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   Abstract — Speech  keyword  spotting  system  is  a
critical  component  of  human-computer  interfaces.  And
connectionist  temporal  classifier  (CTC)  has  been  proven
to be an effective tool for that task. However, the stand-
ard  training  process  of  speech  keyword  spotting  faces  a
data  imbalance  issue  where  positive  samples  are  usually
far  less  than  negative  samples.  Numerous  easy-training
negative examples overwhelm the training,  resulting in a
degenerated model. To deal with it, this paper tries to re-
shape  the  standard  CTC  loss  and  proposes  a  novel  re-
weighted  CTC  loss.  It  evaluates  the  sample  importance
by  its  number  of  detection  errors  during  training  and
automatically down-weights  the  contribution  of  easy  ex-
amples, the majorities of which are negatives, making the
training  focus  on  samples  deserving  more  training.  The
proposed  method  can  alleviate  the  imbalance  naturally
and make use of  all  available  data efficiently.  Evaluation
on several sets of keywords selected from AISHELL-1 and
AISHELL-2 achieves 16%–38% relative reductions in false
rejection rates over standard CTC loss at 0.5 false alarms
per keyword per hour in experiments.

   Key words — Speech keyword spotting, Connection-

ist  temporal  classifier, Data  imbalance, Sample import-

ance re-weighting.

 I. Introduction
Speech  keyword  spotting  (KWS)  which  is  also

known as spoken term detection (STD) [1], refers to the
task of  continuously  detecting  keywords  in  an  uncon-
strained audio stream or a pre-recorded audio archive [2].
Keyword  spotter  can  quickly  detect  useful  information
embedded  in  natural  conversational  speech  and  has
been  widely  applied  in  voice  controlling  [3], audio  re-
trieval [4], audio monitoring [5], and so on.

Popular  KWS  architectures  can  be  classified  into
two categories:  keyword/filler  posterior  modeling  fol-
lowed  by  a  search  algorithm  and  end-to-end  (E2E)

based  architectures.  In  the  keyword/filler  modeling
style, each word or subword of the keyword is modeled
by a hidden Markov model (HMM) and another phone-
loop  graph  is  usually  used  as  a  filler  model  to  absorb
non-keyword  speech  segments  [6],  [7].  In  recent  years,
benefiting from the success of deep learning, neural net-
works-based  methods  [8]–[11] greatly  improve  the  per-
formance  of  KWS.  And  E2E  based  methods,  such  as
the  connectionist  temporal  classifier  (CTC)  [12]  based
model  [13]–[15],  bring  further  improvement  to  KWS
and have attracted more and more interest since there
are no  requirements  of  frame-level  labels  and  pre-
defined alignments.  CTC  addresses  variable-length  in-
put and output sequence and allows the network to pre-
dict label at any point of the input sequence. And CTC
shows good performance in KWS as can be seen in [13]–
[15]. Hence, this study uses CTC for the KWS system.

The problem of data imbalance is common in KWS
training [16]–[18], where a large amount of diverse neg-
ative  training  samples  that  may  have  pronunciation
similar  to  the  keyword  are  indeed  required  to  prevent
false alarms. Simultaneously, it is easy to collect abund-
ant negative training data, while it is expensive to col-
lect  positive  keyword  data.  As  a  result,  the  imbalance
leads to an inefficient training process as most easy ex-
amples  are  actually  well-learned  during  the  initial  few
epochs.  It  should  be  pointed  out  that  in  this  study,
“easy/hard  examples” represent  the  samples  that  are
easy/hard to train and basically  do not/easily  produce
detection errors  (including false  alarms and false  rejec-
tions) during training.  According to [18], this  data im-
balance can actually be summarized as the imbalance in
difficulty or importance of samples. Specifically, during
decoding,  false  alarms  are  mainly  caused  by  a  small
number of  hard  negative  examples  having  pronunci- 
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ation similar  to the keyword;  however,  the majority of
easy negative examples overwhelm the loss and domin-
ate the gradient backpropagation, which results in a de-
generated model. To alleviate the data imbalance, Hou
et  al. [17 ]  introduced  a  regional  hard-example  mining
algorithm  to  select  representative  negative  training
samples to achieve a relative balance in quantity. It ac-
tually discards a lot of samples during training. Altern-
atively,  cost-sensitive  learning  [19] is  an  effective  solu-
tion that allows the use of all samples to solve the im-
balance. It can be divided into class balanced re-weight-
ing [20] and sample importance re-weighting. A typical
instance of the latter is focal loss,  which was first pro-
posed to address the data imbalance of dense object de-
tection [21] and later applied to KWS in [16]. Focal loss
can automatically down-weight the contribution of easy
examples during training and rapidly focus on hard ex-
amples.  Zhang et  al. [18 ]  also  used  sample  importance
re-weighting to handle the data imbalance of KWS. Un-
like [16], they re-weighted sample loss considering local
interval sample difficulty instead of frame difficulty.

All  the  aforementioned  works  use  loss  values  to
evaluate  the  difficulty  or  importance  of  samples  (loss
values-guided methods). During training, in these meth-
ods, the larger the loss a sample produces, the more im-
portant  it  is  regarded  as.  However,  it  is  evident  that
large  loss  values  do  not  always  mean  false  detection,
and  small  values  may  not  represent  correctness  [22].
This  phenomenon  is  more  common  in  the  CTC-based
KWS system. The training criterion of CTC is to max-
imize the probability of the target sequence, i.e., a max-
imum  likelihood  learning  process  [23].  The  log-likeli-
hood reflects the probability of making the whole tran-
scription  completely  correct;  what  it  ignores  are  the
probabilities of  incorrectly  transcribing  keywords,  res-
ulting  in  all  incorrect  transcriptions  being  considered
equally bad. In other words, the model is not straightly
trained with the final performance metric, which is typ-
ically  false  alarm  rate  (FAR)  and  false  rejection  rate
(FRR),  where  the  FAR  refers  to  the  number  of  false
alarms (FAs) per keyword per hour (fa/kw/hr) and the
FRR calculates  the  ratio  of  the  number  of  false  rejec-
tions  (FRs)  of  keywords  to  the  whole  number  of
keyword occurrences. As a result, there may be FAs or
FRs for a sample with a small loss, while a sample with
a  larger  loss  may  not.  Hence,  sample  importance  can
not  be evaluated accurately  just  by the loss  values.  In
this  circumstance,  the  loss  values-guided  methods  like
focal loss can not work stably and sometimes may even
impair the performance.

In this study, inspired by [16] and [18], we focus on
using sample importance re-weighting to overcome data
imbalance in the CTC-based KWS system and propose

a number-of-errors guided re-weighted CTC loss (NER-
CTCL). The keyword searching is incorporated into the
training stage. And then, the difficulty or importance of
samples is evaluated by the number of actual detection
errors instead of the loss values. In other words, we con-
centrate  on  the  FAs  and  FRs  of  a  sample  in  keyword
searching during training. The more FAs and FRs pro-
duced  in  a  sample,  the  higher  weight  it  will  have.  It
helps  to  focus  the  training  on  hard  examples  quickly
and  automatically  down-weights  the  contribution  of
easy examples.  In  fact,  it  also  alleviates  the  inconsist-
ency  between  the  training  objective  and  the  metric
mentioned above to a certain extent, as this helps train-
ing to optimize the performance metric, rather than to
make  it  just  a  maximum  likelihood  learning  process.
Experiments  compare  NER-CTCL with  standard  CTC
loss (S-CTCL) and focal CTC loss (F-CTCL) [24] that
combines  CTC  loss  and  focal  loss  to  handle  the  data
imbalance.  At  an  FAR  of  0.5  fa/kw/hr,  NER-CTCL
achieves  16%–38%  relative  reductions  in  FRR  against
the S-CTCL. And it shows superiority compared to F-
CTCL as well.

 II. Related Work
 1. Standard CTC loss
CTC is a popular method for sequence learning. It

enables  the  E2E  model  training  with  no  predefined
alignment information required. The key idea of CTC is
to  introduce  a  blank  symbol  as  an  additional  label  to
the  label  set  and  allow  repetition  of  labels  or  blank
across frames.

x T
p(l|x)

l U (≤ T )

π

B
π l

Given an input sequence  of length , CTC trains
the  model  to  maximize  the  probability  for  the
corresponding target label sequence  of length .
Denoting  the  concatenation  of  observed  labels  at  all
time-steps  as  a  path .  And  a  many-to-one  mapping
function  is defined to access the relationship between
path  and target sequence . Then, CTC represents the
conditional  probability as a summation of  probabilities
of all feasible paths as follows:
 

p(l|x) =
∑

π∈B−1(l)

p(π|x) (1)

Now, the  CTC  loss  (i.e.,  S-CTCL)  can  be  calcu-
lated  as  the  negative  logarithm  probability  of  the
ground truth as follows:
 

LCTC = − ln p(l|x) (2)

LCTC

During  training,  the  model  is  trained  to  minimize
.

 2. Focal CTC loss
To alleviate the data imbalance, reference [24] com-
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bined  the  CTC  loss  with  focal  loss  and  proposed  F-
CTCL, which is defined as follows:
 

L(F)-CTC(l|x) = −αt(1− p(l|x))γ ln(p(l|x)) (3)

αt αt ∈ [0, 1] γ ≥ 0

p(l|x)
(1− p(l|x))γ 1
p(l|x) → 1 0

where  ( )  and  ( )  are  two  hyper-para-
meters that need to be tuned manually. This is practic-
ally  a  method  of  sample  importance  weighting,  and  it
uses  the  loss  values  to  evaluate  the  importance  of
samples.  When  loss  value  is  large,  i.e.,  is  small,
the  modulating  factor  is  near  and  the
loss  is  unaffected;  as ,  the  factor  goes  to 
and the loss is down-weighted.

 III. Methodology

x l

In this  paper,  we  also  consider  using  sample  im-
portance  re-weighting  to  overcome  data  imbalance  in
the CTC-based  KWS  system.  Formally,  the  loss  func-
tion  of  a  sample  with  target  sequence  can  be  re-
weighted as follows in sample importance re-weighting:
 

LRE = −W · ln(p(l|x)) (4)

Wwhere  is a weighting term, which represents sample
importance.

As  mentioned  above,  loss  values-guided  methods,
such as focal loss [21], have been applied to alleviate the
class-imbalance issue in KWS, but these approaches can
not work stably since the loss values are not a suitable
measurement  to  accurately  evaluate  the  importance  of
samples in  the  CTC-based  KWS system.  This  is  actu-
ally  due  to  the  inconsistency  between  the  objective  of
training and the evaluation metric,  which are typically
FAR and FRR. Hence, we use the number of detection
errors, including FAs and FRs, to evaluate the import-
ance of samples.

(xi,yi)

yi

xi w(i, t) t

t

Specifically, given a training sample , where
 is the corresponding ground truth label sequence, the

weight of  is denoted as , where  represents the
-th  epoch.  Firstly,  the  weights  of  all  training  samples

are initialized to 1. In the traditional CTC-based KWS
works,  such  as  [13]–[15], keyword  searching  is  not  re-
quired at  training  stage,  it  is  served  as  an  indispens-
able tool to get the final results during testing only. In
this study, in addition to calculating the loss in the for-
ward pass during training, the keyword searching is ap-
plied to the model outputs to count the number of FAs
and FRs for each training utterance:
 

NF(i, t) = NFA(i, t) +NFR(i, t) (5)

NFA(i, t) NFR(i, t)

xi t

xi t

where  and   represent  the  number  of
FAs  and  FRs  of  the  sample  in  -th epoch,  respect-
ively. Then, the weight for  at the end of -th epoch is

updated by
 

w(i, t) = N × w′(i, t)∑N

i=1
w′(i, t)

(6)

 

w′(i, t) = αw(i, t− 1) + βNF(i, t)×
1

Ntotal(i, t)× t
(7)

N
Ntotal(i, t)

xi t

where  is  the  number  of  training  samples  and
 is the  total  number  of  FAs  and  FRs  pro-

duced from  up to -th epoch.

α > 0

β ≥ 0

t

t

Ntotal(i, t)

t

Ntotal(i, t)

Ntotal(i, t)

N

It  is  worth  pointing  out  that  sample  importance
should  not  be  considered  only  from the  current  epoch,
but  from  a  global  perspective,  that  is,  it  needs  to  be
evaluated in conjunction with the statistics of the previ-
ous  epochs.  The  more  epochs  a  sample  has  generated
FAs and FRs during training, the more difficult it can
be trained, and the more attention needs to be paid to
it. Therefore,  equation  (7)  is  set  as  a  cumulative  pro-
cess, i.e. a sample once causes FAs or FRs in a certain
epoch, its weight will increase. Hyperparameters  ( )
and  ( ) are used to weight the contribution of the
original weight  and  the  contribution  of  the  false.  Not-
ing that  as  the training progresses,  the  performance of
the model will gradually improve, and the overall level
of  the  loss  values  will  decrease.  In  order  to  avoid  the
weight accumulating to an excessively high level, result-
ing  in  large  fluctuations  of  the  loss  values  at  the  late
training  stage,  the  magnitude  of  the  weight  variation
needs to  be  gradually  reduced.  So  there  is  an  attenu-
ation factor  on the right side of (7). At the beginning
of  training,  it  helps  the  model  focus  on hard examples
quickly.  Additionally,  there  are  always  some  samples
that cause FAs or FRs at the late training stage. They
are noisy labels or outliers if the errors exist stably even
when the model is converged [25]–[27]. If  large weights
are  blindly  given  to  these  samples,  the  performance
would be impaired.  Using the attenuation factor  and

 can  suppress  this  phenomenon  to  a  certain
extent  as  reduces  the  impact  of  detection  errors  on
the  weights  in  the  late  training  period  when  most
samples can be correctly recognized, and  fur-
ther  prevents  outliers  that  always  produce  errors  (i.e.,

 becomes  larger  and  larger)  from  misleading
the training. The normalization (i.e.,  equation (6)) can
ensure that  the  sum  of  the  weights  of  all  samples  re-
mains ,  it  therefore  implicitly  carries  a “forgetting
mechanism”:  if  there  are  no  detection  errors  in  a
sample,  its  weight  will  decrease.  It  should  be  pointed
out  that  the  normalization  is  done  after  each  epoch,
and  the  normalized  weights  are  applied  to  the  losses
from the corresponding samples in the next epoch.

xi tNow, the weighted CTC loss of  in -th epoch is
as follows:
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LNER-CTC(i, t) = w(i, t)× LCTC(i, t)

= −w(i, t)× ln p(yi|xi) (8)

ln p(yi|xi)where  is  calculated according to (1).  In this
way, the  training  will  be  guided  to  focus  on  under-
trained  samples  and “ignore”  relatively  overtrained
samples. In fact, for negative samples, as reference [18]
pointed out, FAs are mainly caused by a small number
of samples having pronunciation similar to the keyword
during  decoding.  A  large  amount  of  negative  samples
tends  to  be  easy  to  train  and  the  hard  examples  are
usually positive [25]. Therefore, NER-CTCL can allevi-
ate the imbalance naturally and allows us to efficiently
utilize all  available  data  since  it  can  automatically  re-
duce  the  loss  contribution  from  the  majority  of  easy
negative samples.

 IV. Experiments
 1. Dataset and experimental settings
The  experiments  are  conducted  on  two  public

available  Mandarin  Chinese  corpora:  AISHELL-1  [28]
and AISHELL-2 [29].  In this  paper,  only a part  of  the
data extracted from the two corpora forms the  experi-
mental  datasets.  Detailed  dataset  statistics  can  be
found  in Table  1 and  the  specific  keywords  lists  are
shown in Table 2.

It  should  be  pointed  out  that Table  1 only de-
scribes the statistics of positive samples, each of which
contains  at  least  one  keyword  consisting  of  2  or  3
Chinese characters.  For  any special  task in the experi-
ments, the  negative  samples  are  added  to  form the  fi-
nal datasets according to the necessity of the task.

  
Table 1. Dataset statistics for positive samples

Dataset
Training set (75%) Development set (10%) Test set (15%)

#utters #hrs #utters #hrs #utters #hrs
A2KW4 9,425 11.94 1,257 1.61 1,883 2.36
A2KW5 11,336 13.84 1,511 1.85 2,266 2.76
A2KW9 20,756 24.27 2,769 3.23 4,146 4.83
A2KW12 24,932 28.84 3,322 3.84 4,981 5.79
A2KW20 41,396 53.08 5,519 7.08 8,268 10.64
A1KW8 17,121 23.26 2,281 3.08 3,420 4.63

Note: “A2KW4” means 4 keywords need to be spotted and the dataset is sampled from AISHELL-2. The rest are similar (“A1” repres-
ents AISHELL-1). “utters” and “hrs” stand for utterances and hours, respectively.

 
  

Table 2. Keywords list

Dataset Keywords
A2KW4 “shi2 jian1 (时间)”, “shi4 jie4 (世界)”, “shou3 ji1 (手机)”, “shu4 ju4 (数据)”
A2KW5 “yin1 yue4 (音乐)”, “ge1 qu3 (歌曲)”, “wei4 shi4 (卫视)”, “hu4 lian2 wang3 (互联网)”, “ji1 qi4 ren2 (机器人)”

A2KW9 “gong1 zuo4 (工作)”, “yu2 le4 (娱乐)”, “chan3 pin3 (产品)”, “cheng2 shi4 (城市)”, “guo2 jia1 (国家)”, “guo2 ji4 (国际)”, “jing4
hua4 qi4 (净化器)”, “fang2 di4 chan3 (房地产)”, “dian4 shi4 ju4 (电视剧)”

A2KW12 “zhong1 yang1 (中央)”, “xin4 xi1 (信息)”, “ji4 shu4 (技术)”, “zheng4 fu3 (政府)”, “fu2 wu4 (服务)”, “ji1 gou4 (机构)”, “bi3 sai4
(比赛)”, “dian4 ying3 (电影)”, “guan3 li3 (管理)”, “wen4 ti2 (问题)”, “ji1 qi4 ren2 (机器人)”, “jing4 hua4 qi4 (净化器)”

A2KW20

“shang4 hai3 (上海)”, “ye4 wu4 (业务)”, “zhong1 guo2 (中国)”, “jiao1 yi4 (交易)”, “chan3 pin3 (产品)”, “jia4 ge2 (价格)”, “qi3
ye4 (企业)”, “gong1 si1 (公司)”, “fa1 zhan3 (发展)”, “fa1 bu4 (发布)”, “cheng2 shi4 (城市)”, “tu3 di4 (土地)”, “ping2 guo3 (苹
果)”, “xiao1 shou4 (销售)”, “xiang4 mu4 (项目)”, “qi4 che1 (汽车)”, “jian4 she4 (建设)”, “dian4 shi4 ju4 (电视剧)”, “hu4 lian2

wang3 (互联网)”, “fang2 di4 chan3 (房地产)”

A1KW8 “ji4 zhe3 (记者)”, “qi3 ye4 (企业)”, “bai3 fen1 (百分)”, “bei3 jing1 (北京)”, “cheng2 shi4 (城市)”, “shi4 chang3 (市场)”, “zhong1
guo2 (中国)”, “gong1 si1 (公司)”

 
 

2× 2 2× 2

In  this  study,  we follow our  previous  work [15]  to
set the  experiments.  80-dimensional  log  Mel  spectro-
gram features with 25 ms frame length and 10 ms frame
shift are extracted as model training inputs. The neural
network  for  the  KWS  system  is  CRNN.  For  CNNs,
there  are  three  two-dimensional  convolutional  layers
with the number of filters and kernel size as follows: [16,
(3, 3)], [32, (3, 3)], and [32, (3, 3)]. The first and third
convolutional layers are followed by a max-pooling lay-
er, the size of which is  with a stride of . For
RNNs,  a  two-layer  BiGRU,  each  of  which  has  256
memory cells, is applied to model the sequential inform-

ation. The Adam optimizer with an initial learning rate
of 0.001, which decays every 10,000 steps with a base of
0.7, is chosen to train the model. The size of the mini-
batch  is  64.  The  development  set  are  evaluated  once
every two epochs.  When the performance of  the devel-
opment  set  has  not  improved  after  several  epochs,  an
early stopping will be used to avoid overfitting.

 2. Experimental results

αt γ

As a contrast, the results of S-CTCL and F-CTCL
[24] are also reported in this study. The hyperparamet-
ers  and   in  F-CTCL  are  tuned  with  the  scheme
used in [24].

468 Chinese Journal of Electronics 2023



α β

α β

β α

α = 1 β = 0

β

As for  NER-CTCL,  different  values  of  hyperpara-
meters  and   in  (7)  were  tested  on “E1-A2KW5”
firstly,  where  10  times  negative  samples  are  added  to
the “A2KW5” in the training set and 2 times in the test
set.  Here, “E*-A2KW5”  where  “E”  is  the  abbreviation
of “extended”  represents  the  extended  version  of
“A2KW5”, and the superscript stands for different ver-
sions (if exists); the same below. In the tuning process,
the proportional relationship between  and  is mainly
concerned  because  of  the  weights  normalization  (i.e.,
equation (6)).  Therefore,  the  adjustment of  hyperpara-
meter can be easily converted to fix one parameter and
then tune  another  one.  The  FRR  results  under  differ-
ent values of  with  being set to 1 are listed in Table
3 when  FAR  is  fixed  at  0.5  fa/kw/hr.  It  should  be
noted  that  NER-CTCL  degenerates  to  S-CTCL  when

 and  .  From Table  3,  the  advantages  of
NER-CTCL  over  S-CTCL  can  be  seen.  On  the  one
hand,  this  advantage  becomes  more  evident  as  in-
creases.  According  to  (7),  combined  with  the  previous
statistics  of  detection  errors,  the  training  will  focus

β

β

β = 20

α = 1 β = 1

β

Ntotal(i, t)

β

more  on  the  samples  which  are  hard  to  train  for  the
current model when  increases. As the performance of
the  model  gradually  gets  better  during  training,  this
evaluation for the “difficulty” of samples becomes more
reliable  to  a  certain  extent.  So  when  is  relatively
large,  the  training  makes  better  use  of  hard  examples,
and therefore better performance is obtained. Based on
this,  was tried. However, it did not work. In this
case, the FRR is higher than when  and . On
the other hand,  the performance gradually deteriorates
when  becomes smaller. In this situation, the weight of
a  sample  is  mainly  dominated  by  accumulated  errors.
Because the performance of the model which is trained
in the early training stage is relatively poor, the evalu-
ation of the “difficulty” of the sample is relatively inac-
curate;  moreover,  the  inhibitory  effect  of  in
the  second term of  (7)  on  outliers  is  greatly  weakened
since  is very small, so the training is affected by out-
liers and some “fake” hard examples, and the perform-
ance of the model decreases accordingly.

  
β αTable 3. FRR results on E1-A2KW5 under different values of  with 

being set to 1 when FAR is fixed at 0.5 fa/kw/hr

β 0 0.2 0.5 1 2 5 20
FRR 9.73 8.82 7.47 5.99 5.71 5.53 6.23

Note: The ratio of the number of positive samples and that of negative samples is 1:10 in the training set, and the ratio is 1:2 in the test
set.

 
 

β β

α = 1, β = 20

α = 1, β = 1 β = 1

β α

β α = β α =

β α =

β α =

α = 1, β = 1

α = 1, β = 1

α = 1, β = 1

From Table 3, it can be seen that system perform-
ance is gradually getting better as  increases when  is
less  than  5.  However,  performs  worse
than . Meanwhile, it shows that  is a
“key point” in the view of the change of FRR vs. : ,
the  decrease  of  FRR when : 1:2  becomes : 1:1
is  much  larger  than  that  when : 1:1  changes  to
: 2:1. On the other hand, this paper focuses on the

effect  of  the  errors  on  training,  which  is  an  uncertain
factor;  for  example,  the  errors  may  result  from  noise
when the dataset is deteriorated by noise. Moreover, al-
though  is  not  the  optimal  setting  in  the
experiments in Table 3, its performance is much better
than  S-CTCL.  Therefore,  we  think  is  a
reasonable  choice  based  on  these  considerations.  The
following  experiments  will  show  that  only  using

 without  too  many  parameters  tuning,
NER-CTCL can  also  continuously  show its  superiority
compared  to  S-CTCL  and  F-CTCL,  which  not  only
verifies the  effectiveness  but  also  demonstrates  the  ro-
bustness  and  ease  of  use  of  the  proposed  method.  In
other  words,  the  performance  of  the  KWS system  can
be improved  without  too  much  adjustment  for  hyper-
parameters.

The detection  error  trade-off  (DET)  curves  com-

paring  the  performance  of  the  systems  that  employ  S-
CTCL,  F-CTCL,  and  NER-CTCL are  shown  in Fig.1.
For visibility, only the two curves with the best results
of F-CTCL are displayed. More detailed results can be
seen in Table 4. It should be pointed out that the ratio
of  the  number  of  positive  and  the  number  of  negative
samples  is  1:2  in  the  test  sets,  while  the  ratio  in  the
training sets is 1:10. In fact, for a certain keyword, the
samples  for  other  keywords  are  negative  in  the  multi-
keyword KWS system. Therefore, the imbalance is more
serious.  For  example,  after  adding  negative  samples  to
the training set, the imbalance can be more serious than
1:40 as for “E-A2KW4”. And at the character level, the
actual  imbalance  can  be  even  more  severe  as  the  non-
keyword in the positive samples are also negatives.

From Fig.1 and Table 4, the effectiveness of NER-
CTCL can be seen. As for “E-A2KW4”, when the FAR
is  0.5  fa/kw/hr,  NER-CTCL yields  a  lower  FRR than
S-CTCL with a 1.81% absolute reduction,  which relat-
ively  decreases  by  16.45%.  And  for “E1-A2KW5”,  “E-
A2KW9”, “E-A2KW12”,  “E-A2KW20” ,  and “E-
A1KW8”,  the  absolute  reductions  are  3.74%,  1.59%,
1.54%,  0.96%,  and  1.47%,  a  relative  reduction  of
38.44%, 20.08%,  27.80%,  28.49%,  and  30.37%,  respect-
ively.  Moreover,  F-CTC  also  shows  some  superiorities
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αt γ

compared to S-CTCL and sometimes even gets the best
result. However, the improvement is not easy to get and
is very unstable. As can be seen from Table 4, some bad
choices of  and  impair the performance. In fact, as
for “E-A1KW8” ,  despite  many  choices  being  tried,  F-
CTCL does not work. And the optimal choice is not the
same  in  different  cases.  In  other  words,  if  F-CTCL  is
used to improve performance expectedly, there is a vast
parameter  space  need  to  search,  while  NER-CTCL
achieves  or  closely  achieves  the  best  result  just  in  a

nearly  effortless  way.  Besides,  as  for “E-A2KW4” ,  it
can  also  be  found  from Fig.1(a)  that  for  S-CTCL and
F-CTCL, the range of FAR is overall wide, which is ac-
tually because the pronunciation of the four keywords is
similar (“sh- j-”), and NER-CTCL reduces the range a
lot.

To  further  verify  the  effectiveness  of  NER-CTCL,
different numbers of negative samples are added to the
“A2KW5” to  observe  the  performance  of  NER-CTCL
on different degrees of imbalanced training sets, the ra-
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Fig. 1. DET curves comparing performance of the systems that employ S-CTCL, F-CTCL, and NER-CTCL for (a) “E-A2KW4”;

(b) “E1-A2KW5”; (c) “E-A2KW9”; (d) “E-A2KW12”; (e) “E-A2KW20”; and (f) “E-A1KW8”.
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tio  is  fixed to 1:2 in test  set.  The experimental  results
are shown in Fig.2. Combined with Fig.1, it can be seen
that NER-CTCL keeps its superiority in different situ-
ations where the imbalance ratios are different. Specific-
ally,  at  an  FAR  of  0.3  fa/kw/hr,  when  the  imbalance
ratios  (positive:negative)  are  1:5,  1:10,  1:15,  1:20,  and
1:25,  compared  to  S-CTCL,  using  NER-CTCL reduces
the  FRR  from  13.04%,  12.71%,  10.66%,  11.74%,  and
11.48% to 10.94%, 9.49%, 8.36%, 8.80%, and 7.44%, re-
spectively;  the  relative  reductions  are  16.10%,  25.33%,
21.58%,  25.04%,  and  35.19%,  respectively.  It  can  be
found  from Fig.1(b)  and  Fig.2  that  as  the  number  of

negative samples increases,  FAR decreases to a certain
extent, and  the  overall  performance  of  the  KWS  sys-
tem is  improved.  But  this  improvement  is  not  unlim-
ited.  When  there  are  too  many  negative  samples,  the
performance of  S-CTCL will  decrease  obviously  due to
the data imbalance. And NER-CTCL can effectively al-
leviate this problem. In fact,  when the training set be-
comes more and more imbalanced, the relative perform-
ance improvement brought by NER-CTCL seems to be
more and more.

Although  NER-CTCL  has  more  computation  in
training than S-CTCL since additional keyword search-

   
Table 4. FRR results among S-CTCL, F-CTCL, and NER-CTCL on

different datasets with FAR fixed at 0.5 fa/kw/hr

Loss function αt γ
FRR

E-A2KW4 E1-A2KW5 E-A2KW9 E-A1KW12 E-A1KW20 E-A1KW8
S-CTCL – – 11.00 9.73 7.92 5.54 3.37 4.84

F-CTCL

0.99 0.5 10.96 8.98 7.14 5.39 2.80 4.48
0.99 1 13.23 10.11 7.93 4.61 2.92 4.67
0.99 2 9.94 6.78 7.01 5.63 2.69 5.71
0.75 0.5 9.15 8.54 7.80 5.32 3.52 5.20
0.75 1 10.61 7.95 9.17 5.71 3.23 5.86
0.75 2 9.67 9.69 6.81 4.80 2.95 5.43
0.5 0.5 10.19 9.07 7.86 5.72 2.39 5.26
0.5 1 10.00 10.61 9.45 4.83 2.88 5.47
0.5 2 10.49 9.32 8.99 4.67 2.59 5.52
0.25 0.5 12.09 12.37 8.70 4.46 2.53 5.71
0.25 1 11.08 10.18 7.95 4.70 2.51 5.48
0.25 2 9.40 9.03 7.65 4.69 2.92 6.85

NER-CTCL – – 9.19 5.99 6.33 4.00 2.41 3.37
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Fig. 2. DET curves on different degrees of imbalanced datasets. The negative samples are added to the training set at the ratios

(positive:negative) of (a) 1:5; (b) 1:15; (c) 1:20; and (d) 1:25 in “A2KW5”. The ratio is 1:2 in the test set.
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ing  is  required  to  get  the  accumulated  statistics  about
FRs and FAs, it actually does not increase the training
time too much. In order to evaluate the performance of
the  proposed  method  better,  a  comparison  of  training
time consumption is conducted for quantitative analys-
is.  The  results  which  are  obtained  by  averaging  the
time cost of each epoch for the entire training stage are
shown in Table  5, where the value in parentheses  rep-
resents the standard deviation.  For reliability,  the ma-
chine is guaranteed to run in a basically consistent en-
vironment in the two experiments. It can be found that
there is only a tiny extra time consumption when using
NER-CTCL.  Specifically,  it  only  increases  by  0.16  ms
(i.e., 1.79%) per epoch for each sample on average.
  

Table 5. Comparison of training time consumption

Loss function Training time
(s/epoch)

Average
(ms/utterance/epoch)

S-CTCL ±994.73 ( 2.02) 8.95
NER-CTCL ±1,012.66 ( 1.89) 9.11

Note: “E1-A2KW5” where 101,070 negative samples are added to
the training set in “A2KW5” is used to count the training
time, i.e. the total number of utterances is 111,177 in the
training set.

 
 

Finally, we look into the training procedure to find
how the NER-CTCL works. The weights of the samples
are tracked during training. Taking “E-A2KW9” as an
example, when 207,560 negative examples are used (i.e.,
the ratio of  the number of  positive and the number of
negative samples is 1:10), until the end of the training,
17,578  (84.69%)  positive  samples  have  caused  FAs  or
FRs during the training, resulting them having greater
weights  than  those  samples  that  have  never  produced
detection errors.

In  contrast,  only 2,673  (1.29%)  negative  samples
have triggered FAs; most negative samples actually own
the  smallest  weight.  Simultaneously,  we  observe  the
weights and find that at the start of training, the ratio
of  the  sum of  the  weights  of  positive  samples  and  the
sum  of  the  weights  of  negative  samples  is  1:10,  it
changes to about 1:5 at the end of the training, which
alleviates  the  imbalance  from  the  overall  weights.  In
fact, the  more  important  thing  that  NER-CTCL is  ef-
fective is  that it  makes the training discriminative,  i.e.
those samples that deserve more attention are emphat-
ically  trained  whether  they  are  positive  or  negative
samples.

 V. Conclusions
This  study  explores  using  sample  importance  re-

weighting  to  handle  the  data  imbalance  of  CTC-based
KWS and proposes a novel re-weighted CTC loss NER-
CTCL, which evaluates sample importance by the num-

ber of detection errors (including FAs and FRs). NER-
CTCL  weights  the  standard  CTC  loss  to  make  the
training  focus  on  hard  examples  and  down-weight  the
numerous easy examples. It is a simple and effective ap-
proach.  Experiments  verified  the  superiority  of  NER-
CTCL compared to standard CTC loss, as well as focal
CTC loss.
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