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   Abstract — This  paper  investigates  the  multi-sensor
fused  localization  of  moving  targets  in  a  wireless  sensor
network. Each ultra-wide band (UWB) sensor is assigned
a stability  weight  according  to  its  survival  time  predic-
tion.  The  measurement  accuracy  of  each  sensor  into  the
constraints of the weight distribution based on the inter-
active  multi-model  method,  a  double  weight  distribution
algorithm that  considers  measurement  accuracy  and  sta-
bility is proposed. Based on the double weight algorithm,
the  measurement  information  of  each  UWB  sensor,  the
inertial  measurement  unit  (IMU)-based  state  vector  and
the  UWB-based  state  vector  by  federated  Kalman  filter
are integrated  to  realize  the  correction  of  the  IMU.  Fi-
nally,  several  numerical  simulations  are  performed  to
show that  the  proposed  algorithm  can  effectively  sup-
press  the  measurement  dropout  when  tracking  moving
targets in a wireless sensor network, and it can also auto-
matically  adjust  the  weight  of  each  sensor  based  on  the
measurement error covariance to improve the tracking ac-
curacy.

   Key words — Wireless  sensor  networks, Interacting

multiple model, Information fusion, Object tracking.

 I. Introduction
People’s  demand  for  precise  positioning  has  been

dramatically increasing due to the entrance of more and
more smart products into their lives. As the most com-
monly  used  positioning  method  [1],  global  positioning
system (GPS) is favored by its high maturity, high ac-
curacy, and strong robustness, and consequently, it has
been widely used in fields such as navigation and intelli-
gent driving. However, it fails to provide effective posi-
tioning  function  in  most  indoor  scenarios,  such  as
household  services,  factory  logistics,  cave  exploration,
and counter-terrorism. In this context, it is of great sig-

nificance  to  develop  high-precision  indoor  positioning
technology.

Due  to  its  mature  technology  and  high  reliability,
the  inertial  measurement  unit  (IMU)  is  capable  of
measuring robot attitude without relying on external in-
formation.  Therefore,  it  is  a  commonly adopted indoor
positioning  sensor.  However,  this  system  is  vulnerable
to  error  accumulation  over  time,  and  it  is  not  able  to
self-calibrate the accumulative error.  As a solution,  in-
ternal and external sensors are integrated for the estim-
ation  of  the  robot's  attitude  and  position  [2]–[4].  In
these systems,  the  accurate  attitude  and  position  in-
formation are usually obtained by the sensors mounted
inside the object (internal sensors), and external sensors
in the environment are used to further calibrate this in-
formation.

Positioning  technologies  based  on  remote  wireless
sensors have been widely used in indoor positioning due
to the improvement of  computing performance,  includ-
ing WiFi [5],  ZIGBEE [6],  infrared [7],  [8],  VICON [9],
ultra-wide band (UWB) [10], [11], and so on. However,
it  is  generally  impossible  to  cover  a  large  indoor  space
with  a  single  sensor  owing  to  the  limited  coverage  of
current wireless sensors and the inevitable influences of
multipath effects and obstacles. Therefore, a large num-
ber  of  sensors,  which  work  as  nodes,  are  required  to
form a network that can accurately locate objects in a
large indoor  space.  Information,  as  needed,  is  first  col-
lected by these sensors, then transmitted to the aggreg-
ation node  that  connects  the  external  client,  and  fi-
nally passed to the client after processing. This kind of
network,  which  has  been  referred  to  as  the  wireless
sensor network (WSN), can well  control  the density of
deployed  sensors  according  to  actual  needs,  and  all 
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nodes have  equal  status.  Therefore,  the  basic  position-
ing function of  WSN will  not  be influenced by failures
of individual nodes, thereby presenting strong survivab-
ility and robustness. Accordingly, WSN has been widely
used in military affairs, agriculture, environmental mon-
itoring, and underground operations [12]. Therefore, the
research of  dynamic  target  tracking  and  state  estima-
tion algorithms  in  WSN  has  become  one  of  the  hot-
spots.

The current  WSN-based  positioning  can  be  di-
vided into two categories: static positioning and dynam-
ic positioning, with the former much more mature than
the latter. Specifically, it is challenging to position and
track dynamic targets due to their complexity and un-
certainty.  As  a  countermeasure,  WSN  relies  on  the
wireless communication  and  data  processing  capabilit-
ies of sensors to track dynamic targets. Moreover, it is
possible to continuously estimate the states of dynamic
targets and thus dynamically monitor them by collabor-
ation among sensor nodes, which sense the dynamic tar-
gets through processing their  dynamic data collections.
However,  inherent  limitations  exist  in  the  monitoring,
calculation,  and  handover  of  sensor  nodes,  when  it
comes  to  dynamic  targets  with  more  complex  motion
modes. Therefore, it is necessary to further research and
design  the  dynamic  target  tracking  method  in  a  WSN
based  on  the  static  target  monitoring  algorithm  to
achieve  high-precision  tracking  and  state  estimation  of
dynamic targets [13]–[15].

Based on the above reasons, dynamic target track-
ing in a WSN has been extensively investigated. For in-
stance, Dehnavi et al. [16] used extended Kalman filter
(EKF) and unsented Kalman filter (UKF) to filter the
noise  in  underwater  communication,  and  they  realized
the three-dimensional dynamic target tracking based on
the  underwater  acoustic  wireless  sensor  network
(UAWSN). Ran et al. [17] improved the performance of
multi-target tracking  in  a  WSN  and  reduced  the  en-
ergy consumption  of  the  system  based  on  the  con-
straint  conditions  (e.g.  energy,  measurement  distance,
and  communication  limitation)  and  the  latent  game
method.  Similarly,  Tikhe et  al.  [18]  improved  the
particle filter (PF) algorithm based on the prior inform-
ation  and  the  constraints  of  node  coverage,  which
helped  increase  the  coverage  and  optimize  the  energy
consumption of the system. All these methods are based
on  the  filtering  method  to  achieve  dynamic  target
tracking, and they rely on the prior information of the
system. However,  prior  information  might  be  inaccur-
ate  and  even  lost  during  the  handovers  among  sensor
nodes  due  to  the  differences  in  the  performance  and
contribution of each sensor node in a WSN. Li et al. [19]
performs analysis and develops a solution for locating a

moving source using time difference of arrival (TDOA)
and frequency  difference  of  arrival  (FDOA)  measure-
ments with  the  use  of  a  calibration  emitter.  Accord-
ingly, Harsha et al. [20] studied the observed life time in
a WSN and managed to  prolong the  average  measure-
ment time in the system based on the clustering meth-
od, which reduced the number of sensor handovers and
effectively  suppressed  the  impact  of  prior  information
dropout. This kind of idea generally originates from the
guidance handover method in the field of multi-station
relay navigation [21]–[23], and it is favored by its relat-
ively mature research foundation while disfavored by its
failure  to  fully  adapt  to  the  sensor  handover  in  the
WSN system.

Despite  the  progress,  all  the  above  studies  have
their limitations. For example, the problem of prior in-
formation dropout  was  not  solved,  although  the  per-
formance  of  dynamic  target  tracking  in  a  WSN  had
been improved [16]–[18]. Harsha et al. [20] succeeded to
alleviate  the  prior  information  dropout  based  on  the
idea  of  guidance  handover,  but  they  did  not  consider
the influence of the sensor's measurement accuracy.

Given the above phenomena, this study aims to de-
velop a method to suppress the divergence of tradition-
al algorithms  caused  by  the  dropout  of  prior  informa-
tion  during  sensor  handover  in  a  WSN,  which  is
achieved by the following procedures:

• The tracking error caused by the dropout of pri-
or information is  reduced by designing a weight distri-
bution algorithm based on the observed life time of the
node;

• The accuracy of  dynamic target tracking is  im-
proved by adopting the interactive multi-model (IMM)
method and developing the weight distribution method
based on the measurement accuracy of sensor nodes;

•  Combine  the  weights  of  observed  life  time  and
the measurement accuracy to realize the high-precision
and stable tracking of dynamic targets in a WSN.

By the  above  improvements,  concept  of  node  sur-
vival  time  in  relay  navigation  is  introduced,  and  it  is
combined with the method of assigning weight based on
accuracy in traditional WSN tracking algorithm, we ob-
tain a high-precision WSN-based dynamic target track-
ing  algorithm that  can  effectively  suppress  the  sudden
disturbance caused by the dropout of prior information,
which is the main contribution of this article.

Numerical simulation will be performed at the end
of this article to verify the effectiveness of the proposed
algorithm, whose overall structure is illustrated in Fig.1.
As shown in the figure, in this study, we first assign the
stability weights of the UWB sensors based on the idea
of  relay  navigation;  then  assign  the  accuracy  weights
based  on  the  measurement  error  covariance  matrix  of
the UWB sensors; finally, we normalize the two weights
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based  on  the  IMM method  to  achieve  a  high-precision
and high-stability tracking of moving targets in WSNs.
And  based  on  our  previous  work,  under  the  federated
Kalman filter  (FKF)  framework,  the  WSN  measure-
ment  information  is  fused  with  IMU  to  correction  it
mounted  on  the  moving  body,  which  further  improves
the accuracy and robustness of tracking.
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Fig. 1. The flow chart of the algorithm.

 

The rest of this article is organized as follows. Sec-
tion II illustrates how dynamic and measurement mod-
els  of  the  system  are  established,  analyzes  the  reasons
for  the  errors  during  the  sensor  handover  in  a  WSN,
and formulates the main research contents based on the
analysis results. In Section III, a stability weight distri-
bution algorithm is developed based on the observed life
time of  sensor  nodes.  Section  IV  takes  into  considera-
tion the measurement accuracy of the sensor node and
develops  a  weight  distribution  method  that  combines
measurement  stability  and  measurement  accuracy  to

achieve  high-precision,  high-stability  dynamic  target
tracking. A  numerical  simulation  is  performed  in  Sec-
tion V to verify the proposed algorithm. Finally, conclu-
sions are given in Section VI.

 II. System Modeling and Problem
Description

 1. System model
The  nonlinear  discrete-time  system  considered  in

this article can be illustrated as follows:
 

Xk+1 = A(Xk) + ωk (1)
 

Xk = [x y v θ φ]T (2)

Xk Xk+1 k

k + 1 x y

v θ φ

ωk

A(·)

where  and  are are the state vectors at time 
and ,  and  are  the  coordinates  of  the  moving
body,  is  the speed,  is  the yaw angel,  is  the yaw
angel changement,  is the process noise of the system,
and  is a  nonlinear  time  update,  which  can  be  ex-
pressed as formula (3) since the movement model stud-
ied  in  this  article  is  a  constant  turn  rate  and  velocity
(CTRV) model:
 

A (Xk) = A
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v
θ
φ




=
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θ
φ
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v

φ
(sin(θ + φT )− sin(θ))

v

φ
(− cos(θ + φT ) + cos(θ))

0
φT
0


(3)

Twhere  is the sampling time. The measurement model
of the system is as follows:
 

ZUWB
ik = HUWBXk + νUWB

ik

=

[
1 0 0 0 0
0 1 0 0 0

]
Xk + νUWB

k (4)

 

ZIMU
k = HIMUXk + νIMU

k

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Xk + νIMU
k (5)

ZUWB
ik

ZIMU

HUWB H IMU

νUWB νIMU

where  is  the  measurement  vector  of  each  UWB
sensor,  and  is  the  measurement  vector  of  IMU,

 and  are respectively  their  state  measure-
ment  matrices,  and  are independent  meas-
urement noises with Gaussian distributions.
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The  variance  of  measurement  noise  and  process
noise is
 

E
[
wkw

T
k

]
= Qk

E
[
υIMU
k υIMU

k

T
]
= RIMU

k

E
[
υUWB
k υUWB

k

T
]
= RUWB

k (6)

Qk RIMU
k

RUWB
k

where  is  the  covariance  of  process  noise;  and
 are the covariances of measurement noise of IMU

and UWB sensors.

XUWB
k+1

X IMU
k+1

When  the  tracking  starts,  in  order  to  obtain  the
system  state  estimation  and  error  covariance  at  the
next  moment,  the  UWB-based  state  vector  and
IMU-based state vector  are estimated by nonlin-
ear Kalman filter. These two state vectors:
 

Pk+1 = (P IMU−1
k+1 + PUWB−1

k+1 )−1 (7)
 

Xk+1 = Pk+1(P
IMU−1
k+1 X IMU

k+1 + PUWB−1
k+1 XUWB

k+1 ) (8)

 2. Problem description

i

j

i j

Tracking  and  positioning  of  moving  targets  in  a
WSN  require  collaboration  among  multiple  sensors,  in
the form of either relay or coordination. When the mov-
ing target leaves the measurement range of sensor  and
enters the measurement range of sensor , there is a re-
lationship of relay between the two sensors. In contrast,
when the moving target is in the measurement range of
sensors  and  at the same time, there is a coordinated
relationship  between  the  two  sensors.  Although  relay
and  coordination  usually  exist  at  the  same  time,  this
study discusses them separately to simplify the scientif-
ic problem.

i

i

i

i

j

j

When  the  two  sensors  are  in  a  relay  relationship,
the error in tracking and positioning moving targets in
a  WSN  could  be  increased,  which  sometimes  even
causes the filter to diverge in severe cases. Specifically,
when the  moving target  travels  for  a  long time within
the  measurement  range  of  sensor ,  a  large  amount  of
prior information about sensor  would be accumulated
in the filter.  However, the measurement information of
sensor  would  disappear  when  the  moving  target
travels out of the measurement range of sensor . In this
context, the  prior  information  in  the  filter  is  mis-
matched  with  the  actual  measurement  information,
leading to  serious  errors  in  filtering.  Similarly,  mis-
matching  occurs  when  the  moving  target  enters  the
measurement range of sensor , because there is no cor-
responding prior  information  in  the  filter  to  the  meas-
urement information provided by sensor .

When the  two  sensors  are  in  a  coordinated  rela-
tionship,  there  might  be  differences  between  them  in
observing  the  same  moving  target  due  to  the  presence

of  measurement  noises  that  may  arise  from  multipath
effects, distance,  electromagnetic  interference,  compon-
ent errors, and so on. Information conflicts may occur if
the  observed  information  with  certain  differences  from
two sensors  cannot  be efficiently  fused.  This  can bring
about  computing resource  waste  to  the  system,  and in
severe cases may cause the filter to diverge.

To  conclude,  the  main  issues  this  study  wants  to
address are:

• How to effectively suppress the influence caused
by measurement information dropout when the sensors
are in a relay relationship?

• How to  efficiently  fuse  the  information  of  each
sensor when  the  sensors  are  in  a  coordinated  relation-
ship?

Accordingly, the solutions this study adopts are:
•  Treat  measurement  information  dropout  as  a

sudden disturbance of the system, predict the occurring
moment of  this  sudden  disturbance  based  on  the  mo-
tion model of the moving target, and assign weights ac-
cording  to  the  predicted  moment,  thereby  suppressing
the impact of measurement information dropout;

•  Regard  each  sensor  as  a  separate  measurement
model to efficiently fuse different measurement informa-
tion based on the idea of the interactive multiple mod-
el (IMM), which has been positively demonstrated as an
effective multi-information fusion method;

•  Design  an  information  fusion  algorithm  that
takes  into  account  both  sensor  relay  and coordination,
so  as  to  improve  the  overall  tracking  precision  of  the
system and reduce the positioning error.

In  this  article,  we  adopted  the  DUKF  algorithm
proposed in previous work to estimate the state of  the
moving body.  Compared  with  traditional  nonlinear  fil-
tering algorithms (such as EKF, UKF, etc.), the DCKF
has  advantages  like  low computational  complexity  and
strong robustness. More specific theoretical analysis and
simulation  verification  can  be  found  in  literature  [24],
which will not be repeated here.

 III. Measurement Stability Improve-
ment via Survival Time Prediction

 1. Prediction of the observed life time
Based  on  the  motion  model  of  the  moving  object

and Markov chain, Duan [25] predicted the motion path
of  the  moving  object  and  calculated  the  routing  life
time between each node according to this predicted mo-
tion path. Eventually, they determined the communica-
tion  topology  based  on  the  length  of  the  routing  life
time  to  realize  high-stability  communication  between
moving bodies. This method is capable of effectively en-
suring  the  stability  of  the  communication  between  the
moving object and the base station in the multi-station
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relay navigation. Similarly, it can also be applied to the
dynamic tracking of the moving object in a WSN so as
to predict the measurement time of the sensor. Specific
procedures are as follows:

iThe  coordinates  of  the -th  sensor  in  a  WSN  are
defined as
 

Xi
sensors = [ xi

s yis ] (9)

Given the CTRV model as shown in (3), it is feas-
ible to regard (7) as the nonlinear recursive formula of
an  array  and  rewrite  it  in  the  form  of  a  general  term
formula.  In  this  context,  formula  (8)  can  describe  the
state of the moving body at any time:
 

Xk =
[
xk yk υk θk φk

]T
=
[
x1 y1 υ1 θ1 φ1

]T

+

k−1∑
i=1



v1
φ1

(sin(θ1 + iφ1T )− sin(θ1 + iφ1T ))

v1
φ1

(− cos(θ1 + iφ1T ) + cos(θ1 + iφ1T ))

0
iφ1T
0


(10)

Extracting  the  position  information  in  (8)  yields
 

Xposition
k

=

[
xk

yk

]
=

[
x1

y1

]

+

k−1∑
i=1


v1
φ1

(sin(θ1+iφ1T )−sin(θ1+iφ1T ))

v1
φ1

(−cos(θ1+iφ1T )+cos(θ1+iφ1T ))


(11)

Based on (8) and (9), the following equation is es-
tablished:
 

ri =
√

(xi
s − xk) + (yis − yk) (12)

ri i iwhere  is  the -th  measurement  range  of  the -th
sensor.

i

k2 i

k (k < k2) ltik

Suppose the system predicts that the moving body
will go out of the measurement range of the -th sensor
at time  and the observed life time predicted by the -
th sensor at time  is ,  formula (12) can be
rewritten as
 

ri =
√

(xi
s − xk2

) + (yis − yk2
), k2 > k (13)

k2
k k2 ltik

Solution of (11) yields the value of . Then, based
on  and , we can get the value of :
 

ltik = k2 − k (14)

i k

Therefore, the observed life time between the mov-
ing body and the -th sensor at time  can be predicted
based on the motion model of the moving body.

 2. Distribution  of  measurement  stability
weights

k

ltik

As  has  been  mentioned  in  the  above  section,  we
predict  the  measurement  time  of  each  sensor  to  the
moving body at time  based on the method by Duan
[25].  The  communication  life  time  predicted  based  on
this method has been demonstrated to be capable of ef-
ficiently  judging  the  communication  stability  between
nodes and moving objects in a network with fixed com-
munication  nodes  [25],  [26].  In  this  study,  we  evaluate
the  measurement  stability  of  fixed  sensor  nodes  in  a
network to moving objects based on the same method.
Therefore,  it  is  believed that the observed life  time 
predicted in this study can also be effective in evaluat-
ing the measurement stability.

k

i

k

Assuming that the moving body at time  can be
observed by a total of -th sensors, the prediction mat-
rix of the observed life time of each sensor to the mov-
ing  body  at  time  can  be  obtained  according  to  the
method described in Section III.1:
 

ltk =
[
lt1k lt2k . . . ltik

]
(15)

k

Based on (13), we can assign the measurement sta-
bility weight of the sensor at the time :
 

ωik
stability =

ltik∑i

n=1
ltnk

(16)

ωik
stability

i k

where  is  the  measurement  stability  weight  of
the -th sensor to the moving body at time .

i

k ZUWB
ik

k

Considering  the  system  described  in  Section  II.1
and taking the UWB sensor as an example, we assume
that  the  measurement  of  the  moving  body  by  the -th
UWB sensor  at  time  is . Therefore,  the  meas-
urement  of  the  moving  body  by  the  UWB  sensor  at
time  can  be  obtained  based  on  the  stability  weight
calculated by (16):
 

ZUWB
k =

i∑
n=1

ωnk
stabilityZ

UWB
nk (17)

ZUWB
k

k

where  is the measurement of the moving body by
the UWB sensor after fusion at time .

 3. Specific steps  of  the stability  weight  dis-
tribution algorithm based on survival  time pre-
diction

Combining the methods described in Sections III.1
and  III.2,  we  can  obtain  an  algorithm  for  the  weight
distribution  of  sensors  based  on  the  observed  life  time
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of sensor nodes. This algorithm can effectively evaluate
the measurement stability of sensors in a WSN and as-
sign the weight of each sensor based on such stability.

k

In order to obtain the fused measurement informa-
tion of the sensor at time , the following steps of the
algorithm are implemented:

k

[ ZUWB
1k ZUWB

2k . . . ZUWB
ik ]

Step 1. At time , each sensor in the network ob-
serves  the  moving  body  to  generate  a  measurement
matrix ;

k

Step 2.  Position  information is  extracted from the
state information of the moving body at time ;

ltik
k

k

Step 3. The observed life time  of each sensor on
the  moving  body  at  time  is  sequentially  predicted
based  on  the  position  information  of  the  moving  body
at time  and formulas (13) and (14);

ωik
stability i

k

Step 4. The observed life time of each sensor on the
moving  body  is  introduced  into  (16)  to  calculate  the
measurement stability weight  of the -th sensor
at time ;

ZUWB
k

k

Step 5. The obtained measurement stability weight
is introduced  into  (17)  to  obtain  the  fused  measure-
ment  information  of  each  UWB  sensor  on  the
moving body at time .

ZUWB
k

XUWB
k PUWB

k

After obtaining  the  UWB-based  measurement  in-
formation , the state vector of the remote sensors
in a WSN,  and its  covariance matrix  can
be calculated  based  on  DCKF.  They  are  then  substi-
tuted  into  (7)  and  (8)  to  improve  the  accuracy  of  the
IMU.

Similar methods  can  be  also  applied  for  other  re-
mote sensors with similar structures, such as WiFi, son-
ar, infrared sensors, and laser sensors.

Consequently, the  weight  of  the  sensor  will  de-
crease as  the  possibility  of  measurement  dropout  in-
creases  when  the  proposed  algorithm  is  employed  to
track and  locate  the  moving  target  in  a  WSN.  There-
fore,  the  algorithm  is  able  to  effectively  suppress  the
disturbance  caused  by  frequent  changes  in  the  sensor
topology and improve  the  correcting  accuracy.  Specific
simulation  verification  will  be  presented  later  in  this
article.

 IV. IMM Based Double Weight
Algorithmz

 1. Analysis  of  the  fusion  method  based  on
measurement accuracy

As have been previously introduced, some methods
can effectively improve the stability of measurement by
suppressing the extra disturbance caused by sensor han-
dover  in  the  field  of  multi-station  relay  navigation.
However,  multi-station  relay  navigation  is  generally
used in the aviation field where the experimental scene

is  wide,  the  moving  body  is  rarely  shielded,  and  the
communication  and  detection  range  is  only  limited  by
distance.  In  this  environment,  all  nodes  in  the  multi-
station relay navigation are  generally  assumed to  have
the same communication and navigation quality [25], [26].

In  contrast,  many  factors  can  affect  the  WSN
multi-sensor  coordinated  tracking  and  positioning  of
moving  objects  in  an  indoor  environment,  including
multipath effects, electromagnetic interference, compon-
ent errors, and other reasons. Consequently, each sensor
may have  different  accuracy  in  measuring  moving  ob-
jects. Therefore,  it  is  crucial  to  consider  the  measure-
ment  accuracy  of  the  sensor  when  performing  multi-
sensor information fusion in a WSN.

There  have  been  several  fusion  methods  of  multi-
sensor  tracking  and  positioning,  such  as  simple  fusion
(SF),  weight  covariance  fusion  (WCF),  and covariance
intersection (CI). SF is not suitable for this research be-
cause it  is  vulnerable  to system divergence when there
are  many  fusion  projects  and  much  process  noise.  In
comparison, WCF and CI have good stability but their
accuracy is greatly affected by the prior information. In
other words, the fusion accuracy of WCF and CI will be
affected  and  the  calculation  load  will  be  very  large
when the  prior  information  of  the  system  is  not  suffi-
cient.

The main problem in the multi-sensor coordinated
tracking  is  the  insufficiency  of  prior  information  for
state  estimation  due  to  frequent  handover  of  sensors.
Meanwhile, the measurement error and variance of each
sensor  have  been  determined  in  advance.  Accordingly,
this study introduces the IMM to address this problem.
The basic idea is to combine the prior information (e.g.,
the distribution and variance of  measurement errors of
each  sensor)  into  a  model  set.  The  model  set  includes
all currently  activated  sensors  that  perform  independ-
ent  filtering.  Eventually,  the  filtered  output  of  each
sub-models are fused based on the optimization theory.
Since the  measurement  model  with  a  smaller  measure-
ment  error  can  more  accurate  reflect  the  real  state  of
the moving body, the IMM method has the potential of
globally optimal estimation [27]–[29].

The following section will present a detailed intro-
duction of  the  measurement  accuracy  weight  distribu-
tion algorithm based on IMM.

 2. Measurement  accuracy  weight  based  on
IMM

k + 1

k

In general,  the  weight  of  the  measurement  accur-
acy  at  time  can  be  calculated  based  on  that  at
time  of the system described in Section II.1. First, the
state transition matrix of all sensors is supposed as 

798 Chinese Journal of Electronics 2023



p =


p11 p12 . . . p1i

p21
. . .

...
. . .

pi1 pii

 (18)

pijwhere  is the state transition probability, that is, the
probability of switching from one sensor to another.

k µ = [ µ1
k µ2

k . . . µi
k ]

Suppose that the measurement accuracy weight of
the  sensor  at  time  is .  The
normalized  function  can  be  calculated  based  on  the
weight and the state transition matrix in (19):
 

c̄i =

i∑
n=1

pniµ
n
k (19)

n i

Then,  the  mixing  probability  that  corresponds  to
switching from sensor -th to sensor -th based on the
normalized function can be obtained:
 

µni
k|k =

pnimun
k

c̄i
(20)

Subsequently,  the  mixed  state  estimation  and
mixed covariance estimation based on the mixed prob-
ability can be acquired:
 

X̂i
k|k =

i∑
n=1

X̂n
k|kµ

ni
k|k (21)

 

P i
k/k =

i∑
n=1

µni
k|k[P

n
k|k + (X̂n

k|k − X̂i
k|k)(X̂

n
k|k − X̂i

k|k)
T
]

(22)

X̂i
k+1

P̂ i
k+1 k + 1

X̂i
k|k P̂ i

k|k

The  mixed  state  estimation  and  the  mixed
covariance  estimation  at  time  can be  ob-
tained by introducing  and  as the initial state
and covariance into the Kalman filter. In this study, the
derivative  cubature  Kalman  filter  (DCKF)  algorithm
proposed by He et al. [24] is adopted.

k + 1

Then, the updated likelihood function is calculated
based on the mixed state estimation and mixed covari-
ance estimation at time  as well as the new meas-
urement information:
 

Λi
k+1 =

exp

{
−
νTi S

i
k+1ν

T
i

2

}
√
(2π)

n ∣∣Si
k+1

∣∣ (23)

νi i Si
k+1

i

k + 1

where  is  the residual  of  the -th sensor,  and  is
the  innovation  covariance  of  the -th  sensor  at  time

.
k + 1The  probability  at  time  can  be  obtained  by

substituting equations (19) and (23) into (24):

 

ω
i|k+1
accuracy =

Λi
k+1c̄i

c
(24)

c c

c =
i∑

n=1
Λn
k+1c̄n

where  is the normalization constant, and  can be ex-

pressed as .

k + 1

The estimated system state and covariance at time
 can  be  calculated  by  substituting  equation  (24)

into (25) and (26):
 

X̂k+1 =

i∑
n=1

ωn|k+1
accuracyX̂

n
k+1 (25)

 

P̂k+1

=

i∑
n=1

ωn|k+1
accuracy[P̂

n
k+1 + (X̂n

k+1 − X̂k+1)(X̂
n
k+1 − X̂k+1)

T
]

(26)

 3. Double weight algorithm
Efforts  have  been  made  in  Sections  III.2  and IV.2

to  develop  the  method  for  the  calculation  of  predicted
stability  weights  based  on  the  observed  life  time  and
that  of  predicted  accuracy  weights  based  on  IMM.
These two weights are combined in this section to pro-
pose  a double  weight distribution algorithm that takes
into  account  both  measurement  accuracy  and  stability
for tracking and IMU correcting of moving targets in a
WSN.

Algorithm 1　Procedure of the double weight algorithm

XUWB
k , PUWB

k , Xi
sensors, Z

UWB
ik , ZIMU

k , pInput: 

XUWB
k+1 , PUWB

k+1Output: 

Xposition
k1: Extract  the  general  term  formula  of the  posi-

tion information in the state  vector  based on (10)  and
(11);

Xposition
k ltik2: Introduce  into (13) to calculate ;

ltik
ωik
stability

3: Introduce  into (16) to calculate the stability weight
;

ωik
stability4: Set the stability weight  of each sensor as the ini-

tial model probability;
µi
k p
c̄i

5: Introduce  and  into (16) to calculate the normaliza-
tion function ;

XUWB
k , PUWB

k , ZUWB
ik

k + 1

6: Introduce  into  the  DCKF  to  obtain
the estimated state and covariance based on the meas-
urement of each sensor at time ;

vik
Si
k+1

7: Obtain the residual error  and innovation covariance
 at the same time from the DCKF;

vik Si
k+1

Λn
k+1

8: Introduce  and  into (23) to get the updated like-
lihood function ;

c =
∑i

n=1 Λ
n
k+1c̄n

Λi
k+1

c̄i

9: Calculate  the  normalization  constant 

based on the likelihood function  and the normaliz-
ation function ;
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Λi
k+1 c̄i c

ω
i|k+1
double

10: Introduce ,  and  into (24), since the measure-
ment  stability  weight  has  been  added  in  step  1  to  4,
we can obtain the weight after fusion of measurement
accuracy ;

ω
i|k+1
double

Xk+1

11: Introduce  and  the  state  estimation  of  each
sensor into (25) to calculate the state estimation 
after the final fusion;

ω
i|k+1
double

PUWB
k+1

12: Introduce  into  (26)  to  obtain  the  covariance
 after fusion;

XUWB
k+1 PUWB

k+113: Use  and  as the input for the next time and
repeat steps 1 to 13 until the tracking ends.

14: End.

XUWB
k PUWB

k

Xk+1

Pk+1

Taking the system described in Section II.1 as the
object,  procedure  of  the  algorithm  has  been  shown  in
Algorithm 1. After obtaining the UWB-based state vec-
tor  and its covariance matrix  based on the
algorithm 1, the corrected system state vector  and
its covariance matrix  can be obtained based on (7)
and (8).

The accuracy weight of each remote sensor can be
integrated based on stable measurement during the ap-
plication of this method to tracking and correcting the
moving target in a WSN. As a results, the state estima-
tion of the moving target will be more accurate. Specif-
ic  simulation  examples  for  verification  will  be  given  in
Section V.

 V. Simulations
In order  to  comprehensively  evaluate  the perform-

ance  of  the  proposed  algorithm,  two  sets  of  numerical
simulations  are  performed  on  an  x86  PC  with  Intel
Core i9  10900k CPU and 32 GB memory using  MAT-
LAB 2019a.

The first set aims to verify the effectiveness of the
tracking  and  positioning  algorithm  that  incorporates
measurement  stability  weights  proposed  in  Section  III,
with the strong trace unscented Kalman filter (STUKF)
algorithm as the reference. The positioning accuracy of
the simulation is viewed as the main performance evalu-
ation index. The second set aims to verify the effective-
ness of  the tracking and positioning algorithm that in-
troduces measurement stability and accuracy weights at
the same time as proposed in Section IV, using the al-
gorithm without state vector decomposition as the ref-
erence. More specifically, the second set is to verify the
measurement that the state decomposition method will
not cause a dropout of accuracy for the system studied
in  this  article  and  it  can  effectively  improve  the  real-
time performance of the calculation. The estimation er-
ror of the pose information and the calculation time of
the  simulation  are  regarded  as  the  main  performance
evaluation indexes.

In these  simulations,  the  weight  algorithms  pro-
posed  in  Sections  III  and  IV  are  adopted  to  fuse  the
measurement information of  UWB sensors,  for  correct-
ing the IMU-based state vectors under the FKF frame-
work.

The models  for  numerical  simulations  are  de-
scribed  in  Section  II.1.  Uncorrelated  Gaussian  white
noise  is  added  as  the  process  noise  of  the  system,  and
the noise of the position information conforms to a nor-
mal  distribution.  Specific  parameters  of  simulations  as
shown in Table  1. In order  to  make it  easier  to  trans-
plant the algorithm to a physical platform for testing in
the future, the measurement noise and process noise are
set based on the actual components shown in Fig.2, and
the  specific  parameters  are  shown  in Table  1.  In  this
context, the results of the numerical simulations can be
as cdropout as possible to the actual situation.

As shown in Fig.3, the simulation environment is a
two-dimensional  square  with  a  size  of 1000 m by 1000
m. Blue asterisks indicate the sensors placed in the two-
dimensional  space,  and  they  jointly  form  a  WSN;  the
green  solid  line  is  the  true  trajectory  of  the  moving
body; the blue dotted line is the trajectory of the mov-
ing body tracked by the stability weight algorithm pro-
posed in Section III; and the red solid line is the traject-
ory  of  the  moving body tracked by the  Double  weight
algorithm proposed in Section IV.

 1. Simulation of the stability weight algorithm
This simulation is to verify the effectiveness of the

measurement  stability  weight  algorithm  in  tracking
moving targets  in  a  WSN.  Specifically,  the  measure-
ment stability weight method and the strong trace un-
scented  Kalman  filter  (STUKF)  proposed  in  Section
III.3 are  used  to  perform  numerical  simulations  to  re-
cord  and  evaluate  the  positioning  accuracy  of  moving
objects. The results are shown in Figs.4 and 5.

Fig.4 is the average positioning error of each itera-
tion  in  500  Monte  Carlo  experiments.  As  is  shown  in
this figure, the derived UKF algorithm based on stabil-
ity  weights  has  better  positioning  accuracy  and  lower
tracking errors than the existing STUKF algorithm.

Since  the  residuals  in  the  STUKF  algorithm  are
forced to be orthogonal, the estimated value of the state
can  be  quickly  adjusted  to  the  normal  range  when  a
sudden disturbance  occurs.  However,  the  STUKF  al-
gorithm is not able to effectively smoothen the sudden
disturbance. In  contrast,  the  stability  weight  distribu-
tion method proposed in this study can predict the mo-
ment  of  sudden  disturbance  in  advance  based  on  the
motion  model  of  the  moving  body,  and  timely  reduce
the weight of the sensor that may be subjected to meas-
urement dropout. In this context, the proposed method
can  effectively  suppress  and  smoothen  the  impact  of
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sudden disturbance caused by the dropout of  measure-
ment, thereby maintaining the accuracy of tracking and
positioning of moving objects in a WSN.

Fig.5 is  one  sample  trajectory  of  500  Monte-Carlo

trials, which can also support the above conclusion.
 2. Simulation of the double weight algorithm
This simulation is to verify the effectiveness of the

double  weight  algorithm  that  combines  measurement

   
Table 1. Parameters of simulation

Item Parameters

Initial state

X coordinate: 100 (cm)

Y coordinate: 100 (cm)

Velocity: 10 (cm/s)

πYaw angel: /50 (°)

πYaw angel changement: /160 (°)

Measurement range of UWB sensors N(0, 30)100+  (m)
Simulation time 100 (s)

Sampling time T = 1 (s)

Initial covariance P1 =


1 0 0 0 0
0 1 0 0 0
0 0 0.5 0 0
0 0 0 0.05 0
0 0 0 0 0.001



Initial estimate gX1 =


100
100
10

π/50
π/160

+


N(0, 1)
N(0, 1)
N(0, 0.5)
N(0, 0.05)
N(0, 0.001)


 

The driving matrix of process noise Gk =


0 0 0 0 0
0 0 0 0 0
0 0 T 0 0
0 0 0 0 πT/3
0 0 0 0 π/3



wkDistribution of process noise wk =


0
0

N(0, 0.5)
0

N(0, 0.1)
N(0, 0.01)


Q1Initial covariance of process noise 6-order diagonal identity matrix

Measurement noise of UWB sensors N(0, 16) N(0, 36)Random value from  to 
White noise of gyro N(0, 0.05)

Constant drift of gyro 0.1◦/h

White noise of accelerometer N(0, 0.001)

Constant bias of accelerometer 10−3g

White noise of magnetometer N(0, 0.1)
 

 

(a) UWB sensor (b) IMU sensor (c) DC geared motor (d) Wheeled mobile robot 
Fig. 2. The sensors and the mobile robot involved in this article. (a) The UWB sensors (YCHIOT, Wenzhou, China), which are

commercial products provided by the company of YCHIOT, with the module of Mini3s; (b) The spatial motion sensor chip
MPU6050 as the IMU sensor (Digi-Key Electronics, Thief River Falls, Minnesota, USA); (c) The odometer84 constructed
by the DC gear motors MG513 with an encoder (Fenghua Transmission, Kunshan, China); (d) The wheeled mobile robot
platform (Ruiqu Technology, Foshan, China) that realizes the precise localization by carrying the above sensors.
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accuracy and measurement stability in tracking moving
targets in a WSN. Based on the method in Section IV.3,
three  methods  are  applied  in  the  numerical  simulation
to record and evaluate the positioning accuracy and es-
timating error corvariance of the moving object, namely
the double  weight  algorithm,  the  measurement  stabil-
ity weight algorithm, and STUKF. The simulation res-
ults are shown in Figs.6–8.

Fig.6 is the average positioning errors in 500 times
Monte-Carlo trials can be seen from this figure that the

two  weight  algorithms  proposed  in  this  article  have
much higher positioning accuracy than the STUKF.

Fig.7 is  the  comparison  of  the  positioning  error
between the stability weights algorithm and the double
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Fig. 3. Simulation environment.

 

 

Iterations number (k)

0
0 10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

P
o
si

ti
o
n
in

g
 e

rr
o
r 

(c
m

)

Stability weight with FKF
STUKF with FKF

 
Fig. 4. Average positioning error in 500 Monte Carlo experi-

ments (stability weights and STUKF).
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Fig. 5. Positioning  error  of  the  stability  weight  algorithm

and the STUKF algorithm in selected simulations.
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Fig. 6. Average positioning error in 500 Monte Carlo experi-

ments (three algorithms).
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Fig. 7. Average positioning error in 500 Monte Carlo experi-

ments (stability weights and double weights).
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Fig. 8. Positioning  error  of  double  weight  and  stability

weight algorithms in selected simulations.
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weights  algorithm.  It  can  be  seen  from the  figure  that
although they have similar positioning errors in the ini-
tial  phase,  the  stability  weight  algorithm  proposed  in
Section III does not consider the accuracy of the meas-
urement  when  fusing  the  measurement  information,  so
with the iteration number Increase, gradually unable to
suppress the drifts and bias of IMU, and eventually lead
to the syetem divergence. However, the double weights
algorithm does not have this problem.

Table  2 shows  the  average  error  of  500  Monte
Carlo  experiments.  We  can  see  that  after  introduced
the  stability  weight,  the  average  error  is  significantly
lower  than  the  STUKF  (reduced  about  31.7%).  After
further  introduced  the  measurement  accuracy  weight,
the average error is reduced about 66.2% relative to the
stability weight algorithm (and reduced about 76.8% re-
lative to the STUKF).
  

Table 2. The average error of 500 times Monte Carlo
experiments

Item Average error (cm)

STUKF 13.0622

Stability weight 8.9320

Double weight 3.0247
 
 

Fig.8 is the positioning error curves of a set of ex-
periments randomly selected from the 500 times Monte-
Carlo  trials.  As  is  shown  in Fig.8, the  tracking  accur-
acy of the double weight algorithm is higher than that
of  the  measurement  stability  weight  method  proposed
in the above section. Although the measurement stabil-
ity  weight  method  can  effectively  suppress  the  impact
of  sudden  disturbances,  it  is  a  method  that  is  directly
borrowed from other  fields  and does  not  fully  consider
the  measurement  accuracy  difference  among  sensors  in
a WSN. In contrast, the double weight method assigns
weights based on the measurement accuracy and stabil-
ity  of  each  sensor,  thereby  contributing  to  optimized
tracking and positioning accuracy.

Fig.9 is  the  UWB-based  average  estimation  error
covariance (X-axis and Y-axis) for each iteration in 500
Monte  Carlo  experiments.  As  shown  in  the Fig.9,  the
convergence time  of  the  three  algorithms  are  compar-
able,  and  in  the  term  of  converged  value,  we  can  get
similar conclusions  as  before.  The  double  weights  al-
gorithm has the best performance. Although the stabil-
ity  weights  algorithm  is  improved  compared  to  the
STUKF,  its  performance  is  not  as  good  as  the  double
weights algorithm because  it  does  not  consider  the  ac-
curacy of the measurement during fusion.

It  can  be  seen  from the  results  of  the  two  sets  of
simulations that  the  measurement  stability  weight  al-

gorithm proposed  in  this  article  can  effectively  sup-
press the sudden disturbance caused by the sensor han-
dover and thus improve the tracking and correcting ac-
curacy  of  the  moving  target.  Furthermore,  the  double
weight  algorithm  is  proposed  to  optimize  the  tracking
and correcting  accuracy  by  fusing  the  accuracy  weight
of the sensor based on the IMM method, which presents
a  significant  performance  improvement  compared  with
the traditional STUKF algorithm.

Our numerical  simulations  verify  that  the  al-
gorithm has good performance under ideal conditions in
2D environment. In theory, if the information of Z axis
is added in the system state vector, the algorithm pro-
posed in  the  article  can  be  applied  in  the  3D environ-
ment. However, considering the effect of nonlinearity on
the convergence of the algorithm, whether it can be dir-
ectly applied to the 3D object is  still  needs further re-
search  and  simulation  verification.  In  the  same  way,
considering the complexity of the real environment, the
performance  of  the  algorithm on  the  physical  platform
requires further research and simulation verification.

 VI. Conclusions
This paper has developed a weight distribution al-

gorithm for tracking moving targets in a WSN. This al-
gorithm has employed the DCKF to predict  the meas-
urement  stability  based  on  the  motion  model  of  the
moving body,  determined  the  weight  of  the  measure-
ment accuracy based on the measurement error covari-
ance  of  each  sensor,  and  eventually  integrated  the
measurement  stability  and  accuracy  weights  to  assign
the final weights. As verified by the simulation results,
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Fig. 9. Average  estimated  error  covariance  in  500  Monte

Carlo  experiments  (three  algorithms).  (a) X axis;
(b) Y axis.
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the  proposed  algorithm  has  effectively  suppress  the
measurement dropout when tracking moving targets in
a  WSN,  and  has  optimized  the  weights  of  each  sensor
based on the measurement error covariance to improve
the tracking accuracy.  Therefore,  it  is  safe  to conclude
that the proposed algorithm has achieved good perform-
ances  in  effectively  suppressing  measurement  dropout
caused by sensor handover in a WSN.

However, the current algorithm can only deal with
localization  problems  in  Gaussian  noise  environments,
and all measurement anchor points in the environment
are required  to  be  stationary.  Given  the  above  short-
comings, our next work will mainly focus on the follow-
ing two aspects:

•  Investigate  the  state  estimation  and  filtering
problem  in  the  experimental  environment  with  non-
Gaussian noise,  in  response  to  this  problem,  the  al-
gorithm proposed in [30] may have reference value;

•  Explore  the  cooperative  positioning  of  multiple
moving  bodies,  with  the  ultimate  goal  of  realizing  the
relative positioning of moving bodies in a dynamic wire-
less sensor network;

• Further  research  and  verify  the  performance  of
the algorithm in the 3D environment and physical plat-
form.
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