
ESE: Efficient Security Enhancement Method
for the Secure Aggregation Protocol in

Federated Learning
TIAN Haibo, LI Maonan, and REN Shuangyin

(School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China)

 Abstract — In federated learning, a parameter serv-
er may actively infer sensitive data of users and a user
may arbitrarily drop out of a learning process. Bonawitz
et al. propose a secure aggregation protocol for federated
learning against a semi-honest adversary and a security
enhancement method against an active adversary at ACM
CCS 2017. The purpose of this paper is to analyze their
security enhancement method and to design an alternat-
ive. We point out that their security enhancement meth-
od has the risk of Eclipse attack and that the consistency
check round in their method could be removed. We give a
new efficient security enhancement method by redesign-
ing an authentication message and by adjusting the au-
thentication timing. The new method produces an secure
aggregation protocol against an active adversary with less
communication and computation costs.

 Key words — Secure aggregation, Security enhance-

ment, Eclipse attack, Authentication.

 I. Introduction
The federated learning (FL) in [1] and [2] is a

paradigm of decentralized machine learning. Initially, a
parameter server has a global parameter set. A learn-
ing process includes some learning rounds. In each
round, the parameter server selects a set of users to
download the global parameter set. Then the users up-
date their local learning network by the downloaded
parameters. And then the users provide local data to
run their learning network in their devices. After the
local learning network is trained, the local model para-
meters are uploaded to the parameter server. The serv-
er then averages the collected parameters to update the
global parameter set and goes to the next learning
round. In a new round, the parameter server may se-
lect a totally new user set. In the whole learning pro-

cess, user data do not leave their devices.

1.5

600

100 80

5

The FL is used in some practical projects in [3]–[6]
to train models. In commercial production Google key-
board application (Gborad), Hard et al. [3] apply the
FL for mobile keyborad prediction. About million
mobile users contribute million sentences in their
experiments. The FL shows a better recall and a good
performance. Yang et al. [4] apply the FL for searching
query suggestions. They require users with % re-
porting back within two minutes to close a round. The
training period of each user is about minutes. They
train and evaluate their model on a population with the
locale restriction of en-US or en-CA in Android devices.
The FL shows an improvement in click through rate.
Xiao et al. [5] apply the FL in the Internet of things for
human activity recognition. Feki et al. [6] apply the FL
in the medical diagnosis for COVID-19 screening.

The FL has privacy problems. Although users only
upload local model parameters to the parameter server,
their raw data could be recovered. Zhu et al. [7] show
how to recover the raw data from local model paramet-
ers of a user. Their recovery is pixel-wise accurate for
images and token-wise matching for texts. Zhao et al. [8]
show how to extract ground-truth labels based the work
in [7]. Jonas et al. [9] show that averaging gradients
over several iterations or images does not prevent leak-
age of the raw data. Yin et al. [10] show how to recov-
er a batch of images from average gradients. Their al-
gorithm takes 8 to 48 images as a batch for large net-
works such as ResNets (residual networks) on complex
datasets such as ImageNet.

Researchers have proposed several approaches to
enhance user privacy. Martin et al. [11] propose using
differential privacy to protect local model parameters. If

Manuscript Received Oct. 19, 2021; Accepted Aug. 3, 2022. This work was supported by the Key-Area Research and Development
Program of Guangdong Province (2020B010166005) and the Huawei Technologies Co., Ltd. (TC20210407007,YBN2019105017).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.370

Chinese Journal of Electronics
Vol.32, No.3, May 2023

the number of users in each round is large enough, the
accuracy of this approach is good enough. Bonawitz et
al. [12] propose protocols based on a secret sharing
scheme and a double masking technique to protect user
privacy. Their protocols are more suitable for moderate
scale users in each learning round. Tian et al. [13] pro-
pose using threshold additive homomorphic encryption
to protect user data. It may be used in the scenario of
small scale users since their proposal needs to share vec-
tor of secrets. Mo et al. [14] use trusted execution envir-
onment to protect user inputs. It has a better perform-
ance than other approaches at the cost of hardware as-
sumptions.

This paper focuses on Bonawitz et al.’s work in
[12]. We analyze the security enhancement method pro-
posed in [12], which transfers a secure aggregation pro-
tocol (SAP) against a semi-honest adversary to an SAP
against an active adversary. And our analysis shows an
Eclipse attack against their enhanced five-round SAP.
We then propose an efficient security enhancement
(ESE) method which produces a four-round SAP
against an active adversary with less computations and
communications.

 1. Related works
The FL is a method to train a model from data in

different devices. We give a brief review of its history.
Merugu and Ghosh [15] present a framework for cluster-
ing distributed data. They transmit the parameters of
models built at each local data site to a central loca-
tion. They show that the best representative of all the
data is a certain “mean” model. Dean et al. [16] con-
sider the problem of training a deep network with bil-
lions of parameters using tens of thousands of CPU
cores. They develop an asynchronous stochastic gradi-
ent descent procedure supporting a large number of
model replicas which have different data subsets with a
parameter server. Damiani et al. [17] introduce and em-
pirically test a distributed learning approach where
data are spread across hospitals. Each hospital uses a
salve node to train on local data and exchange part of
the results with a master node. The master node col-
lects the results, calculates new coefficients and sends
them back to salve nodes. McMahan et al. [1], [2] coin
the word “federated learning” and propose a model av-
eraging algorithm that is robust to the unbalanced and
non-IID (independently and identically distributed)
data distributions. It allows high-quality models to be
trained in relatively few rounds of communication.

The SAP in FL is to compute the sum of user in-
puts privately. We give a brief survey of secure aggrega-
tion protocols with different techniques. Rastogi and
Nath [18] propose differentially private aggregation al-
gorithm for distributed time-series data without any

trusted server. Halevi et al. [19] propose to use garbled
circuits to compute functions where a server interacts
with users one by one to get garbled circuits. Kadhe et
al. [20] propose using multiple secret sharing to aggreg-
ate user inputs within three rounds. Many researchers
propose using homomorphic encryption to aggregate
data.

• In some proposals in [21]–[23], all users share a
common homomorphic decryption key.

• Chen et al. [24] propose using homomorphic en-
cryption with group key agreement protocols for dy-
namic users.

• Shi et al. [25] show how to utilize homomorphic
encryption with the secret sharing of zero for secure ag-
gregation. The aggregation server could decrypt the
sum from multiple ciphertexts encrypted under differ-
ent user keys. Then the same team [26] extend their
work to tolerate user dropout at the cost of communica-
tion. Leontiadis et al. [27] add a tag to ciphertexts in [25]
to make the process of server aggregation verifiable.

• Leontiadis et al. [28] propose another scheme us-
ing the Paillier homomorphic encryption with verifiabil-
ity. Hu et al. [29] propose using Paillier homomorphic
encryption for epidemic disease surveillance with a
blockchain.

• He et al. [30] propose using Boneh-Goh-Nissim
homomorphic encryption for secure aggregation in the
smart grid environment.

Although there are many proposals for secure ag-
gregation, it is the work of Bonawitz et al. [12] that
could satisfy the strict limitations of FL including user
dropout, large data dimension, without an online serv-
er and low accuracy loss. These limitations are summar-
ized in [12].

The protocol in [12] could aggregate hundreds of
vectors where the dimension of each vector is about half
million. A main trick is using a pseudo random generat-
or (PRG) to produce masking vectors whose inputs
could be recovered or whose outputs could be added to
zero in pairs. A main limitation of their protocol is that
as the number of users increases, the communication
and computation costs increase rapidly. A natural idea
is to divide users into groups such that secrets are only
shared in a small group. Bell et al. [31] use the Harary
graph with a random permutation to divide users into
random groups. Choi et al. [32] use the Erdos-Rényi
graph to divide users. So et al. [33] and Tayyebeh et al.
[34] divide users to fixed groups before a training pro-
cess begins. The random graph methods in [31], [32]
need no extra assumption about the distribution of cor-
rupted users. Liu et al. [35] propose a new aggregation
method where a user only needs to share one masking
seed, which reduces the cost of secret sharing by half.

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 543

Note that the protocols in [12], [31], [35] have two
versions. One is secure against a semi-honest adversary
and the other is secure against an active adversary. A
semi-honest adversary could corrupt parties and infer
sensitive information of uncorrupted parties in a pro-
tocol but should execute the protocol honestly. An act-
ive adversary could deviate from the protocol, send in-
correct and arbitrarily chosen messages to honest users,
abort, omit messages and share their entire view of the
protocol with each other in [12]. Bonawitz et al. [12]
propose a security enhancement method making a pro-
tocol secure against a semi-honest adversary to a pro-
tocol secure against an active adversary. The same
method is used in [31], [35]. The method is the target of
this paper.

 2. Contributions
We first analyze the security enhancement method

in [12]. Our analysis show that if we consider ephemer-
al secret leakage, there is an Eclipse attack to reveal the
inputs of a target user. Then we design a new security
enhancement method. The new method only needs one
round communication. We then find a different place to
embed the new method. The place is the second and
third rounds of the SAP. Then we prove the security of
the new enhanced SAP. And finally, we implement the
protocols with the two enhancement methods to show
their performances.

 II. Preliminaries
We show the definitions of some cryptographic

tools, the SAP against a semi-honest adversary and the
security enhancement method in [12].

 1. Cryptographic tools
 1) Secret sharing

t nThe protocol in [12] relies on the -out-of- secret
sharing scheme of Shamir in [36]. It mainly includes two
algorithms. The algorithm

{(v, suv)}v∈U ← SS.share(su, t, U) (1)

su F U

t v ∈ U suv

shares a value in a finite field among users in
with a threshold . A user has a secret share .
The algorithm

su ← SS.recon({(v, suv)}v∈V) (2)

su V ⊆ U |V | ≥ treconstructs the value where and .

∀su, s′u ∈ F V ⊆ U |V | < t

We use the security definition of the secret sharing
in [12]. and any such that ,

{{(v, suv)}v∈U ← SS.share(su, t, U) : {(v, suv)}v∈V }
≡ {{(v, suv)}v∈U ← SS.share(s′u, t, U) : {(v, suv)}v∈V }

≡where “ ” denotes that the two distributions are
identical.

 2) Key agreement
Bonawitz et al. [12] use the Diffie-Hellman key

agreement protocol in [37] to generate encryption keys
and masking seeds. The protocol mainly includes three
algorithms. The algorithm

(G, g, q,H)← KA.setup(κ) (3)

G q

g H κ

(sku, pku) u

samples a cyclic group of prime order with a gener-
ator and a hash function where is a security
parameter. A key generation algorithm produces a pair
of keys for a user as

(xu, g
xu)← KA.gen(G, g, q,H) (4)

xu Zq

suv u v

where a non-zero element in . An agreement al-
gorithm produces a shared secrete for users and
as

H((gxu)xv)← KA.agree(pku, skv) (5)

suv = svuA basic property of the protocol is .

A 2ODH-EXP(κ)

A two oracle Diffie-Hellman assumption is defined
in [12]. Given a probabilistic polynomial time (PPT)
adversary , a security game is as fol-
lows:

(G, g, q,H)← KA.setup(κ)• .
a, b ∈ Zq

A = ga, B = gb
• Sample non-zero elements randomly

and compute .
b ∈ {0, 1} b = 1

s = H(gab) s ∈ {0, 1}κ
• Sample randomly and if ,

, else .
b′ ← AOa(·),Ob(·)(G, g, q,H,A,B, s)

Oa(X) H(Xa) X ̸= B Ob(X)

H(Xb) X ̸= A

• where an or-
acle returns on any and
returns on any .

b = b′• Output 1 if otherwise 0.
AThe advantage of is defined as

AdvA = |Pr[2ODH-EXP(κ) = 1]− 1/2|

A
ϵDH AdvA ≤ ϵDH(κ)

The two oracle Diffie-Hellman assumption holds if
for any PPT adversary , there is a negligible function

 such that .
 3) Authenticated encryption
An authenticated encryption scheme is used in [12]

to protect secret shares. The scheme mainly includes
three algorithms. The algorithm

key ← AE.gen(κ) (6)

produces a symmetric key. The algorithm

c← AE.enc(key,m) (7)

mproduces a ciphertext of a message . The algorithm

{m,⊥} ← AE.dec(key, c) (8)

⊥produces a message or a symbol as an output for a

544 Chinese Journal of Electronics 2023

c ⊥ciphertext , where “ ” means a failed decryption.

A IND-CCA-EXP(κ)

Bonawitz et al. [12] require the authenticated en-
cryption scheme satisfying indistinguishability under a
chosen plaintext attack (IND-CPA) and ciphertext in-
tegrity (IND-CTXT) which are defined in [38]. Since
Bellare and Namprempre [38] have proved that the
IND-CPA and IND-CTXT imply indistinguishability
under a chosen ciphertext attack (IND-CCA). We show
the IND-CCA definition in [38] directly. Given a PPT
adversary , a security game is as
follows.

key ← AE.gen(κ)• .
b ∈ {0, 1}• Sample randomly.

b′ ← AOenc(·,·,b,key),Odec(·,key)(κ)

Oenc(·, ·, b, key) AE.enc(key, xb)

(x0, x1) Odec(·, key) c

c

Oenc(·, ·, b, key)

• where an oracle
 returns on a query

, and decrypts an input and re-
turns the decryption result if is not produced by the
oracle .

b = b′ 0• Output 1 if otherwise .
AThe advantage of is defined as

AdvA = |Pr[IND-CCA-EXP(κ) = 1]− 1/2|

A
ϵAE AdvA ≤ ϵAE(κ)

An authenticated encryption scheme is IND-CCA
secure if for any PPT adversary , there is a negligible
function such that .

 4) Pseudorandom generator

PRG

The algorithm is crucial to deal with huge dimen-
sional data in [12]. According to the definition in [39], a
pseudorandom generator is a deterministic polynomial
time algorithm satisfying the following two condi-
tions:

l : N→ N l(κ) > κ

κ ∈ N |PRG(s)| = l(|s|) s

• There is a function such that
for all , and for all .

A
ϵPRG

• Given a PPT adversary , there is a negligible
function such that
 ∣∣∣∣ Pr[A({PRG(Uniκ)}κ∈N, 1

κ) = 1]
−Pr[A({Unil(κ)}κ∈N, 1

κ) = 1]

∣∣∣∣ < ϵPRG(κ)

{Uniκ}κ∈Nwhere is the uniform ensemble.
 5) Signature scheme
A signature scheme in their security enhancement

method in [12] is for user authentication and user set
confirmation. A signature scheme includes three al-
gorithms. The algorithm

(σku, vku)← SIG.gen(κ) (9)

κ

(σku, vku) u

takes as input a security parameter and produces a
pair of keys for a user . The algorithm

σu ← SIG.sign(σku,m) (10)

σku m

σu

takes as inputs a private key and a message , and
produces a signature . The algorithm

{True,False} ← SIG.ver(vku,m, σu) (11)

vku m

σu

takes as inputs a verifying key , a message and a
signature , and then produces a verification result.

CMA-EXP(κ)

A signature scheme should be existentially secure
against chosen-message attacks. A security game

 is as follows:
(σku, vku)← SIG.gen(κ)• .
(m∗, σ∗

u)← AS(·,σku)(κ, vku)

S(·, σku)
Q

• , in which the oracle
 returns a signature on a query message. Let

the returned signatures of the oracle be a set .
1 SIG.ver(vku,m

∗, σ∗
u) = True

m∗ /∈ Q 0

• Output if and
 otherwise .

AThe advantage of is defined as

AdvA = Pr[CMA-EXP(κ) = 1]

A ϵσ
AdvA ≤ ϵσ(κ)

A signature scheme is secure if for any PPT ad-
versary , there is a negligible function such that

.
 2. The SAP

S1

Ue e

u S1

We show the SAP against a semi-honest adversary
in [12] in Fig.1. The entities in SAP include a server
and a set of users for a learning round . Fig.1 just
shows the message flows of a user with the server .

User u

Public keys of the user u

Set of user public keys

Encrypted secret shares of u

Encrypted secret shares to u

Masked inputs of u

The current user set

Secret shares from u

Advertise
keys

Share keys

Masked input
collection

Unmasking

Server S1

Round 1

Round 2

Round 3

Round 4

Fig. 1. High-level overview of the SAP protocol.

S1

κ n

t F
(G, g, q,H)

D = Zd
p p d

Initially, a learning program invokes the server side
protocol to activate the server process. Then at the be-
ginning of each learning round, the learning program
sends messages to activate the user process. There is a
secure channel between a user and the server . All
users should share the same parameters including the
security parameter , the total number of users in an
learning round, the threshold value , the finite field ,
the key agreement parameters , and the user
input domain where is the modulus and is
the dimension.

U i
e

i

e 1 ≤ i ≤ 4 U i
e ⊆ U j

e 1 ≤ j < i ≤ 4

The number of users in a learning round may be
reduced since users may drop out at anytime. Let
denote the set of users in round of the learning round
 where . Then if . The

four-round SAP is as follows:

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 545

u ∈ Ue

• Round 1 (Advertise keys). When the user
 is active, it produces two pair of keys:

(sk0u, pk
0
u)← KA.gen(G, g, q,H) (12)

and

(sk1u, pk
1
u)← KA.gen(G, g, q,H) (13)

It packs a message as

mu
1 = (pk0u, pk

1
u) (14)

mu
1

S1

and sends to the server. The user then waits for the
first response from the server or stops.

S1 |U1
e | = n

U1
e

When the server collects at least mes-
sages from different users who form , it packs a mes-
sage as

mS
1 = {u,mu

1}u∈U1
e

(15)

mS
1

U1
e

The message is broadcasted to all the users in
 as their responses.

u ∈ U1
e

mS
1 |U1

e | ≥ t

• Round 2 (Share keys). When a user re-
ceives , it verifies . If the verification suc-
cesses, the user executes as follows:

su
U1
e

i) Select a random number as a masking seed
and share it among the users in

{(v, su0v)}v∈U1
e
← SS.share(su, t, U

1
e) (16)

sk1u
U1
e

ii) Share the agreement key among the users in

{(v, su1v)}v∈U1
e
← SS.share(sk1u, t, U

1
e) (17)

v ∈ U1
e \{u}iii) For each user , compute

key ← KA.agree(pk0v, sk
0
u) (18)

evu ← AE.enc(key, (v, u, su0v , su1v)) (19)

iv) Pack a message

mu
2 = {evu}v∈U1

e \{u} (20)

mu
2 S1and send to the server .

u

S1

The user then waits for the second response from
the server or stops.

S1 |U2
e |

U1
e U2

e

When the server collects at least messages
from different users in who form , it packs a mes-
sage

mSv
2 = {u, evu}u∈U2

e \{v} (21)

v ∈ U2
e vfor each user and sends it to .

u mSu
2

• Round 3 (Masked input collection). When the
user receives the message , it counts the number

|U2
e | − 1 |U2

e | ≥ t

x⃗u ∈ D

of ciphertexts as . If , it stores the
ciphertexts and encrypts their sensitive data .

i) Compute

o⃗u = PRG(su) (22)

Compute

svu ← KA.Agree(pk1v, sk
1
u) (23)

o⃗u
v = ∆vu · PRG(svu) (24)

where

∆vu =

{
1, v < u
−1, v > u

(25)

v ∈ U2
e \{u}for each user .

ii) Compute

y⃗ u = x⃗u + o⃗u +
∑

v∈U2
e \{u}

o⃗u
v (26)

mu
3 = y⃗ u S1and send to the server .

u

S1

The user then waits for the third response from
the server or stops.

S1 |U3
e |

U2
e U3

e

When the server collects at least messages
from different users in who form , it packs a mes-
sage

mS
3 = {u}u∈U3

e
(27)

U3
eand sends it to users in .

u

mS
3 |U3

e | ≥ t

mSu
2

S1

• Round 4 (Unmasking). When the user re-
ceives , it verifies . If the verification suc-
cesses, it decrypts ciphertexts in and sends secret
shares to the server .

{euv}v∈U2
e \{u}i) Decrypt to obtain

{(sv0u , sv1u)}v∈U2
e \{u} (28)

{sv0u }v∈U3
e

{sv1u }v∈U2
e \U3

e
mu

4

S1

ii) Pack seed shares and agreement key
shares as a message and send it to the
server .

u

e

The user finishes the protocol for the learning
round .

S1 |U4
e | ≥ t

U3
e mu

3

U3
e

When the server collects at least mes-
sages from different users in , it aggregates for all
users in .

u ∈ U3
e t

{su0v }v∈U4
e

su o⃗u

u

i) For each user , collect secret shares
 to recover and to compute of the user

.
u ∈ U2

e \U3
e t

{su1v }v∈U4
e

sk1u S1 u

{svu}v∈U2
e \{u} {o⃗u

v }v∈U2
e \{u}

ii) For each user , collect secret shares
 to recover . Then the server acts as

to compute and .
iii) Compute the aggregated value as

546 Chinese Journal of Electronics 2023

z⃗ =
∑
u∈U3

e

y⃗ u −
∑
u∈U3

e

o⃗u +
∑

u∈U2
e \U3

e

∑
v∈U3

e \{u}

o⃗u
v (29)

e

The server finishes the server side protocol for the
learning round and waits for the next round.

 3. Their security enhancement
Bonawitz et al. [12] give a security enhancement

method implicitly. They add signatures and a consist-
ency check round to change the SAP against a semi-
honest adversary to a protocol secure against an active
adversary.

u ∈ Ue

(σku, vku)← SIG.gen(κ)

certu vku

Fig.2 shows the main components of the security
enhancement method. There is a certificate authority
(CA) to provide certificate services for all users in all
learning rounds. A user should have produced a
key pair and applied for a cer-
tificate about their verifying key .

Fisrt signature of the user u

Set of user first signatures
Round 1

Round 2

Round 3

Signatures
verification

Secret shares from u
Round 5

Round 4

Second signature of the user u

Set of user second signatures
Signatures
verification

Consistency
checks

CAUser u Server S1

Fig. 2. The security enhancement method for the SAP in [12].

The enhancement method is as follows:
u• In the round 1, the user additionally gener-

ates the first signature

σ0
u ← SIG.sign(σku, (pk

0
u, pk

1
u)) (30)

and the equation (14) is changed to

mu
1 = (pk0u, pk

1
u, σ

0
u, certu) (31)

u

mS
1

• In the round 2, the user verifies the certific-
ates and user signatures in . If any verification fails,
the user stops.

• After the round 3, a new consistency check
round is added. In this round, the server and user ex-
ecute as follows:

u mS
3

|U3
e | ≥ t

mS
3

− When the user receives the message , it
checks the number of users in the message. If ,
it signs as its second signature

σ1
u ← Sig.sign(σku,m

S
3) (32)

mu
4 = σ1

u S1 u

S1

and sends to the server . The user then
waits for the fourth response from the server or
stops.

S1 |U4
e | ≥ t

U3
e U4

e

mS
4 = {u,mu

4}u∈U4
e

U4
e

− When the server collects at least
messages from different users in who form , it
sends a message to users in .

u

mS
4

• In the final round, the user verifies user signa-
tures in . If any verification fails, the user stops.

u

U3
e

U3
e

Note that the first signature is mainly to defend
against a Sybil attack from an adversarial server. That
is, the server sends many faked key pairs to a target
user . The second signature is to make sure that all
honest users have the same view of so that an ad-
versarial server could not give different sets to dif-
ferent users.

 III. Security Property Analysis
We show our observations about the enhanced

SAP protocol in [12] and the Eclipse attack to their
protocol.

Our first observation is that the introduction of
certificates divides the secrets in the enhanced SAP in-
to two categories. The first category is long-term secrets
such as a signing key. The second is ephemeral secrets
such as the masking seed, the agreement keys etc. Eph-
emeral secrets in the memory of a mobile device may be
leaked to an adversary due to malicious softwares on
mobile devices. Kim et al. [40] show such an experi-
ment in a mobile device running the Android operating
system. The method in [40] should overcome the access
rights problem. However, If a user downloads a soft-
ware from an adversarial server and installs it on their
mobile devices to run FL with the server, it is natural
to assume that the software could send a few ephemer-
al secrets to the server stealthily. Additionally, it is a
common practice to separately deal with long-term and
ephemeral secrets especially when key agreement proto-
cols are involved in [41], [42]. We give a formal security
model to clarify this observation.

 1. Security model

S1

We introduce the security model for key agree-
ment protocols of Canetti and Krawczyk in [41] into
FL. The server and users are taken as message-driv-
en entities which are initially invoked by some environ-
ment process with initial states. Once invoked, an en-
tity waits for an activation that can happen for a mes-
sage from the network or another environment request.
On activation, the entity processes the incoming mes-
sage together with its current internal state, generating
a new internal state, outgoing messages and a cumulat-
ive output. Once the activation is completed, the en-
tity waits for the next activation if it does not drop out
of the protocol.

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 547

π

πS πU

S1 πS πS

πU

πS

We denote a protocol as which consists of server
side protocol and client side protocol . The server

 invokes in each learning round. After invoked,
selects a set of users. Each selected user invokes to
exchange messages with through a secure channel.
There is no direct communication link of two users.

Active adversaries are defined in [12]. They are
defined as entities (users or the server) that deviate
from the protocol, sending incorrect and/or arbitrarily
chosen messages to honest users, aborting, omitting
messages, and sharing their entire view of the protocol
with each other, and also with the server (if the server
is also an active adversary). When long-term secrets are
introduced, the ability of “ sharing their entire view of
the protocol” should be refined. In [41] they define a
session-state reveal ability that allows an adversary to
obtain ephemeral secrets. In this model, we give an act-
ive adversary the ability.

AThe capabilities of an adversary are defined as
follows:

S1 n1
c

A
• It could corrupt the server and at most

users in each learning round. When the adversary
corrupts an entity, it knows the internal states and
long-term secrets of the entity and controls all the be-
haviours of the entity. The internal states include all
ephemeral secrets.

n0
c

A
• It could reveal session states of at most users

in each learning round. When the adversary reveal
the session states of an entity, it knows all ephemeral
secrets of the entity.

AWith the adversary , we define

GOπ,e,{S1}
∪

Ue,A(x⃗, r⃗)

π e

x⃗ = {xS}
∪
{xu}u∈Ue

S1

Ue r⃗ = {r0, rS}
∪
{ru}u∈Ue

A S1

Ue GOπ,e,{S1}
∪

Ue,A(x⃗)

r⃗

as the global output for in a learning round where
 denotes the inputs of the server

and users in , and denotes the
random inputs of the adversary , server and users
in . Let be the random variable
over .

SIM

u ∈ Ue

We keep the security goal in [12] unchanged. We
define an honest user as a user that has not lost their
ephemeral or long-term secrets in a learning round. Let

 be a PPT simulator. Then for any honest user
, the privacy of its input is protected if

GOπ,e,{S1}
∪

Ue,A(x⃗) ≈ GOπ,e,SIM,A(x⃗
′)

x⃗′ = {xS}
∪
{xv}v∈Ue\{u}

∪
{0} ≈where and “ ” means

computationally indistinguishable.
Note that the security goal in [12] is only about in-

put privacy. Corrupted users may send arbitrary mes-
sages to make protocols fail. And the security goal does
not consider the possible information leakage of the in-

put sum. Kairouz [43] give a comprehensive analysis
about the relations of the sum and an individual input.
They suggest to add Gaussian noise for better privacy
protection.

 2. Eclipse attack

mu
1 mu

4

Our second observation is that the enhanced SAP
protocol has a weakness in their usage of signatures.
Their signed message in their protocol lacks freshness
factors which is crucial to make signatures as authentic-
ators. Then an adversarial server could replay a signed
message. For example, the messages and have
signatures and they can be replayed at will.

S1

The two observations make an Eclipse attack. By
Eclipse attack, we mean that an active adversary could
corrupt the server , reveal ephemeral secrets of a
small number of users in each learning round, and make
a special learning round where a target user is surroun-
ded by the users whose ephemeral secrets are revealed.
We next show the Eclipse attack to the enhanced SAP
in [12].

n0
c

n0
c = 1

(sk0u, sk
1
u) u ∈ Ue

e mu
1

⌈n−1
n0
c
⌉

n− 1

USSR

{sk0u, sk1u,mu
1}u∈USSR

u∗ e∗

Suppose an adversary reveals session states of
users in each learning round. For example, if , the
adversary gets of a user in the learn-
ing round . The adversary also records the mes-
sage of the user. Then after learning rounds, the
adversary obtains at least ephemeral secrets and
messages. Let the users who have lost their ephemeral
secrets form a set . Then an adversarial server
knows . The Eclipse attack to a
target user in a learning round is as follows:

u∗

mu∗

1 n− 1 USSR\{u∗}
USSR∗

1) In the round 1, the server invokes to send
 and selects users in to form a set

 and sends

mS
1 = {u∗,mu∗

1 } ∪ {u,mu
1}u∈USSR∗ (33)

u∗ {mu
1}u∈USSR∗

mS
1

to the user . Note that all messages in
are recorded before. So signatures are in the message

.
mu∗

2

mS
1

mSu∗

2 u∗

mSu∗

2

pk0u∗ {sk0v, sk1v}v∈USSR∗

v ∈ USSR∗

eu∗v u∗

mSu∗

2

2) In the round 2, the server receives since all
signatures in are correct. Then the server creates a
message and sends it to the user . Note that the
server could create a totally valid since it knows
the values and . That is, for any
user , the adversary computes formulas
(16)–(20) to get for the target user , and packs
the results as .

mu∗

3

t

{sk0u}u∈USSR∗ 2t

mu∗

2 su∗ sk1u∗

mu∗

3

3) In the round 3, the server could receive
since a user only needs to check the number of cipher-
texts in this round. The server now could select eph-
emeral secrets to decrypt secret shares
in and recover both and . The adversary
then could remove the masking vectors in , and

548 Chinese Journal of Electronics 2023

x⃗u∗ ∈ D u∗then recover the input of the target user .
Note that the above attack is possible in a real

learning round. Considering the experiments in [4], we
know the user number in each learning round is about 100
and the rounds are several thousands. Suppose the
learning rounds are 1000. An adversary could accumu-
late ephemeral secrets and signed messages of some
users at the initial 100 rounds, and could get the sensit-
ive data of any other users in the following 900 rounds
using the above Eclipse attack. There is no needs to
corrupt users.

 IV. ESE Method and SAP

mu
1

We have shown the Eclipse attack to the en-
hanced SAP in [12]. The attack exploits the weakness of
the enhanced SAP where no freshness factors are used.
There are two recommended mechanisms to make a sig-
nature as an authenticator in [44]. One is the challenge-
response mechanism. The other is to use a timestamp.
Considering that mobile devices have good clock syn-
chronization ability, we suggest the timestamp mechan-
ism. Then if we include a timestamp in the mes-
sage of the enhanced SAP, the above attack fails.

However, their security enhancement method has
two rounds, which leads to a five-round SAP. We try to
give a one-round security enhancement method. To do
this, we choose a different authentication timing. As
shown in Fig.3 , we choose the rounds 2 and 3 to em-
bed our security enhancement method. This choice
makes users in a learning round have an opportunity to
check the consistency of their views in the round 1. We
give security conditions to show that the same views in
the round 1 are enough to defend against an active ad-
versary, which leads to a four-round SAP.

 1. The ESE method

(n t ξ) ξ

The ESE method is as follows. Initially, the server
has given all users the parameters , , where be
the proportion of dishonest users in total users. The
consistency of these parameters are checked during the
protocol.

u

mS
1 n

• In the round 2, the user additionally checks
that the user number in is , and then generates

σu ← SIG.sign(σku, (m
S
1 , Tu, t, ξ)) (34)

Tuwhere is a timestamp. The formula (20) is changed
to

mu
2 = {{evu}v∈U1

e \{u}, (Tu, σu)} (35)

On the server side, the formula (21) is changed to

mSv
2 = {u, evu, (Tu, σu, certu)}u∈U2

e \{v} (36)

{u, evu}u∈U2
e \{v}

v {(Tu, σu, certu)}u∈U2
e

U2
e

Note that should be sent to the
user directly while could be
broadcasted to users in if the communication cost of
broadcasting is cheap.

u

mSu
2 |U2

e | − 1

|U2
e | ≥ t

U2
e ⊆ U1

e 2t > (1 + ξ)n ⌊ (1−ξ)(n−t)n
t−ξn ⌋ < t− 1− ξn

• In the round 3, the user counts the number of
users in as . If all certificates and signa-
tures of users are verified, the user verifies that ,

, and .
If any verification fails, the user stops.

 2. Security proof

U3
e

n− t

n = 9 n0
c + n1

c = 2

t = 6 2t > n+ n0
c + n1

c

u4 C = {u1, u2}

The consistency check round in the enhanced five-
round SAP protocol makes sure that the users in the
last round has the same view of so that at most

 agreement keys are recovered. The SAP with the
ESE method removes the consistency check round so an
adversary may exploit honest users with different views
to get more shares and recover more keys. We give ex-
amples to show these cases. Suppose ,
and such that . More concretely,
let be the target user and be the dis-
honest users.

U3
e

n− t = 3 U2
e \U3

e

U2
e \U3

e = {u3, u4, u5}

In the five-round enhanced SAP in [12], is the
same. So at most users are in the set .
One possible setting is that and
the key agreement keys of them are recovered.

U2
e U3

e

u4 u4

u4 U2
e

i

ui

In the SAP with our ESE method, and may
be different for different users. There are only two ways
for an adversary to recover user input directly. One way
is to recover the masking seed and the agreement key of

. The other way is to recover the masking seed of
and all other agreement keys owned by the neighbors of

 in . Two possible settings are shown in Tables 1
and 2 , where the users in a column are dropped users
in the view of the user .

{u3, . . . , u7}

u4 u4

{u4, u7, u9}

In Table 1, five agreement keys of are
recovered. A closer look shows that the recovery of the
agreement key of makes the masking seed of hid-
den since only users in shall contribute
masking seed shares. So the private inputs of honest
users are not affected.

Set of user signatures

Round 1

Round 2

Round 3

Signatures
verification

Round 4

A signature of the user u

CAUser u Server S1

Fig. 3. Our ESE method and the enhanced SAP.

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 549

U2
e u4 U2u4

e = {u1, . . . , u6} U2
e

{u1, . . . , u9}
{u3, u5, u6}∑

v∈U
2u4
e \{u4} o⃗

u4
v

u4

Table 2 shows another setting. The adversary sets
 of as and the of other

users as . Then Table 2 shows how to recov-
er the agreement keys of users in . These
secret keys and the corrupted users could help the ad-
versary to compute . Then the secret
inputs of are recovered!

We next prove the security of the SAP with our
ESE method against an active adversary. It shows how
the problem in Table 2 could be solved by setting pro-
tocol parameters correctly.

2ODH-EXP(κ)
ϵDH(κ)

ϵAE(κ) ϵPRG(κ)

ϵσ(κ) n

t

ξ

Theorem 1　Suppose the advantage of an active
adversary against the security game is

, against the authenticated encryption scheme is
, against the PRG is and against a sig-

nature scheme is . Let be the number of users in
the round 1, be the threshold value in the secret shar-
ing scheme, and be the proportion of dishonest users
in total users. If

n(1 + ξ) < 2t (37)

and
 ⌊

(1− ξ)(n− t)n

t− ξn

⌋
< t− 1− ξn (38)

u SIM

SIM

for any honest user , there is a PPT simulator
such that the output with is computationally in-
distinguishable from the output in a real running, i.e.,

GOπ,e,{S1}
∪

Ue,A(x⃗) ≈ GOπ,e,SIM,A(x⃗
′) (39)

x⃗′ = {xS}
∪
{xv}v∈Ue\{u}

∪
{0}

ϵσ(κ) + ϵAE(κ) + 3ϵDH(κ) + 3nϵPRG(κ)

where . The advantage of
the adversary to distinguish the two outputs is bounded
by .

S1 U1
e

e 0 GOπ,e,{S1}
∪

Ue,A(x⃗, r⃗)

Proof　Let a real execution of and in an
epoch be the game denoted by .

1 v u

SIM KA.agree(pk0v, sk
0
u)

KA.agree(pk0u, sk
0
v)

In game , for any honest users and , in round 2,
 replaces the encryption key

and by a random key. The two or-
acle Diffie-Hellman assumption makes an adversary dis-
tinguish the two games with a negligible advantage

ϵDH(κ).
2 v u

ϵAE(κ)

In game , for any honest users and , in round 2,
the encrypted secret shares are set to zeros with the
same length as before. Note that in the last round, the
behaviours of honest users are unchanged. Since the au-
thenticated encryption scheme is IND-CCA secure, an
adversary could distinguish the two games with a negli-
gible advantage at most .

3 u

v ∈ U2u
e \{u} u

In game , for the honest user and honest users
 in the view of , in round 3, instead of

sending

y⃗ u = x⃗u + PRG(su)+
∑

v∈U2u
e \{u}\C

∆vu · PRG(o⃗u
v)

+
∑

v∈U2u
e ∩C

∆vu · PRG(o⃗u
v) (40)

SIM u sends as

y⃗ u = x⃗u + PRG(su) +
∑

v∈U2u
e \{u}\C

∆vu · PRG(rvu)

+
∑

v∈U2u
e ∩C

∆vu · PRG(o⃗u
v)

(41)

vand sends as

y⃗ v = x⃗ v + PRG(sv) + ∆uv · PRG(rvu)

+
∑

u′∈U2
e

∆u′v · PRG(o⃗ v
u′) (42)

o⃗u
v rvu u

v

where is defined in (24), is a random value for
and .

u

ϵσ(κ)

• At first, if there is the Eclipse attack in the
round 1, the honest user will not send anything in the
round 3 since there are no enough fresh signatures.
Note that an adversary only has negligible ad-
vantage to forge fresh signatures.

u

v U2u
e

ϵDH(κ)

• Secondly, before the last round, the differences
of the formulas (40) and (41), or the formulas (40) and
(42) are that the masking vectors of the user and oth-
er honest users in the set are generated by ran-
dom seed. The two oracle Diffie-Hellman assumption
makes the adversary could distinguish the two equa-
tions with a negligible advantage at most .

su u

u U2u
e

• Thirdly, with the help of the last round, an ad-
versary may recover or the agreement key of or
keys of ’s honest neighbors in the set.

su n(1 + ξ) < 2t

sk1u

n− ξn+ 2ξn

i) If the adversary recovers , and if ,
the adversary could not recover . Since an honest
user only provides a secret share of one user, which is
described in the last round of the SAP, the maximal
number of secret shares belonging to one honest user
obtained by an adversary is . According to

U2e\U3eTable 1. setting I

u1 u2 u3 u4 u5 u6 u7 u8 u9

– – u4 u5 u6 u7 u3 u4 u5

– – u6 u7 u3 u4 u5 u6 u7

– – – u3 u4 u5 u6 u7 u3

U2e\U3eTable 2. setting II

u1 u2 u3 u4 u5 u6 u7 u8 u9

– – u5 – u3 u3 u3 u3 u3

– – u6 – u6 u5 u5 u5 u5

– – – – – – u6 u6 u6

550 Chinese Journal of Electronics 2023

su
t u

sk1u
n− ξn+ 2ξn− t t

3.1

sk1u

zero

the security of the secret sharing, the recovery of
consumes at least secret shares of the user . So the
number of available shares of is not greater than

 which is less than . In this case, the
simulator could run a game with the adversary
where the shares of are replaced by shares of a ran-
dom value, which could be distinguished with a probab-
ility according to the security definition of the
secret sharing scheme.

su

⌊ (1−ξ)(n−t)n
t−ξn ⌋ < t− 1− ξn

u

U2u
e t

t− 1− ξn

U2
e

n− ξn

|U2
e \U3

e | ≤ n− t

U3
e ≥ t

(1− ξ)(n− t)n

t− ξn

u ⌊ (1−ξ)(n−t)n
t−ξn ⌋ t− 1− ξn

u

ii) If the adversary recovers , and if
, the adversary could not re-

cover all agreement keys of ’s honest neighbors. The
minimal size of the set is according to round 3
specification of the SAP. The adversary has to recover
at least agreement keys to remove the mask-
ing vector. Note that for different honest users, may
be different. The number of honest users who may re-
veal shares of agreement keys is at most . That
is, all honest user could be exploited by the adversary.
Each honest user may reveal secret
shares since in the last round of the SAP. So the
maximal number of shares of agreement keys obtained
by the adversary is . To recover an
agreement key, the adversary needs at least
secret shares from honest users. So the maximal num-
ber of recovered agreement keys of honest neighbors of
 is . If the value is less than ,

there is at least one honest neighbor of whose agree-
ment key is not recovered.

su
sk1u sk1v u

U2u
e v∗

iii) Then if the adversary recovers , it could not
recover or of all honest neighbors of in the set

. Then suppose is the only neighbor whose agree-
ment key is not recovered. Then the right-hand side of
equation (40) is changed to

x⃗u +∆v∗uPRG(KA.agree(pk1v∗ , sk1u)) (43)

The right-hand side of equation (41) is changed to

x⃗u +
∑

v∈U2u
e \{u}\C

∆vuPRG(rvu)− C1
A (44)

C1
A =

∑
v∈U2

e \{u,v∗}\C ∆vuPRG(o⃗ v
u)

3.2

sk1v∗

KA.agree(pk1v∗ , sk1u)

3.2

ϵDH(κ) 2
3.3 PRG

D

where . In this case,
the simulator runs a game with the adversary where
the shares of are replaced by shares of zero, and

 is replaced by a random value.
Then the two oracle Diffie-Hellman assumption makes
the game distinguished with a negligible advantage

 from the game . Then the simulator runs a
game with the adversary where the output of
is replaced by a random value in the domain . The
formula (43) is then changed to

x⃗u +∆v∗urv∗ (45)

and the formula (44) is changed to

x⃗u +
∑

v∈U2u
e \{u}\C

∆vurv − C1
A (46)

D = Zd
pNote that and under modulus operation,

the sum of uniformly selected independent random vari-
ables is uniformly distributed. The distributions of the
two random variables (45) and (46) are identical.

su
sk1u
x⃗u + PRG(su)

iv) If the adversary does not recover , the ad-
versary could recover . Then the right hand of equa-
tion (40) is changed to . The right hand
of equation (41) is changed to

x⃗u + PRG(su) +
∑

v∈U2u
e \{u}\C

∆vuPRG(rvu)

−
∑

v∈U2u
e \{u}\C

∆vuPRG(o⃗u
v) (47)

3.4

{PRG(su), {PRG(rvu)}v∈U2u
e \{u}\C}

D
nϵPRG(κ)

PRG

In this case, the simulator could run a game
with the adversary in which the values in

 are replaced by
random values in the domain , which could be distin-
guished with a negligible advantage at most
according to the definition of and a hybrid argu-
ment.

3.4Then in the game , the formula (47) is changed
to

x⃗u + ru +
∑

v∈U2u
e \{u}\C

∆vu · rv − C2
A (48)

ru rv D
C2

A
x⃗u + ru

where and are random values in the domain
and is the value produced by the adversary. With
the same reason, the random variables (48) and
have the same distribution.

4 u

v ∈ U2u
e \{u} SIM

In the game , for the honest user and the hon-
est users , in the round 3, sends

y⃗ u = x⃗u + PRG(su) +
∑

v∈U2u
e \{u}\C

∆vu · rv

+
∑

v∈U2u
e ∩C

∆vu · PRG(o⃗u
v)) (49)

{rv}v∈U2
e \{u}\C

D
nϵPRG(κ)

3 4

where are random values in the domain
. The PRG definition makes the adversary has a neg-

ligible advantage at most to distinguish game
 and game .

5 u

v ∈ U2
e \{u} u

SIM x⃗u

In the game , for the honest user and the hon-
est users in the view of , in the round 3,

 replaces the input in the equation (49) with a
random value following the distribution of other inputs.

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 551

u y⃗ u

5

4

Since the distribution of equation (49) is not determ-
ined by the input of , the values in the two games
have the same distribution. And the final aggregated
value in the game is statistically indistinguishable
from that in the game since all user inputs follow the
same distribution in the learning round.

u

SIM 5

0

ϵσ(κ) + ϵAE(κ) + 3ϵDH(κ) + 3nϵPRG(κ)

Since in the final game, the input of user is not
used, could run as in the game to paly with the
adversary. The generated view is computationally indis-
tinguishable from a real running in the game . The ad-
vantage of an adversary to distinguish the two games is
bounded by the sum of all advantages in the above
proof, that is .

t/n

t/n

0.62

t/n

0.27 t/n 0.72

⌊0.27n⌋ t ≥ ⌊0.72n⌋

Note that the parameter setting in Table 2 does
not satisfy the condition (38). In fact, the condition (38)
requires a balance about the threshold value and the
proportion of dishonest users. Fig.4 (a) shows the min-
imal and related proportion of dishonest users. If
there are almost no dishonest users, the ratio is
close to . Fig.4(b) shows the maximal proportion of
dishonest users and related minimal . When the user
number increases, the maximal proportion of dishonest
users is about and the ratio is close to .
That is, we can allow a server to collaborate with up to

 users if we set at the same time

⌊0.45n⌋
⌊0.28n⌋

ξ + t/n ≤ 1

guaranteeing that the sum learned by the server con-
tains the values of at least users, and the pro-
tocol is robust up to users dropping out. We
naturally require to obtain these results.

 3. Performance analysis
Since the SAP with the ESE method has four-

round, we here call it as a four-round protocol. The pro-
tocol in [12] is then called as a five-round protocol. We
add a timestamp in the round 1 of the five-round pro-
tocol to make it secure against the Eclipse attack. We
implement both protocols in python by the following
modules.

SS

256

• The is the Shamir’s secret sharing scheme
with a -bit secret as an input, which is provided by
the “secretsharing” python module.

KA• The is the elliptic-curve Diffie-Hellman
(ECDH) protocol over the “NIST P-256” curve that is
provided by the “OpenSSL” python module.

AE
128

• The is the AES-GCM in [45] authenticated
encryption scheme with a -bit key that is provided
by the “Crypto” python module.

RPG• The uses the AES-CTR algorithm where
the a seed is taken as the encryption key, which is
provided by the “Crypto” python module.

SIG

3072 p 256 q

• The is the DSA signature scheme with a
-bit and a -bit that is provided by the

“OpenSSL” python module.
We run these modules in a 64-bit “ Windows 7”

system. The CPU is Intel(R) Xeon(R) CPU E3-1241
(3.50 GHz, 3.50 GHz) and the RAM is 32 GB. We use
the python time evaluation function “time.process_
time()” to estimate the time cost of each module.

n t

|U2
e | = |U1

e | = n |U3
e | = |U4

e | = t

300

We set the same and for the two protocols and
set , . We compare the
time costs of the two protocols. Fig.5 (a) and Fig.5(b)
show the computation time of the two protocols on
both the user and server sides. The computation time of
the four-round protocol is less than the five-round pro-
tocol on the user side. As the number of users increases,
the difference of the two computation times increases.
On the server side, the computation times of the two
protocols are almost the same when the user number is
less than . After that, the message packing time of
the five-round protocol makes it a little slower.

| · |

Theoretically, we count the main computations in
the five-round and four-round protocols. The user side
computation costs are in the Table 3, where is also
used to denote the cost of an operation. Table 3 clearly
shows the mainly reduced computation of the four-
round protocol, which is

(n− 1 + |U4
e | − |U2

e |)|Sig.ver()|+ |Sig.sign()| (50)

The server side computation mainly keeps un-

0

0

0.2

0.4

0.6

0.8

1.0

200 400 600

Number of users

(a) Minimal t/n and related maximal proportion of

dishonest users

M
in

im
al

 t
/n

 a
n
d
 r

el
at

ed
 m

ax
im

al
 ξ

800 1000

0

0

0.2

0.4

0.6

0.8

200 400 600

Number of users

(b) Maximal proportion of dishonest users and related

minimal t/n

M
ax

im
al

 ξ
 a

n
d
 r

el
at

ed
 m

in
im

al
 t

/n

800 1000

t/nFig. 4. Relation of proportion of dishonest users and .

552 Chinese Journal of Electronics 2023

changed, which includes

|U2
e | · |SS.recon()|+ |U2

e \U3
e |(|KA.agree()|+ |PRG|)

+ |U3
e | · |PRG| (51)

These results are consistent with the measured
computation times in Fig.5.

Table 3. User side computation costs comparison

Round No. Five-round protocol Four-round protocol
1 KA.gen() Sig.sign()2| |+| | KA.gen()2| |

2

2|SS.share()|
+(n− 1)|Sig.ver()|
+(n− 1)|KA.agree()|
+(n− 1)|AE.enc()|

|Sig.sign()|
+2|SS.share()|
+(n− 1)|KA.agree()|
+(n− 1)|AE.enc()|

3
|PRG|
+(|U2

e | − 1)|KA.agree()|
+(|U2

e | − 1)|PRG|

|PRG|
+(|U2

e | − 1)|Sig.ver()|
+(|U2

e | − 1)|KA.agree()|
+(|U2

e | − 1)|PRG|

4 |Sig.sign()| (|U2
e | − 1)|AE.dec()|

5
(|U4

e | − 1)|Sig.ver()|
+(|U2

e | − 1)|AE.dec()| 0

| · |
The communication costs of both protocols could

be computed precisely. We also user to denote the
size of an element. Table 4 shows the user side commu-
nication costs of the two protocols. It is clear that the
reduced communication costs of the four-round pro-

|σ0
u|tocol in the user side are . The server side commu-

nication costs are shown in Table 5. The reduced com-
munication costs of the four-round protocol in the serv-
er is

(n+ |U4
e | − |U2

e |)|σu|+ (n− |U2
e |)(|certu|+ |Tu|) (52)

Table 4. User side communication costs comparison

Round No. Five-round protocol Four-round protocol

1
2|pk0u|+ |σ0

u|
+|certu|+ |Tu|

2|pk0u|

2 (n− 1)|evu|
(n− 1)|evu|+ |Tu|+ |σu|
+|certu|

3 |y⃗ u| |y⃗ u|
4 |σ1

u| |U2
e | · |sv0u |

5 |U2
e | · |sv0u | 0

Table 5. Server side communication costs comparison

Round No. Five-round protocol Four-round protocol

1
n(2|pk0u|+ |σ0

u|)
+n(|certu|+ |Tu|)

2n|pk0u|

2 (n− 1)|U2
e | · |evu| |U2

e |

 (n− 1)|evu|
+|Tu|+ |σu|
+|certu|


3 |U3

e | |U3
e |

4 |U4
e | · |σ1

u| 0

5 0 0

144

|U2
e | = |U1

e | = n |U3
e | =

|U4
e | = t

0.1t

As a DSA signature in our experiment takes
bytes, the saved communication cost on the user side is
about 0.1 KB. If we set and

, the saved communication cost on the server
side is about KB .

 V. Conclusions
Bonawitz et al. [12] propose a cryptography based

SAP for the federated learning. Their work is followed
in [31] and [35] to improve the efficiency of the SAP it-
self. We review their security enhancement method to
change the SAP against a semi-honest adversary to an
SAP against an active adversary. We show their secur-
ity enhancement method separately and analyze their
enhanced SAP. We believe Bonawitz et al. ignore the
differences of long-term secrets and ephemeral secrets
and also use signatures as authenticators imprudently.
We define a stricter security model with a session-state
reveal ability to show a possible Eclipse attack against
their enhanced SAP. Then we give a new ESE method
by redesigning the authentication messages in a signa-
ture and reselecting the timing to integrate into the
SAP. This gives us a four-round SAP against an active
adversary. We give a hybrid proof of the four-round
protocol to show that the input of any user could be
protected well with new security conditions. We ana-

0

0.5

1.0

1.5

2.0

2.5

3.0

200 250 300

Number of users

(a) User computation time in seconds

U
se

r
co

m
p
u
ta

ti
o
n
 t

im
e

350 400

Five-round protocol

Four-round protocol

0

10

20

30

40

50

60

200 250 300

Number of users

(b) Server computation time in seconds

S
er

v
er

 c
o
m

p
u
ta

ti
o
n
 t

im
e

350 400

Five-round protocol

Four-round protocol

Fig. 5. User and server computation time with different

users. (a) User computation time; (b) Server compu-
tation time.

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 553

lyze the performance of the two protocols, which show
the efficiency of our ESE method.

0.72n 0.67n

100 80%

Our new security condition is stricter since the al-
lowable threshold increases to which is in [12].
Since Yang et al. [4] require users with report-
ing back, we believe the new threshold is acceptable.
One may apply our ESE method to the works in [31]
and [35] to get a more efficient SAP against an active
adversary. It is also interesting to consider corrupted
users who may send arbitrary messages since they are
out of the scope of the current security model.

References
 H. B. McMahan, E. Moore, D. Ramage, et al., “Federated
learning of deep networks using model averaging,” arXiv
preprint, arXiv: 1602.05629v1, 2016.

[1]

 B. McMahan, E. Moore, D. Ramage, et al., “Communica-
tion-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, Fort Lauderdale,
Florida, pp.1273−1282, 2017.

[2]

 A. Hard, K. Rao, R. Mathews, et al., “Federated learning
for mobile keyboard prediction,” arXiv preprint, arXiv:
1811.03604, 2019.

[3]

 T. Yang, G. Andrew, H. Eichner, et al., “Applied federated
learning: Improving Google keyboard query suggestions,”
arXiv preprint, arXiv: 1812.02903, 2018.

[4]

 Z. W. Xiao, X. Xu, H. L. Xing, et al., “A federated learning
system with enhanced feature extraction for human activity
recognition,” Knowledge-Based Systems, vol. 229, article no.
107338, 2021.

[5]

 I. Feki, S. Ammar, Y. Kessentini, et al., “Federated learn-
ing for COVID-19 screening from chest X-ray images,” Ap-
plied Soft Computing, vol.106, article no.107330, 2021.

[6]

 L. G. Zhu and S. Han, “Deep leakage from gradients,” in
Federated Learning, Q. Yang, L. X. Fan, H. Yu, Eds.
Springer, Cham, pp.17–31, 2019,.

[7]

 B. Zhao, K. R. Mopuri, and H. Bilen, “ iDLG: Improved
deep leakage from gradients,” arXiv preprint, arXiv:
2001.02610, 2020.

[8]

 J. Geiping, H. Bauermeister, H. Dröge, et al., “Inverting
gradients - How easy is it to break privacy in federated
learning?,” in Proceedings of the 34th International Confer-
ence on Neural Information Processing Systems, Van-
couver, BC, Canada, article no.1421, 2020.

[9]

 H. X. Yin, A. Mallya, A. Vahdat, et al., “See through gradi-
ents: Image batch recovery via gradinversion,” in Proceed-
ings of the 2021 IEEE/CVF Conference on Computer Vis-
ion and Pattern Recognition (CVPR), Nashville, TN, USA,
pp.16332–16341, 2021.

[10]

 M. Abadi, A. Chu, I. Goodfellow, et al., “Deep learning with
differential privacy,” in Proceedings of the 2016 ACM SIG-
SAC Conference on Computer and Communications Secur-
ity, Vienna, Austria, pp.308–318, 2016.

[11]

 K. Bonawitz, V. Ivanov, B. Kreuter, et al., “ Practical se-
cure aggregation for privacy-preserving machine learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, Dallas, TEX,
USA, pp.1175–1191, 2017.

[12]

 H. B. Tian, F. G. Zhang, Y. F. Shao, et al., “Secure linear
aggregation using decentralized threshold additive homo-

[13]

morphic encryption for federated learning,” arXiv preprint,
arXiv: 2111.10753, 2021.
 F. Mo, H. Haddadi, K. Katevas, et al., “PPFL: Privacy-pre-
serving federated learning with trusted execution environ-
ments,” in Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services,
Virtual Event Wisconsin, pp.94–108, 2021.

[14]

 S. Merugu and J. Ghosh, “ Privacy-preserving distributed
clustering using generative models,” in Proceedings of the
3rd IEEE International Conference on Data Mining, Mel-
bourne, FL, USA, pp.211–218, 2003.

[15]

 J. Dean, G. S. Corrado, R. Monga, et al., “Large scale dis-
tributed deep networks,” in Proceedings of the 25th Inter-
national Conference on Neural Information Processing Sys-
tems, Lake Tahoe, NV, USA, pp.1223–1231, 2012.

[16]

 A. Damiani, M. Vallati, R. Gatta, et al., “Distributed learn-
ing to protect privacy in multi-centric clinical studies,” in
Proceedings of the 15th Conference on Artificial Intelli-
gence in Medicine, Pavia, Italy, pp.65–75, 2015.

[17]

 V. Rastogi and S. Nath, “Differentially private aggregation
of distributed time-series with transformation and encryp-
tion,” in Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data, Indianapolis,
IN, USA, pp.735–746, 2010.

[18]

 S. Halevi, Y. Lindell, and B. Pinkas, “ Secure computation
on the web: Computing without simultaneous interaction,”
in Proceedings of the 31st Annual Cryptology Conference
on Advances in Cryptology, Santa Barbara, CA, USA,
pp.132–150, 2011.

[19]

 S. Kadhe, N. Rajaraman, O. O. Koyluoglu, et al., “Fast-
SecAgg: Scalable secure aggregation for privacy-preserving
federated learning,” arXiv preprint, arXiv: 2009.11248v1,
2020.

[20]

 X. Ma, F. G. Zhang, X. F. Chen, et al., “ Privacy pre-
serving multi-party computation delegation for deep learn-
ing in cloud computing,” Information Sciences, vol.459,
pp.103–116, 2018.

[21]

 L. T. Phong, Y. Aono, T. Hayashi, et al., “Privacy-pre-
serving deep learning: Revisited and enhanced,” in Proceed-
ings of the 8th International Conference on Applications
and Techniques in Information Security, Auckland, New
Zealand, pp.100–110, 2017.

[22]

 D. Chai, L. Y. Wang, K. Chen, et al., “ Secure federated
matrix factorization,” IEEE Intelligent Systems, vol.36,
no.5, pp.11–20, 2021.

[23]

 X. Y. Zhang, X. F. Chen, J. K. Liu, et al., “DeepPAR and
DeepDPA: Privacy preserving and asynchronous deep learn-
ing for industrial IoT,” IEEE Transactions on Industrial
Informatics, vol.16, no.3, pp.2081–2090, 2020.

[24]

 E. Shi, T. H. Chan, E. G. Rieffel, et al., “Privacy-pre-
serving aggregation of time-series data,” in Proceedings of
the Network and Distributed System Security Symposium,
San Diego, CA, USA, 2011.

[25]

 T. H. H. Chan, E. Shi, and D. Song, “Privacy-preserving
stream aggregation with fault tolerance,” in Proceedings of
the 16th International Conference on Financial Crypto-
graphy and Data Security, Kralendijk, Bonaire, pp.200–214,
2012.

[26]

 I. Leontiadis, K. Elkhiyaoui, M. Önen, et al., “PUDA – Pri-
vacy and unforgeability for data aggregation,” in Proceed-
ings of 14th International Conference on Cryptology and
Network Security, Marrakesh, Morocco, pp.3–18, 2015.

[27]

 I. Leontiadis, K. Elkhiyaoui, and R. Molva, “ Private and
dynamic time-series data aggregation with trust relaxation,”
in Proceedings of the 13th International Conference on

[28]

554 Chinese Journal of Electronics 2023

Cryptology and Network Security, Heraklion, Greece,
pp.305–320, 2014.
 B. J. Hu, Y. C. Li, F. Fang, et al., “Lightweight-blockchain
based privacy-preserving data aggregation for epidemic dis-
ease surveillance,” SCIENTIA SINICA Informationis,
vol.51, no.11, pp.1885–1899, 2021. (in Chinese)

[29]

 D. B. He, N. Kumar, S. Zeadally, et al., “Efficient and pri-
vacy-preserving data aggregation scheme for smart grid
against internal adversaries,” IEEE Transactions on Smart
Grid, vol.8, no.5, pp.2411–2419, 2017.

[30]

 J. H. Bell, K. A. Bonawitz, A. Gascón, et al., “Secure single-
server aggregation with (poly)logarithmic overhead,” in
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event
USA, pp.1253–1269, 2020.

[31]

 B. Choi, J. Y. Sohn, D. J. Han, et al., “Communication-
computation efficient secure aggregation for federated learn-
ing,” arXiv preprint, arXiv: 2012.05433v3, 2021.

[32]

 J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate:
breaking the quadratic aggregation barrier in secure feder-
ated learning,” IEEE Journal on Selected Areas in Inform-
ation Theory, vol.2, no.1, pp.479–489, 2021.

[33]

 T. Jahani-Nezhad, M. A. Maddah-Ali, S. Z. Li, et al.,
“SwiftAgg: Communication-efficient and dropout-resistant
secure aggregation for federated learning with worst-case se-
curity guarantees,” in Proceedings of the 2022 IEEE Inter-
national Symposium on Information Theory (ISIT), Espoo,
Finland, pp.103–108, 2022.

[34]

 Z. Y. Liu, J. L. Guo, K. Y. Lam, et al., “Efficient dropout-
resilient aggregation for privacy-preserving machine learn-
ing,” IEEE Transactions on Information Forensics and Se-
curity, vol.18, pp.1839–1854, 2023.

[35]

 A. Shamir, “How to share a secret,” Communications of the
ACM, vol.22, no.11, pp.612–613, 1979.

[36]

 W. Diffie and M. Hellman, “ New directions in
cryptography,” IEEE Transactions on Information Theory,
vol.22, no.6, pp.644–654, 1976.

[37]

 M. Bellare and C. Namprempre, “Authenticated encryption:
relations among notions and analysis of the generic composi-
tion paradigm,” in Proceedings of the 6th International
Conference on the Theory and Application of Cryptology
and Information Security, Kyoto, Japan, pp.531–545, 2000.

[38]

 O. Goldreich, Foundations of Cryptography: Volume 1.
Cambridge University Press, New York, USA, 2006.

[39]

 H. K. Lee, H. S. Chung, and S. R. Kim, “Memory hacking
analysis in mobile devices for hybrid model of copyright pro-
tection for android Apps,” in Proceedings of the 2013 Re-
search in Adaptive and Convergent Systems, Montreal, QC,
Canada, pp.342–346, 2013.

[40]

 R. Canetti and H. Krawczyk, “ Analysis of key-exchange
protocols and their use for building secure channels,” in

[41]

Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques, Innsbruck,
Austria, pp.453–474, 2001.
 H. B. Tian, Y. Zhan, and Y. M. Wang, “Analysis of host
authentication mechanism in current pod copy protection
system,” IEEE Transactions on Consumer Electronics,
vol.51, no.3, pp.922–924, 2005.

[42]

 P. Kairouz, Z. Y. Liu, and T. Steinke, “The distributed dis-
crete Gaussian mechanism for federated learning with se-
cure aggregation”, in Proceedings of the 38th International
Conference on Machine Learning, ML Research Press
(Publisher), pp.5201–5212, 2021.

[43]

 W. B. Mao, Modern Cryptography: Theory and Practice,
Prentice Hall, Upper Saddle River, NJ, USA, pp.397–409,
2003.

[44]

 M. Dworkin, Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC.
Gaithersburg: NIST, 2007.

[45]

TIAN Haibo was born in Shen-
zhou, China. He received the Ph.D. de-
gree of cryptography from Xidian Uni-
versity, China, in 2006. He is an Asso-
ciate Professor in School of Computer
Science and Engineering, Sun Yat-Sen
University, China. His research interests
include cryptographic protocols and ap-
plications, and recently focus on block-

chain and AI privacy protection techniques.
(Email: tianhb@mail.sysu.edu.cn)

LI Maonan was born in Guang-
dong Province, China. He received the
M.S. degree in School of Software Engin-
eering from Sun Yat-Sen University in
2022. His research interests include feder-
ated learning and privacy protection.
(Email: limn29@mail3.sysu.edu.cn)

REN Shuangyin was born in
Wuhu, China. He received the B.S. de-
gree from Sun Yat-sen University, China.
He is an M.S. candidate in School of
Computer Science and Engineering, Sun
Yat-Sen University. His research in-
terests include privacy-preserving feder-
ated learning and trusted execution en-
vironment techniques.

(Email: renshy5@mail2.sysu.edu.cn)

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 555

