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   Abstract — With the recent advances in the field of
deep learning,  an  increasing  number  of  deep  neural  net-
works  have  been  applied  to  business  process  prediction
tasks, remaining time prediction, to obtain more accurate
predictive  results.  However,  existing  time  prediction
methods based on deep learning have poor  interpretabil-
ity, an  explainable  business  process  remaining  time  pre-
diction  method  is  proposed  using  reachability  graph,
which consists of prediction model construction and visu-
alization. For prediction models, a Petri net is mined and
the reachability graph is constructed to obtain the trans-
ition occurrence vector. Then, prefixes and corresponding
suffixes  are  generated  to  cluster  into  different  transition
partitions according to transition occurrence vector. Next,
the bidirectional recurrent neural network with attention
is applied to each transition partition to encode the pre-
fixes,  and  the  deep  transfer  learning  between  different
transition partitions is performed. For the visualization of
prediction models, the evaluation values are added to the
sub-processes of a Petri net to realize the visualization of
the  prediction  models.  Finally,  the  proposed  method  is
validated by publicly available event logs.

   Key words — Explainable predictive  process  monit-

oring, Remaining  time  prediction, Reachability  graph,

Recurrent neural network, Petri net.

 I. Introduction
Predictive  process  monitoring  [1],  [2]  is  one  of  the

most  interesting  research  topics  in  the  area  of  process
mining [3]. It aims to predict the future states of a run-
ning  process  instance,  such  as  outcome  prediction  [4],
next activity prediction [5], [6], and remaining time pre-

diction.
Different machine  learning  methods,  and  more  re-

cently deep learning algorithms, have been used to pre-
dict business process remaining time. A large number of
studies [7] show that methods using deep learning, e.g.,
long short-term memory (LSTM), are more accurate for
remaining  time  prediction.  However,  remaining  time
prediction  methods  based  on  deep  learning  suffer  from
poor  interpretability.  For  example,  an  encoder-decoder
architecture  is  proposed  in  [8],  which  is  based  on  the
generative adversarial network. An encoder-decoder ar-
chitecture for generative adversarial networks that gen-
erates  a  sequence  of  activities  and their  timestamps in
an end-to-end manner.  In [9],  a  data-driven simulation
technique and multiple deep learning techniques are de-
veloped, which construct models are capable of generat-
ing execution traces with timestamped events. In [10], a
method for  predictive  business  process  monitoring  us-
ing time-aware  long  and  short-term  memory  is  pro-
posed.  In  [11],  a  method  of  recurrent  neural  network
with a  long  and  short-term  memory  structure  is  pro-
posed to  predict  the  remaining  time  of  business  pro-
cesses. In [12], a method of transfer learning for remain-
ing time prediction  is  proposed with  multi-layer  recur-
rent  neural  networks.  These  time  prediction  methods
rely  on  the  black-box models,  which  prove  to  be  more
accurate, but fail to provide feedback to users.

In fact, the key requirement for users to adopt pre-
dictive  techniques  using deep neural  networks are  that
they must have confidence in the predictive techniques
or at  least  believe  that  the  given  predictions  are  un- 
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biased. A useful and understandable explanation for re-
maining  time  prediction  becomes  more  challenging.  In
order  to  explain  how  the  remaining  time  prediction
techniques are performed and use these explanations to
understand why the prediction is accurate, a method of
explainable remaining  time  prediction  of  business  pro-
cesses  based  on  reachability  graph  is  proposed  in  this
paper, which includes the following two steps.

In the first step, on the one hand, a Petri net and
the corresponding reachability graph are found from the
event  log,  and  the  transition  occurrence  vector  can  be
obtained  from  the  reachability  graph.  On  the  other
hand, prefixes,  the  corresponding  suffixes  and  remain-
ing  time  labels  are  received  from the  event  log.  Then,
prefixes  and  the  corresponding  suffixes  of  traces  are
clustered  into  different  transition  partitions  (corres-
ponding  to  the  sub-processes  of  the  process  model)  by
the  activities  of  the  last  events  of  these  prefixes.
Moreover,  the  bidirectional  recurrent  neural  networks
with attention are used to encode the prefixes based on
prefixes and the corresponding suffixes of the event log
for  each transition partition.  Finally,  the  deep transfer
learning between different transition partitions based on
the transition occurrence vector is operated to evaluate
remaining  time  prediction  more  accurately.  In  the
second step,  the  prefix  and corresponding  suffix  of  the
running traces (process instances) are generated, which
can verify  the  predictive  models  and obtain  the  evalu-
ation values.  Then, the evaluation values are added to
the sub-processes of a Petri net corresponding to differ-
ent transition  partitions,  which  realizes  the  visualiza-
tion of the prediction models.

The main contributions of this paper: First, a more
accurate prediction method for business process remain-
ing  time  based  on  reachability  graphs  and  recurrent
neural networks  (gate  recurrent  units,  GRUs)  with  at-
tention  is  proposed  by  combining  process  models  and
deep  neural  networks.  Second,  a  visualization  of  the
prediction models  is  given in the form of process mod-
els (e.g.,  Petri  nets),  which improves  the  interpretabil-
ity of why the remaining time prediction is accurate.

 II. Related Work
We first provide brief  introduction remaining time

prediction of  business  processes  and  then  focus  on  ex-
plainable predictive process monitoring.

 1. Business process  remaining  time  predic-
tion

Business  process  remaining  time  prediction  using
machine learning (especially deep learning) has become
a research hotspot of process prediction. In [13], a meth-
od  to  predict  the  remaining  time  of  a  running  case  is
presented. First, the future paths of cases are predicted

based  on  an  annotated  transition  system  with  fuzzy
support vector machine probabilities by the event logs.
The remaining time of running traces is then predicted
by adding  the  durations  of  future  activities,  which  are
each estimated by a support vector regressor. In [14], a
method based on Bayesian Neural  Networks to predict
the remaining  time  in  a  instance  is  proposed.  Specific-
ally,  the  historical  process  instance  is  used to  generate
feature  vectors  that  integrate  the  dependencies  within
the process instances and the dependencies between the
process instances,  and  the  prediction  model  of  the  re-
maining execution  time  is  trained  based  on  these  fea-
ture  vectors.  In  [15],  a  deep  neural  network  by  entity
embedding is  used,  which combines  a  deep neural  net-
work  and  entity  embedding  to  improve  the  predictive
performance of  the remaining time.  In [16],  a  time-ori-
ented interactive  process  miner  is  proposed  for  the  re-
maining  time  prediction,  which  predicts  the  remaining
time of each trace in a business workflow. Moreover, an
adversarial  framework  for  predicting  the  next  time-
stamp via the generative adversarial net is presented is
presented in [17].

 2. Explainable  predictive  business  process
monitoring

Several  approaches  to  explain  predictive  business
process monitoring  have  been  proposed,  which  has  re-
ceived significant attention in recent years.

The essential problem of explaining capabilities for
predictive business process monitoring is tackled in [18].
Therefore,  the  reasons  are  reported  when  predicting
generic KPIs. In [19], a novel approach to explain why
a prediction model gives wrong predictions is proposed.
It leverages post-hoc explainers and different encodings
to  identify  features  that  induce  a  predictor  to  make
mistakes, and eventually improve its accuracy. In [20], a
visualization  technique  is  proposed  that  uses  gated
graph neural networks to make decisions easier to inter-
pret.  In  [21],  a  local  post  hoc  interpretation method is
proposed for  making  the  adopted  deep  learning  meth-
ods interpretable.

In summary,  the  existing  predictive  business  pro-
cess monitoring rarely explains the remaining time pre-
diction method of business processes. In this paper, ex-
plainable remaining  time  prediction  of  business  pro-
cesses is proposed.

 III. Remaining Time Prediction

σ =< e1, e2, . . . , em >

(m ≥ 1)

rem(σ, i) = time(e|σ|)− time(ei) time(e|σ|)
time(ei)

The remaining time of the trace represents the dif-
ference  between  the  completion  time  of  the  trace  and
the  current  time.  Given  a  trace 

,  the  remaining  time  of  the  trace  is  defined  as
,  where  indic-

ates the completion time of the trace and  indic-
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eiates current time for the execution of  of the trace.

Da = {(VR(σ), rem(σ, i)) |σ ∈
L, 1 ≤ i ≤ |σ|} VR(σ)

rem(σ, i)

f : ε∗ →R+

f∗ = argmax
f

∑
(σi,ti)∈Da

(f(σi)−ti)
2 +Ω(f)

The remaining time prediction task under the ma-
chine  learning  framework  is  composed  of  training  and
application.  The  training  is  to  construct  prediction
models by the event log. Firstly, the training set is de-
rived  from  the  event  log.  Moreover,  the  training
samples can be denoted as 

,  where  means  the  feature  vector
of  a  trace  and  represents  the  real  time  of  a
trace.  Secondly,  the  mapping  function  on
the  training  set  is  trained  for  the  optimization  goal.
Moreover,  the  optimization  goal  is  the  error  of  the
training  set,  supplemented  by  the  regularization  term,

namely  . For

σi

σi

rem(σ, i) = f(σi)

application, the models are applied to predict the time
of  the  running  traces.  For  a  running  trace ,  which i
denotes  the  number  of  events  in  which  have oc-
curred, the mapping is utilized to estimate its total exe-
cution time of a trace, i.e. .

 IV. Explainable Method
The proposed method is  described.  First,  an  over-

view of  the  prediction method framework is  presented,
and  then  the  key  parts  of  the  proposed  method  are
highlighted.

Fig.1 shows our  framework  for  explainable  busi-
ness process remaining time prediction using reachabil-
ity  graph.  The  framework  mainly  includes  two  steps:
prediction models and visualization of prediction models.
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Fig. 1. A framework of our method.

 

1) Prediction models. On the one hand, a Petri net
and  its  initial  marking  are  mined  from  the  event  log.
Further,  the  reachability  graph  is  gained  based  on  a
Petri  net  and  the  corresponding  markings,  and  the
transition occurrence vector is obtained by the reachab-
ility graph. On the other hand, the training set and the
test set are completely separated from the log. Regard-
ing the training set, prefixes and the corresponding suf-
fixes  of  the  training  set  are  generated  from  it.  Then,
prefixes and  suffixes  are  divided  into  different  trans-
ition partitions using the activities of the last events of
prefixes by transition occurrence vector of the reachab-
ility graph. Next, for each transition partition, the pre-
fixes are encoded based on the bidirectional GRUs with
attention to get representations of the prefixes. And the
suffixes  are  encoded  based  on  the  bidirectional  GRUs
with  attention  to  get  representations  of  the  suffixes.
The representation  of  the  prefixes  and  the  representa-
tion of the suffixes are concatenated as the encoding of
the prefixes.  Finally,  deep  transfer  learning  is  per-

formed  on  different  deep  neural  networks  according  to
the  transition  execution  sequence  of  the  reachability
graph, and the prediction models of different transition
partitions are obtained.

2)  Visualization  of  prediction  models.  Regarding
the test set, prefixes and the corresponding suffixes are
generated. With prefixes and the corresponding suffixes
of the test set, we can verify the final effect of the mod-
el  and  get  the  evaluation  values.  Then,  the  evaluation
values  are  added  to  the  sub-processes  (sub-nets)  of  a
Petri  net  corresponding  to  different  transition  partiti-
ons to realize the visualization of the prediction models.

 1. Partition using  the  transitions  of  reach-
ability graph

The basic  concepts  in  predictive  process  monitor-
ing and process models are discussed. Next, partition of
prefixes and the corresponding suffixes using reachabil-
ity graph is provided in this section.

1) Event log
Definition 1 (Event) [22]　An event means an in-
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e = (a, c, times, timee, (d1, v1), (d2, v2), . . . , (dn, vn))
(n ≥ 0)

times timee

(di, vi) (1 ≤ i ≤ n)

di (1 ≤ i ≤ n)

vi (1 ≤ i ≤ n)

stance of  the execution of  an event for a business pro-
cess, 

,  where a  is  the activity (transition) of  event e,
and c  is  identifier (ID) of the case to which e  belongs.

 and  are the timestamp of e ,  indicating the
start  and  completion  time  of  the  event,  respectively.

  describes  attributes  of  the  event,
where   denotes the attribute of the event,
and   denotes  the  value  corresponding  to
each attribute, respectively.

σ =< e1, e2, . . . , em > (m ≥ 1)

ei.timee ≤ei+1.timee
(1 ≤ i < i+ 1 ≤ m)

Definition  2 (Trace)  [22]　A trace  (case  or  pro-
cess instance)   refers to a
non-empty  sequence  of  events  generated.  And  the
timestamp  is  non-decreasing,  i.e., 

.
σ =< e1, e2, . . . ,

em> (m≥1) k∈{1, 2, . . . ,m}
hdk tlk

hdk=<e1, e2, . . . , ek> tlk=<ek+1,

ek+2, . . . , em>

πA(hd
k) =<πA(e1), πA(e2), . . . ,πA(ek)>

πA(tl
k) =<πA(ek+1), πA(ek+2), . . . , πA(em)>

Definition 3 (Prefix, suffix) [23]　
 is  given,  be a positive in-

teger.  The  event  prefix  and  suffix  of  length k
can be denoted as:  and 

. The activity prefix and suffix can be de-
noted  as:  and

.
σ =< a, b, c > < a > < a, b >

σ < b, c > < c >

σ

A trace  is given,  and 
are  the  prefixes  of ,  and  and   corres-
ponding to each prefix in prefixes of , respectively.

2) Process model
A process model provides a visual representation of

the  event  log,  and  Petri  net  is  utilized  as  the  formal
representation of the process model in this paper.

N = (P, T, F,W )

P ∩ T =∅ P ∪ T ̸=∅ F ⊆(P × T ) ∪ (T × P )

W : ((P × T ) ∪ (T × P )) → N+

N+

S = (N,M0) M0 ∈ P → N+

n• •n

n ∈ (P ∪ T ) n• = {n′ ∈ P ∪ T

|W (n, n′) > 0} •n = {n′ ∈ P ∪ T |W (n′, n) > 0}
W (n, n′) = W (n′, n) = 1

A (Petri) net [24], [25] , such that
P denotes a finite set of places, T denotes a finite set of
transitions, , , 
denotes a set of flow relation, and W denotes a weight
function,  i.e.,  denotes
the  weights  of  the  arcs.  A  marking  of  the  net N  de-
notes the mapping from P to , defining the number
of tokens in each place of the net N. A system is a tuple

, where N is a net and  is an
initial marking (state). The post-set , and pre-set 
of a node  are denoted as 

 and  .  In
this paper, .

S = (N,M0) N = (P, T,

F,W ) M0
•t

M0(p) ≥ W (p, t) M0

M0

M0 [t⟩M σ =< e1, e2, . . . ,

em > (m ≥ 1)

σ =< t1, t1, . . . ,tm > (m ≥ 1)

Consider  a  system  with  
. A transition t is enabled at  if for each p in ,

, in which t is fireable from . The fir-
ing  of t  from   leads  to  the  marking M , and  is  de-
noted by . A finite (firing) trace 

 ,  its  transition  sequence,  denoted  by
 . In this paper, we refer to

the  longest  sequence  with  all  the  different  transitions
for transition sequences as transition occurrence vectors.

σ

M0 [t⟩M1 . . .Mm−1 [t⟩Mm

A trace  is enabled in S if the successive states ac-
quired,  denoted  by ,  satisfy

Mk [t⟩Mk+1 (k ∈ {1, 2, . . . ,m}) Mm

M0 M0 [t⟩Mm

M0 R(M0) [M0⟩
RG(S)

(V,A, ι)

[M0⟩
M

t−→ M ′

M [t⟩M ′ M ∈ [M0⟩ ι

M0

 ,  in  which  is reach-
able from ,  i.e., .  The markings reachable
from  is expressed by  or . A reachability
graph  of S ,  i.e., ,  denotes  the  directed  graph

, where V  denotes the vertices labeled with the
markings , A  denotes the  arcs  labeled  with  trans-
itions  of T  such  that  the  arc  if  and  only  if

 and , and  is the root, labeled with
.  Since  the  prediction uncertainty of  a  trace  with a

length of 1 or 2 is relatively high and it affects the ac-
curacy of the prediction, the prefix with a length great-
er than or equal to 3 is retained in this paper.

3) Partition of  prefixes and the corresponding suf-
fixes using reachability graph

First,  a  Petri  net  and  the  corresponding  marking
are mined  from  the  event  log  by  process  mining  al-
gorithms.  In  this  paper,  inductive  miner  [26]  is  used.
Then,  the  reachability  graph  is  obtained  by  Petri  net
and  the  corresponding  markings.  In  this  partition
phase, only the control flow perspective is considered.

The execution  direction  of  the  transition  occur-
rence  vector  is  consistent  with  the  execution  order  of
the transition of the reachability graph. In addition, re-
garding the different transitions of the concurrent struc-
ture in process model, the order in the transition occur-
rence  vector  is  determined  according  to  the  order  in
which  these  transitions  are  recorded  in  the  event  log,
that  is,  the  transitions  that  are  recorded  preferentially
are placed in front of the transitions that are recorded
later.

According  to  the  complete  transition  occurrence
vector of the reachability graph of a Petri net, prefixes
and  the  corresponding  suffixes  from  the  event  log  can
be divided into different partitions based on the trans-
ition of the last event of the prefixes from the event log.
Furthermore,  each  partition  corresponds  to  a  sub-pro-
cess  of  the  process  model.  In  other  words,  the  prefixes
of  each  partition  have  similar  structural  information.
Such  partitioning  of  prefixes  can  improve  the  targeted
training of recurrent neural networks to encode prefixes.
The partitioning algorithm of prefixes and suffixes from
the event log is shown in Algorithm 1.

Algorithm 1　Partition of prefixes and suffixes

ELRequire: event log, .
PN PCEnsure: Petri net, ; partitioned class, .

Prefix, Suffix,PC = ∅1:   ;
PN+markting

generate←− Inductive_Miner(EL)2:   ;
generate←− PN+markting3:  reachability graph ;

TOV =< σ1, σ2, . . . , σN+ > (N+ = 1, 2, 3, . . .)
obtain←− Reachability Graph(RG)

4:    　　

;
σ ∈ EL5:  For each 

Prefix
genarate←− σ6: 　 ;
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Suffix
genarate←− σ7: 　 ;

8:  EndFor
tk ∈ TOV9:  For each 

Pk ← tk k = 1, 2, . . . , N+10: 　 , ;
11: EndFor

Pk = ∅ k = 1, 2, . . . , N+12: , ;
σp ∈ Prefix13: For each 

σp[−1] == tk14: 　If 
Pk ← (σp ∈ Prefix, label), (σs ∈ Suffix, label);15: 　　

16: 　EndIf
17: EndFor

PC← {Pk|k = 1, 2, . . . , N+}18: ;
PN PC19: Return , .

5

In Algorithm 1, Line 1 initializes the lists of Prefix,
Suffix  and  partitioned  class.  Line  2  mines  a  Petri  net
and the corresponding markings from the event log by
process mining algorithm. Line 3 generates the reachab-
ility graph by a Petri net and the corresponding mark-
ings. Line 4 obtains the complete transition occurrence
vector from the reachability graph. Lines  to 8 gener-
ate prefixes and the corresponding suffixes. Lines 9 to 11
name  the  partitioned  classes  based  on  the  transitions
from the complete transition occurrence vector. Line 12
initializes each partition of the partitioned class. Lines 13
to 17  realize  the  partitions  of  all  the  prefixes  and  suf-

fixes  from  the  event  log.  Furthermore,  Lines  14  to  16
add (prefixes, the remaining time) and (the correspond-
ing suffixes, the remaining time) to each transition par-
tition.  Different  transition  partitions  are  sorted  based
on  the  sequence  of  transitions  in  Line  18.  Finally,  the
partitioned  class  list  and  a  Petri  net  are  returned  in
Line 19.

[a, b, c, d, e, f ]

For ease of  comprehensibility,  a simple example is
given to illustrate the proposed prediction method. Giv-
en a simple log in Table 1, which contains four traces,
and  each  trace  is  composed  activities  of  events  and
timestamps.  First,  the  process  model  (shown  in Fig.2)
and  the  corresponding  reachability  graph  (shown  in
Fig.3) are discovered from the simple log. Then, we can
get the transition occurrence vector  from
the reachability graph. Furthermore, transitions b and c
are  in  a  concurrent  relationship.  Since  transition b  ap-
pears earlier than transition c in the log, transition b is
before transition c of the transition occurrence vector.
  

Table 1. A log

Case ID Traces
1 < a0, b2, c3, d5, f7 >

2 < a3, c5, b6, d8, f9 >

3 < a1, b4, c5, d7, e8, d10, f11 >

3 < a1, b4, c5, d7, e8, d10, e11, d13, f14 >

 

a
b

e

d f

c 
Fig. 2. A Petri net.

 
[Start]

[End]

a

b

b

c

c

e d

f

 
Fig. 3. The reachability graph of a Petri net.

 

[b, c, d, e, f ]

At the  same  time,  the  prefix  and  the  correspond-
ing suffix of each trace in the simple log are generated,
and the prefixes with a length greater than or equal to
three,  and  the  corresponding  suffixes  are  partitioned
based  on  the  complete  transition  occurrence  vector

.  The  partition  rule  is  to  analyze  whether
the activity of the last event of the prefix is the same as

the transition in the transition occurrence vector. If so,
the prefixes, the corresponding suffixes and the remain-
ing time label are stored in the transition partition. The
partitions of the simple log are shown in Fig.4. It is not
difficult to  find  that  each  transition  partition  corres-
ponds to the sub-process of the process model.

 2. Bidirectional  recurrent  neural  networks
with attention on prefixes and suffixes

Bidirectional recurrent  neural  network  with  atten-
tion and the prediction models on prefixes and suffixes
are described.

1) Bidirectional  recurrent  neural  network  with  at-
tention

Recurrent  neural  network  (RNN) is  a  deep  neural
network model for sequence processing. The basic struc-
ture of the recurrent neural network is shown in Fig.5.

The  most  representative  RNN  neurons  are  LSTM
[28] and GRU [29], which effectively solve the problems
of  gradient  disappearance  and  short-term  memory  in
traditional  RNN.  In  this  paper,  we  chose  GRU as  the
implementation of RNN neurons.

ht=GRU(xt,The  formulas  for  GRU neurons  are: 
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ht−1) rt=σ(W reset · [ht−1,xt]+breset) zt = σ(W update·
[ht−1,xt] + bupdate) h̃t = tanh(W h[rt ⊙ ht−1,xt] + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t [, ]

· means ⊙
σ

tanh(·)

W reset W update W h

breset bupdate bh

, , 
, ,

,  where  means  vector
connection,  matrix/vector  multiplication,  is
an  element-wise  multiplication,  is  sigmoid  activation
function,  and  is  hyperbolic  tangent  function.
The  parameters  of  the  GRU  are  the  transformation
matrix ,  and , and the corresponding
bias ,  and .

→
ht

←
ht

ht = [
→
ht,

←
ht]

Bidirectional  recurrent  neural  network  [30] is  pro-
posed  to  train  models.  It  considers  the  correlation
between events  of  traces.  Let  the  output  hidden  vec-
tors  obtained  by  the  forward  RNN  and  the  backward
RNN be  and , respectively, and concatenate them
to  obtain  the  context  encoding  for  each
moment.

v =
∑n

k=1 αtht

αt

αt = softmax(gattentionT · tanh(W attention · ht + battention))

The  encoding  of  the  trace  is  constructed  by  the
context encoding at each moment of the trace, and the
encoding  of  the  trace  is  as  follows: ,
where  is the weight of the context encoding at time
t. In this paper, a multi-layer perceptron (called atten-
tion)  is  used  to  calculate  the  context  weight

,

gattentionT W attention battentionwhere ,  and  are the paramet-
ers of the attention mechanism.

2) Prediction models on prefixes and suffixes

v

v′

v

v′

v

Remain_time = gT · ReLU(W ·
v + b) gT W b

For  each  transition  partition  of  the  partitioned
class, different  prediction  models  are  designed  to  pre-
dict the remaining time of business processes. The net-
work structure  of  the  prediction  model  for  each  trans-
ition partition is shown in Fig.6. Specifically, looking at
it from the bottom up, first of all, regarding prefix en-
coding,  prefixes  are  used  as  input,  and  bidirectional
GRUs are used for training to obtain the context encod-
ings of prefixes for each moment. The vector represent-
ation  of  prefixes  can  be  obtained  by  the  attention
mechanism.  Similarly,  regarding  suffix  encoding,  the
representation of  the suffixes is  used as input,  and the
vector representation  of suffixes is obtained by using
bidirectional  GRUs  with  attention.  Then,  the  vector
representation  of prefixes  and  the  vector  representa-
tion  of suffixes are concatenated as the vector repres-
entation  of the prefixes. Finally, a multi-layer percep-
tron is used to construct prediction model. The specific
calculation  formula  is 

, where ,  and  are the model parameters of
the multilayer perceptron. In this paper, the linear rec-
tification  function  (rectified  linear  unit,  ReLU)  is  the
activation function.

For each transition partition, the encoding method
of concatenating  the  prefix  encoding  and  the  corres-
ponding  suffix  encoding  as  the  prefix  can fully  express
the structural  information  of  the  prefix,  thereby  im-
proving  the  accuracy  of  prediction.  The  encodings  on
prefixes and suffixes are shown in Algorithm 2.

In Algorithm 2, Line 1 initializes vector representa-
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Fig. 4. Partitions of a simple log.
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Fig. 5. Basic structure of recurrent neural network [27].
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tion  of  prefixes.  Lines  2  to  9  encode  prefixes  and  the
corresponding suffixes of each transition partition in the
partitioned class using the bidirectional recurrent neur-
al  networks  with  attention,  respectively.  Lines  3  to  5
encode prefixes  by  the  bidirectional  GRUs  with  atten-
tion, and Lines 6 to 8 encode the corresponding suffixes
by the bidirectional GRUs with attention. Line 10 con-
catenates vector  representation  of  prefixes  and  corres-
ponding suffixes  as  prefixes  encoding  to  train  the  pre-
diction models, and vector representation of prefixes are
returned in Line 11.

Algorithm 2　The encodings on prefixes and suffixes

PCRequire: partitioned class, .
VRPEnsure: vector representation of prefixes, .

VRP = ∅1:   ;
Pk ∈ PC (k = 1, 2, . . . , N+)2:  For each  
σprefix ∈ Pk3: 　 For each 

VRPprefix ← Bi_GRU_Atti (σprefix)4: 　　  ;
5: 　 EndFor

σsuffix ∈ Pk6: 　 For each 
VRPsuffix ← Bi_GRU_Atti (σsuffix)7: 　　  ;

8: 　 EndFor
9:  EndFor

VRP← (VRPprefix,VRPsuffix)10:  concatenate ;
VRP11: Return .

In order to verify that our encoding on prefixes and
suffixes can more accurately predict the remaining time
and better explain the reason for the accuracy, a com-
parison  experiment  with  different  encodings,  including
Prefix encoding,  Suffix  encoding  and  our  method  Pre-

fix_Suffix  encoding_Transfer,  was  performed  on  the
publicly available  event  logs.  Moreover,  Prefix  encod-
ing only considers the encoding of the prefix as the en-
coding method of  the prefix.  Suffix  encoding only con-
siders the suffix encoding corresponding to the prefix as
the encoding method of the prefix. Prefix_Suffix encod-
ing_Transfer  means  that  the  vector  representation  of
prefix and the corresponding suffix are concatenated as
the encoding method of prefix.

 3. Prediction models
The prefixes  and the  corresponding  suffixes  of  the

training  set  are  divided  according  to  the  complete
transition  occurrence  vector  of  the  reachability  graph,
and deep transfer  learning is  performed on each trans-
ition partition  in  the  order  of  occurrence  of  the  com-
plete transition occurrence vector.  The proposed meth-
od  can  obtain  better  predictive  performance  because
each  transition  partition  corresponds  to  the  sub-pro-
cesses  of  the  process  model,  and  the  transfer  learning
between  the  sub-processes  is  also  consistent  with  the
forward  execution  of  the  process  model.  Prediction
model training is shown in Algorithm 3.

Algorithm 3　Prediction model training

σ PC

VRP

Require:  trace  prefixes, ;  partitioned  class, ; vector  rep-
resentation of prefixes, .

PMEnsure: prediction models, .
PC← PC(σ)1:   ;
VRP← VRP(σ)2:   ;

PC.index3:  For each 
σ[−1] == PC.index4: 　 If 

Remain time prediction

MLP

AttentionAttention
Prefix encoding Suffix encoding

GRU

Prefix Suffix

GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU GRU

e
t−1 e

t+1e
t

e′
t−1 e′

t+1e′
t

 
Fig. 6. Prediction model for each transition partition.

 

Explainable Business Process Remaining Time Prediction Using Reachability Graph 631



σ ∈ Pi5: 　　 ;
Modeli ← Pi6: 　　 ;

7: 　 EndIf
Modeli+1

transfer←− Modeli8: 　 ;
9:  EndFor

PM← {Modeli|i ∈ PC.index}10: ;
PM11: Return .

σ

PC.index

Modeli+1

Modeli

In Algorithm 3, Line 1 partitions the prefixes of the
training  set.  Line  2  encodes  the  prefixes.  Lines  3  to  9
train the prediction models. Line 4 determines whether
the activity of the last event of the prefix  is the same
as .  If  yes,  Line  5  queries  its  corresponding
transition  partition.  A  prediction  model  is  trained  in
Line 6  using  the  deep transfer  learning for  each trans-
ition partition. Line 8 describes the deep transfer learn-
ing that the parameters of  are initialized with
those of . Finally,  the prediction models are ob-
tained in  Line  10,  and  the  Prediction  models  is  re-
turned in Line 11.

 4. Visualization of prediction models
Applying the running traces to the prediction mod-

els,  and  the  evaluation  values  can  be  obtained.  Then,
add the  evaluation  values  to  the  sub-processes  corres-
ponding to  different  partitions.  Finally,  the  visualiza-
tion  of  the  prediction  models  in  the  form  of  sub-pro-
cesses of  a  Petri  net.  Remain  time  prediction  of  run-
ning traces  with visualization (RTPV) is  shown in Al-
gorithm 4.

Algorithm 4　RTPV

σrRequire:  running  traces, ;  Petri  net,  PN;  partitioned class,
PC;  vector  representation  of  prefixes,  VRP;  prediction
models, PM.

Ensure: visualization of prediction models, VPM.
PC← PC(σr)1:   ;
VRP← VRP(σr)2:   ;

3:  For each PC.index
σr[−1] == PC.index4: 　 If 
σr ∈ Pi5: 　　 ;
Modeli ∈ PM← Pi6: 　　 ;

7: 　 EndIf
List← values8: 　 ;

9:  EndFor
10: For each value in List

+←−11: 　Sub-process-values each-values-of-List;
12: EndFor

VPM←13:  Sub-process-values;
14: Return VPM.

In  Algorithm  4,  Line  1  partitions  the  running
traces.  Line 2 encodes the running traces.  Lines 3 to 9
validate the prediction model for each transition parti-

tion and obtain the evaluation values. Then, the evalu-
ation values of the prediction model for each transition
partition are added to the sub-process of a Petri net in
Lines 10 to 12. Line 13 visualizes the prediction model
for each transition partition using the sub-process with
the evaluation values of  a Petri  net.  Finally,  visualiza-
tion of prediction models is returned in Line 14.

[b, c, d, e, f ]

For  example,  the  prefixes  and  suffixes  in  each
transition  partition  can  be  separately  encoded  by  the
bidirectional  recurrent  neural  networks  with  attention.
And the prefix encoding and suffix encoding are concat-
enated  together  as  the  encoding  of  prefix  to  train  the
prediction model.  Then,  the  transfer  learning  is  per-
formed  in  accordance  with  the  execution  order  of  the
complete  transition  occurrence  vector . Spe-
cifically, the  model  parameters  of  the  trained  predic-
tion model b are used as the initialization parameters of
the  prediction  model c ,  and  the  model  parameters  of
the trained prediction model c are used as the initializa-
tion parameters of the prediction model d, and the deep
transfer learning continues until the training of the last
prediction model f is completed (shown in Fig.7).

Given the running prefixes, we can obtain the eval-
uation  values  by  applying  the  running  prefixes  to  the
prediction  models.  Further,  the  evaluation  values  (for
example, MAE and MSE) of each prediction model are
added to  the  sub-process  corresponding  to  its  trans-
ition partition,  and  the  visualization  of  all  the  predic-
tion models is shown in Fig.7.

 V. Evaluation
We will conduct an experimental evaluation of the

proposed method.
 1. Event logs
We performed  experiments  by  the  publicly  avail-

able event logs to validate the effectiveness of our pro-
posed method.  The Business  Process  Intelligence Chal-
lenge  2017_O [31]  (BPIC_2017_O_L) subprocess  and
Business  Process  Intelligence  Challenge  2017_W  [31]
(BPIC_2017_W_P) subprocess provided the event logs
from a German financial institution. Moreover, the “O”
indicates state of the offer changes, and the “W” indic-
ates  state  of  the  work  item  for  the  loan  application.
Helpdesk  [10]  (Helpdesk_P)  is  derived  from  a  real-life
event log.  It  comes  from an event  of  a  ticket  manage-
ment  process  at  the  helpdesk  of  an  Italian  software
company.  These  event  logs  can  be  downloaded  at
http://www.processmining.org/logs/start.

The infrequent behaviors of event logs are cleaned.
The cleaned event logs:

a) BPIC_2017_O_L,
b) BPIC_2017_W_P, and
c) Helpdesk_P,
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are used in our experiments. Table 2 presents statistics
of the publicly available event logs used of experiments.
Note  that  Nt  represents  number  of  traces,  Ne  denotes
number  of  events,  Na  denotes  number  of  activities,
Minlt denotes minimum length of traces, and Maxlt de-
notes maximum length of traces. Moreover, BPIC_2017_
O_L  has  loop  structures  and  sequence  structures.
BPIC_2017_W_P  and  Helpdesk_P  have  parallel
structures and sequence structures.
  

Table 2. Basic statistics of a), b), and c)

Event logs Nt Ne Na Minlt Maxlt
a) 5842 21193 5 2 9
b) 5644 41516 6 6 17
c) 3695 13233 6 1 14

 
 

We  split  each  event  log  into  two  parts.  The  first
part  (70%  of  traces  from  the  event  log)  is  used  as  a
training set, and the remaining 30% of traces is used to
evaluate the prediction medel.

 2. Metrics
The evaluation metrics  of  our  experiments  include

the  mean  absolute  error  (MAE)  [32]  and  the  mean

MAE = 1
n

∑n
i=1 |f(σi)− rem(σ, i)| MSE =

1
n

∑n
i=1 (f(σi)− rem(σ, i))

2

f(σi)

σi

rem(σ, i)

squared error (MSE) [33], [34]. These calculation formu-
las  are  and  

.  Moreover, n  denotes  the
size  of  predicted  samples,  denotes  the  predicted
value of the remaining time in the running trace , and

 denotes the real value of the remaining time.
 3. Implementation
We implemented  all  the  methods  as  a  set  of  Py-

thon 3.7 scripts using the recurrent neural network lib-
rary  PyTorch  1.3.1.  The  experiments  were  performed
on  a  single  NVIDA RTX 2070  super  GPU with  8  GB
memory.  Moreover,  the  discovery  of  Petri  net  models
and their reachability graphs are implemented in ProM
6.9.  Our  experimental  settings  are  as  follows:  1)  The
learning rate is 0.01; 2) The number of iterations is 150;
3) The optimizer is Adam.

 4. Results
We compare  our  method  against  several  baselines

shown in Table 3.
First,  the  methods  using  transition  system  (meth-

ods 1, 2, and 3 represent the set, sequence, and multis-
et  abstraction,  respectively)  [35],  data-aware  transition
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Fig. 7. Explainable process prediction by a example.

 

   
Table 3. MAE and RMSE values for a), b) and c)

Method
a) b) c)

MAE MSE MAE MSE MAE MSE
1 17.266 898.278 10.915 351.925 14.292 334.048
2 6.708 118.552 11.110 351.780 15.631 355.492
3 17.213 867.884 10.868 348.009 14.497 335.806
4 6.715 118.676 6.032 133.894 6.351 114.418
5 6.708 118.552 5.962 132.317 6.297 109.717
6 6.715 118.676 6.028 134.044 6.389 114.274
7 0.273 4.679 6.002 117.165 2.866 51.676
8 0.275 4.775 6.065 116.745 3.097 62.247
9 0.231 3.273 6.326 139.736 2.673 44.680
10 0.347 8.843 6.328 145.053 2.612 44.855
11 1.521 45.249 5.119 105.158 2.820 54.901
12 0.151 1.601 4.745 92.420 1.665 23.570
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system (methods 4, 5, and 6 represent the set, sequence,
and  multiset  abstraction,  respectively)  [36],  LSTM
neural  networks  [37],  GRU  neural  networks,  transfer
learning  (methods  9  and  10)  [12]  based  on  LSTM
(method  7),  and  GRU  (method  8)  are  used  as  the
baseline methods.  The  method  of  GRU  neural  net-
works is  similar  to  the  method  of  LSTM  neural  net-
works, and their difference is that the neuron is imple-
mented in a different way.

Next,  the  transformer  [38]  encoder  (method  11)
with  strong  expressive  ability  is  compared  with  GRU.
Finally, 12 represents our method. Note that the experi-
mental results of the existing remaining time prediction

methods [7] show that the methods based on neural net-
works are superior to those based on machine learning.
In  this  paper,  neural  network  methods  are  selected  as
the baselines.

A  parameter  selection  process  for  the  methods
based on  deep  neural  networks  is  provided.  We  selec-
ted the  same  parameters  of  these  methods  for  experi-
ments,  and the  results  are  shown in Fig.8 .  In  order  to
ensure the consistency of the parameters of the compar-
ison  method,  we  set  the  value  of  embedding  size  to  2
and the value of hidden size to 5. Our method has the
lowest parameter sensitivity and is better than the com-
petitive methods overall.
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Fig. 8. Parameter selection process.

 

Regarding the comparison of model size, first of all,
the  model  size  of  vanilla  models  of  LSTM  or  GRU  is
not  large.  Then,  the  model  size  of  transfer  learning
based on LSTM or  GRU is  a  constant  multiple  of  the
model  size  of  LSTM  or  GRU.  The  reason  is  that  the
number of transfers among LSTMs or GRUs is limited.
Furthermore,  the  model  size  of  our  method  is  larger
than that of these models, but it is only a constant mul-
tiple of the model size of these models.

The evaluation results of all the methods are shown
in Table  3.  The  experimental  results  of  all  event  logs
containing  loop  and  parallel  structures  are  superior  to
the  baseline  methods,  which  shows  that  the  proposed
method has better performance for business process re-
maining time prediction. The reasons for the better per-
formance of the proposed method are as follows: 1) The
Prefix_Suffix encoding of traces can effectively express
the  structural  and  temporal  features  of  traces;  2)  The
partition training of the prefixes can group the prefixes
of similar structures to improve the accuracy of the pre-
diction models;  3)  According to the order of  transition
occurrence vector  of  the  reachability  graph,  the  pro-
posed deep transfer learning among different prediction
models  takes  into  account  the  correlation  between  the
sub-processes of the process model.

The experimental  results  of  our  method  are  ana-
lyzed in detail.

1) Petri nets and the corresponding reachab-
ility graphs

RG(S(a))

RG(S(b))

RG(S(c))

For each in a), b), and c), a Petri net and the cor-
responding reachability graph are generated by induct-
ive  miner.  For  a),  the  reachability  graph  is
shown  in Fig.9 .  Similarly,  the  reachability  graph

 for b) is shown in Fig.10. For c), the reachab-
ility graph  is shown in Fig.11.
 

tau from tree

EC

H

D

B

 
RG(S(a))Fig. 9. The reachability graph  for a).

 

Statistics  of  the  reachability  graphs  in Table  4.
Number of vertices (Nv), Maximum in-degree of vertex
(Maxiv), Maximum out-degree of vertex (Maxov), Min-
imum length of transition occurrence vector (Minl) and
Maximum length of transition occurrence vector (Maxl)
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reflect the  structures  in  a  Petri  net,  for  example,  con-
current or cyclic structures. In this paper, the complete

transition occurrence vector refers to the transition oc-
currence vector with the largest length from the reach-
ability graphs.

RG(S(a))

RG(S(b))

RG(S(c))

For  a),  the  complete  transition  occurrence  vector
[H, B, C, D, E] is obtained from the reachability graph

. For  b),  the  corresponding  complete  trans-
ition  occurrence  vector  [F,  A,  B,  C,  D,  E] is  also  ob-
tained  from  the  reachability  graph .  For  c),
transition  occurrence  vector  [D,  A,  B,  E,  F,  C]  is  got
from the reachability graph . Further, the or-
der of recording transitions in the event log determines
the  order  of  transition  occurrence  vector  for  different
transitions of concurrent structures.

In order to improve the accuracy of the prediction,
the prefix with a length greater than or equal to three
is trained in this paper. Therefore, the transition occur-
rence  vector  of  the  last  event  for  all  the  prefixes  may
not be the complete transition occurrence vector of the
reachability  graph  from  initial  marking.  For  a),  the
complete  transition  occurrence  vector  of  the  last  event
of all the prefixes is [B, C, D, E]. The complete trans-
ition occurrence vector of the last event of all  the pre-
fixes  for  b)  is  [F,  A,  B,  C,  D,  E].  [B, E,  F,  C]  is  the
complete  transition  occurrence  vector  of  the  last  event
of all the prefixes for c).

2) Evaluation of prediction models
Table  5 presents  variants  of  our  method

Prefix_Suffix  encoding_Transfer,  which  include  Prefix
encoding,  Suffix  encoding,  and  Prefix_Suffix
encoding_NonTransfer.  Prefix  encoding  refers  to  a
transfer method that only relies on encoding of prefixes.
Suffix encoding refers to a transfer method that only re-
lies  on  encoding  of  suffixes.  Prefix_Suffix  encoding_
NonTransfer refers to a non-transfer method that relies
on  encoding  of  prefixes  and  suffixes.  Furtherore,  our
method Prefix_Suffix encoding_NonTransfer refers to a
transfer method that relies on encoding of prefixes and
suffixes.
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tau from tree

tau from tree

tau from tree tau from tree

tau from tree

tau from tree

tau from tree

tau join

tau split

tau split

A

D

B

B

B

B

C

BB

E

E E

E

F

F

F

Ftau join

 
RG(S(c))Fig. 11. The reachability graph  for c).

 

   
Table 4. Statistics of the reachability graphs

RG Nv Maxiv Maxov Minl Maxl
RG(S(a)) 5 2 2 3 5
RG(S(b)) 98 5 5 6 6
RG(S(c)) 15 3 3 4 6
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MAE values of different variants containing Prefix
encoding (Pe),  Suffix  encoding  (Se),  Prefix_Suffix  en-
coding_NonTransfer (PSeNT) and our method Prefix_

Suffix encoding_Transfer (PSeT) for a), b), and c) are
shown in Fig.12. Note that Ep, Es, Tp and Dtl denote
encoding of prefixes, encoding of suffixes, transition par-
titions  and deep transfer  learning,  respectively.  For  all
the event logs, MAE and MSE values of our method are
lower than the MAE and MSE values of  Prefix encod-
ing,  Suffix  encoding,  and Prefix_Suffix  encoding_Non-
Transfer. The  result  shows  that  our  method  outper-
forms  Prefix  encoding  and  Suffix  encoding  for  a),  b),
and c).
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Fig. 12. Values of different variants for a), b) and c). (a) MAE; (b) MSE.

 

Furthermore, the  MAE and  MSE values  of  differ-
ent variants for different transition partitions from the
reachability  graphs  are  presented  for  a),  b),  and  c)  in
Fig.13.

For a), b), and c), except for the transition A par-
tition of the event log b), the MAE and MSE values of

our  method  are  almost  all  lower  than  the  MAE  and
MSE  values  of  Prefix  encoding,  Suffix  encoding,  and
Prefix_Suffix  encoding_NonTransfer.  In  summary,  the
results  also  verify  that  our  Prefix_Suffix  encoding_
Transfer can achieve better prediction performance to a
certain extent.
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Fig. 13. Values on transition partitions for a), b), and c). (a) For a); (b) For b); and (c) For c).

 

The result of comparing our method Prefix_Suffix
encoding_Transfer with Prefix encoding and Suffix en-
coding shows the superiority  of  our  encoding on prefix

and  suffix.  Moreover,  by  comparing  our  method
Prefix_Suffix encoding_Transfer with Prefix_Suffix en-
coding_NonTransfer, the  results  show that  the  predic-

   
Table 5. Variants of our method

Variants Ep Es Tp Dtl
Pe √ × √ √
Se × √ √ √

PSeT √ √ √ √
PSeNT √ √ √ ×
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tion  method  using  deep  transfer  learning  outperforms
the prediction methods of non-transfer learning. This is
because the deep transfer learning considers the correla-
tion  between  transitional  partitions  (sub-processes  of
the process model).

3) Visualization
MAE and MSE values of  our method for different

transition  partitions  are  shown  in Table  6. Further-
more,  transition  partitions  of  prefixes  are  shown  in
Fig.13, and - means none.
  

Table 6. MAE and MSE values of different transition
partitions for a), b) and c)

a) b) c)
MAE MSE MAE MSE MAE MSE
16.128 448.252 4.625 86.890 4.786 92.326
21.474 665.423 16.991 448.584 10.247 191.787
14.950 455.272 17.045 388.333 18.596 542.565
0.098 0.016 6.849 139.125 0.492 7.685

− − 4.597 96.929 − −
− − 2.672 44.496 − −

 
 

S(a)

S(a)

S(a)

S(a)

S(a)

For a), the MAE and MSE values [16.128; 448.252]
of transition B partition are added to the sub-process B
of a Petri  net .  The prediction model of transition
B partition is explained by the sub-process B with val-
ues. Similarly, the MAE and MSE values [21.474; 665.423]
of transition C partition are added to the sub-process C
of a Petri  net .  The prediction model of transition
C partition is explained by the sub-process C with val-
ues.  The  MAE  and  MSE  values  [14.950;  455.272]  of
transition D partition are added to the sub-process D of
a Petri  net .  The prediction model  of  transition D
partition is explained by the sub-process D with values.
Finally,  the  MAE  and  MSE  values  [0.098;  0.016]  of
transition E partition represents the entire process mod-
el are added to a Petri net . The prediction model
of transition E partition is explained by a Petri net 
with values.

A visualization of prediction model for each trans-
ition  partition  in  the  shape  of  a  process  model  are
shown in Fig.14. Note that the visualization of the pre-
diction  model  for  each  transition  partition  in  the  form
of sub-process means that the activities of each sub-pro-
cess are consistent with the activities of each transition
partition.
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Fig. 14. A visualization of prediction models for a).

 

Similarly, for b), a visualization of prediction mod-
el for each transition partition in the shape of a process

model  are  shown  in Fig.15 .  For  c),  a  visualization  of
prediction  model  for  each  transition  partition  in  the
form of a process model,  as presented in Fig.16. More-
over, except for the outermost dashed box representing
the  entire  process  model,  the  remaining  dashed  boxes
represent the sub-processes of transition partitions.
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Fig. 15. A visualization of prediction models for b).
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Fig. 16. A visualization of prediction models for c).

 

 VI. Conclusions
A method  of  explainable  business  process  remain-

ing time prediction via structural process model is pro-
posed in  this  paper.  For  training  of  prediction  models,
firstly, a Petri net and the reachability graph are mined
from the  event  log,  and  the  transition  occurrence  vec-
tors  can  be  obtained  based  on  the  reachability  graph.
Simultaneously, prefixes and suffixes are generated from
the event  log.  Secondly,  according  to  transition  occur-
rence vectors of the reachability graph, prefixes and suf-
fixes are clustered into different transition partitions us-
ing the  activity  of  the  last  event  for  prefix.  Further-
more, for each transition partition, the bidirectional re-

Explainable Business Process Remaining Time Prediction Using Reachability Graph 637



current neural network is used to encode the prefixes on
prefixes and suffixes. Finally, the deep transfer learning
between different  transition  partitions  using  the  trans-
ition occurrence vectors is performed to predict remain-
ing time. For the visualization of prediction models, the
evaluation  values  are  added  to  the  sub-processes  of  a
Petri net  corresponding  to  different  transition  parti-
tions  which  realize  the  visualization  of  the  prediction
models. In  future,  the  prediction  model  not  only  de-
pends  on  the  control  flow of  traces,  but  also  considers
the context attributes of process instances improve the
accuracy of predictions. Then, we plan to apply explain-
able techniques to other fields [39]–[41].
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