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   Abstract — Monaural speech separation is a signific-
ant research field in speech signal processing. To achieve a
better  separation  performance,  we  propose  three  novel
joint-constraint  loss  functions  and  a  multiple  joint-con-
straint loss function for monaural speech separation based
on dual-output  deep  neural  network  (DNN).  The  mul-
tiple  joint-constraint  loss  function  for  DNN  separation
model not  only  restricts  the  ideal  ratio  mask  (IRM)  er-
rors of the two outputs,  but also constrains the relation-
ship of  the  estimated  IRMs  and  the  magnitude  spectro-
grams of the clean speech signals,  the relationship of the
estimated IRMs of the two outputs, and the relationship
of the estimated IRMs and the magnitude spectrogram of
the  mixed  signal.  The  constraint  strength  is  adjusted
through three parameters to improve the accuracy of the
speech separation  model.  Furthermore,  we  solve  the  op-
timal  weighting  coefficients  of  the  multiple  joint-con-
straint loss function based on the optimization idea, which
further improves  the  performance  of  the  separation  sys-
tem. We  conduct  a  series  of  speech  separation  experi-
ments  on  the  GRID  corpus  to  validate  the  superiority
performance  of  the  proposed  method.  The  results  show
that  using  perceptual  evaluation  of  speech  quality,  the
short-time objective intelligibility, source to distortion ra-
tio, signal  to interference ratio  and source to artifact  ra-
tio as  the  evaluation  metrics,  the  proposed  method  out-
performs the  conventional  DNN  separation  model.  Tak-
ing the  gender  into  consideration,  we  carry  out  experi-
ments  among  Female-Female,  Male-Male  and  Male-Fe-
male cases, which show that our method improves the ro-
bustness and performance  of  the  separation system com-
pared with some previous approaches.

   Key words — Monaural  speech  separation, Joint

constraint, Deep neural networks, Dual-output.

 I. Introduction
Speech  separation  [1]  is  a  challenging  task,  which

belongs to a branch of source separation [2]. Speech sep-
aration aims to recover the high-quality and high-intel-
ligibility target speech signal from the mixed speech. It’s
quite  simple  for  a  human  to  distinguish  the  target
speaker speech from the noise or multi-speakers’ envir-
onment. However, it’s difficult for machine to recognize
the  correct  one.  In  daily  life,  speech separation can be
applied to  the  frontend  of  machine  translation,  ad-
vanced  hearing  aid  [3] and  automatic  speech  recogni-
tion (ASR) [4], which helps improve their performance.
Therefore, it  is  significant  and  practical  to  make  ma-
chine with the ability to obtain pure source signal from
the mixed source signal. The source separation problem
[5] can be categorized into multichannel, stereo-channel
(binaural) and single-channel (monaural). Among them,
monaural speech separation usually refers to the way of
recording  the  mixed  speech  with  a  single  microphone,
which is often chosen as an experimental object due to
its practicality.

To  handle  the  tough  monaural  speech  separation,
some  approaches  were  proposed  over  the  past  several
decades. Those methods can be divided into three cat-
egories:  unsupervised  separation  method,  semi-super-
vised  separation  method  and  supervised  separation
method. With unsupervised separation method, a prime
class of monaural speech separation is known as compu-
tational  auditory  scene  analysis  (CASA) [6], which  ex-
tracts speech features to separate interesting speech by
masking  other  interfering  sources.  Features  such  as
pitch  and  amplitude  modulation  spectrum  (AMS)  are
exploited to segregate the voiced component of co-chan-
nel  speech  [7].  Independent  component  analysis  (ICA)
[8] is also an unsupervised method used for speech sep- 
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aration.  Recently,  there has been increasing interest  in
purely supervised  approaches.  According  to  the  differ-
ence  of  training  target,  supervised  speech  separation
method [9] can be categorized to Time-Frequency (T-F)
masking-based method and mapping-based method.

T-F masking-based method learns a mapping func-
tion from the mixed speech features to T-F mask of the
clean  speech  to  separate  mixed  speech.  This  kind  of
methods  commonly  estimates  the  ideal  binary  mask
(IBM) and ideal  ratio  mask (IRM) [10],  or  some other
masks  such  as  phase-sensitive  mask  (PSM)  [11]  and
complex ideal ratio mask (cIRM) [12]. In general, IBM
or IRM is often used as a training target to conduct ex-
periments. For  IBM,  according  to  the  comparison  res-
ult of  signal-to-noise (SNR) and local  threshold, a T-F
unit  is  assigned 1 or  0.  As for  the IRM, a T-F unit  is
dynamically  assigned  the  ratio  of  target  signal  energy
and mixture signal energy. Because IBM can be viewed
as a two-category classification problem, Gaussian mix-
ture models (GMM) and Bayesian classifier can be used
to predict IBM [13]. May and Dau [14] used GMM and
well-trained SVM to  estimate  IBM.  With  the  develop-
ment  of  deep learning,  researchers  pay much attention
to the deep neural network (DNN) which can build the
nonlinear relationship between input and output. Wang
et al. [10] first used DNN-based method to get IBM for
speech  separation.  Zhang  and  Wang  [9]  used  ensemble
learning methods to set up a multi-context network to
estimate  IRM for  speech  separation.  Huang et  al. [15]
constructed  a  recurrent  neural  network  (RNN)  for
speech separation, where the IRM was embedded as an
extra  processing  layer  to  the  output  layer,  and  their
method outperforms that with non-negative matrix fac-
torization  (NMF).  Besides  T-F  mask-based  method,
mapping-based  method  is  also  widely  used  in  speech
separation.  Mapping-based  method  builds  a  regression
function  from  the  mixed  speech  features  to  the  clean
speech.  Du et  al. [4 ]  proposed a  DNN-based regression
model  to  predict  the  nonlinear  relationship  between
mixed speech and target  speech using a large numbers
of  training  data.  Wang et  al. [16 ]  exploited  multi-out-
put  DNN to  train  the  gender  detector,  which  helps  to
build  another  mapping-based  regression  network  for
speech separation according to different gender combin-
ations.

In  recent  years,  speech  separation  approaches
based  on  deep  learning  have  been  rapidly  developed.
Chauhan et al. [17] constructed a model of speech sep-
aration and speech recognition based on deep learning,
which  is  an  efficient  and  accurate  method  to  separate
mixture speech and recognize emotion of speech simul-
taneously.  The  time  domain  approach  based  on  deep
learning has achieved good results on speech separation

problems  recently.  Wan  [18]  proposed  a  time  domain
speech separation algorithm based on fully convolution-
al network, which makes up for the shortcomings of the
traditional  T-F  domain  method.  Fan et  al. [19 ] pro-
posed  an  end-to-end  approach  for  speech  separation
based  on  1-demensional  convolutional  network,  which
exploits  speech  waveform  as  the  input  of  network  for
preliminary  separation,  followed  by  the  fusion  depth
feature  for  further  separation.  Besides,  many  studies
have demonstrated  that  phase  information  has  an  im-
portant  role  in  speech  perception  quality.  Zheng et  al.
[20]  constructed  a  separation  model  based  on  deep
learning with  novel  training  target  named  instantan-
eous frequency deviation (IFD). This method optimizes
magnitude  spectrum  and  phase  spectrum  obtained  by
estimated IFD at the same time, which improves the in-
telligibility of the separated speech.

Among various  monaural  speech  separation  meth-
ods  based  on  deep  learning,  the  loss  function  has  a
great  impact  on the performance of  separation system,
because it controls the quality of the model. Kang et al.
[21] proposed a novel  loss  function,  which is  compoun-
ded of Mel-scale weighted mean square error, temporal
and spectral variations similarities between the original
reference speech signal and the estimated speech signal.
This method computed the gradients based on non-lin-
ear frequency, which can mitigate the excessive smooth-
ing of  the  estimated  speech  signal.  In  addition,  Naith-
ani et al. [22] also proposed a novel objective function.
This  objective  function  optimized  the  extender  short
time objective  intelligibility  (ESTOI)  measure  and  ob-
tained prominent  performance.  However,  these  meth-
ods  mentioned  above  did  not  take  into  accounts  the
joint relationship between the different source signals to
be separated.  Our  team  once  considered  the  relation-
ship  between  output  masks  of  different  source  signals
and conducted a series of studies with good results [23].
To further improve the accuracy of separating multiple
sources, we propose the novel objective function consid-
ering  the  joint  relationship  between  the  separated
sources from  the  multiple  aspects.  From  our  experi-
ments,  the  proposed  speech  separation  method  obtains
better results  compared  with  those  of  other  loss  func-
tions.

This  article  is  organized  as  follows.  In  Section  II,
we present the flowchart of the traditional speech separ-
ation  system,  the  training  targets  and  the  traditional
loss functions for speech separation based on DNN mod-
el.  In  Section  III,  we  elaborate  three  joint-constraint
loss functions, and a comprehensive joint-constraint loss
function, and present the whole process of speech separ-
ation based  on  the  multiple  joint-constraint  loss  func-
tion. In  Section  IV,  we  present  the  experimental  set-
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tings  and  results  analysis.  Finally,  we  summarize  this
article and describe future work in Section V.

 II. Monaural Speech Separation Model
 1. Monaural speech separation problem for-

mulation
There are many ways to simulate the mixed signal,

e.g.,  linear  instantaneous  mixing,  linear  convolution
mixing and non-linear mixing. In the majority cases in
speech separation,  linear  instantaneous  mixing  is  fre-
quently chosen. The monaural mixed signal is often for-
mulated as follows:
 

y(t) =

n∑
i=1

xi(t) (1)

xi(t) y(t) i

n(n ≥ 2)

y(t) = x1(t) + x2(t)

where  and  refer to the -th target signal  and
mixed  signal  combined  with  branch  sources,
respectively. The mixed signal with two target signals is
commonly used  for  experiment  owing  to  its  conveni-
ence  and  simplicity,  and  it  can  be  formulated  as

.

x1(t) x2(t)

The DNN-based dual-output separation model can
separate  and   simultaneously.  The  overall
flowchart of the traditional monaural speech separation
based  on  dual-output  DNN  is  shown  in Fig.1 ,  which
aims  to  simultaneously  evaluate  the  two target  signals
from the mixed signal. The network has five layers, in-
cluding input layer, three hidden layers and output lay-
er.  Before  the  training  of  network,  the  time-domain
speech signal  is  preprocessed to extract features as the
input of the network. The input features of DNN mod-

el  for  speech  separation  are  usually  short-time  Fourier
transform  (STFT)  magnitude  spectrogram,  log-power
spectrogram (LPS) and some other acoustic features [24]
like Mel-Frequency Cepstral Coefficients (MFCC), Mul-
tiresolution Cochlea-gram  (MRCG),  Gammatone  Fre-
quency Cepstral Coefficients (GFCC), etc.

 2. Training target for DNN-based model
1) Ideal ratio mask
The  ideal  ratio  mask  (IRM)  is  viewed  as  the  soft

form  of  IBM and  can  lead  to  a  better  performance  in
many cases. It is frequently chosen as the training tar-
get of  DNN-based  model  in  supervised  speech  separa-
tion. The formulation of IRM is shown as follows:
 

Mi(t, f) =

(
Si(t, f)

2

S1(t, f)2+S2(t, f)2+ε

)k

, i = (1, 2) (2)

S1(t, f) S2(t, f)

m f

ε

k

where  and   represent magnitude  spec-
trogram of target speaker-1 speech and target speaker-2
speech  at  time  frame  and  frequency  channel , re-
spectively.  To prevent the denominator from becoming
0,  is a  minimal  positive  number.  The  tunable  para-
meter  is  commonly  chosen  as  0.5.  In  masking-based
methods for speech separation, the estimated T-F mask
via  DNN  model  is  multiplied  with  the  corresponding
elements  of  the  magnitude  spectrogram  of  the  mixed
speech to  obtain  the  target  speech  magnitude  spectro-
gram. And then,  the time domain waveform originates
from the  estimated  magnitude  spectrogram via  inverse
short-time Fourier transform (ISTFT).

2) Target magnitude spectrum
S1(t, f)

S2(t, f)

The target magnitude spectrogram (TMS), ,
 is the corresponding training target of mapping-

based approaches. TMS is aimed to learn the linear re-
gression  function  between  target  speech  and  mixed
speech via DNN or other prediction models. And then,
adding  the  phase  information  of  the  mixed  signal  into
the estimated  magnitude  spectrogram,  we  can  recon-
struct the utterances of two target speakers via ISTFT
directly.

 3. Loss function for DNN-based model
1) Masking-based method

x1(t) x2(t)

S1(t, f) S2(t, f)

The  magnitude  spectrogram  of  the  time  domain
signal  and  can be generated via speech pre-
processing and STFT, denoted as  and ,
respectively.  Then,  we  can  calculate  the  IRM  by  (2).
The DNN-based model  for  monaural  speech separation
is  a  linear  regression  model,  not  a  logistic  regression
model, and the minimum mean square error (MMSE) is
often chosen as the criterion of DNN architecture. The
loss  function  reveals  the  relationship  and  distance
between  estimated  features  and  real  values,  which  is
mainly used to solve the parameters of DNN.

 

Speech preprocessing

Mixed utterance
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Fig. 1. Overall  flowchart  based  on  dual-output  DNN  for

monaural speech separation.
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The loss function of the single output DNN model
primarily concentrates on mapping the relation between
the estimated ratio value and the original reference ra-
tio  value.  The  loss  function  with  one  target  source  is
formulated as follows:
 

Loss1 =
1

2T

T∑
t=1

∥ M̂t −Mt ∥2 (3)

T M t

M̂ t

t

M̂ t

Y t M̂ t = f(Y t)

f(·)

where  denotes the total number of time frames. 
and  are the ideal value and the estimated value of
ratio  mask  of  the  target  source  at -th frame,  respect-
ively. Here,  is the output of DNN model using the
feature  of  mixed  signal  as  the  input. ,
where  refers to the complicated function operation
of DNN layers. When two target source signals need to
be  separated  and  reconstructed,  two  DNN  models  are
needed  for  the  single  output  DNN  architecture,  while
only  one  dual-output  DNN  architecture  is  needed,
which will  cut  down  the  time  and  computation  con-
sumption of  speech  separation  system.  The  loss  func-
tion of the dual-output DNN is formulated as follows:
 

Loss2 =
1

2T

T∑
t=1

(∥ M̂1t−M1t ∥2 + ∥ M̂2t−M2t ∥2) (4)

M it M̂ it

i t

where  and  are the original reference IRMs and
their estimation values of the -th speaker at -th frame,
respectively. The loss function (3) can only get the es-
timated  IRM of  one  target  signal  at  a  time,  while  (4)
can  get  estimated  IRM  of  two  target  signals  at  the
same time.

2) Mapping-based method
Different  from  the  masking-based  method,  the

mapping-based  method  like  TMS  is  to  establish  the
nonlinear  relationship between the feature  spectrogram
of the  mixture  speech  signal  and  the  feature  spectro-
gram of  the  clean  speech  signal  of  the  target  speakers
directly.  Even  if  the  DNN  architecture  is  similar  with
that with the masking-based method, it corresponds to
the different loss  function,  which can be formulated as
following MMSE issue:
 

Loss3 =
1

2T

T∑
t=1

(∥ Ŝ1t − S1t ∥2 + ∥ Ŝ2t − S2t ∥2) (5)

S1t S2t

Ŝ1t Ŝ2t

y(t)

where  and   indicate the  ideal  feature  spectro-
gram vectors,  and ,  indicate the  estimated  fea-
ture spectrogram vectors of two target sources, respect-
ively. In  the  DNN  training  stage,  magnitude  spectro-
gram of mixed signal  are also used as the input fea-
tures  of  DNN model.  By  minimizing  the  loss  function,

DNN  model  can  be  well  trained  and  suitable  network
parameters can be obtained. In the DNN testing stage,
we exploit the magnitude spectrogram of testing mixed
utterance  of  two  speakers  as  the  input  features  of  the
DNN model,  and  then  we  can  get  the  enhanced  mag-
nitude spectrogram of two target sources from the out-
put layer,  simultaneously.  Eventually,  we  can  recon-
struct the utterances of two target speakers via ISTFT.

 III. Speech Separation Based on DNN
with Joint Constraint

The  loss  function  used  in  traditional  dual-output
speech separation based on DNN usually only considers
the error between the estimated value and the original
reference value, which can’t well constrain the training
of neural  networks,  resulting  in  poor  separation  per-
formance. In order to improve the clarity and decrease
the distortion of the separated speech, we propose three
novel joint-constraint (JC) loss functions from different
aspects  for  speech  separation  based  on  dual-output
DNN,  which  correspondingly  considers  the  relationship
between the predicted IRM and the magnitude spectro-
gram, the  relationship  between  IRMs  and  the  connec-
tion between the target magnitude spectrogram and the
mixed magnitude  spectrogram.  Furthermore,  we  com-
prehensively  consider  all  factors  above and incorporate
them into a new joint-constraint loss function. All joint-
constraint  loss  functions  proposed  in  this  paper  can
make  the  predicted  mask  close  to  the  ideal  mask  and
decrease  the  error  between  the  estimated  magnitude
spectrogram  obtained  by  the  predicted  mask  and  the
ideal magnitude spectrogram, which improve the intelli-
gibility of the reconstructed speech signal. In the follow-
ing  subsections,  we  will  discuss  separately  these  newly
proposed joint-constraint loss functions in detail.

 1. Joint constraint of IRM and magnitude
In  DNN-based  speech  separation,  we  usually  use

neural  network  to  estimate  time-frequency  mask  of
speech signal,  but  finally  we  need  to  recover  the  mag-
nitude spectrogram of the target speech signal, which is
indirectly obtained through the mask estimated by the
trained  model.  Therefore,  the  joint  constraint  of  the
predicted mask and the magnitude spectrogram can re-
duce  the  distortion  of  the  reconstructed  magnitude
spectrogram  of  the  target  signal  so  that  improves  the
performance of separation. Considering the relationship
between IRM and magnitude spectrogram, we propose a
joint-constraint  loss  function  which  minimizes  the
weighted  sum  of  the  IRM  errors  and  the  magnitude
spectrogram errors corresponding to IRM estimations of
the two  speech  signals.  The  loss  function  can  be  writ-
ten as 

496 Chinese Journal of Electronics 2023



JC1 =
1

2T

T∑
t=1

(∥ M̂1t −M1t ∥2 + ∥ M̂2t −M2t ∥2

+ α(∥ M̂1t ⊙ Y (t)− S1t ∥2

+ ∥ M̂2t ⊙ Y (t)− S2t ∥2)) (6)

S1t S2t

M̂1t M̂2t ⊙

where  and  are the ideal magnitude spectrogram
of  target  speaker-1  and  target  speaker-2,  respectively.

 and   are  both  the  output  of  the  network. 
denotes Hadamard product operator, which means that
the matrix on both sides of the symbol is multiplied ele-
ment by  element.  The  estimated  magnitude  spectro-
gram of the two speakers can be obtained by the follow-
ing formulas:
  {

Ŝ1t = M̂1t ⊙ Y (t)

Ŝ2t = M̂2t ⊙ Y (t)
(7)

Ŝ1t S1t Ŝ2t S2t

α α

α

Since our purpose is to separate the speech signals
of  two  target  speakers  without  distortion  as  much  as
possible,  the  estimated  value  obtained  by  multiplying
the  mask  output  from  the  network,  by  the  magnitude
spectrogram of  the  mixed  speech  from different  speak-
ers should be as close as possible to the magnitude spec-
trogram of our target speaker. That is to say, the smal-
ler  the  error  between  and  ,  and  ,  the
higher the reducibility of separated speech and the bet-
ter  the  separation performance.  The importance  of  the
two speakers is the same, so the two terms at the end of
(6) share a common weight .The range of  is from 0
to  1.  When  takes  different  value,  it  means  different
constraint to separation.

Compared  with  the  traditional  loss  function,  the
loss  function  (6)  makes  full  use  of  the  relationship
between  the  mask  and  the  magnitude  spectrogram,
which increases the effectiveness of the mask constraint.
It  not  only  makes  the  distance  between  the  estimated
IRM and the  ideal  IRM small  but  also  makes  the  dis-
tance  between  the  estimated  magnitude  spectrogram
and the ideal magnitude spectrogram small. The neural
network  trained  with  the  guidance  of  this  joint-con-
straint  loss  function  can  output  more  accurate  mask
and the calculated magnitude spectrogram from the es-
timated value is closer to the target magnitude spectro-
gram so that the recovered target speech signal is with
less loss.

 2. Joint constraint of IRM and sum of mask
squares

For  traditional  dual-output  speech  separation
based  on  DNN,  the  loss  function  usually  considers  the
relationship  between  the  predicted  value  and  the  ideal
value  of  a  single  signal.  In  fact,  there  is  also  a  unique
relationship between masks corresponding to two differ-

ent  source  signals  when  the  mixed  speech  comes  from
two  clean  speech  signals.  In  this  paper,  we  not  only
take  into  accounts  the  two  masks  separately,  but  also
investigate  them  together.  In  the  full  consideration  of
the  characteristic  between  masks,  we  propose  a  novel
joint-constraint  loss  function  which  jointly  constrains
the masks of two speech signals to improve the correct-
ness  of  model  prediction.  The  second  joint-constraint
loss function proposed in this paper can be written as
 

JC2 =
1

2T

T∑
t=1

(∥ M̂1t −M1t ∥2 + ∥ M̂2t −M2t ∥2

+ β(∥ M̂2
1t + M̂2

2t − 1 ∥2)) (8)

When  the  mixed  speech  comes  from  two  pure  speech
signals,  the target  IRM vector  of  each source signal  in
our research can be expressed as
  

M1t =

√
S1t

2

S1t
2 + S2t

2 + ε

M2t =

√
S2t

2

S1t
2 + S2t

2 + ε

(9)

t

M1t M2t 1

M̂1t M̂2t

1

M1t
2 +M2t

2 ≈ 1

M̂1t

M1t M̂2t M2t

β

From  (9),  we  can  see  that  at  the -th  frame,  sum  of
squares of  and  is equal to . Therefore, in an
ideal  situation,  the  sum  of  squares  of  and  
should be as close as possible to . In other words, when
the  network  output  is  sufficiently  accurate,

. The  first  two  terms  in  (8)  are  de-
signed to reduce the approximation error between 
and ,  and , which is not sufficient to train
deep neural networks in the case of separating multiple
speech  signals  simultaneously.  Adding  this  constraint
item to the traditional loss function can mine the joint
information  between  dual-output  masks  and  limit  the
output value of network to a certain range so that the
predicted value closer to the actual value which can ef-
fectively  make  up  for  above  shortcoming.  Similar  with
(6),  is also a constraint factor and its value range is
from 0 to 1. It can be adjusted to achieve different con-
straints.

 3. Joint  constraint  of  IRM  and  magnitude
sum

Inspired by the joint-constraint loss  functions pro-
posed  above,  we  note  that  there  is  also  a  relationship
between the  magnitude  spectrogram  of  the  target  sig-
nal and the magnitude spectrogram of the mixed signal
when  the  mixed  speech  signal  is  mixed  by  two  clean
speech signals.  Considering the  connection,  we propose
the third joint-constraint  loss  function,  which not only
constrains  the  predicted  mask  errors,  but  also  makes
the sum of  the estimated magnitude spectrogram close
to  the  mixed  magnitude  spectrogram  to  improve  the
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performance  of  model.  The  third  joint-constraint  loss
function proposed in this paper can be written as
 

JC3 =
1

2T

T∑
t=1

(∥ M̂1t −M1t ∥2 + ∥ M̂2t −M2t ∥2

+ γ(∥ M̂1t ⊙ Y (t) + M̂2t ⊙ Y (t)− Y (t) ∥2))
(10)

In  our  research,  the  mixed  speech  is  generated  by
mixing  two  pure  speeches.  The  relationship  of  their
magnitude  spectrogram  can  be  denoted  as  following
equation:
 

S1t + S2t = Y (t) (11)

Ŝ1t Ŝ1t Ŝ2t

Ŝ2t

0

Ŝ1t + Ŝ2t ≈ Y (t)

α β γ

According  to  (7)  we  can  obtain  that  under  ideal
circumstances,  is as close to  as possible, and 
is  as  close  to  as  possible.  Therefore,  the  error
between the  sum  of  estimated  target  magnitude  spec-
trogram and the mixed magnitude spectrogram is close
to . In other words, if  the estimated IRMs are accur-
ate  enough,  there  is .  Compared  with
the traditional loss function, the constraint term in (10)
can decrease  the  error  between  the  sum  of  the  separ-
ated  magnitude  spectrogram  of  the  two  speakers  and
the  mixed  magnitude  spectrogram.  From  this  angle,
this method  can  improve  the  accuracy  of  the  separa-
tion network and get more distortion-free speech. Simil-
ar with  and ,  is also a weighting factor used to ad-
just  the  constraint  of  the  item  and  its  value  range  is
from 0 to 1.

 4. Multiple joint constraint
In order  to  maximize  the  accuracy  of  the  separ-

ated  speech,  we  propose  a  comprehensive  joint-con-
straint loss  function  to  train  the  network.  This  integ-
rated  loss  function  considers  the  joint  relationship
between the  masks,  the  relationship  between the  mask
and  the  magnitude  spectrogram and  the  connection  of
between  the  target  magnitude  spectrogram  and  the
mixed magnitude spectrogram. It makes full use of the
advantages of the loss function proposed above and can
train a  more  accurate  DNN  model  so  that  the  pre-
dicted  value  closer  to  the  ideal  value.  The  multiple
joint-constraint loss function for monaural speech separ-
ation based on dual-output DNN can be defined as fol-
lows:
 

JC4 =
1

2T

T∑
t=1

(∥ M̂1t −M1t ∥2 + ∥ M̂2t −M2t ∥2

+ α(∥ M̂1t ⊙ Y (t)−S1t ∥2+∥ M̂2t⊙Y (t)−S2t ∥2)
+ β(∥ M̂2

1t + M̂2
2t − 1 ∥2)

+ γ(∥ M̂1t ⊙ Y (t) + M̂2t ⊙ Y (t)− Y (t) ∥2))
(12)

α β γ

α = 0 β = 0

γ = 0

α β γ

L1 L2 L3

where ,  and  are the regularization coefficients used
to  characterize  the  constraint  ability  of  the  relation
term. They all  range from 0 to 1.  When , ,
and , the  constraint  strength  of  the  joint  con-
straint is 0, and (12) is equivalent to (4). The regulariz-
ation coefficients ,  and  can be selected according
to  the  experimental  results,  which  are  usually  used  in
previous studies. However, this way has a large amount
of calculation, and the selected value is not necessarily
optimal. Therefore, in order to make the weight coeffi-
cients more accurate and the binding force of the rela-
tion term more appropriate, we apply the optimization
algorithm to solve the regularization coefficients.  From
(12), we can split it into ,  and  as following for-
mulas:
  

L1 =
1

2T

T∑
t=1

∥ M̂1t ⊙ Y (t)− S1t ∥2

+ ∥ M̂2t ⊙ Y (t)− S2t ∥2

L2 =
1

2T

T∑
t=1

∥ M̂2
1t + M̂2

2t − 1 ∥2

L3 =
1

2T

T∑
t=1

∥ M̂1t ⊙ Y (t) + M̂2t ⊙ Y (t)− Y (t) ∥2

(13)

JC4Then the  method can be expressed as:
 

JC4 = k1Loss2 + k2L1 + k3L2 + k4L3 (14)

JC4

Loss2 L1 L2 L3

α β γ JC4

As  can  be  seen  from (14),  the  method can  be  re-
garded as a combinatorial prediction method which in-
tegrates , ,  and  prediction methods. The
key to  combinatorial  prediction  is  how to  properly  de-
termine the weighting coefficient of each single predict-
ive  method.  In  order  to  find  the  optimal  weights  of
three coefficients ,  and  in the  method, we did
a series of deductions in the following.

Loss2 L1

L2 L3

M̂t = [M̂1t,M̂2t]

Mt = [M1t,M2t] i

M̂it, (i = 1, 2, 3, 4)

i

eit = Mt − M̂it i

ki∑P
i=1 ki = 1, (P = 4)

M̂t =
∑P

i=1 kiM̂it

et = Mt − M̂t

The neural  network model  using any of , ,
 and   prediction  method  can  be  used  to  predict

IRM value , that is, to solve the same
problem.  The  actual  observation  value  can  be  denoted
as .  The  predicted  value  of  the -th
method  can  be  denoted  as  and  the
prediction  error  of  the -th  method  can  be  denoted  as

.  The  weighting  coefficient  of  the -th
method  can  be  denoted  as  and  constrained  by

.  Then  the  predicted  value  of  the
combinatorial  prediction  method  can  be  denoted  as

. And the prediction error of the com-
binatorial  prediction  method  can  be  denoted  as

. Therefore, we can get the following for-
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mulas:
 

et = Mt −
P∑
i=1

kiM̂it =

P∑
i=1

kiMit − kiM̂it

=

P∑
i=1

ki(Mit − M̂it) =

P∑
i=1

kieit (15)

The  sum  of  squares  of  the  prediction  error  of  the
combinatorial prediction method can be denoted as
 

J =

N∑
t=1

e2t =

P∑
i=1

P∑
j=1

kikj

(
N∑
t=1

eitejt

)

= (k1 k2 · · · kP )

·



∑N

t=1
e21t

∑N

t=1
e1te2t · · ·

∑N

t=1
e1tePt∑N

t=1
e2te1t

∑N

t=1
e22t · · ·

∑N

t=1
e2tePt

...
...

. . .
...∑N

t=1
ePte1t

∑N

t=1
ePte2t · · ·

∑N

t=1
e2Pt


· (k1 k2 · · · kP )

T

(16)

K = [k1, k2, . . . ,

kP ]
T i

Ei = [ei1, ei2, . . . , eiN ]T

e = [E1,E2, . . . ,

EP ] E1,E2, . . . ,EP

Eij = Eji = Ei
TEj =

∑N
t=1 eitejt

We  denote  the  weighting  coefficient  vector  of  the
combinatorial  prediction  method  as 

 and the prediction error vector of the -th method
is  denoted as . Then the predic-
tion  error  matrix  can  be  expressed  as 

.  Vectors  are  independent  of  each
other. The inverse matrix of is always exist. And there
is .  Then  the  sum  of
squares of the prediction error of the combinatorial pre-
diction method can be expressed as
 

J = eTe

= (kP )
T


E11 E12 · · · E1P

E21 E22 · · · E2P

...
...

. . .
...

EP1 EP2 · · · EPP

 (kP )

= (kP )
T
E(P )(kP ) (17)

E(P )where  is the  error  information matrix  of  the  pre-
diction, which reflects the prediction error information of
the neural network model with different loss functions.

RP = [1, 1, . . . , 1]
T

P × 1 ∑P
i=1 ki = 1

RP
TKP = 1

Denoting  as  the  unit  array  of
. Then  constraint  condition  of  weighting  coeffi-

cients  can  be  transformed  from  into
.  The  optimal  combinatorial  prediction

problem  can  therefore  be  expressed  as  mathematical

nonlinear programming problem:
  {

min J = min eTe = minKP
TE(P )KP

s.t. RP
TKP = 1

(18)

KP

KP

If a weighting coefficient vector  brings the sum
of  squares  of  the  prediction  error  of  the  combinatorial
prediction method to a minimum, then the  is called
the optimal weighting coefficient vector and the corres-
ponding  combinatorial  method  is  called  the  optimal
combinatorial prediction method.

With  the  Lagrange  multiplier,  the  sum of  squares
of  the  prediction  error  of  the  combinatorial  prediction
method can be expressed as
 

J = KP
TE(P )KP + λ(RP

TKP − 1) (19)

JThe necessary condition for  to achieve a minim-
um value is
 

∂

∂KP
(KP

TE(P )KP + λ(RP
TKP − 1)) = 0 (20)

In other words,
 

2E(P )KP + λRP = 0 (21)

E(P )
−1Multiply  the  two  sides  of  (21)  by  to  the

left, there is
 

2KP + λE(P )
−1RP = 0 (22)

RP
TAnd then multiply the two sides of (22) by  to the

left, there is
 

2RP
TKP + λRP

TE(P )
−1RP = 0 (23)

Because
 

Rp
TKP = 1 (24)

λ

substituting  (24)  into  (23),  we  can  solve  the  Lagrange
multiplier  as
 

λ = − 2

RP
TE(P )

−1RP

(25)

And then substituting (25) into (22),  we can solve the
optimal weight vector as
 

K∗ =
E(P )

−1RP

RP
TE(P )

−1RP

(26)

∗

K∗ = [k1
∗, k2

∗, k3
∗, k4

∗]
T

K∗

where  denotes the  optimal  solution  symbol.  Eventu-
ally,  we  can  obtain  the  optimal  weighting  coefficient
vector  using (26).  To  be  con-
sistent with the form of (12), we can multiply  with
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1
k1

∗

α β γ

. Then we can get the optimal weighting coefficients
,  and  of the multiple joint-constraint loss function

as follows: 

[1, α, β, γ]
T
=

[
1,

k2
∗

k1
∗ ,

k3
∗

k1
∗ ,

k4
∗

k1
∗

]T
(27)

The  difference  between  (12)  and  the  traditional
dual-output loss function (4) is that three regular terms
are added, which improves binding force from different
angles to increases the effectiveness of the constraint on
the estimated  mask.  The  separation  task  is  experi-
mented between different gender combinations, and the
constraint strength  of  the  regularization  term  is  af-
fected  by  corresponding  optimal  weighting  coefficients.
By  this  method,  the  accuracy  of  the  DNN  separation
model  is  improved,  so  that  the  recovered  IRM  of  the
separated  source  is  closer  to  the  actual  output  target,
which makes  the  magnitude  spectrogram of  the  separ-
ated signal closer to the magnitude spectrogram of the

actual  target  source signal.  It  should be noted that all
joint-constraint  loss  functions  proposed  in  this  paper
are not limited to separating the speech mixed by two
signals, and can be easily extended to the case of separ-
ating more than two source speech signals.

 5. Monaural  speech  separation  with  joint
constraint

The monaural speech separation based on dual-out-
put  DNN  with  joint  constraint  includes  two  stages:
training and testing. The training stage aims to learn a
DNN with more accurate network parameters based on
the multiple joint-constraint cost function.  The goal  of
the  testing  stage  is  to  obtain  the  target  speech  signal
from  the  mixed  signal  through  a  series  of  linear  and
nonlinear  transformations  using  the  trained  DNN.  We
summarized the overall process for the monaural speech
separation  based  on  joint-constraint  dual-output  DNN
in Fig.2.

 

S1 speech

S2 speech

Feature extraction

Target calculation

IRM1

IRM2

JC loss

Feature extraction

Mixture speech

Training DNN

Estimated IRM1

Estimated IRM2

Recovery module

Training stage

Mixture speech Feature extraction

Testing stage

Estimated IRM1

Estimated IRM2

Trained DNN

Separated  S1 speech

Feature extraction

Separated  S2 speech

 
Fig. 2. Block diagram of proposed method.

 

Y (t) S1t S2t

M1t M2t

In  the  training  stage,  we  perform  STFT  on  the
mixed  speech  and  two  target  speech  signals  to  obtain
corresponding magnitude spectrogram ,  and ,
respectively. We can achieve corresponding training tar-
get  and  using (9). Then use the mixed mag-
nitude spectrogram as the input of the neural network,
to train the network under the guidance of the training
target and the  constraint  of  the  joint  loss  function us-
ing (12). Finally, a trained network is gotten by adjust-
ing the network parameters many times. In the testing
stage,  first,  perform  STFT on  the  test  mixture  speech
to acquire the magnitude spectrogram feature. Then in-

put this feature into the trained network to get the es-
timated mask of target speaker-1 and target speaker-2,
respectively. Finally, we can obtain magnitude spectro-
gram  of  target  speaker-1  speech  and  target  speaker-2
speech using (7).

In the  recovery  module,  using  the  estimated  mag-
nitude  spectrum  and  the  phase  information  of  the
mixed signal, we reconstruct the utterances of two tar-
get speakers via ISTFT.

 IV. Experimental Results and Analysis
In this part, to evaluate the speech separation per-
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formance  of  our  proposed  methods,  many  experiments
are conducted on the GRID corpus [25]. First of all, the
experimental dataset and the concrete experimental set-
tings are introduced. Secondly, we describe the settings
of hyperparameters in DNN architecture. Then we con-
duct experiments  with  all  joint-constraint  loss  func-
tions  proposed  above  and  compare  their  performance
with that of traditional method and other previous loss-
based separation methods.

 1. Experimental configurations
1) Database
In  our  experiments,  the  training  and  the  testing

dataset are from the GRID corpus. There are 18 males
and  16  females  in  the  corpus,  each  person  with 1000
clean utterances (each utterance last about one second).
The utterances  of  two males  and two females  are  ran-
domly  selected  as  the  experimental  data.  The  speech
signals of every two speakers in the dataset are mixed,
so  that  six  gender  combinations  (F1+F2,  F1+M1,
F1+M2, F2+M1,  F2+M2  and  M1+M2)  can  be  ac-
quired.  F  and  M  stands  for  the  female  and  male.  To
generate  the  training  dataset,  700  utterances  of  each
target speaker  are  randomly  selected  from  GRID  cor-
pus, and then the utterances of two target speakers are
added as the mixed utterances. As for the testing data-
set, each person’s 50 utterances are also randomly selec-
ted from the remaining utterances in the corpus. In oth-
er words, each person’s test data and training data are
different. The final experimental results are obtained by
statistically average to get a general conclusion. All ut-
terances used for experiments are down-sampled from 25
kHz to 16 kHz. The frame length is set to 512 samples
and  the  frame  shift  is  set  to  256  samples.  The  257-di-
mensional  normalized  magnitude  spectrogram  features
obtained  by  STFT  is  used  for  the  input  of  DNN  mo-
del.

2) Hyperparameters settings of DNN

×

The dual-output  DNN  framework  used  in  experi-
ments  is  257-1024-1024-1024-514,  which  means  that
there  are  512  nodes  in  the  input  layer, 1024  nodes  in
the  each  of  three  hidden  layers  and  514  nodes  in  the
output layer.  Because the number of  single-source out-
put nodes is  257,  the number of  output layer  nodes of
DNN  model  with  dual-output  is  514  (257 2).  For  the
input layer  and  all  the  hidden  layers,  a  random  dro-
pout is applied to prevent overfitting and dropout rate
is set to 0.2.  For each hidden unit,  we choose rectified
linear unit (ReLU) as the activation function which can
refrain the gradient vanishing problem during the train-
ing process. Because the two outputs of model are both
range from 0 to 1, we choose sigmoid function as the ac-
tivation function for output unit. The total amounts of
training epoch is set to 50 and the mini-batch size is set

to 128. The learning rate is initialized as 0.01. Stochast-
ic gradient descent method is used for optimization.

3) Evaluation metrics
The separated speech signals for each approach are

evaluated with five objective metrics, including the per-
ceptual  evaluation  of  speech  quality  (PESQ)  [26],  the
short-time objective intelligibility (STOI) score [27], the
signal-to-interference ratio  (SIR),  the  signal  to  distor-
tion  ratio  (SDR),  and  the  sources-to-artifacts  ratio
(SAR) [28]. The PESQ algorithm provides a subjective
MOS prediction for objective speech quality assessment
by comparing  the  separated  speech  signal  and  the  ori-
ginal  reference  speech  signal.  The  score  ranges  from
−0.5  to  4.5  and  the  higher  score,  the  better  speech
quality. STOI  measures  objective  intelligibility  by  cal-
culating the  short-time  correlation  of  the  spectral  en-
ergy of the separated speech signal and the original ref-
erence  speech  signal.  Its  value  ranges  from 0  to  1  and
the higher value means the better speech intelligibility.
SDR measures the distortion of speech signal,  SAR in-
dicates the  suppression  of  speech  separation  to  the  in-
terference  error  of  the  system  and  SIR  indicates  the
suppression of speech signal to the interference error of
other speech signals. The unit of these three indicators
is dB and their values are all positively correlated with
the separation system performance.

 2. Experiments on proposed algorithm

JC1 JC2 JC3 JC4

In  this  part,  we  conduct  a  series  of  experiments
with the proposed speech separation methods based on
dual-output DNN. First, we investigate the influence of
regularization  coefficients  in  the  joint-constraint  loss
functions.  Then  we  compare  our  proposed  methods
(noted as , ,  and , respectively) with the
dual-output DNN-based speech separation using the ba-
sic  loss  function  based  on  masking  (noted  as  Basic-
IRM), mapping (noted as Basic-TMS) method and oth-
er previous method.

1) Influence of regularization parameter

JC1

α

JC1

α

α

First of all, in order to acquire the supreme results
of our  algorithm, we research the influence of regu-
larization coefficient  on the speech separation perform-
ance  of  different  gender  combinations.  Two  males  and
two females are randomly selected from the GRID cor-
pus, which  can  produce  six  different  gender  combina-
tions. We average the results of the 4 cross-gender com-
binations as  the result  of  the F-M. F-F and M-M rep-
resent the gender combination of F1+F2 and M1+M2,
respectively. The regularization coefficient  is changed
from 0 to 1, incrementing by 0.1 at a time. Experiment-
al  results  of  different  regularization  coefficients  of 
are shown in Fig.3(a). When  is equal to 0, the result
represents the performance of the traditional loss func-
tion. It can be seen from the results that when  is less
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α

α

α

α

α α

α

α

α

than 0.5,  the  PESQ  scores  of  three  gender  combina-
tions increase in varying degrees with the increase of .
The PESQ score increase rapidly when the value of  is
from 0 to 0.3, and increase slowly when the value of 
is  from 0.4  to  0.5.  Due  to  the  difference  in  the  speech
characteristics  of  different  gender  combinations,  the
value of optimal coefficient is different. For M-M separ-
ation  and  F-M  separation,  the  separation  system  has
the best performance when  is set to 0.5. For F-F case,
the  separation  system  has  the  optimal  performance
when  is  set  to  0.7.  When  is  larger  than  0.7,  the
curve  of  speech  intelligibility  of  the  separated  signal
shows a downward trend with the increase of , which
means  that  the  error  of  the  estimated  signal  and  the
original reference signal increases.  In addition, the sep-
aration  performance  is  better  when  is  set  to  1  than
when  is set to 0, which proves the effectiveness of the

JC1

α

α

JC2 JC3

JC2 JC3

β γ

JC2 JC3

β γ

JC2 JC3

JC2

JC3 β γ

β γ

proposed joint-constraint  algorithm.  Therefore,  for  dif-
ferent gender combinations of experiments with , we
choose  different  regularization  coefficient.  Separating
M-M and F-M mixed speech signals,  is set to 0.5, and
separating F-F mixed signal,  is  set  to  0.7.  Similarly,
we  did  the  same  experiments  with  and  , re-
spectively.  The  effect  of  regularization  coefficients  of

 and  on PESQ is shown in Fig.3(b) and (c), re-
spectively. For M-M and F-M cases, the separation sys-
tem has the optimal performance when  and  is set to
0.5  in  and  . For  F-F  case,  the  separation  sys-
tem has the optimal performance when  and  is set to
0.6 in  and . In conclusion, separating M-M and
F-M mixed  speech  signals  based  on  DNN with  or

,  or  is set to 0.5, and separating mixed signal in
F-F  case,  or   is  set  to  0.6.  The  same  settings  are
used in the following comparative experiments.
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JC1 JC2 JC3Fig. 3. Average separation performance with regularization parameter. (a) ; (b) ; (c) .
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In  this  part,  we  analyze  experimental  results  of
speech separation based on dual-output DNN with ,

 and   by  comparing  with  those  of  Basic-TMS
and  Basic-IRM.  The  PESQ  scores,  STOI,  SAR,  SDR
and SIR values are tested. The experimental results are
listed  in Table  1.  From  the  results,  we  obtain  some
findings.  Firstly,  the  performance of ,  and 
all  are  better  than  that  of  traditional  methods,  which
proves that the joint constraint of estimated value and
speech signal feature from multiple aspects between dif-
ferent  source  signals  is  significant.  Secondly,  utilizing
the relationship  between mask  and magnitude  spectro-
gram has  the  greatest  impact  on  the  separation  per-
formance. This can be explained that we finally need to
reconstruct the magnitude spectrogram of target speech
signal  for  speech  separation.  Therefore,  the  combined
constraint  of  mask  and  magnitude  spectrogram in 
can  make  the  predicted  value  more  accurate,  so  that
the  reconstructed  speech  signal  is  closer  to  the  pure
speech signal compared with the  and  methods.
Thirdly, compared with TMS, the IRM way is more ef-
fective  for  speech  separation,  especially  in  solving  the
same gender combination problem. In addition, the pro-
posed method can achieve better performance in the F-
M separation  cases.  The  system performance  on  cross-
gender  combination  outperforms  those  on  the  same

gender combination. It is because the same gender pos-
sesses  high similarity  the  speech signals,  which lead to
the separation difficulty.
  

Table 1. Separation performance comparison of dual-
output DNN with different methods

Method Gender PESQ STOI(%) SIR(dB) SDR(dB) SAR(dB)

Basic-TMS
F-F 1.922 78.50 5.7213 5.1264 7.9683
M-M 2.132 81.32 6.2013 4.9532 7.7462
F-M 2.164 83.32 9.7698 7.0325 9.1639

Basic-IRM
F-F 1.917 79.67 5.7624 4.9391 8.5022
M-M 1.95 82.49 6.1779 4.9779 7.8573
F-M 2.247 84.25 10.2349 7.2884 9.2441

JC1

F-F 2.167 85.46 7.9618 5.5091 8.9258
M-M 2.221 84.32 9.1738 6.3517 8.6679
F-M 2.473 87.78 12.8367 8.3247 9.9247

JC2

F-F 2.125 85.33 7.9016 5.5695 8.1933
M-M 2.198 84.21 8.9157 5.6508 8.1669
F-M 2.446 87.66 13.6825 7.2952 9.6075

JC3

F-F 2.119 85.30 9.045 5.9041 7.6908
M-M 2.171 84.28 9.994 6.3496 8.1946
F-M 2.447 87.95 13.8387 8.6556 9.3879

 
 

JC1

JC1

Specifically,  it  can  be  observed  from Table  1 that
the  method  improves  0.25  in  PESQ,  5.79%  in
STOI, 2.2 dB in SIR, 0.57 dB in SDR, and 0.42 dB in
SAR  in  the  F-F  separation  compared  with  the  Basic-
IRM. In terms of M-M separation, the  method im-
proves 0.27 in PESQ, 1.83% in STOI, 3 dB in SIR, 1.37
dB in SDR and 0.81 dB in SAR respectively compared

502 Chinese Journal of Electronics 2023



JC1

JC1

JC1

JC1

JC2 JC3

with  the  Basic-IRM.  Additionally,  in  F-M  case  where
0.23 in PESQ, 3.53% in STOI, 2.6 dB in SIR, 1.04 dB
in SDR and 0.68 dB in SAR are improved. Comparing
with  the  Basic-TMS  method,  the  performance  of  the

 method keeps  excellent.  We can see  from Table  1
that the  method improves 2.24 dB in SIR, 0.38 dB
in SDR and 0.96 dB in SAR in the F-F separation com-
pared with the Basic-TMS. In addition, the  meth-
od obtains  0.31,  3.07  dB,  1.29  dB,  and  0.76  dB  incre-
ment in PESQ, SIR SDR, and SAR in the separation of
F-M case. For M-M separation, the  method is also
better than Basic-TMS. Similarly, from the Table 1, we
can  obviously  see  that  the  and   methods  also
obtain  varying  degrees  of  improvement  on  different
gender-combinations compared with Basic-IRM and Ba-
sic-TMS  methods,  which  indicates  the  validity  of  our
proposed joint constraints.

JC43) Separation performance of 

JC4

α β γ JC4

JC4 JC1 JC2 JC3

α β γ JC4

JC4

JC1 JC2 JC3 JC4

JC4

α β γ

JC1

α

JC1 JC2

JC3 JC1

JC2 JC3 JC4

β γ α

β γ

α = 0.5 γ = 0

β

β α β

γ

γ γ

γ

α β γ

α β γ

In this part, firstly, to obtain the optimal results of
 algorithm, we research the effects of regularization

coefficients ,  and  of  on the speech separation
performance.  is the integration of ,  and .
The  regularization  coefficients ,  and   in   all
range  from 0 to  1.  If  two of  them are  0,  degener-
ates to ,  or . The  method is equivalent
to the Basic-IRM method if all of them are 0. We eval-
uate the separated speech performance of  with dif-
ferent  values  of ,  and   using  PESQ scores,  STOI
and SIR. According to the analysis in the section of in-
fluence of regularization parameter,  has the optim-
al  separation  performance  when  is  nearby  to  0.5  for
different gender combinations. According to the analys-
is in the section of separation performance of , 
and ,  has  better  separation  performance  than

 and  .Therefore,  the  value  of  in  is  larger
than that of  and . In the following experiments,  is
set to 0.5, and  and  are changed from 0 to 0.5 with
an increment of 0.1 to find more optimal value. Experi-
mental results are listed in Table 2. From the table, we
can see that the PESQ scores, STOI and SIR values are
affected in  varying  degrees  under  different  joint  con-
straint. Specifically, with  and , the speech
intelligibility is improved when  is from 0 to 0.4, and
decreased when  is from 0.4 to 0.5. Therefore,  and 
are set to 0.5 and 0.4, respectively. When  is less than
0.2, the  speech  intelligibility  is  improved  with  the  in-
crease  of .  When  is  bigger  than  0.2,  the  curve  of
speech  intelligibility  of  the  separated  speech  signal
shows a downward trend with the increase of , which
means that the error of the estimated value and the ori-
ginal reference value increases. The separation perform-
ance  is  better  when ,  and  are  set  to  other  value
combinations  than  when ,  and   are  all  set  to  0,

which proves the effectiveness of the proposed method.
From  the  experimental  results,  we  can  see  that  the
weighting  coefficients  has  a  great  influence  on  speech
separation  performance.  Therefore,  it  is  significant  to
solve the  optimal  weighting  coefficients  to  further  im-
prove the system performance.
  

JC4

α β γ

Table 2. PESQ, STOI and SIR of  with various val-
ues of ,  and 

Method α β γ PESQ STOI(%) SIR(dB)

JC4

0 0 0 2.247 84.25 10.2349
0.5 0.1 0 2.273 84.56 10.6283
0.5 0.2 0 2.324 85.01 11.4047
0.5 0.3 0 2.388 86.22 12.3751
0.5 0.4 0 2.375 85.03 12.1061
0.5 0.5 0 2.343 84.97 12.0911
0.5 0.4 0.1 2.392 86.36 13.2109
0.5 0.4 0.2 2.413 86.65 13.5892
0.5 0.4 0.3 2.401 85.57 13.3911
0.5 0.4 0.4 2.412 85.36 12.2692
0.5 0.4 0.5 2.317 85.69 12.1532
k2′ k3′ k4′ 2.516 89.14 14.5208

 
 

α β γ
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∗ ]

T
= [k2

′, k3
′, k4

′]
T

α, β, γ = {0.5, 0.3, 0}

α, β, γ = {0.5, 0.3, 0}

Secondly, to  evaluate  the  effectiveness  of  the  op-
timal weighting coefficient vector we solve based on the
optimization  idea,  we  compare  the  separated  speech
performance of  the  optimal  weighting  coefficient  com-
bination with  the  different  weighting  value  combina-
tions of ,  and  using PESQ scores, STOI and SIR.
Firstly,  using the prediction results of the training set,
we  calculate  the  prediction  error  at  each  frame  of
model  that  separately  with , ,  and   loss
function. We further calculate the statistical average of
the prediction  error  of  all  frames  and  then  the  predic-
tion  error  information  of  four  methods  is  spliced  into
the matrix . Then we solve the optimal weighting coef-
ficient  vector  using  (26).  The
corresponding  optimal  weighting  coefficient  vector  of
the  can be obtained by (27), and it can be denoted
as: . From the
results in Table 2, we can obtain that applying optimal
weighting  coefficients  combination  method  obtains  the
better separation performance. Specifically, the optimal
weighting  coefficient  combination  method  obtains  0.27
increment in PESQ, 5% increment in STOI and 4.29 dB
increment in  SIR compared with  the  traditional  meth-
od.  And  the  optimal  weighting  coefficient  combination
method obtains 0.13 increment in PESQ, 3% increment
in STOI and 2.15 dB increment in SIR compared with
the  case  of  and obtains  0.1  incre-
ment in PESQ, 2% increment in STOI and 0.93 dB in-
crement  in  SIR  compared  with  the  case  of

.  Obviously,  from  the  results  we
can see that the optimal weighting coefficient vector we
solve  based  on  the  optimization  idea  using  nonlinear
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programming  is  more  effective  compared  with  the
weighting value combinations selected empirically.
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JC1 JC2 JC3

JC4

JC4

JC4

Thirdly, to evaluate the speech separation perform-
ance  of  dual-output  DNN based  on  the  multiple  joint-
constraint loss  function,  we  conduct  a  series  of  experi-
ments  with  method on  different  gender  combina-
tions  and  compare  the  performance  with  the  Basic-
IRM, , ,  and MaxDiffer [15]. Fig.4 summar-
izes SIR, SDR and SAR values of reconstructed speech
by  different  separation  methods  for  two-speaker  mixed
speech  in  the  speech-independent  situation.  From  the
results shown in Fig.4(a), (b) and (c),  we can see that
the  is  excellent  in  different  gender  combinations
compared with other separation methods. For example,
comparing  with  MaxDiffer  method,  improves  SIR,
SDR and SAR 1.2 dB, 0.9 dB and 1.8 dB in separating
mixed  signal  of  F-M,  and  in  the  M-M separation, 

JC4

obtains  1.5  dB,  3.6  dB  and  0.6  dB  increment  in  SIR,
SDR  and  SAR.  It  can  be  seen  from  the  results  that
speech intelligibility  of  the  separated  signal  is  signific-
antly improved by the  method.

JC4

JC4

In addition, to visually see the separation perform-
ance of  each algorithm, we randomly select the testing
utterances waveforms of F-M separation pairs (which is
more intuitional) to display the effect on the intelligibil-
ity  and  the  quality  of  separated  speech  signals  which
are shown in Fig.5, where (a) and (b) are waveforms of
the  original  reference  speech  in  T-F  domain,  and  (c)
refers  to  the  waveform of  the  mixture  speech.  (d)  and
(e)  are  estimated  waveforms  separated  by  Basic-IRM
approach. (f)  and  (g)  are  estimated  waveforms  separ-
ated  by  method.  It  is  apparent  that  the  shape  of
the speech waveforms recovered by  algorithm is the
closest to the original reference signal.
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Fig. 4. Separation performance comparison for different approaches. (a) SIR; (b) SDR; (c) SAR.
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Fig. 5. Waveforms of speech. (a) Target (F); (b) Target (M); (c) Mixed (F+M); (d) and (e) Estimations of F and M separated by
Basic-IRM; (f) and (g) Estimations of F and M separated by  method.

 

 V. Conclusions

JC4

In this work, we propose three joint-constraint loss
functions  and  incorporate  them  into  a  comprehensive
joint-constraint loss function which is used to train the
dual-output  deep  neural  network  for  the  monaural
speech separation problem. The novel  loss function
exploits the relationship between masks, the connection
between masks and magnitude spectrogram and the re-
lationship  between  target  magnitude  spectrogram  and
mixed  magnitude  spectrogram,  so  that  it  can  estimate

JC1 JC2 JC3

the corresponding output value more precisely. In addi-
tion, we solve the optimal weighting coefficients of  the
multiple joint-constraint loss function based on the op-
timization idea,  which  further  improves  the  perform-
ance of the separation system. In order to verify the ef-
fectiveness of the proposed method, we compare it with
the  traditional  separation  method, , ,  and
other previous method using the dual-output DNN. The
experimental results show that the separation perform-
ance of  the  proposed  method  obtained  generally  im-
provement compared with the traditional and other ad-
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vanced  methods.  It  also  indicates  that  our  proposed
method for speech separation is more excellent in hand-
ling the different gender combination case. The separa-
tion  performance  in  the  same-gender  mixed  separation
case is a little terrible comparing with the cross-gender
case.  So,  our future work is  to focus on the separation
in  the  same-gender  mixed  separation  case  and  design
more  effective  and  precise  network  to  sort  out  the
tricky  problem.  Besides,  the  method  proposed  in  this
paper  is  studied  in  the  context  of  linear  mixing  of
speaker’s speech signal. But in the actual environment,
the  utterance  is  often  mixed  with  reverberation  and
noise. It is worth studying to design a robust algorithm
that  can  de-reverberation  and  de-noise  simultaneously
to further improve the separation system performance.
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