
Explainable Business Process Remaining Time
Prediction Using Reachability Graph

CAO Rui1, ZENG Qingtian1, NI Weijian1, LU Faming1, LIU Cong2, and DUAN Hua1

(1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China)
(2. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China)

 Abstract — With the recent advances in the field of
deep learning, an increasing number of deep neural net-
works have been applied to business process prediction
tasks, remaining time prediction, to obtain more accurate
predictive results. However, existing time prediction
methods based on deep learning have poor interpretabil-
ity, an explainable business process remaining time pre-
diction method is proposed using reachability graph,
which consists of prediction model construction and visu-
alization. For prediction models, a Petri net is mined and
the reachability graph is constructed to obtain the trans-
ition occurrence vector. Then, prefixes and corresponding
suffixes are generated to cluster into different transition
partitions according to transition occurrence vector. Next,
the bidirectional recurrent neural network with attention
is applied to each transition partition to encode the pre-
fixes, and the deep transfer learning between different
transition partitions is performed. For the visualization of
prediction models, the evaluation values are added to the
sub-processes of a Petri net to realize the visualization of
the prediction models. Finally, the proposed method is
validated by publicly available event logs.

 Key words — Explainable predictive process monit-

oring, Remaining time prediction, Reachability graph,

Recurrent neural network, Petri net.

 I. Introduction
Predictive process monitoring [1], [2] is one of the

most interesting research topics in the area of process
mining [3]. It aims to predict the future states of a run-
ning process instance, such as outcome prediction [4],
next activity prediction [5], [6], and remaining time pre-

diction.
Different machine learning methods, and more re-

cently deep learning algorithms, have been used to pre-
dict business process remaining time. A large number of
studies [7] show that methods using deep learning, e.g.,
long short-term memory (LSTM), are more accurate for
remaining time prediction. However, remaining time
prediction methods based on deep learning suffer from
poor interpretability. For example, an encoder-decoder
architecture is proposed in [8], which is based on the
generative adversarial network. An encoder-decoder ar-
chitecture for generative adversarial networks that gen-
erates a sequence of activities and their timestamps in
an end-to-end manner. In [9], a data-driven simulation
technique and multiple deep learning techniques are de-
veloped, which construct models are capable of generat-
ing execution traces with timestamped events. In [10], a
method for predictive business process monitoring us-
ing time-aware long and short-term memory is pro-
posed. In [11], a method of recurrent neural network
with a long and short-term memory structure is pro-
posed to predict the remaining time of business pro-
cesses. In [12], a method of transfer learning for remain-
ing time prediction is proposed with multi-layer recur-
rent neural networks. These time prediction methods
rely on the black-box models, which prove to be more
accurate, but fail to provide feedback to users.

In fact, the key requirement for users to adopt pre-
dictive techniques using deep neural networks are that
they must have confidence in the predictive techniques
or at least believe that the given predictions are un-

Manuscript Received May 15, 2021; Accepted Dec. 1, 2021. This work was supported by the National Natural Science Foundation of
China (U1931207, 61702306), Sci. & Tech. Development Fund of Shandong Province of China (ZR2017BF015, ZR2017MF027), the
Humanities and Social Science Research Project of the Ministry of Education (18YJAZH017), Shandong Chongqing Science and
Technology Cooperation Project (cstc2020jscx-lyjsAX0008), Sci. & Tech. Development Fund of Qingdao (21-1-5-zlyj-1-zc), the
Shandong Postgraduate Education Quality Improvement Plan (SDYJG19075), Shandong Education Teaching Research Key Project
(2021JXZ010), National Statistical Science Research Project (2021LY053), the Taishan Scholar Program of Shandong Province, SDUST
Research Fund (2015TDJH102, 2019KJN024), and National Statistical Science Research Project in 2019 (2019LY49).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.170

Chinese Journal of Electronics
Vol.32, No.3, May 2023

biased. A useful and understandable explanation for re-
maining time prediction becomes more challenging. In
order to explain how the remaining time prediction
techniques are performed and use these explanations to
understand why the prediction is accurate, a method of
explainable remaining time prediction of business pro-
cesses based on reachability graph is proposed in this
paper, which includes the following two steps.

In the first step, on the one hand, a Petri net and
the corresponding reachability graph are found from the
event log, and the transition occurrence vector can be
obtained from the reachability graph. On the other
hand, prefixes, the corresponding suffixes and remain-
ing time labels are received from the event log. Then,
prefixes and the corresponding suffixes of traces are
clustered into different transition partitions (corres-
ponding to the sub-processes of the process model) by
the activities of the last events of these prefixes.
Moreover, the bidirectional recurrent neural networks
with attention are used to encode the prefixes based on
prefixes and the corresponding suffixes of the event log
for each transition partition. Finally, the deep transfer
learning between different transition partitions based on
the transition occurrence vector is operated to evaluate
remaining time prediction more accurately. In the
second step, the prefix and corresponding suffix of the
running traces (process instances) are generated, which
can verify the predictive models and obtain the evalu-
ation values. Then, the evaluation values are added to
the sub-processes of a Petri net corresponding to differ-
ent transition partitions, which realizes the visualiza-
tion of the prediction models.

The main contributions of this paper: First, a more
accurate prediction method for business process remain-
ing time based on reachability graphs and recurrent
neural networks (gate recurrent units, GRUs) with at-
tention is proposed by combining process models and
deep neural networks. Second, a visualization of the
prediction models is given in the form of process mod-
els (e.g., Petri nets), which improves the interpretabil-
ity of why the remaining time prediction is accurate.

 II. Related Work
We first provide brief introduction remaining time

prediction of business processes and then focus on ex-
plainable predictive process monitoring.

 1. Business process remaining time predic-
tion

Business process remaining time prediction using
machine learning (especially deep learning) has become
a research hotspot of process prediction. In [13], a meth-
od to predict the remaining time of a running case is
presented. First, the future paths of cases are predicted

based on an annotated transition system with fuzzy
support vector machine probabilities by the event logs.
The remaining time of running traces is then predicted
by adding the durations of future activities, which are
each estimated by a support vector regressor. In [14], a
method based on Bayesian Neural Networks to predict
the remaining time in a instance is proposed. Specific-
ally, the historical process instance is used to generate
feature vectors that integrate the dependencies within
the process instances and the dependencies between the
process instances, and the prediction model of the re-
maining execution time is trained based on these fea-
ture vectors. In [15], a deep neural network by entity
embedding is used, which combines a deep neural net-
work and entity embedding to improve the predictive
performance of the remaining time. In [16], a time-ori-
ented interactive process miner is proposed for the re-
maining time prediction, which predicts the remaining
time of each trace in a business workflow. Moreover, an
adversarial framework for predicting the next time-
stamp via the generative adversarial net is presented is
presented in [17].

 2. Explainable predictive business process
monitoring

Several approaches to explain predictive business
process monitoring have been proposed, which has re-
ceived significant attention in recent years.

The essential problem of explaining capabilities for
predictive business process monitoring is tackled in [18].
Therefore, the reasons are reported when predicting
generic KPIs. In [19], a novel approach to explain why
a prediction model gives wrong predictions is proposed.
It leverages post-hoc explainers and different encodings
to identify features that induce a predictor to make
mistakes, and eventually improve its accuracy. In [20], a
visualization technique is proposed that uses gated
graph neural networks to make decisions easier to inter-
pret. In [21], a local post hoc interpretation method is
proposed for making the adopted deep learning meth-
ods interpretable.

In summary, the existing predictive business pro-
cess monitoring rarely explains the remaining time pre-
diction method of business processes. In this paper, ex-
plainable remaining time prediction of business pro-
cesses is proposed.

 III. Remaining Time Prediction

σ =< e1, e2, . . . , em >

(m ≥ 1)

rem(σ, i) = time(e|σ|)− time(ei) time(e|σ|)
time(ei)

The remaining time of the trace represents the dif-
ference between the completion time of the trace and
the current time. Given a trace

, the remaining time of the trace is defined as
, where indic-

ates the completion time of the trace and indic-

626 Chinese Journal of Electronics 2023

eiates current time for the execution of of the trace.

Da = {(VR(σ), rem(σ, i)) |σ ∈
L, 1 ≤ i ≤ |σ|} VR(σ)

rem(σ, i)

f : ε∗ →R+

f∗ = argmax
f

∑
(σi,ti)∈Da

(f(σi)−ti)
2 +Ω(f)

The remaining time prediction task under the ma-
chine learning framework is composed of training and
application. The training is to construct prediction
models by the event log. Firstly, the training set is de-
rived from the event log. Moreover, the training
samples can be denoted as

, where means the feature vector
of a trace and represents the real time of a
trace. Secondly, the mapping function on
the training set is trained for the optimization goal.
Moreover, the optimization goal is the error of the
training set, supplemented by the regularization term,

namely . For

σi

σi

rem(σ, i) = f(σi)

application, the models are applied to predict the time
of the running traces. For a running trace , which i
denotes the number of events in which have oc-
curred, the mapping is utilized to estimate its total exe-
cution time of a trace, i.e. .

 IV. Explainable Method
The proposed method is described. First, an over-

view of the prediction method framework is presented,
and then the key parts of the proposed method are
highlighted.

Fig.1 shows our framework for explainable busi-
ness process remaining time prediction using reachabil-
ity graph. The framework mainly includes two steps:
prediction models and visualization of prediction models.

Petri net

Reachability

graph

Partition

using the

transitions

of

reach-

ability

graph

Prefixes

and suffixes

Training

set

Prefixes and suffixes

Event log

Split

Test set

Prefixes 1

Suffixes 1

BiGRUAtt 1

Encoding 1

1) Prediction models

2) Visualisation of prediction models

Encoding 2

neural

network

training

Deep

Prediction

model l

Visualisation 1

(sub-net 1 with

values)

Visualisation 2

(sub-net 1 with

values)

Visualisation n

(sub-net n with

values)

Initialization

Initialization
...

...

Initialization

Prediction

model 2

Encoding n

BiGRUAtt 1

Prefixes 2

Suffixes 2

BiGRUAtt 2

BiGRUAtt 2

Prefixes n

Suffixes n

BiGRUAtt n

BiGRUAtt n

Prediction

model n

Fig. 1. A framework of our method.

1) Prediction models. On the one hand, a Petri net
and its initial marking are mined from the event log.
Further, the reachability graph is gained based on a
Petri net and the corresponding markings, and the
transition occurrence vector is obtained by the reachab-
ility graph. On the other hand, the training set and the
test set are completely separated from the log. Regard-
ing the training set, prefixes and the corresponding suf-
fixes of the training set are generated from it. Then,
prefixes and suffixes are divided into different trans-
ition partitions using the activities of the last events of
prefixes by transition occurrence vector of the reachab-
ility graph. Next, for each transition partition, the pre-
fixes are encoded based on the bidirectional GRUs with
attention to get representations of the prefixes. And the
suffixes are encoded based on the bidirectional GRUs
with attention to get representations of the suffixes.
The representation of the prefixes and the representa-
tion of the suffixes are concatenated as the encoding of
the prefixes. Finally, deep transfer learning is per-

formed on different deep neural networks according to
the transition execution sequence of the reachability
graph, and the prediction models of different transition
partitions are obtained.

2) Visualization of prediction models. Regarding
the test set, prefixes and the corresponding suffixes are
generated. With prefixes and the corresponding suffixes
of the test set, we can verify the final effect of the mod-
el and get the evaluation values. Then, the evaluation
values are added to the sub-processes (sub-nets) of a
Petri net corresponding to different transition partiti-
ons to realize the visualization of the prediction models.

 1. Partition using the transitions of reach-
ability graph

The basic concepts in predictive process monitor-
ing and process models are discussed. Next, partition of
prefixes and the corresponding suffixes using reachabil-
ity graph is provided in this section.

1) Event log
Definition 1 (Event) [22]　An event means an in-

Explainable Business Process Remaining Time Prediction Using Reachability Graph 627

e = (a, c, times, timee, (d1, v1), (d2, v2), . . . , (dn, vn))
(n ≥ 0)

times timee

(di, vi) (1 ≤ i ≤ n)

di (1 ≤ i ≤ n)

vi (1 ≤ i ≤ n)

stance of the execution of an event for a business pro-
cess,

, where a is the activity (transition) of event e,
and c is identifier (ID) of the case to which e belongs.

 and are the timestamp of e , indicating the
start and completion time of the event, respectively.

 describes attributes of the event,
where denotes the attribute of the event,
and denotes the value corresponding to
each attribute, respectively.

σ =< e1, e2, . . . , em > (m ≥ 1)

ei.timee ≤ei+1.timee
(1 ≤ i < i+ 1 ≤ m)

Definition 2 (Trace) [22]　A trace (case or pro-
cess instance) refers to a
non-empty sequence of events generated. And the
timestamp is non-decreasing, i.e.,

.
σ =< e1, e2, . . . ,

em> (m≥1) k∈{1, 2, . . . ,m}
hdk tlk

hdk=<e1, e2, . . . , ek> tlk=<ek+1,

ek+2, . . . , em>

πA(hd
k) =<πA(e1), πA(e2), . . . ,πA(ek)>

πA(tl
k) =<πA(ek+1), πA(ek+2), . . . , πA(em)>

Definition 3 (Prefix, suffix) [23]　
 is given, be a positive in-

teger. The event prefix and suffix of length k
can be denoted as: and

. The activity prefix and suffix can be de-
noted as: and

.
σ =< a, b, c > < a > < a, b >

σ < b, c > < c >

σ

A trace is given, and
are the prefixes of , and and corres-
ponding to each prefix in prefixes of , respectively.

2) Process model
A process model provides a visual representation of

the event log, and Petri net is utilized as the formal
representation of the process model in this paper.

N = (P, T, F,W)

P ∩ T =∅ P ∪ T ̸=∅ F ⊆(P × T) ∪ (T × P)

W : ((P × T) ∪ (T × P)) → N+

N+

S = (N,M0) M0 ∈ P → N+

n• •n

n ∈ (P ∪ T) n• = {n′ ∈ P ∪ T

|W (n, n′) > 0} •n = {n′ ∈ P ∪ T |W (n′, n) > 0}
W (n, n′) = W (n′, n) = 1

A (Petri) net [24], [25] , such that
P denotes a finite set of places, T denotes a finite set of
transitions, , ,
denotes a set of flow relation, and W denotes a weight
function, i.e., denotes
the weights of the arcs. A marking of the net N de-
notes the mapping from P to , defining the number
of tokens in each place of the net N. A system is a tuple

, where N is a net and is an
initial marking (state). The post-set , and pre-set
of a node are denoted as

 and . In
this paper, .

S = (N,M0) N = (P, T,

F,W) M0
•t

M0(p) ≥ W (p, t) M0

M0

M0 [t⟩M σ =< e1, e2, . . . ,

em > (m ≥ 1)

σ =< t1, t1, . . . ,tm > (m ≥ 1)

Consider a system with
. A transition t is enabled at if for each p in ,

, in which t is fireable from . The fir-
ing of t from leads to the marking M , and is de-
noted by . A finite (firing) trace

 , its transition sequence, denoted by
 . In this paper, we refer to

the longest sequence with all the different transitions
for transition sequences as transition occurrence vectors.

σ

M0 [t⟩M1 . . .Mm−1 [t⟩Mm

A trace is enabled in S if the successive states ac-
quired, denoted by , satisfy

Mk [t⟩Mk+1 (k ∈ {1, 2, . . . ,m}) Mm

M0 M0 [t⟩Mm

M0 R(M0) [M0⟩
RG(S)

(V,A, ι)

[M0⟩
M

t−→ M ′

M [t⟩M ′ M ∈ [M0⟩ ι

M0

 , in which is reach-
able from , i.e., . The markings reachable
from is expressed by or . A reachability
graph of S , i.e., , denotes the directed graph

, where V denotes the vertices labeled with the
markings , A denotes the arcs labeled with trans-
itions of T such that the arc if and only if

 and , and is the root, labeled with
. Since the prediction uncertainty of a trace with a

length of 1 or 2 is relatively high and it affects the ac-
curacy of the prediction, the prefix with a length great-
er than or equal to 3 is retained in this paper.

3) Partition of prefixes and the corresponding suf-
fixes using reachability graph

First, a Petri net and the corresponding marking
are mined from the event log by process mining al-
gorithms. In this paper, inductive miner [26] is used.
Then, the reachability graph is obtained by Petri net
and the corresponding markings. In this partition
phase, only the control flow perspective is considered.

The execution direction of the transition occur-
rence vector is consistent with the execution order of
the transition of the reachability graph. In addition, re-
garding the different transitions of the concurrent struc-
ture in process model, the order in the transition occur-
rence vector is determined according to the order in
which these transitions are recorded in the event log,
that is, the transitions that are recorded preferentially
are placed in front of the transitions that are recorded
later.

According to the complete transition occurrence
vector of the reachability graph of a Petri net, prefixes
and the corresponding suffixes from the event log can
be divided into different partitions based on the trans-
ition of the last event of the prefixes from the event log.
Furthermore, each partition corresponds to a sub-pro-
cess of the process model. In other words, the prefixes
of each partition have similar structural information.
Such partitioning of prefixes can improve the targeted
training of recurrent neural networks to encode prefixes.
The partitioning algorithm of prefixes and suffixes from
the event log is shown in Algorithm 1.

Algorithm 1　Partition of prefixes and suffixes

ELRequire: event log, .
PN PCEnsure: Petri net, ; partitioned class, .

Prefix, Suffix,PC = ∅1: ;
PN+markting

generate←− Inductive_Miner(EL)2: ;
generate←− PN+markting3: reachability graph ;

TOV =< σ1, σ2, . . . , σN+ > (N+ = 1, 2, 3, . . .)
obtain←− Reachability Graph(RG)

4: 　　

;
σ ∈ EL5: For each

Prefix
genarate←− σ6: 　 ;

628 Chinese Journal of Electronics 2023

Suffix
genarate←− σ7: 　 ;

8: EndFor
tk ∈ TOV9: For each

Pk ← tk k = 1, 2, . . . , N+10: 　 , ;
11: EndFor

Pk = ∅ k = 1, 2, . . . , N+12: , ;
σp ∈ Prefix13: For each

σp[−1] == tk14: 　If
Pk ← (σp ∈ Prefix, label), (σs ∈ Suffix, label);15: 　　

16: 　EndIf
17: EndFor

PC← {Pk|k = 1, 2, . . . , N+}18: ;
PN PC19: Return , .

5

In Algorithm 1, Line 1 initializes the lists of Prefix,
Suffix and partitioned class. Line 2 mines a Petri net
and the corresponding markings from the event log by
process mining algorithm. Line 3 generates the reachab-
ility graph by a Petri net and the corresponding mark-
ings. Line 4 obtains the complete transition occurrence
vector from the reachability graph. Lines to 8 gener-
ate prefixes and the corresponding suffixes. Lines 9 to 11
name the partitioned classes based on the transitions
from the complete transition occurrence vector. Line 12
initializes each partition of the partitioned class. Lines 13
to 17 realize the partitions of all the prefixes and suf-

fixes from the event log. Furthermore, Lines 14 to 16
add (prefixes, the remaining time) and (the correspond-
ing suffixes, the remaining time) to each transition par-
tition. Different transition partitions are sorted based
on the sequence of transitions in Line 18. Finally, the
partitioned class list and a Petri net are returned in
Line 19.

[a, b, c, d, e, f]

For ease of comprehensibility, a simple example is
given to illustrate the proposed prediction method. Giv-
en a simple log in Table 1, which contains four traces,
and each trace is composed activities of events and
timestamps. First, the process model (shown in Fig.2)
and the corresponding reachability graph (shown in
Fig.3) are discovered from the simple log. Then, we can
get the transition occurrence vector from
the reachability graph. Furthermore, transitions b and c
are in a concurrent relationship. Since transition b ap-
pears earlier than transition c in the log, transition b is
before transition c of the transition occurrence vector.

Table 1. A log

Case ID Traces
1 < a0, b2, c3, d5, f7 >

2 < a3, c5, b6, d8, f9 >

3 < a1, b4, c5, d7, e8, d10, f11 >

3 < a1, b4, c5, d7, e8, d10, e11, d13, f14 >

a
b

e

d f

c
Fig. 2. A Petri net.

[Start]

[End]

a

b

b

c

c

e d

f

Fig. 3. The reachability graph of a Petri net.

[b, c, d, e, f]

At the same time, the prefix and the correspond-
ing suffix of each trace in the simple log are generated,
and the prefixes with a length greater than or equal to
three, and the corresponding suffixes are partitioned
based on the complete transition occurrence vector

. The partition rule is to analyze whether
the activity of the last event of the prefix is the same as

the transition in the transition occurrence vector. If so,
the prefixes, the corresponding suffixes and the remain-
ing time label are stored in the transition partition. The
partitions of the simple log are shown in Fig.4. It is not
difficult to find that each transition partition corres-
ponds to the sub-process of the process model.

 2. Bidirectional recurrent neural networks
with attention on prefixes and suffixes

Bidirectional recurrent neural network with atten-
tion and the prediction models on prefixes and suffixes
are described.

1) Bidirectional recurrent neural network with at-
tention

Recurrent neural network (RNN) is a deep neural
network model for sequence processing. The basic struc-
ture of the recurrent neural network is shown in Fig.5.

The most representative RNN neurons are LSTM
[28] and GRU [29], which effectively solve the problems
of gradient disappearance and short-term memory in
traditional RNN. In this paper, we chose GRU as the
implementation of RNN neurons.

ht=GRU(xt,The formulas for GRU neurons are:

Explainable Business Process Remaining Time Prediction Using Reachability Graph 629

ht−1) rt=σ(W reset · [ht−1,xt]+breset) zt = σ(W update·
[ht−1,xt] + bupdate) h̃t = tanh(W h[rt ⊙ ht−1,xt] + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t [,]

· means ⊙
σ

tanh(·)

W reset W update W h

breset bupdate bh

, ,
, ,

, where means vector
connection, matrix/vector multiplication, is
an element-wise multiplication, is sigmoid activation
function, and is hyperbolic tangent function.
The parameters of the GRU are the transformation
matrix , and , and the corresponding
bias , and .

→
ht

←
ht

ht = [
→
ht,

←
ht]

Bidirectional recurrent neural network [30] is pro-
posed to train models. It considers the correlation
between events of traces. Let the output hidden vec-
tors obtained by the forward RNN and the backward
RNN be and , respectively, and concatenate them
to obtain the context encoding for each
moment.

v =
∑n

k=1 αtht

αt

αt = softmax(gattentionT · tanh(W attention · ht + battention))

The encoding of the trace is constructed by the
context encoding at each moment of the trace, and the
encoding of the trace is as follows: ,
where is the weight of the context encoding at time
t. In this paper, a multi-layer perceptron (called atten-
tion) is used to calculate the context weight

,

gattentionT W attention battentionwhere , and are the paramet-
ers of the attention mechanism.

2) Prediction models on prefixes and suffixes

v

v′

v

v′

v

Remain_time = gT · ReLU(W ·
v + b) gT W b

For each transition partition of the partitioned
class, different prediction models are designed to pre-
dict the remaining time of business processes. The net-
work structure of the prediction model for each trans-
ition partition is shown in Fig.6. Specifically, looking at
it from the bottom up, first of all, regarding prefix en-
coding, prefixes are used as input, and bidirectional
GRUs are used for training to obtain the context encod-
ings of prefixes for each moment. The vector represent-
ation of prefixes can be obtained by the attention
mechanism. Similarly, regarding suffix encoding, the
representation of the suffixes is used as input, and the
vector representation of suffixes is obtained by using
bidirectional GRUs with attention. Then, the vector
representation of prefixes and the vector representa-
tion of suffixes are concatenated as the vector repres-
entation of the prefixes. Finally, a multi-layer percep-
tron is used to construct prediction model. The specific
calculation formula is

, where , and are the model parameters of
the multilayer perceptron. In this paper, the linear rec-
tification function (rectified linear unit, ReLU) is the
activation function.

For each transition partition, the encoding method
of concatenating the prefix encoding and the corres-
ponding suffix encoding as the prefix can fully express
the structural information of the prefix, thereby im-
proving the accuracy of prediction. The encodings on
prefixes and suffixes are shown in Algorithm 2.

In Algorithm 2, Line 1 initializes vector representa-

Partition Prefixes

<a, c, b>

<a, c, b>

Suffixes

<d, f >

<d, e, d, e, d, f >

Label

3

9

Prefixes

<a, b, c>

<a, b, c>

Suffixes

<d, f >

<d, e, d, f >

Label

4

6

Prefixes

<a, b, c, d, e>

<a, c, b, d, e,>

Suffixes

<d, f >

<d, e, d, f >

Label

3

6

<a, c, b, d, e, d, e> <d, f > 3

Prefixes

<a, b, c, d>

<a, c, b, d>

Suffixes

<f >

<f >

Label

2

1

<a, b, c, d> <e, d, f > 4

<a, b, c, d, e, d>

<a, c, b, d>

<f >

<e, d, e, d, f >

1

7

<a, c, b, d, e, d, e, d> <f > 1

<a, c, b, d, e, d> <e, d, f > 4

Prefixes

<a, b, c, d, f >

<a, c, b, d, f >

Suffixes Label

0<>

<>

<>

<>

0

<a, b, c, d, e, d, f >

<a, c, b, d, e, d, e, d, f >

0

0

b

Partition

d

Partition

e

Partition

f

b

a

Subprocess 2Subprocess 1
Process model

c

e

d f

Partition

c

Fig. 4. Partitions of a simple log.

...

Fig. 5. Basic structure of recurrent neural network [27].

630 Chinese Journal of Electronics 2023

tion of prefixes. Lines 2 to 9 encode prefixes and the
corresponding suffixes of each transition partition in the
partitioned class using the bidirectional recurrent neur-
al networks with attention, respectively. Lines 3 to 5
encode prefixes by the bidirectional GRUs with atten-
tion, and Lines 6 to 8 encode the corresponding suffixes
by the bidirectional GRUs with attention. Line 10 con-
catenates vector representation of prefixes and corres-
ponding suffixes as prefixes encoding to train the pre-
diction models, and vector representation of prefixes are
returned in Line 11.

Algorithm 2　The encodings on prefixes and suffixes

PCRequire: partitioned class, .
VRPEnsure: vector representation of prefixes, .

VRP = ∅1: ;
Pk ∈ PC (k = 1, 2, . . . , N+)2: For each
σprefix ∈ Pk3: 　 For each

VRPprefix ← Bi_GRU_Atti (σprefix)4: 　　 ;
5: 　 EndFor

σsuffix ∈ Pk6: 　 For each
VRPsuffix ← Bi_GRU_Atti (σsuffix)7: 　　 ;

8: 　 EndFor
9: EndFor

VRP← (VRPprefix,VRPsuffix)10: concatenate ;
VRP11: Return .

In order to verify that our encoding on prefixes and
suffixes can more accurately predict the remaining time
and better explain the reason for the accuracy, a com-
parison experiment with different encodings, including
Prefix encoding, Suffix encoding and our method Pre-

fix_Suffix encoding_Transfer, was performed on the
publicly available event logs. Moreover, Prefix encod-
ing only considers the encoding of the prefix as the en-
coding method of the prefix. Suffix encoding only con-
siders the suffix encoding corresponding to the prefix as
the encoding method of the prefix. Prefix_Suffix encod-
ing_Transfer means that the vector representation of
prefix and the corresponding suffix are concatenated as
the encoding method of prefix.

 3. Prediction models
The prefixes and the corresponding suffixes of the

training set are divided according to the complete
transition occurrence vector of the reachability graph,
and deep transfer learning is performed on each trans-
ition partition in the order of occurrence of the com-
plete transition occurrence vector. The proposed meth-
od can obtain better predictive performance because
each transition partition corresponds to the sub-pro-
cesses of the process model, and the transfer learning
between the sub-processes is also consistent with the
forward execution of the process model. Prediction
model training is shown in Algorithm 3.

Algorithm 3　Prediction model training

σ PC

VRP

Require: trace prefixes, ; partitioned class, ; vector rep-
resentation of prefixes, .

PMEnsure: prediction models, .
PC← PC(σ)1: ;
VRP← VRP(σ)2: ;

PC.index3: For each
σ[−1] == PC.index4: 　 If

Remain time prediction

MLP

AttentionAttention
Prefix encoding Suffix encoding

GRU

Prefix Suffix

GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU

e
t−1 e

t+1e
t

e′
t−1 e′

t+1e′
t

Fig. 6. Prediction model for each transition partition.

Explainable Business Process Remaining Time Prediction Using Reachability Graph 631

σ ∈ Pi5: 　　 ;
Modeli ← Pi6: 　　 ;

7: 　 EndIf
Modeli+1

transfer←− Modeli8: 　 ;
9: EndFor

PM← {Modeli|i ∈ PC.index}10: ;
PM11: Return .

σ

PC.index

Modeli+1

Modeli

In Algorithm 3, Line 1 partitions the prefixes of the
training set. Line 2 encodes the prefixes. Lines 3 to 9
train the prediction models. Line 4 determines whether
the activity of the last event of the prefix is the same
as . If yes, Line 5 queries its corresponding
transition partition. A prediction model is trained in
Line 6 using the deep transfer learning for each trans-
ition partition. Line 8 describes the deep transfer learn-
ing that the parameters of are initialized with
those of . Finally, the prediction models are ob-
tained in Line 10, and the Prediction models is re-
turned in Line 11.

 4. Visualization of prediction models
Applying the running traces to the prediction mod-

els, and the evaluation values can be obtained. Then,
add the evaluation values to the sub-processes corres-
ponding to different partitions. Finally, the visualiza-
tion of the prediction models in the form of sub-pro-
cesses of a Petri net. Remain time prediction of run-
ning traces with visualization (RTPV) is shown in Al-
gorithm 4.

Algorithm 4　RTPV

σrRequire: running traces, ; Petri net, PN; partitioned class,
PC; vector representation of prefixes, VRP; prediction
models, PM.

Ensure: visualization of prediction models, VPM.
PC← PC(σr)1: ;
VRP← VRP(σr)2: ;

3: For each PC.index
σr[−1] == PC.index4: 　 If
σr ∈ Pi5: 　　 ;
Modeli ∈ PM← Pi6: 　　 ;

7: 　 EndIf
List← values8: 　 ;

9: EndFor
10: For each value in List

+←−11: 　Sub-process-values each-values-of-List;
12: EndFor

VPM←13: Sub-process-values;
14: Return VPM.

In Algorithm 4, Line 1 partitions the running
traces. Line 2 encodes the running traces. Lines 3 to 9
validate the prediction model for each transition parti-

tion and obtain the evaluation values. Then, the evalu-
ation values of the prediction model for each transition
partition are added to the sub-process of a Petri net in
Lines 10 to 12. Line 13 visualizes the prediction model
for each transition partition using the sub-process with
the evaluation values of a Petri net. Finally, visualiza-
tion of prediction models is returned in Line 14.

[b, c, d, e, f]

For example, the prefixes and suffixes in each
transition partition can be separately encoded by the
bidirectional recurrent neural networks with attention.
And the prefix encoding and suffix encoding are concat-
enated together as the encoding of prefix to train the
prediction model. Then, the transfer learning is per-
formed in accordance with the execution order of the
complete transition occurrence vector . Spe-
cifically, the model parameters of the trained predic-
tion model b are used as the initialization parameters of
the prediction model c , and the model parameters of
the trained prediction model c are used as the initializa-
tion parameters of the prediction model d, and the deep
transfer learning continues until the training of the last
prediction model f is completed (shown in Fig.7).

Given the running prefixes, we can obtain the eval-
uation values by applying the running prefixes to the
prediction models. Further, the evaluation values (for
example, MAE and MSE) of each prediction model are
added to the sub-process corresponding to its trans-
ition partition, and the visualization of all the predic-
tion models is shown in Fig.7.

 V. Evaluation
We will conduct an experimental evaluation of the

proposed method.
 1. Event logs
We performed experiments by the publicly avail-

able event logs to validate the effectiveness of our pro-
posed method. The Business Process Intelligence Chal-
lenge 2017_O [31] (BPIC_2017_O_L) subprocess and
Business Process Intelligence Challenge 2017_W [31]
(BPIC_2017_W_P) subprocess provided the event logs
from a German financial institution. Moreover, the “O”
indicates state of the offer changes, and the “W” indic-
ates state of the work item for the loan application.
Helpdesk [10] (Helpdesk_P) is derived from a real-life
event log. It comes from an event of a ticket manage-
ment process at the helpdesk of an Italian software
company. These event logs can be downloaded at
http://www.processmining.org/logs/start.

The infrequent behaviors of event logs are cleaned.
The cleaned event logs:

a) BPIC_2017_O_L,
b) BPIC_2017_W_P, and
c) Helpdesk_P,

632 Chinese Journal of Electronics 2023

are used in our experiments. Table 2 presents statistics
of the publicly available event logs used of experiments.
Note that Nt represents number of traces, Ne denotes
number of events, Na denotes number of activities,
Minlt denotes minimum length of traces, and Maxlt de-
notes maximum length of traces. Moreover, BPIC_2017_
O_L has loop structures and sequence structures.
BPIC_2017_W_P and Helpdesk_P have parallel
structures and sequence structures.

Table 2. Basic statistics of a), b), and c)

Event logs Nt Ne Na Minlt Maxlt
a) 5842 21193 5 2 9
b) 5644 41516 6 6 17
c) 3695 13233 6 1 14

We split each event log into two parts. The first
part (70% of traces from the event log) is used as a
training set, and the remaining 30% of traces is used to
evaluate the prediction medel.

 2. Metrics
The evaluation metrics of our experiments include

the mean absolute error (MAE) [32] and the mean

MAE = 1
n

∑n
i=1 |f(σi)− rem(σ, i)| MSE =

1
n

∑n
i=1 (f(σi)− rem(σ, i))

2

f(σi)

σi

rem(σ, i)

squared error (MSE) [33], [34]. These calculation formu-
las are and

. Moreover, n denotes the
size of predicted samples, denotes the predicted
value of the remaining time in the running trace , and

 denotes the real value of the remaining time.
 3. Implementation
We implemented all the methods as a set of Py-

thon 3.7 scripts using the recurrent neural network lib-
rary PyTorch 1.3.1. The experiments were performed
on a single NVIDA RTX 2070 super GPU with 8 GB
memory. Moreover, the discovery of Petri net models
and their reachability graphs are implemented in ProM
6.9. Our experimental settings are as follows: 1) The
learning rate is 0.01; 2) The number of iterations is 150;
3) The optimizer is Adam.

 4. Results
We compare our method against several baselines

shown in Table 3.
First, the methods using transition system (meth-

ods 1, 2, and 3 represent the set, sequence, and multis-
et abstraction, respectively) [35], data-aware transition

[value (b)] [value (c)]

[value (e)]

[value (d)]

[value (f)]

Partition

Training

b

Prediction

model b

Training

Prediction

model c

Training

Prediction

model d

Training

Prediction

model e

Training

Prediction

model f

Partition

c

Partition

d

Partition

e

Partition

f

a

Subprocess 1

b

Subprocess 2
Process model

c

e

d f

In
it

ia
li

za
ti

o
n

In
it

ia
li

za
ti

o
n

In
it

ia
li

za
ti

o
n

In
it

ia
li

za
ti

o
n

Fig. 7. Explainable process prediction by a example.

Table 3. MAE and RMSE values for a), b) and c)

Method
a) b) c)

MAE MSE MAE MSE MAE MSE
1 17.266 898.278 10.915 351.925 14.292 334.048
2 6.708 118.552 11.110 351.780 15.631 355.492
3 17.213 867.884 10.868 348.009 14.497 335.806
4 6.715 118.676 6.032 133.894 6.351 114.418
5 6.708 118.552 5.962 132.317 6.297 109.717
6 6.715 118.676 6.028 134.044 6.389 114.274
7 0.273 4.679 6.002 117.165 2.866 51.676
8 0.275 4.775 6.065 116.745 3.097 62.247
9 0.231 3.273 6.326 139.736 2.673 44.680
10 0.347 8.843 6.328 145.053 2.612 44.855
11 1.521 45.249 5.119 105.158 2.820 54.901
12 0.151 1.601 4.745 92.420 1.665 23.570

Explainable Business Process Remaining Time Prediction Using Reachability Graph 633

system (methods 4, 5, and 6 represent the set, sequence,
and multiset abstraction, respectively) [36], LSTM
neural networks [37], GRU neural networks, transfer
learning (methods 9 and 10) [12] based on LSTM
(method 7), and GRU (method 8) are used as the
baseline methods. The method of GRU neural net-
works is similar to the method of LSTM neural net-
works, and their difference is that the neuron is imple-
mented in a different way.

Next, the transformer [38] encoder (method 11)
with strong expressive ability is compared with GRU.
Finally, 12 represents our method. Note that the experi-
mental results of the existing remaining time prediction

methods [7] show that the methods based on neural net-
works are superior to those based on machine learning.
In this paper, neural network methods are selected as
the baselines.

A parameter selection process for the methods
based on deep neural networks is provided. We selec-
ted the same parameters of these methods for experi-
ments, and the results are shown in Fig.8 . In order to
ensure the consistency of the parameters of the compar-
ison method, we set the value of embedding size to 2
and the value of hidden size to 5. Our method has the
lowest parameter sensitivity and is better than the com-
petitive methods overall.

Our method

LSTM

GRU

LSTM_transfer

GRU_transfer

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
A

E
 (

d
ay

)

2 3 4 5 6

Embedding size

7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

M
A

E
 (

d
ay

)

3 4 5 6

Hidden size

7 8 9

Our method

LSTM

GRU

LSTM_transfer

GRU_transfer

Fig. 8. Parameter selection process.

Regarding the comparison of model size, first of all,
the model size of vanilla models of LSTM or GRU is
not large. Then, the model size of transfer learning
based on LSTM or GRU is a constant multiple of the
model size of LSTM or GRU. The reason is that the
number of transfers among LSTMs or GRUs is limited.
Furthermore, the model size of our method is larger
than that of these models, but it is only a constant mul-
tiple of the model size of these models.

The evaluation results of all the methods are shown
in Table 3. The experimental results of all event logs
containing loop and parallel structures are superior to
the baseline methods, which shows that the proposed
method has better performance for business process re-
maining time prediction. The reasons for the better per-
formance of the proposed method are as follows: 1) The
Prefix_Suffix encoding of traces can effectively express
the structural and temporal features of traces; 2) The
partition training of the prefixes can group the prefixes
of similar structures to improve the accuracy of the pre-
diction models; 3) According to the order of transition
occurrence vector of the reachability graph, the pro-
posed deep transfer learning among different prediction
models takes into account the correlation between the
sub-processes of the process model.

The experimental results of our method are ana-
lyzed in detail.

1) Petri nets and the corresponding reachab-
ility graphs

RG(S(a))

RG(S(b))

RG(S(c))

For each in a), b), and c), a Petri net and the cor-
responding reachability graph are generated by induct-
ive miner. For a), the reachability graph is
shown in Fig.9 . Similarly, the reachability graph

 for b) is shown in Fig.10. For c), the reachab-
ility graph is shown in Fig.11.

tau from tree

EC

H

D

B

RG(S(a))Fig. 9. The reachability graph for a).

Statistics of the reachability graphs in Table 4.
Number of vertices (Nv), Maximum in-degree of vertex
(Maxiv), Maximum out-degree of vertex (Maxov), Min-
imum length of transition occurrence vector (Minl) and
Maximum length of transition occurrence vector (Maxl)

634 Chinese Journal of Electronics 2023

reflect the structures in a Petri net, for example, con-
current or cyclic structures. In this paper, the complete

transition occurrence vector refers to the transition oc-
currence vector with the largest length from the reach-
ability graphs.

RG(S(a))

RG(S(b))

RG(S(c))

For a), the complete transition occurrence vector
[H, B, C, D, E] is obtained from the reachability graph

. For b), the corresponding complete trans-
ition occurrence vector [F, A, B, C, D, E] is also ob-
tained from the reachability graph . For c),
transition occurrence vector [D, A, B, E, F, C] is got
from the reachability graph . Further, the or-
der of recording transitions in the event log determines
the order of transition occurrence vector for different
transitions of concurrent structures.

In order to improve the accuracy of the prediction,
the prefix with a length greater than or equal to three
is trained in this paper. Therefore, the transition occur-
rence vector of the last event for all the prefixes may
not be the complete transition occurrence vector of the
reachability graph from initial marking. For a), the
complete transition occurrence vector of the last event
of all the prefixes is [B, C, D, E]. The complete trans-
ition occurrence vector of the last event of all the pre-
fixes for b) is [F, A, B, C, D, E]. [B, E, F, C] is the
complete transition occurrence vector of the last event
of all the prefixes for c).

2) Evaluation of prediction models
Table 5 presents variants of our method

Prefix_Suffix encoding_Transfer, which include Prefix
encoding, Suffix encoding, and Prefix_Suffix
encoding_NonTransfer. Prefix encoding refers to a
transfer method that only relies on encoding of prefixes.
Suffix encoding refers to a transfer method that only re-
lies on encoding of suffixes. Prefix_Suffix encoding_
NonTransfer refers to a non-transfer method that relies
on encoding of prefixes and suffixes. Furtherore, our
method Prefix_Suffix encoding_NonTransfer refers to a
transfer method that relies on encoding of prefixes and
suffixes.

tau join tau join

tau from tree

tau from tree

D

D

C

C

C

B

B

B

tau from tree

Ftau from tree

RG(S(b))Fig. 10. A Petri net for b).

tau from tree

tau from tree

tau from tree tau from tree

tau from tree

tau from tree

tau from tree

tau join

tau split

tau split

A

D

B

B

B

B

C

BB

E

E E

E

F

F

F

Ftau join

RG(S(c))Fig. 11. The reachability graph for c).

Table 4. Statistics of the reachability graphs

RG Nv Maxiv Maxov Minl Maxl
RG(S(a)) 5 2 2 3 5
RG(S(b)) 98 5 5 6 6
RG(S(c)) 15 3 3 4 6

Explainable Business Process Remaining Time Prediction Using Reachability Graph 635

MAE values of different variants containing Prefix
encoding (Pe), Suffix encoding (Se), Prefix_Suffix en-
coding_NonTransfer (PSeNT) and our method Prefix_

Suffix encoding_Transfer (PSeT) for a), b), and c) are
shown in Fig.12. Note that Ep, Es, Tp and Dtl denote
encoding of prefixes, encoding of suffixes, transition par-
titions and deep transfer learning, respectively. For all
the event logs, MAE and MSE values of our method are
lower than the MAE and MSE values of Prefix encod-
ing, Suffix encoding, and Prefix_Suffix encoding_Non-
Transfer. The result shows that our method outper-
forms Prefix encoding and Suffix encoding for a), b),
and c).

Prefix encoding

Suffix encoding

Prefix_Suffix encoding_Transfer

Prefix_Suffix encoding_NonTransfer

Prefix encoding

Suffix encoding

Prefix_Suffix encoding_Transfer

Prefix_Suffix encoding_NonTransfer

a)
4
5
.3

1
8

4
5
.2

8
1

1
.6

0
1

1
.6

6
2

1
0
3
.5

7
5

1
0
4
.0

7
3

8
4
.3

5
7

9
2
.4

2

5
6
.1

5
7

5
7
.1

1
9

2
3
.4

0
1

2
3
.5

7

0

20

40

60

80

M
S

E
 (

d
ay

)

100

120

b)

Event log

c)a)

(a) (b)

1.635
1.744

0.151 0.255

5.063 5.073

4.214

4.745

2.913
3.058

1.308

1.665

0

1

2

3

4

M
A

E
 (

d
ay

)

5

b)

Event log

c)

Fig. 12. Values of different variants for a), b) and c). (a) MAE; (b) MSE.

Furthermore, the MAE and MSE values of differ-
ent variants for different transition partitions from the
reachability graphs are presented for a), b), and c) in
Fig.13.

For a), b), and c), except for the transition A par-
tition of the event log b), the MAE and MSE values of

our method are almost all lower than the MAE and
MSE values of Prefix encoding, Suffix encoding, and
Prefix_Suffix encoding_NonTransfer. In summary, the
results also verify that our Prefix_Suffix encoding_
Transfer can achieve better prediction performance to a
certain extent.

B

0

5

10

15

20

M
A

E
 (

d
ay

)

25

EDC

Transition partition

Prefix_Suffix encoding_NonTransfer
Prefix_Suffix encoding_Transfer
Suffix encoding
Prefix encoding

Prefix_Suffix encoding_NonTransfer
Prefix_Suffix encoding_Transfer
Suffix encoding
Prefix encoding

Prefix_Suffix encoding_NonTransfer
Prefix_Suffix encoding_Transfer

Suffix encoding
Prefix encoding

Suffix encoding
Prefix encoding

Suffix encoding
Prefix encoding

Prefix_Suffix encoding_NonTransfer
Prefix_Suffix encoding_Transfer

Prefix_Suffix encoding_NonTransfer
Prefix_Suffix encoding_Transfer

Prefix_Suffix encoding_NonTransfer
Prefix_Suffix encoding_Transfer

Suffix encoding
Prefix encoding

B

0

5

10

15

20

M
A

E
 (

d
ay

)

25

CFE

Transition partition

F A B

2
4

8
10
12
14

6

16

M
A

E
 (

d
ay

)

18

EDC

Transition partition

B

(a)

0

−100

100

400

300

200

500

600

M
S

E
 (

d
ay

)

700

EDC

Transition partition

B

(c)

0

200

400

600

M
S

E
 (

d
ay

)

800

CFE

Transition partition

F A B

(b)

0

100

300

400

200

M
S

E
 (

d
ay

)

500

EDC

Transition partition
Fig. 13. Values on transition partitions for a), b), and c). (a) For a); (b) For b); and (c) For c).

The result of comparing our method Prefix_Suffix
encoding_Transfer with Prefix encoding and Suffix en-
coding shows the superiority of our encoding on prefix

and suffix. Moreover, by comparing our method
Prefix_Suffix encoding_Transfer with Prefix_Suffix en-
coding_NonTransfer, the results show that the predic-

Table 5. Variants of our method

Variants Ep Es Tp Dtl
Pe √ × √ √
Se × √ √ √

PSeT √ √ √ √
PSeNT √ √ √ ×

636 Chinese Journal of Electronics 2023

tion method using deep transfer learning outperforms
the prediction methods of non-transfer learning. This is
because the deep transfer learning considers the correla-
tion between transitional partitions (sub-processes of
the process model).

3) Visualization
MAE and MSE values of our method for different

transition partitions are shown in Table 6. Further-
more, transition partitions of prefixes are shown in
Fig.13, and - means none.

Table 6. MAE and MSE values of different transition
partitions for a), b) and c)

a) b) c)
MAE MSE MAE MSE MAE MSE
16.128 448.252 4.625 86.890 4.786 92.326
21.474 665.423 16.991 448.584 10.247 191.787
14.950 455.272 17.045 388.333 18.596 542.565
0.098 0.016 6.849 139.125 0.492 7.685

− − 4.597 96.929 − −
− − 2.672 44.496 − −

S(a)

S(a)

S(a)

S(a)

S(a)

For a), the MAE and MSE values [16.128; 448.252]
of transition B partition are added to the sub-process B
of a Petri net . The prediction model of transition
B partition is explained by the sub-process B with val-
ues. Similarly, the MAE and MSE values [21.474; 665.423]
of transition C partition are added to the sub-process C
of a Petri net . The prediction model of transition
C partition is explained by the sub-process C with val-
ues. The MAE and MSE values [14.950; 455.272] of
transition D partition are added to the sub-process D of
a Petri net . The prediction model of transition D
partition is explained by the sub-process D with values.
Finally, the MAE and MSE values [0.098; 0.016] of
transition E partition represents the entire process mod-
el are added to a Petri net . The prediction model
of transition E partition is explained by a Petri net
with values.

A visualization of prediction model for each trans-
ition partition in the shape of a process model are
shown in Fig.14. Note that the visualization of the pre-
diction model for each transition partition in the form
of sub-process means that the activities of each sub-pro-
cess are consistent with the activities of each transition
partition.

[16.128; 448.252]

[21.474; 665.423]

[0.098; 0.016]

[14.950;

445.272]

H B E

C

D

Fig. 14. A visualization of prediction models for a).

Similarly, for b), a visualization of prediction mod-
el for each transition partition in the shape of a process

model are shown in Fig.15 . For c), a visualization of
prediction model for each transition partition in the
form of a process model, as presented in Fig.16. More-
over, except for the outermost dashed box representing
the entire process model, the remaining dashed boxes
represent the sub-processes of transition partitions.

F A

B E CD

Fig. 15. A visualization of prediction models for b).

F

A

B

E

C

D

Fig. 16. A visualization of prediction models for c).

 VI. Conclusions
A method of explainable business process remain-

ing time prediction via structural process model is pro-
posed in this paper. For training of prediction models,
firstly, a Petri net and the reachability graph are mined
from the event log, and the transition occurrence vec-
tors can be obtained based on the reachability graph.
Simultaneously, prefixes and suffixes are generated from
the event log. Secondly, according to transition occur-
rence vectors of the reachability graph, prefixes and suf-
fixes are clustered into different transition partitions us-
ing the activity of the last event for prefix. Further-
more, for each transition partition, the bidirectional re-

Explainable Business Process Remaining Time Prediction Using Reachability Graph 637

current neural network is used to encode the prefixes on
prefixes and suffixes. Finally, the deep transfer learning
between different transition partitions using the trans-
ition occurrence vectors is performed to predict remain-
ing time. For the visualization of prediction models, the
evaluation values are added to the sub-processes of a
Petri net corresponding to different transition parti-
tions which realize the visualization of the prediction
models. In future, the prediction model not only de-
pends on the control flow of traces, but also considers
the context attributes of process instances improve the
accuracy of predictions. Then, we plan to apply explain-
able techniques to other fields [39]–[41].

References
 C. Di Francescomarino, C. Ghidini, F. M. Maggi, et al.,
“Predictive process monitoring methods: Which one suits
me best?,” in Proceedings of the 16th International Confer-
ence on Business Process Management, Sydney, Australia,
pp.462–479, 2018.

[1]

 N. Harane and S. Rathi, “ Comprehensive survey on deep
learning approaches in predictive business process monitor-
ing,” in Modern Approaches in Machine Learning and Cog-
nitive Science: A Walkthrough, V. K. Gunjan, et al., Eds.,
Springer, Cham, pp.115–128, 2020.

[2]

 W. Van Der Aalst, Process Mining: Data Science in Ac-
tion. Springer, Berlin, 2016.

[3]

 I. Teinemaa, M. Dumas, M. La Rosa, et al., “Outcome-ori-
ented predictive process monitoring: Review and bench-
mark,” ACM Transactions on Knowledge Discovery from
Data, vol.13, no.2, article no.17, 2019.

[4]

 S. Weinzierl, S. Zilker, J. Brunk, et al., “An empirical com-
parison of deep-neural-network architectures for next activ-
ity prediction using context-enriched process event logs,”
arXiv preprint, arXiv: 2005.01194, 2020.

[5]

 J. Theis and H. Darabi, “ Decay replay mining to predict
next process events,” IEEE Access, vol.7, pp.119787–119803,
2019.

[6]

 I. Verenich, M. Dumas, M. La Rosa, et al., “ Survey and
cross-benchmark comparison of remaining time prediction
methods in business process monitoring,” ACM Transac-
tions on Intelligent Systems and Technology, vol.10, no.4,
article no.34, 2019.

[7]

 F. Taymouri and M. La Rosa, “Encoder-decoder generative
adversarial nets for suffix generation and remaining time
prediction of business process models,” arXiv preprint, arX-
iv: 2007.16030, 2020.

[8]

 M. Camargo, M. Dumas, and O. González-Rojas, “Discover-
ing generative models from event logs: Data-driven simula-
tion vs deep learning,” PeerJ, vol.7, article no.e577, 2021.

[9]

 A. Nguyen, S. Chatterjee, S. Weinzierl, et al., “Time mat-
ters: time-aware LSTMs for predictive business process
monitoring,” in Proceedings of 2020 International Work-
shops on Process Mining Workshops, Padua, Italy, pp.112–
123, 2021.

[10]

 M. Camargo, M. Dumas, and O. González-Rojas, “Learning
accurate LSTM models of business processes,” in Proceed-
ings of the 17th International Conference on Business Pro-
cess Management, Vienna, Austria, pp.286–302, 2019.

[11]

 T. Liu, W. J. Ni, Y. J. Sun, et al., “Predicting remaining[12]

business time with deep transfer learning,” Data Analysis
and Knowledge Discovery, vol.4, no.S2, pp.134–142, 2020.
(in Chinese)
 I. Firouzian, M. Zahedi, and H. Hassanpour, “Investigation
of the effect of concept drift on data-aware remaining time
prediction of business processes,” International Journal of
Nonlinear Analysis and Applications, vol.10, no.2, pp.153–
166, 2019.

[13]

 G. Park and M. Song, “Predicting performances in business
processes using deep neural networks,” Decision Support
Systems, vol.129, article no.113191, 2020.

[14]

 N. A. Wahid, T. N. Adi, H. Bae, et al., “Predictive busi-
ness process monitoring - Remaining time prediction using
deep neural network with entity embedding,” Procedia
Computer Science, vol.161, pp.1080–1088, 2019.

[15]

 İ. Yürek, D. Birant, Ö. E. Yürek, et al., “Time-oriented in-
teractive process miner: A new approach for time
prediction,” Turkish Journal of Electrical Engineering and
Computer Sciences, vol.29, no.1, pp.122–137, 2021.

[16]

 F. Taymouri, M. La Rosa, S. Erfani, et al., “Predictive busi-
ness process monitoring via generative adversarial nets: The
case of next event prediction,” in Proceedings of the 18th
International Conference on Business Process Manage-
ment, Seville, Spain, pp.237–256, 2020.

[17]

 R. Galanti, B. Coma-Puig, M. De Leoni, et al., “Explain-
able predictive process monitoring,” in Proceedings of 2020
2nd International Conference on Process Mining (ICPM),
Padua, Italy, pp.1–8, 2020.

[18]

 W. Rizzi, C. Di Francescomarino, and F. M. Maggi, “Ex-
plainability in predictive process monitoring: when under-
standing helps improving,” in Proceedings of International
Conference on Business Process Management, Seville,
Spain, pp.141–158, 2020.

[19]

 M. Harl, S. Weinzierl, M. Stierle, et al., “Explainable pre-
dictive business process monitoring using gated graph neur-
al networks,” Journal of Decision Systems, vol.29, no.sup1,
pp.312–327, 2020.

[20]

 N. Mehdiyev and P. Fettke, “ Explainable artificial intelli-
gence for process mining: A general overview and applica-
tion of a novel local explanation approach for predictive
process monitoring,” in Interpretable Artificial Intelligence:
A Perspective of Granular Computing, W. Pedrycz and S.
M. Chen, Eds. Springer, Cham, pp.1–28, 2021.

[21]

 I. Verenich, “Explainable predictive monitoring of temporal
measures of business processes,” Ph.D. Thesis, Queensland
University of Technology, Brisbane, 2018.

[22]

 E. Rama-Maneiro, J. C. Vidal, and M. Lama, “Deep learn-
ing for predictive business process monitoring: Review and
benchmark,” IEEE Transactions on Services Computing,
vol.16, no.1, pp.739–756, 2023.

[23]

 T. Hujsa, B. Berthomieu, S. D. Zilio, et al., “Checking
marking reachability with the state equation in Petri net
subclasses,” arXiv preprint, arXiv: 2006.05600, 2020.

[24]

 T. Murata, “ Petri nets: Properties, analysis and applica-
tions,” Proceedings of the IEEE, vol.77, no.4, pp.541–580,
1989.

[25]

 S. J. J. Leemans, D. Fahland, and W. M. P. Van Der Aalst,
“Discovering block-structured process models from event
logs - a constructive approach,” in Proceedings of the 34th
International Conf. on Applications and Theory of Petri
Nets and Concurrency, Milan, Italy, pp.311–329, 2013.

[26]

 Y. LeCun, Y. Bengio, and G. Hinton, “ Deep learning,”
Nature, vol.521, no.7553, pp.436–444, 2015.

[27]

 S. Hochreiter and J. Schmidhuber, “ Long short-term
memory,” Neural Computation, vol.9, no.8, pp.1735–1780,

[28]

638 Chinese Journal of Electronics 2023

1997.
 J. Chung, C. Gulcehre, K. H. Cho, et al., Empirical evalu-
ation of gated recurrent neural networks on sequence model-
ing, arXiv preprint arXiv: 1412.3555, 2014.

[29]

 M. Schuster and K. K. Paliwal, “ Bidirectional recurrent
neural networks,” IEEE Transactions on Signal Processing,
vol.45, no.11, pp.2673–2681, 1997.

[30]

 L. Lin, L. J. Wen, and J. M. Wang, “MM-pred: A deep pre-
dictive model for multi-attribute event sequence,” Proceed-
ings of the 2019 SIAM International Conference on Data
Mining, Calgary, Canada, pp.118–126, 2019.

[31]

 N. Navarin, B. Vincenzi, M. Polato, et al., “ LSTM net-
works for data-aware remaining time prediction of business
process instances,” in Proceedings of 2017 IEEE Symposi-
um Series on Computational Intelligence (SSCI), Honolulu,
HI, USA, pp.1–7, 2017.

[32]

 B. F. Van Dongen, R. A. Crooy, and W. M. P. Van Der
Aalst, “Cycle time prediction: When will this case finally be
finished?,” in Proceedings of OTM Confederated Interna-
tional Conferences “ On the Move to Meaningful Internet
Systems”, Monterrey, Mexico, pp.319–336, 2008.

[33]

 W. Ni, M. Yan, T. Liu, et al., “Predicting remaining execu-
tion time of business process instances via auto-encoded
transition system,” Intelligent Data Analysis, vol.26, no.2,
pp.543–562, 2022.

[34]

 W. M. P. Van Der Aalst, M. H. Schonenberg, and M. Song,
“Time prediction based on process mining,” Information
Systems, vol.36, no.2, pp.450–475, 2011.

[35]

 M. Polato, A. Sperduti, A. Burattin, et al., “ Time and
activity sequence prediction of business process instances,”
Computing, vol.100, no.9, pp.1005–1031, 2018.

[36]

 N. Tax, I. Verenich, M. La Rosa, et al., “Predictive busi-
ness process monitoring with LSTM neural networks,” in
Proceedings of the 29th International Conference on Ad-
vanced Information Systems Engineering, Essen, Germany,
pp.477–492, 2017.

[37]

 A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all
You need,” in Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, Long
Beach, CA, USA, pp.6000–6010, 2017.

[38]

 Y. Z. Zhang, Y. Cao, Y H. Wen, et al., “Optimization of in-
formation interaction protocols in cooperative vehicle-infra-
structure systems,” Chinese Journal of Electronics, vol.27,
no.2, pp.439–444, 2018.

[39]

 L. H. Pang, J. Zhang, Y. Zhang, et al., “ Investigation and
comparison of 5G channel models: From QuaDRiGa, NY-
USIM, and MG5G perspectives,” Chinese Journal of Elec-
tronics, vol.31, no.1, pp.1–17, 2022.

[40]

 H. Duan, T. Feng, S. N. Liu, et al., “Tumor classification of
gene expression data by fuzzy hybrid twin SVM,” Chinese
Journal of Electronics, vol.31, no.1, pp.99–106, 2022.

[41]

CAO Rui received the B.E. de-
gree in College of Mathematics and Big
Data, Anhui University of Science and
Technology. She is a Ph.D. candidate of
the College of Computer Science and En-
gineering, Shandong University of Sci-
ence and Technology. Her research in-
terests include Petri nets, process mining,
and deep learning.

(Email: ruicaoqing@163.com)

ZENG Qingtian (correspond-
ing author) received the Ph.D. degree in
computer software and theory from the
Institute of Computing Technology,
Chinese Academy of Sciences, Beijing,
China, in 2005. He was a Visiting Pro-
fessor at the City University of Hong
Kong, Kowloon, Hong Kong, in 2008. He
is currently a Professor with Shandong

University of Science and Technology, Qingdao, China. His cur-
rent research interests include Petri nets, process mining, and
knowledge management.
(Email: qtzeng@sdust.edu.cn)

NI Weijian received the Ph.D.
degree in computer science and techno-
logy from Nankai University, Tianjin,
China, in 2008. He was a Visiting Schol-
ar at the State University of New York,
New York, USA, in 2015. He is currently
a Professor with Shandong University of
Science and Technology, Qingdao, China.
His current research interests include

process mining, deep learning, and text mining.
(Email: niwj@foxmail.com)

LU Faming received the Ph.D.
degree in computer software and theory
from Shandong University of Science and
Technology, Qingdao, China, in 2013. He
is currently a Associate Professor with
Shandong University of Science and
Technology, Qingdao, China. His cur-
rent research interests include Petri nets,
process mining, and machine learning.

(Email: fm_lu@163.com)

LIU Cong received the Ph.D.
degree in the Department of Mathemat-
ics and Computer Science, Section of In-
formation Systems (IS), Eindhoven Uni-
versity of Technology, Eindhoven, The
Netherlands, in 2019. He is currently a
Professor with the Shandong University
of Technology, Zibo, China. His current
research interests include Petri nets, pro-

cess mining, and software engineering.
(Email: liucongchina@sdust.edu.cn)

DUAN Hua received the Ph.D.
degree in applied mathematics from
Shanghai Jiaotong University, Shanghai,
China, in 2008. She is currently a Pro-
fessor with Shandong University of Sci-
ence and Technology, Qingdao, China.
Her current research interests include
Petri nets, process mining, and machine
learning.

(Email: huaduan59@163.com)

Explainable Business Process Remaining Time Prediction Using Reachability Graph 639

