  methods  are  briefly  classified  into  three
categories: 1) co-training approaches, 2) ensemble clus-
tering, 3) subspace learning algorithms.

Co-training  approaches  try  to  find  some  shared
representation  by  combining  different  views,  that  is,
they tend to maximize the consistency between two dif-
ferent views [15]–[17]. Assuming that view data is a hy-
brid  model,  Bickel et  al.  [15] discovered  that  expecta-
tion-maximization  method  optimized  the  consistency
between  views.  Kumar et  al.  [16]  first  developed  a  co-
training  algorithm to  tackle  MSC problem by utilizing
the spectral  of  a view to control  the adjacent matrices
in the rest views.  In [17],  Yu et al.  also performed the
co-training subspace clustering using a Bayesian undir-
ected graphical model.

The second type is called ensemble clustering [18],
[19].  The  core  idea  is  to  combine  kernels  in  different
views for  obtaining  the  final  grouping  output  in  a  lin-
early or nonlinearly way. Greene et al.  [18] used a late
integration strategy  to  combine  information  from  re-
lated  views.  Tzortzis  and  Likas  [19]  expressed  views
through  kernel  matrices  and  proposed  a  kernel-based
method for MSC problem. The weights of kernels indic-
ated the quality of corresponding views.

In  subspace  learning algorithms,  each view can be
formulated  and  generated  based  on  a  latent  subspace,
which  captures  the  common  parts  among  different
views. In [20], the authors achieved compatible cluster-
ing performance  via  a  non-negative  matrix  factoriza-
tion  (NMF).  In  [21],  Jiang et  al.  solved  the  low-rank
matrix completion problem via nuclear norm minimiza-
tion and Frobenius norm minimization function. Based
on  the  two  typical  spectral-type  single-view  subspace
clustering models, sparse subspace clustering (SSC) [22]
and  low-rank  representation  model  (LRR)  [11],  some
multi-view subspace  clustering  models  have  been  pro-
posed  [3],  [10],  [23]–[25].  Xia et  al.  [23]  proposed  a
Markov  chain  based  multi-view  spectral  clustering
(RMSC)  through  a  sparse  low-rank  decomposition.
Wang et al. [24] proposed the low-rank and sparse sub-
space  clustering  method.  Cao et  al.  [3]  maximized  the
diverse information among multi-views and explored the
complementarity among multi-view data using the pro-
posed method called Hilbert Schmidt independence cri-
terion (HSIC). Wang et al. [25] adopted the exclusivity
and  consistency  regularizers  to  capture  the  consistent
and exclusive information. Wang et al. [10] proposed to
use the intact space learning method for MSC problem.
Zhao et  al.  [26]  proposed  the  shape  clustering  method
aiming  at  quickly  clustering  of  arbitrary  shapes  and
greatly reducing the storage space.

The  above  methods  are  all  matrix-based  methods
for  multi-view  subspace  clustering  problem.  Actually,
tensor  is  more  suitable  to  depict  the  high  dimensional
data  of  the  real  world.  Motivated  by  this  observation,
some researchers  attempted  to  find  the  inherent  rela-
tionship  among multi-views  through high  order  tensor,
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such as [4]–[8].
In  [4],  a  tensorial  framework  was  firstly  used  to

ming the heterogeneous multi-view features.  In [5],  the
feature  tensor  was  obtained  by  stacking  different  self-
representation  matrices  and  constrained  by  a  tensor
nuclear norm to  exploit  the  common  parts  among  dif-
ferent  features.  In  [6],  Piao et  al.  further  applied  the
multi-view  subspace  clustering  which  was  based  on
sparse  and  low-rank  to  the  clustering  problem  with
multi-way  data  submodules.  In  [7],  a  t-product  based
tensor representation method was proposed to combine
the multiple views. In [27], a new semi-supervised clus-
tering method was proposed, which was based on Gaus-
sian  mixture  models  (GMM).  In  [28],  a  novel  method
was  proposed  to  identify  the  clusters  by  topological
graph  partition  (TGP).  In  [8], a  new  multi-view  sub-
space  clustering  method used  t-SVD [29]  to  depict  the
common  information  across  multi-views,  which  was
defined as follows.

X ∈ Rk1×k2×k3

X ∈Rk1×k2×k3

Definition 1 (t-SVD [29]). Given ,
the t-SVD of  is described as
 

X = U ∗ D ∗ VT (1)

U ∈ Rk1×k1×k3 V ∈ Rk2×k2×k3

D ∈ Rk1×k2×k3 f

where  and  are two ortho-
gonal tensors.  is -diagonal. “*” denotes
the t-product [29].

L1

In  [12],  hyper-Laplacian  regularizer  was  further
used  to  enhance  the  regional  geometrical  structure  in
different views. The above tensor-based approaches usu-
ally adopt tensor nuclear norm [14] (t-TNN, in short) to
relax  the  tensor  rank  function,  which  is  defined  in
Definition 2. As shown, in the t-TNN based models, the
rank  function  is  approximated  by  the  norm  of  the
singular values in Fourier domain. But due to its over-
punishment to  large  singular  values,  the  clustering  ac-

curacy is not satisfactory.
X ∈ Rk1×k2×k3

X ∈Rk1×k2×k3

Definition 2 (t-TNN [14]). Given ,
the t-TNN of  is defined as
 

∥X∥∗ =
1

k3

k3∑
j=1

trace
√
X̂(j)TX̂(j)

=
1

k3

min(k1,k2)∑
i=1

k3∑
j=1

∣∣∣D̂(i, i, j)
∣∣∣ (2)

D̂= fft(D, [], 3)

X
where , which is achieved through t-SVD
operator of  in Fourier domain.

Recently, a  few  non-convex  approximation  meth-
ods of tensor rank function were proposed [2], [13], [30].
However, they always applied a uniform consensus reg-
ularized  term  to  make  use  of  the  consistency  among
multi-views and ignored specialized subspace structures
in  each  view.  At  the  same  time,  since  they  were  non-
convex models,  the  existence  of  solutions  and the  con-
vergence  of  algorithms  have  not  been  guaranteed  in
mathematics.

In this  paper,  a  non-convex  regularization  is  de-
veloped to approximate the tensor rank, and a new con-
sensus and diversity multi-view subspace clustering ap-
proach equipped  on  a  novel  tensor  framework  is  pro-
posed to address above issues. A closed-form solution is
mathematically deduced  to  tackle  the  non-convex  op-
timization problem.  Finally,  we  confirm  the  conver-
gence of the algorithm in mathematics.

 III. Our Model
 1. Notations and preliminaries
Here,  related definitions and preliminary notations

are  firstly  provided.  For  simplicity,  we  summarize  the
related notations in Table 1.

  
Table 1. Notations summary

Notation Definition Notation Definition
x A vector x(i) i xThe -th entry of 
X A matrix X(i, j) (i, j) XThe -th entry of 
X A tensor X (i, j, k) (i, j, k) XThe -th entry of 

X (k, :, :) k XThe -th horizontal slice of 
X̂ ↔ X

X̂ = fft(X , [], 3)

X (:, k, :) k XThe -th lateral slice of X = ifft(X̂ , [], 3)

X (:, :, k) k XThe -th frontal slice of ∥X∥2,1 ∥X∥2,1 =
∑

i,j ∥X (i, j, :)∥2

X (:, i, j) Xmode-1 fibers of ∥X∥F ∥X∥F =
√∑

i,j,k |X (i, j, k)|2

X (i, :, j) Xmode-2 fibers of ∥X∥∞ ∥X∥∞= maxi,j,k |X (i, j, k)|
X (i, j, :) Xmode-3 fibers of ∥X∥∗ Tensor nuclear norm

X (k) X (k) = X (:, :, k) ∥X∥TALR Tensor adaptive log-determinant regularizer
 
 

 2. Tensor adaptive log-determinant regular-
ization on the consensus part

In  the  traditional  tensor  based methods,  the  same

approximation  of  rank  function  was  used  during  the
whole  iteration  without  considering  the  magnitude  of
singular  values.  Thus,  different  singular  values  were
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punished equally. In contrast, in this paper, we propose
a  tensor  adaptive  log-determinant  regularizer  (TALR,
in  short),  as  the  following  Definition  3.  The  TALR  is
imposed on the low rank part, and it can automatically
select the  appropriate  approximation  function  accord-
ing to the magnitude of singular values, which leads to
the higher performance.

X ∈Rk1×k2×k3

Definition  3 (Tensor  adaptive  log-determinant
regularization  (TALR)).  Given ,  the  ten-
sor  adaptive  log-determinant  regularization  (TALR)  is
defined as
 

∥X∥TALR =
1

k3

k3∑
j=1

log det(γ
√
X̂(j)TX̂(j) + I)

=
1

k3

min(k1,k2)∑
i=1

k3∑
j=1

log(γD̂(i, i, j) + 1) (3)

D̂ X
γ > 0

where  can be obtained through t-SVD of  in Fouri-
er  domain.  is the  adaptive  shrinkage  factor,  en-
suring regularization stability.

γ

γ

S(γ)

As  shown  in Fig.1(a),  blue  line  represents  rank
function, and red line represents the t-TNN based sur-
rogate function. Yellow line represents our proposed ad-
aptive approximation function adjusted through . We
can clearly notice that a tighter surrogate function will
approximate  rank  function  better,  so  could be  de-
termined by minimizing the shaded area , which is
calculated as follows:
 

S(γ)

=

ˆ e−1
γ

0

[1−log(γ |x|+ 1)]dx+
ˆ M

e−1
γ

[log(γ |x|+ 1)−1]dx

= M log(γM + 1)−M +

ˆ e−1
γ

0

(
1− 1

γx+ 1

)
dx

−
ˆ M

e−1
γ

(
1− 1

γx+ 1

)
dx (4)

M = σ
(n3)
f,k−1(i, i) σ

(n3)
f,k−1(i, i)

Hf k − 1 S′(γ) = 0

γ

M γ

k − 1

k

where  and  is obtained by t-
SVD  of  in  the  step.  Let ,  then  we
could get the proper value of , which is related to the
value of . Different values of  represent different ap-
proximation function curves, just as shown in Fig.1(b).
According  to  singular  values  of  the  iteration,  we
obtain the best approximation functions in the  itera-
tion. Because the surrogate functions are adaptively ad-
justed, it greatly improves the clustering accuracy.

 3. View-specific  sparsity  regularization  on
the diversity part

Ideally, different  views  depict  distinctive  informa-
tion of data. Thus, the diversity information existing in
each view is completely different. That means the rela-
tionships  among  different  views  are  sparse,  encoding

l1
∥·∥F

with  norm. And in the same view, the features should
share  the  similar  representations,  encoding  with 
norm. Then we propose the view-specific sparsity regu-
larization as the following definition.

D(v) v

Definition  4 (View-specific sparsity  regulariza-
tion (VSSR)).  represents the diverse matrix of -th
view,  and  the  view-specific  sparsity  regularization
(VSSR) is defined as
 

∥D∥VSSR =

V∑
v=1

∥∥∥D(v)
∥∥∥2
F

, (v = 1, 2, . . . , V ) (5)

As shown in Definition 4, the view-specific sparsity
regularization has enhanced the diversity among differ-
ent views as much as possible. Meanwhile, it keeps the
similar representation for the features in the same view
and ensures the dense connectedness property.

 4. Our model
X(1), X(2), . . . , X(V ) V

Z(1), Z(2), . . . , Z(V )

D(1), D(2), . . . , D(V )

N×V×N

Let  denote  views of cluster-
ing  data.  denote  the  corresponding
view-common matrices and  are the
corresponding view-diverse matrices. For making use of
the common structures,  the view-common matrices  are
firstly stacked into a 3-order tensor. Then, an 
tensor  is  obtained  by  rotation,  which  is  to  reduce  the
calculation complexity [8]. In Fourier domain, instead of

 

Rank (x)

|x|

log (γ|x|+1)

(a)

0
0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

Rank (x)

log (1+x2)

log (γ1|x|+1)

log (γ2|x|+1)

(b)

0
0
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Fig. 1. The general framework and detailed flowchart based

on our proposed model.
 

Adaptive Tensor Rank Approximation for Multi-View Subspace Clustering 843



Z

the  tensor  nuclear  norm [14], we  adopt  the  tensor  ad-
aptive log-determinant regularization defined in Defini-
tion 3 on the rotated coefficient tensor . At the same
time, the view-specific sparsity regularization is applied
on the diverse part to ensure connectedness property of
the representation  matrices.  The  Lagrangian  multipli-
ers  are  augmented  and  applied  to  iteratively  optimize

Z∗
{
D(v)∗}V

v=1{
Z(v)∗}V

v=1

Z∗{
Z(v)∗}V

v=1

{
D(v)∗}V

v=1

the related equations. Here, we can obtain the optimal
tensor  and the matrices  when iterations
stop.  The  final  can  be  developed  through
unfolding .  The  similarity  matrix  generated  from

 and  can be used to obtain the fi-
nal clustering result. The whole construction of our ap-
proach is illustrated in Fig.2.

 

X
(1)

X
(2)

Z
 (1)

Z
 (2)

X
(V)

Z
 (V) D

 (1)

D
 (2)

D
 (V)

E
 (1)

E
 (2)

E
 (V)

Z
 *(1)

Z
 *(2)

Z
 *(V)

Multi-view data Consistency Diversity Errors

V

V

N

N

V

N

N

Rotate

Rotate

N

TNR

N

V

N
N



Clustering 
γ

γ1 = 0.7, γ2 = 2

Fig. 2. Different approximation functions of the rank function. (a) The proper method of selecting parameter ; (b) Comparisons
among different log-determinant curves and .

 

Z{
D(v)∗}V

v=1

After  getting  the  low  rank  tensor  and the  con-
nected diverse part , we formulate our mod-
el as follows:
 

min
Z(v),D(v),E(v)

∥Z∥TALR︸ ︷︷ ︸
Consensus Part

+λ∥E∥2,1︸ ︷︷ ︸
Error Part

+β

V∑
v=1

∥∥∥D(v)
∥∥∥2
F︸ ︷︷ ︸

Diversity Part

s.t. X(v) = X(v)(Z(v)+D(v))+E(v), v = 1, 2, . . . , V

E =
[
E(1);E(2); . . . ;E(V )

]
Z = Φ(Z(1), Z(2), . . . , Z(V ))

(6)

Φ(·) {
E(v)

}V

v=1

Z(1), Z(2), . . . , Z(V )

D(1), D(2), . . . , D(V )

where  represents the  merging  and  rotating  opera-
tion defined in [8], and  denote error matrices.
Formula  (6)  aims  at  finding  the  optimal  view-consist-
ent  part  and  view-diverse  part

. Consequently,  the  similarity  mat-
rix is obtained by
 

S =

V∑
v=1

∣∣Z(v)
∣∣+ ∣∣∣Z(v)T

∣∣∣
2

+

∣∣D(v)
∣∣+ ∣∣∣D(v)T

∣∣∣
2

 (7)

 5. Optimization approach

H H = Z
To  efficiently  separate  variables,  we  introduce  a

variable  and  let . Thus,  the  augmented  Lag-
range function of (6) is

 

L
(
Z(1), . . . , Z(V );E(1), . . . , E(V );D(1), . . . , D(V );H

)
= ∥H∥TALR + λ∥E∥2,1 + β

V∑
v=1

∥∥∥D(v)
∥∥∥2
F

+

V∑
v=1

(
⟨Y (v), X(v) −X(v)(Z(v) +D(v))− E(v)⟩

+ ⟨W,Z−H⟩+µ

2

∥∥∥X(v)−X(v)(Z(v)+D(v))−E(v)
∥∥∥2
F

)
+

ρ

2
∥Z −H∥2F (8)

W Y (v)

ρ µ

where the tensor  and the matrix  are both Lag-
rangian  multipliers.  and  are  penalty  parameters.
We can  solve  the  optimal  problem (5)  through  altern-
ately updating the variables while keeping others fixed.
We will depict the detailed procedure in the following.

Z(v) E D H
Φ−1
(v)(W) = W (v) Φ−1

(v)(H) = H(v)

Z(v)

Subproblem  of 　Fixing ,  and ,  and
let , ,  the subproblem of

 is
 

min
Z(v)

⟨Y (v), X(v) −X(v)(Z(v) +D(v))− E(v)⟩

+
µ

2
∥X(v) −X(v)(Z(v) +D(v))

− E(v)
∥∥∥2F+⟨W (v), Z(v)−H(v)⟩+ ρ

2

∥∥∥Z(v)−H(v)∥2F
(9)
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The first-order optimal condition of (9) is
 

−X(v)TY (v)−µX(v)T
(
X(v)−X(v)(Z(v)+D(v))−E(v)

)
+W (v) + ρ

(
Z(v) −H(v)

)
= 0 (10)

which leads to
 

Z(v)∗ =

(
I +

µ

ρ
X(v)TX(v)

)−1 ((
X(v)TY (v)

+ µX(v)TX(v) − µX(v)TX(v)D(v)

−µX(v)TE(v) −W (v)
)
/ρ+H(v)

)
(11)

E(v) Z D H
E

Subproblem  of :  Fixing ,  and , sub-
problem of error matrix  is
 

E∗ = argmin
E

λ∥E∥2,1 +
V∑

v=1

(
⟨Y (v),−E(v)⟩

+
µ

2

∥∥∥X(v) −X(v)(Z(v) +D(v))− E(v)
∥∥∥2
F

)
= argmin

E

λ

µ
∥E∥2,1 +

1

2
∥E − F∥2F (12)

F
X(v) −X(v)(Z(v) +D(v)) + 1

µY
(v)

Here,  is obtained through vertically stacking the
matrix  along  the
column [11].

D(v) E Z H
D(v)

Subproblem  of :  Fixing ,  and ,  the
subproblem of diverse matrix  is
 

min
D(v)

β
∥∥∥D(v)

∥∥∥2
F
+ ⟨Y (v), X(v)−X(v)(Z(v)+D(v))−E(v)⟩

+
µ

2
∥X(v) −X(v)(Z(v) +D(v))− E(v)∥2F (13)

The first-order optimal condition of (12) is
 

2βD(v) −X(v)TY (v)

−µX(v)T
(
X(v)−X(v)(Z(v)+D(v))−E(v)

)
= 0 (14)

leading to
 

D(v)∗ =(2βI+µX(v)TX(v))−1(X(v)TY (v)+µX(v)TX(v)

− µX(v)TX(v)Z(v) − µX(v)TE(v)) (15)

H Z D E
H

Subproblem of  : Fixing ,  and , the sub-
problem of  is
 

H∗ = argmin
H

∥H∥TALR+⟨W,Z−H⟩+ ρ

2
∥Z−H∥2F

= argmin
H

∥H∥TALR+
1

2
∥H−M∥2F

(16)

τ = 1
ρ M = Z + 1

ρWHere , and . Then equation (15)
can be solved through Theorem 1. We prove Theorem 1
in  Appendix  A.  Algorithm 1  summarizes  the  updating

Hprocess of .
τ > 0, X ,Y ∈ Rk1×k2×k3

Y Y = U ∗ Dy ∗ VT

X ∗

Theorem  1　 Suppose ,
and  has  the  t-SVD:  as  defined  in
Definition 2 in Section II. If  is the optimal solution
of
 

argmin
X

τ∥X∥TALR +
1

2
∥X − Y∥2F (17)

X ∗=U∗Dx∗VT Dx∈Rk1×k2×k3

1 ≤ i ≤ min(k1, k2), 1 ≤ j ≤ k3 D̂y = fft(Dy, [], 3)

D̂x = fft(Dx, [], 3)

D̂x

ˆ(Dx(i, i, j))
2+( 1γ −D̂y(i, i, j))D̂x(i, i, j)

1
γ (τ−D̂y(i, i, j))

= 0

then , where  is f-diagonal.
For , let 
and .  Then,  the  diagonal  elements  of

 is able to be achieved through solving the equation:
 + 

. That is
 

D̂x(i, i, j) =


(
D̂y(i,i,j)−

1

γ

)
+
√
∆

2 , ∆ ≥ 0

0, ∆ < 0

(18)

∆ =
(

1
γ − D̂y(i, i, j)

)2

− 4
γ

(
τ − D̂y(i, i, j)

)
where .

HAlgorithm 1　Update  via Theorem 1
Z W ρ γInput: , ,  and .

τ = 1
ρ
,M = Z + 1

ρ
W1: ;

M̂ = fft(M, [], 3)2: ;
j = 1 : k33: for  do[
Û (j), D̂m

(j)
, V̂(j)

]
= SVD

(
M̂(j)

)
　　 ;

D̂h(i, i, j)　　 obtain  through Theorem 1;

Ĥ(j) = Û (j) D̂h
(j) V̂(j)T　　 ;

4: end for

H = ifft(Ĥ, [], 3)5: ;
HOutput: Tensor .

Y (v)Update :
 

Y (v)∗ = Y (v) + µ
(
X(v) −X(v)(Z(v) +D(v))− E(v)

)
(19)

WUpdate :
 

W∗ = W + ρ(Z −H) (20)

So far,  we  can  summarize  our  algorithm  in  Al-
gorithm 2.  Besides,  we  also  demonstrate  its  conver-
gence as  in  Theorem 2,  which has  been proven in  Ap-
pendix B.

{Z(v)t , E(v)t , D(v)t ,Ht}

t

{Y (v)t ,Wt} µt ρt

Theorem  2　 Let  be  the
sequence generated  by  Algorithm  2,  and  the  super-
script  denotes the  iterations.  Suppose  that  the  se-
quence  is bounded,  and  are  non-de-
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∑∞
t=0

µt+1

(µt)2
< ∞,

∑∞
t=0

ρt+1

(ρt)2
< ∞

{Z(v)t , E(v)t , D(v)t ,Ht}
{Z(v)t , E(v)t , D(v)t ,Ht}

creasing,  and ,  then,

1)  The  sequence  is  bounded.
2) The sequence  has at least one
accumulation  point,  and  any  accumulation  point  is  a
stationary KKT point for the optimization issue of (7).

Algorithm 2　Diversity induced MSC method via TALR

V X(1), X(2), . . . , X(V ) λ
β K

Input:  views of clustering data: , ,
, and number of clusters: .

Z(v), D(v), E(v), Y (v),H,W
v = 1, 2, . . . , V ;µ = 10−4, ρ = 10−4, η = 1.2, µmax = ρmax = 1012, ε = 10−5;

1: Initialized  to  zero  tensors;

2: Do
v = 1 : V3: 　　for 

Z(v)4: 　　　Calculate  by solving (10);
5: 　　end for

E6: 　　Calculate  by using (11);
v = 1 : V7: 　　for 

D(v)8: 　　　Calculate  by solving (14);
9: 　　end for

v = 1 : V10:　  for 
Y (v)11:　　　Calculate  by solving (18);

12:　  end for
Z = Φ(Z(1), Z(2), . . . , Z(V ))13:　  Calculate ;
H14:　  Calculate  by Algorithm 1;
W15:　  Calculate  by solving (20);
ρ µ ρ=min(ηρ, ρmax) µ=min(ηµ, µmax)16:　  Calculate , : , ;

(H(1), H(2), . . . , H(V )) = Φ−1(H)17:　  ;
18:　  Check if the convergence terms are satisfied:

∥X(v)−X(v)(Z(v)+D(v))−E(v)∥∞ < ε

∥Z(v)−H(v)∥∞ < ε;

19:　  　  and　　　　

　　　　 
20: Until converge
21: Obtain the similarity matrix using (6);

S
22: Employ  spectral  clustering  through  calculatd  affinity

matrix ;
Output: The clustering results.

 IV. Experiments
 1. Experimental conditions

10

In  this  section,  we performed a lot  of  experiments
upon 6  widely  used  datasets  and  compared  our  ap-
proach with 11 representative clustering models.  All  of
our experiments were executed using Matlab R2020 on
a  computer  equipped  with  i7-1070  CPU  and  64  GB
memory. For all experiments, we have run  times and
recorded  the  average  performances.  Our  code  could  be
download from https://github.com/mathxlsun/TALR.

1) Datasets introduction
We  adopted  6  commonly  used  image  datasets  to

evaluate  our  proposed  method.  We  also  applied  our
method  to  3  typical  clustering  scenes,  including  scene
clustering, face classification, and generic objects recog-
nition. The 6 datasets have been detailedly described in
Table  2.  As  shown,  for  face  clustering  problem,  two
datasets were selected, including: Yale dataset and Ex-
tended  YaleB  dataset.  For  scene  classification,  two
datasets  were  conducted,  including:  Scene-15  dataset
and MITIndoor-67 dataset [31]. And for generic cluster-
ing  problem,  two  datasets  were  conducted,  including
COIL-20 dataset and Caltech-101 dataset [32].

2) View descriptions
Similar to references [6] and [12], for two face clus-

tering  datasets  and  COIL-20  dataset,  three  features
were  used  as “Views”,  including  LBP feature  [33], im-
age intensity, and Gabor feature [34].

On  the  other  hand,  we  also  extracted  other  three
features  for  MITIndoor-67,  Caltech-101,  and  Scene-15
datasets,  including  CENTRIST  [35],  PRI-CoLBP  [36]
and  PHOW  [37], which  represented  the  census  trans-
form  histogram,  pairwise  rotation  invariant  co-occur-
rence local  binary  pattern  feature,  and  pyramid  histo-
grams of visual words, respectively.

  
Table 2. Statistics of datasets and multiview features in the experiments.

Datasets Objective Clusters Images Views/Features

Yale Face 15 165 (Intensity,LBP,Gabor)

ExtendedYaleB Face 10 650 (Intensity,LBP,Gabor)

Scene-15 Scene 15 4485 (PHOW,PRI-CoLBP,CENTRIST)

MITIndoor-67 Scene 67 5360 (PHOW,PRI-CoLBP,CENTRIST,VGG19)

Coil-20 Generic object 20 1440 (Intensity,LBP,Gabor)

Caltech-101 Generic object 101 8677 (PHOW,PRI-CoLBP,CENTRIST, InceptionV3)
 
 

To complement  the  handcrafted  features  and  im-
prove  the  performance,  two  other  deep  features  (e.g.,
VGG19 [38] for MITIndoor-67 dataset and InceptionV3
[39]  for  Caltech-101  dataset)  were  further  imported  as
new “Views”.

All features utilized in the experiments are listed in
Table  2. More  detailed  operations  for  features  extrac-

tion can be found in [8] and [12].
3) Evaluation metrics and compared methods
In  our  experiments,  following  [40],  we  also  used  6

metrics to  measure  the  performance,  including  accur-
acy  (ACC),  F-score,  normalized  mutual  information
(NMI), adjusted rank index (AR), recall  and precision.
Obviously,  methods with better  clustering performance
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usually have the higher value in all above six metrics.

SPCbest

LRRbest RMSC DiMSC LTMSC
ECMSC MSC M2VS Sp

GLMSC TLRMSC

In this subsection, we compared our approach with
11  latest  clustering  methods,  including  [41],

 [11],  [23],  [3],  [5],
 [25], t-SVD-  [8], HLR-  [12], -MSC

[13],  [2], and  [30]. Among these elev-
en methods, the first eight methods are convex, and the
last three methods are non-convex.

 2. Comparison with other methods
In this  subsection,  we have shown some compared

results  on  six  popular  clustering  datasets  in Table  3,
Table 4, Table 5, Table 6, Table 7, and Table 8. In the
tables,  if  the results of one method were labeled as “–”
on  one  dataset,  it  means  that  the  method  didn’t pub-
lish their results on this dataset. To ensure a fair com-
parison, the best  results  for  all  competitors  were selec-
ted or reported in [3], [5], [8], [12].
  

λ

β

Table 3. Experimental results on Yale. Here,  = 0.092
and  = 3.3 for our model

Methods ACC F-score NMI AR Recall Precision

bestSPC 0.619 0.456 0.653 0.441 0.501 0.456
bestLRR 0.697 0.547 0.709 0.512 0.567 0.529

RMSC 0.642 0.517 0.684 0.485 0.535 0.500
DiMSC 0.709 0.564 0.727 0.535 0.586 0.543
LTMSC 0.741 0.598 0.765 0.570 0.629 0.569
ECMSC – – – – – –

t-SVD-MSC 0.963 0.915 0.953 0.910 0.927 0.904
2HLR-M VS – – – – – –

Ours 0.983 0.975 0.987 0.973 0.980 0.970
 
 

For face  clustering problem, results  for  Yale  data-
set and Extended YaleB dataset are provided in Table
3 and Table 4, respectively. As shown, on Yale dataset
and Extended YaleB dataset, our methods both achieve
the  best  performance.  Especially,  on  Extended  YaleB
dataset, our  approach  improves  the  superior  perform-
ance (reported in [12]) from NMI 0.703 and ACC 0.670
to NMI 0.960 and ACC 0.975.

For  scene  clustering  problem,  experimental  results
for Scene-15  dataset  and  MITIndoor-67  dataset  are  il-
lustrated  as  in Table  5 and Table  6,  respectively.  On

Scene-15 dataset, our method has gained significant im-
provements  of  7.9%,  10.8%,  12.3%,  11.4%,  12.4%,  and
10.5%,  in  terms  of  six  metrics,  respectively.  On  the
MITIndoor-67  dataset,  our  method  also  significantly
outperforms  other  competitors  with  a  relatively  clear
margin,  about 12.3%, 15.3%, 22.8%, 22.5%, 22.1% and
22.2% in terms of six metrics, respectively.
  

λ β

Table 5. Experimental results on Scene-15. Here,
 = 0.008 and  = 0.005 for our model

Methods ACC F-score NMI AR Recall Precision

bestSPC 0.437 0.322 0.422 0.271 0.328 0.315
bestLRR 0.445 0.324 0.426 0.272 0.333 0.316

RMSC 0.507 0.437 0.564 0.394 0.450 0.425
DiMSC 0.300 0.181 0.269 0.117 0.190 0.173
LTMSC 0.574 0.465 0.571 0.424 0.479 0.452
ECMSC 0.457 0.357 0.463 0.303 0.408 0.318

2HLR-M VS 0.878 0.861 0.895 0.850 0.871 0.850
t-SVD-MSC 0.812 0.788 0.858 0.771 0.839 0.743

Ours 0.986 0.975 0.974 0.973 0.976 0.974

  
λ

β

Table 6. Experimental results on MITIndoor-67. Here, 
= 0.002 and  = 0.003 for our model

Methods ACC F-score NMI AR Recall Precision

bestSPC 0.445 0.314 0.558 0.306 0.341 0.295
bestLRR 0.120 0.045 0.226 0.031 0.047 0.044

RMSC 0.232 0.123 0.342 0.110 0.125 0.121
DiMSC 0.246 0.141 0.383 0.128 0.144 0.138
LTMSC 0.431 0.290 0.546 0.280 0.306 0.279
ECMSC 0.353 0.228 0.489 0.216 0.247 0.213

2HLR-M VS 0.802 0.734 0.866 0.730 0.757 0.713
t-SVD-MSC 0.684 0.562 0.750 0.555 0.582 0.543

Ours 0.955 0.959 0.989 0.958 0.979 0.934
 
 

Sp

For  generic  objects  clustering  problem,  the  results
are  presented  in Tables  7 and 8 for  COIL-20  dataset
and  Caltech-101  dataset,  respectively.  As  shown,  our
method  yields  the  best  performance  on  both  datasets,
which  confirms  the  effectiveness  of  our  method.  Our
method  is  non-convex,  so  we  have  also  compared  our
method  with  some  non-convex  multi-view  subspace
clustering  methods  including -MSC [13],  GLMSC [2]
and  TLRMSC  [30],  which  has  been  published  during
the last two years. The comparison results are shown in
Table 9.

For fair  comparison,  we  maintain  the  original  res-
ults  in  the  referred papers.  Although they are  all  non-
convex  approximations  of  tensor  multi-rank  function,
our TALR  approximation  achieves  the  superior  per-
formance. There are two reasons. Firstly, a closed-form
analytical solution is deduced for our optimization prob-
lem.  Secondly,  our  surrogate  functions  are  adaptively
adjusted, which  greatly  improves  the  clustering  accur-
acy.  Besides,  each  view  contains  some  knowledge  that
other views do not have, so a diverse regularized term is

   

λ β

Table 4. Experimental results on Extended YaleB. Here,
 = 0.0022 and  = 0.38 for our model

Methods ACC F-score NMI AR Recall Precision

bestSPC 0.367 0.308 0.361 0.226 0.311 0.297
bestLRR 0.615 0.508 0.627 0.451 0.539 0.481

RMSC 0.210 0.155 0.157 0.060 0.159 0.150
DiMSC 0.615 0.504 0.636 0.453 0.534 0.481
LTMSC 0.626 0.521 0.637 0.459 0.539 0.485
ECMSC 0.783 0.597 0.759 0.544 0.718 0.513

2HLR-M VS 0.670 0.577 0.703 0.529 0.595 0.560
t-SVD-MSC 0.652 0.550 0.667 0.500 0.590 0.514

Ours 0.975 0.952 0.960 0.947 0.954 0.950
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introduced to further enhance our performance.  There-
fore, our model efficiently combines consistency and di-
versity associated with multi-view data. Accordingly, it
can usually represent state-of-the-art performance.

 3. Comparisons of confusion matrices
Compared with the existing clustering methods, al-

though t-SVD-MSC and HLR-M2VS have achieved the
great performance,  the performance can be further  im-
proved  by  integrating  consistency  and  diversity  across
multi-views,  just  like  our  method.  This  can  be  further
illustrated  by  the  confusion  matrices  calculated  based
on three different approaches on the Scene-15 dataset in
the Fig.3.

As can be seen, the most confusing scenes are “bed-
room”, “living  room” and “MIT  forest”.  For  HLR-
M2VS,  the  false  alarm  rate  of  clustering “living  room”
as “bedroom” is 0.76,  and the false  alarm rate of  clus-
tering “bedroom” as “MIT forest” is 0.46. It is notable
that our model has reached very high performance in all
categories, and the lowest accuracy is 0.92 for the scene
of “living  room”.  Especially,  compared  to  the  previous
best  performance  reported  in  HLR-M2VS  [12],  we  can
clearly observe the accuracy improvement in “bedroom”
and “MIT forest” from 0.46 to 1.00 and from 0.54 to 1.00,
respectively.  For  Scene-15  dataset,  its  images  are  all
taken indoors with rich backgrounds, and the images in

   
λ

β

Table 7. Experimental results on COIL-20. Here,  =
0.002 and  = 0.05 for our model

Methods ACC F-score NMI AR Recall Precision

bestSPC 0.673 0.641 0.805 0.618 0.693 0.595
bestLRR 0.761 0.734 0.829 0.720 0.751 0.717

RMSC 0.685 0.656 0.800 0.637 0.698 0.620
DiMSC 0.778 0.745 0.846 0.732 0.751 0.739
LTMSC 0.804 0.760 0.860 0.748 0.776 0.741
ECMSC 0.782 0.794 0.942 0.781 0.925 0.695

2HLR-M VS 0.852 0.842 0.960 0.833 0.949 0.757
t-SVD-MSC 0.830 0.800 0.884 0.786 0.808 0.785

Ours 0.992 0.986 0.993 0.985 0.987 0.984
 

   
λ

β

Table 8. Experimental results on Caltech-101. Here,  =
0.001,  = 0.002

Methods ACC F-score NMI AR Recall Precision

bestSPC 0.485 0.341 0.724 0.318 0.234 0.596
bestLRR 0.510 0.339 0.728 0.304 0.231 0.627

RMSC 0.346 0.258 0.573 0.246 0.182 0.457
DiMSC 0.351 0.253 0.589 0.226 0.191 0.362
LTMSC 0.559 0.403 0.788 0.393 0.288 0.670
ECMSC 0.359 0.286 0.606 0.273 0.214 0.433

2HLR-M VS 0.650 0.442 0.872 0.463 0.343 0.760
t-SVD-MSC 0.607 0.440 0.858 0.430 0.323 0.742

Ours 0.655 0.491 0.898 0.472 0.353 0.808
 

   
Table 9. Comparisons to the other non-convex methods. The results of compared methods are

from references [11], [12], and [25]

Datasets Methods ACC F-score NMI AR Recall Precision

Yale

Sp-MSC – – – – – –
GLMSC 0.979 0.958 0.975 0.979 0.955 0.959

TLRMSC 0.976 0.966 0.983 0.964 0.973 0.960
Ours 0.983 0.975 0.987 0.973 0.980 0.970

Extended YaleB

Sp-MSC 0.825 0.790 0.857 0.766 0.815 0.766
GLMSC – – – – – –

TLRMSC 0.966 0.934 0.947 0.927 0.936 0.932
Ours 0.975 0.952 0.960 0.947 0.954 0.950

Scene-15

Sp-MSC 0.892 0.879 0.905 0.870 0.891 0.867
GLMSC 0.904 0.901 0.932 0.933 0.893 0.916

TLRMSC 0.970 0.942 0.942 0.938 0.940 0.945
Ours 0.986 0.975 0.974 0.973 0.976 0.974

 

 

(a) t-SVD-MSC

Bedroom
CALsuburb

Industrial
Kitchen

Livingroom
MITcoast

MITforest
MIThighway

MITinsidecity
MITmountain

MITopencountry
MITstreet

MITtallbuilding
PARoffice

Store

B
ed

ro
o
m

C
A

L
su

b
u
rb

In
d
u
st

ri
al

K
it

ch
en

L
iv

in
g
ro

o
m

M
IT

co
as

t

M
IT

fo
re

st

M
IT

h
ig

h
w

ay

M
IT

in
si

d
ec

it
y

M
IT

m
o
u
n
ta

in

M
IT

o
p
en

co
u
n
tr

y

M
IT

st
re

et

M
IT

ta
ll

b
u
il

d
in

g

P
A

R
o
ff

ic
e

S
to

re

(b) HLR-M2VS
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(c) Ours
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Fig. 3. Confusion matrices of different methods on Scene-15 dataset. The vertical coordinate is the predicted labels, and the hori-

zontal coordinate is the true labels.
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the same  category  have  both  theme  clarity  and  back-
ground diversity.  Therefore,  benefiting  from combining
consistency  with  diversity  for  the  multi-view  subspace
clustering, our  method  has  obtained  the  superior  per-
formance to the latest methods.

 4. Ablation studies

M2VS

In order to validate the roles of the different com-
ponents  in  our  model,  we  have  removed  the  diversity
part  from our  model  and  tuned  the  parameters  to  get
the  best  performance.  The  HLR-  [12]  is  used  as
the “Baseline” method.

In Fig.4,  we  have  shown  the  results  of  ablation
study  on  the  Extended  YaleB  dataset.  The  proposed
method only  with  low-rank  part  has  achieved  the  bet-
ter  performance than the  baseline.  Benefiting from the
diversity part,  the  performance  has  continued  to  im-
prove in term of all metrics.
 

Baseline

Our method (low-rank part only)

Our method

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ACC F-score NMI AR R P 
Fig. 4. Ablation study  of  the  proposed  method  on  the  Ex-

tended YaleB dataset.
 

 5. Analysis of parameters sensitivity
λ β

λ β

λ β

In our method,  and  are two tuning parameters,
in  which  denotes  the  noise  level  and  is  a  balance
coefficient  between  the  diversity  regularizer  and  the
consistency  constraint  on  the  representation  tensor.
Specifically, the optimal values of  and  are determ-
ined by a exhausting grid searching in our experiments.
Through  carefully  parameters  tuning,  we  empirically
find the best parameters for each dataset, just as shown
in Tables 3–8.

λ β

λ

λ

λ

β

For easily understanding, we have shown the eval-
uation process  on Extended YaleB dataset in Fig.5.  In
this  figure,  the  parameters  and  are  changed  from
0.0021 to 0.004 and from 0.02 to 0.4 with steps 0.0001
and  0.02,  respectively.  The  corresponding  values  of
ACC and NMI are  recorded.  It  is  noteworthy to  men-
tion that the choice of  may have a greater impact for
the final scores. When the value of  changed from 0.0021
to 0.004,  the  final  performances  have  obvious  fluctu-
ations.  In  contrast,  when  the  value  of  is  fixed  while
the values of  are changed from 0.02 to 0.4,  the final
performances fluctuate in a small range.
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λ βFig. 5. Impact of different parameters (  and ) for accur-

acy  metrics  (ACC  and  NMI)  on  Extended  YaleB
dataset.

 

 6. Analysis of computational complexity

E H
E O (dNV ) V

d

G

N × V ×N

N N × V

N ≥ V

O
(
2N2V log(N) +N2V 2

)

Since the inverse matrices can be calculated in ad-
vance,  the  computational  cost  of  Algorithm  2  mainly
depends  on  the  updating  of  and . For  each  itera-
tion  in  updating ,  the  total  cost  is  for 
views. Here, we use  to denote the maximal dimension
of data towards all views. To update , we need calcu-
late  in  advance  several  preparatory  values,  including
both 3D FFT and IFFT values for a  tensor,
and  number  of  SVD values  for  the  matrices
( )  under  the  Fourier  domain.  The  computation
cost is  in each iteration.

O
(
N3

)
t O

(
N3

)
+

O
(
t(2N2V log(N) +N2V 2

)
N V

Finally, we can obtain the total computational cost
in Algorithm 2 by comprehensively integrating both the
spectral  clustering  cost  (e.g., ))  and  the  iterati-
on number ( ) together, which can be written as 

. Here,  and  denote the
sample amount and view number respectively.

 7. Analysis of algorithm convergence
Theorem  2  in  Section  IV  ensures  the  convergence

of  our  algorithm.  Moreover,  the  reconstruction  error
(RE) as well as match error (ME) are defined as
 

RE =
1

V

V∑
v=1

∥∥∥X(v) −X(v)(Z(v) +D(v))− E(v)
∥∥∥
∞

(21)
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ME =
1

V

V∑
v=1

∥∥∥Z(v) −H(v)
∥∥∥
∞

(22)

In Fig.6, we plot the convergence speed in terms of
both RE and ME according to different iteration steps.
The stopping criterion of our method has been given in
Algorithm 2. If it is satisfied, the iterations are stopped.
To  demonstrate  convergence  speed  in  a  more  concise
manner,  we select  the  most  representative  convergence
curves in  Extended  YaleB  dataset.  As  shown,  our  al-
gorithm  generally  converges  quickly  with  a  number  of
iterations from the Fig.6.
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Fig. 6. Convergence curves of our method with the RE and

ME vs. iterations on Extended YaleB dataset.
 

 V. Conclusions
In  the  paper,  we  propose  a  new  method  for  MSC

problem. Based on consensus and complementary prin-
ciples, a self-representation of multi-view data is decom-
posed into  consensus  part  and  diverse  part.  For  con-
sensus part, we propose to use the tensor adaptive log-
determinant regularization term (TALR) as the surrog-
ate of the tensorial multi-rank. It can reduce the over-
penalization for large singular values in Fourier domain
and improves the clustering accuracy by a large margin.
For diverse part, we utilize a view-specific sparsity reg-
ularization  to  explore  the  inherent  diversity  in  each
view. We  have  deduced  an  optimal  closed-form  solu-
tion  for  the  tensor  non-convex  minimization  problem.
Mathematically, we have proven the convergence of the
whole algorithm.  Extensive  evaluations  on  six  repres-
entative datasets  show that  our  performance  is  superi-
or to the eleven latest convex or non-convex methods.

 Appendix A. Proof of Theorem 1

Let us consider the optimization problem as follows:
 

argmin
X

τ∥X∥TALR +
1

2
∥X − Y∥2F (A-1)

f(X ) = τ∥X∥TALR + 1
2
∥X − Y∥2F

f(X )

We  denote .  According  to  the

definition  of  t-product,  in  the  Fourier  domain,  can  be  re-writ-
ten as following:

 

f̂(X̂ ) = τ∥ bdiag(X̂ )∥TALR +
1

2
∥ bdiag(X̂ − Ŷ)∥2F

=

k3∑
j=1

(
τ log det(I + γX̂ (j)) +

1

2
∥X̂ (j) − Ŷ(j)∥2F

)
(A-2)

X̂ ∗ f̂(X̂ ) X ∗

X ∗ = ifft(X̂ ∗, [], 3)

X̂ (j)(1 ≤ j ≤ k3) X̂

If  minimize ,  the  optimal  solution  of  (A-1)  can  be
obtained through inverse FFT: . Since the minim-
ization  problem is  separable,  we  can  solve  it  slice  by  slice.  Without
loss  of  generality,  for  each  frontal  slice  of ,  we
just need to consider the following problem:
 

argmin
X̂ (j)

τ log det(I + γX̂ (j)) +
1

2
∥X̂ (j) − Ŷ(j)∥2F (A-3)

Y Y = U ∗ Dy ∗ VT k3

Ŷ(j) = Û(j)D̂(j)
y (V̂(j))T(1 ≤ j ≤ k3)

Suppose  has  the  t-SVD: .  We  obtain 
blocks  matrix  SVD:  in  the

Fourier domain. Equation (A-3) equals to
 

argmin
D̂x(i,i,j)

τ log(γD̂x(i, i, j) + 1) +
1

2
(D̂x(i, i, j)− D̂y(i, i, j))

2 (A-4)

D̂x(i, i, j) = σLet , we consider the following smooth function:
 

g(σ) = τ log(γσ + 1) +
1

2
(σ − D̂y(i, i, j))

2 (A-5)

The first-order necessary optimal condition is
 

g′(σ) =
τ

γσ + 1
+ σ − D̂y(i, i, j) = 0 (A-6)

which is equivalent to
 

σ2 +

(
1

γ
− D̂y(i, i, j)

)
σ +

1

γ
(τ − D̂y(i, i, j)) = 0 (A-7)

∆ =
(

1
γ
− D̂y(i, i, j)

)2
− 4

γ

(
τ − D̂y(i, i, j)

)
D̂x(i, i, j)

Let ,  the  optimal

solution of  can be denoted as
 

D̂x(i, i, j) =


(
D̂y(i,i,j)−

1

γ

)
+
√
∆

2
, ∆ ≥ 0

0, ∆ < 0

(A-8)

X ∗ = U ∗ Dx ∗ VT

Consequently,  the  minimization  problem  of  (A-1)  is  obtained
through . The proof is completed.

 Appendix B. Proof of Theorem 2

Pt = {Z(v)t , E(v)t , D(v)t ,Ht},Yt = {Y (v)t ,Wt}, 1 ≤ t <

∞

Let 
. Through the iterative scheme of Algorithm 2, we have

 

min
P

L
(
Pt,Yt, µt, ρt

)
= L

(
Pt+1,Yt, µt, ρt

)
(B-1)

It yields
 

L
(
Pt+1,Yt, µt, ρt

)
≤ L

(
Pt,Yt, µt, ρt

)
(B-2)

∆t = X(v) −X(v)(Z(v)t +D(v)t )−

E(v)t

For  convenience,  suppose 
. From (8), we know 
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L
(
Pt,Yt, µt, ρt

)
= L

(
Pt,Yt−1, µt−1, ρt−1

)
+

V∑
v=1

(
⟨Y (v)t ,∆t⟩+

µt

2

∥∥∆t
∥∥2
F

)

−
V∑

v=1

(
⟨Y (v)t−1

,∆t⟩+
µt−1

2

∥∥∆t
∥∥2
F

)
+ ⟨Wt,Zt −Ht⟩

+
ρt

2

∥∥Zt −Ht
∥∥2
F − ⟨Wt−1,Zt −Ht⟩ −

ρt−1

2

∥∥Zt −Ht
∥∥2
F

= L
(
Pt,Yt−1, µt−1, ρt−1

)
+

V∑
v=1

(
⟨Y (v)t − Y (v)t−1

,∆t⟩+
µt − µt−1

2

∥∥∆t
∥∥2
F

)

+ ⟨Wt −Wt−1,Zt −Ht⟩+
ρt − ρt−1

2

∥∥Zt −Ht
∥∥2
F (B-3)

In addition, from equations (19) and (20), we can notice that
 

∆t =
Y (v)t − Y (v)t−1

µt−1
, Zt −Ht =

Wt −Wt−1

ρt−1
(B-4)

Then
 

L
(
Pt,Yt, µt, ρt

)
= L

(
Pt,Yt−1, µt−1, ρt−1

)
+

V∑
v=1

(
1

µt−1

∥∥∥Y (v)t−Y (v)t−1
∥∥∥2
F
+

µt−µt−1

2(µt−1)2

∥∥∥Y (v)t−Y (v)t−1
∥∥∥2
F

)

+
1

ρt−1

∥∥Wt −Wt−1
∥∥2
F +

ρt − ρt−1

2(ρt−1)2

∥∥Wt −Wt−1
∥∥2
F

= L
(
Pt,Yt−1, µt−1, ρt−1

)
+

µt + µt−1

2(µt−1)2

V∑
v=1

∥∥∥Y (v)t − Y (v)t−1
∥∥∥2
F

+
ρt + ρt−1

2(ρt−1)2

∥∥Wt −Wt−1
∥∥2
F (B-5)

Combined with (B-2), we get
 

L
(
Pt+1,Yt, µt, ρt

)
≤ L

(
Pt,Yt−1, µt−1, ρt−1

)
+

µt+µt−1

2(µt−1)2

V∑
v=1

∥∥∥Y (v)t−Y (v)t−1
∥∥∥2
F
+

ρt+ρt−1

2(ρt−1)2

∥∥Wt−Wt−1
∥∥2
F

(B-6)

tIterating the inequality in (B-6) for  times, we can arrive at
 

L
(
Pt+1,Yt, µt, ρt

)
≤ L

(
P1,Y0, µ0, ρ0

)
+

t∑
j=1

(
µj + µj−1

2(µj−1)2

V∑
v=1

∥∥∥Y (v)j − Y (v)j−1
∥∥∥2
F

+
ρj + ρj−1

2(ρj−1)2

∥∥Wj −Wj−1
∥∥2
F

)
(B-7)

{Y (v)t ,Wt} µt, ρt∑∞
t=0

µt+1

(µt)2
< ∞

∑∞
t=0

ρt+1

(ρt)2
< ∞ L

(
Pt+1,Yt, µt, ρt

)Here,  is  bounded,  is  non-decreasing,  and

, ,  so  is

bounded.
1

2(µt−1)

∑V
v=1 ∥Y (v)t−1∥2F + 1

2(ρt−1)
∥Wt−1∥2FAdding  to  the

augmented Lagrangian function (8), and considering (B-4), we can re-
write (8) as 

∥Ht∥TALR + λ∥Et∥2,1 + β

V∑
v=1

∥∥∥D(v)t
∥∥∥2
F

= L
(
Z(v)t , E(v)t , D(v)t ,Ht, Y (v)t−1

,Wt−1, µt−1, ρt−1
)

−
V∑

v=1

(
⟨Y (v)t−1

,∆t⟩+
µt−1

2

∥∥∆t
∥∥2
F

)

− ⟨Wt−1,Zt −Ht⟩ −
ρt−1

2

∥∥Zt −Ht
∥∥2
F

= L
(
Z(v)t , E(v)t , D(v)t ,Ht, Y (v)t−1

,Wt−1, µt−1, ρt−1
)

−
1

2(µt−1)

V∑
v=1

∥∥∥Y (v)t
∥∥∥2
F
−

1

2(ρt−1)

∥∥∥W(v)t
∥∥∥2
F

(B-8)

{E(v)t , D(v)t ,Ht}

Zt = Ht + Wt−Wt−1

ρt−1 {Z(v)t}

Because the right side of (B-8) is bounded and each term on the
left side is nonnegative, each term on the left side must be bounded.
It indicates that  are all bounded. Simultaneously,

since , we can deduce that  is bounded.

The proof of Theorem 2.1) is completed.
{Z(v)t , E(v)t , D(v)t ,Ht, Y (v)t ,Wt}

{Z(v)t , E(v)t , D(v)t ,Ht, Y (v)t ,Wt} {Z(v)∗ , E(v)∗ ,

D(v)∗ ,H∗, Y (v)∗ ,W∗} Z∗=Φ(Z(1)∗ ,

Z(2)∗ , . . . , Z(v)∗ ) X(v)=X(v)(Z(v)∗+

D(v)∗ ) + E(v)∗ ,H∗ = Z∗

As  aforementioned,  is  a
bounded  sequence.  According  to  the  Bolzano-Weierstrass  Theorem,
this  sequence  must  have  at  least  one  cluster  point.  We assume that

 converges  to 
 without loss of generality, and 

. According to (B-8), we have 
.
HIn the subproblem for , the first-order optimal condition of (16)

is equivalent to
 

∇H (∥H∥TALR)|Ht+1 −Wt+1 + ρt
(
Ht+1 −Zt+1

)
= 0 (B-9)

Then we have
 

∇H (∥H∥TALR)|H∗ = W∗ (B-10)

Similarly, we can easily verify that
 

∇Z(v)L
(
Z(v), E(v), D(v),H, Y (v),W

)∣∣∣
Z(v)∗

= −X(v)TY (v)∗ +W (v)∗ = 0 (B-11)
 

∇E(v)L
(
Z(v), E(v), D(v),H, Y (v),W

)∣∣∣
E(v)∗

= λ ∇E(v) (∥E∥2,1)
∣∣
E(v)∗ − Y (v)∗ = 0 (B-12)

and
 

∇D(v)L
(
Z(v), E(v), D(v),H, Y (v),W

)∣∣∣
D(v)∗

= 2βD(v)∗ −X(v)TY (v)∗ = 0 (B-13)

{Z(v)∗ , E(v)∗ , D(v)∗ ,H∗, Y (v)∗ ,W∗}
{Z(v)t , E(v)t , D(v)t ,Ht, Y (v)t ,Wt}

Now we observe that  sat-
isfies the KKT conditions of .

{Z(v)∗ , E(v)∗ , D(v)∗ ,H∗}Therefore,  is a stationary KKT point
of the optimization problem (8). The proof is completed.
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