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   Abstract — In federated  learning,  a  parameter  serv-
er  may  actively  infer  sensitive  data  of  users  and  a  user
may arbitrarily  drop out of  a  learning process.  Bonawitz
et al. propose a secure aggregation protocol for federated
learning  against  a  semi-honest  adversary  and  a  security
enhancement method against an active adversary at ACM
CCS 2017.  The purpose  of  this  paper  is  to  analyze  their
security enhancement  method and to  design an alternat-
ive. We point out that their security enhancement meth-
od has the risk of Eclipse attack and that the consistency
check round in their method could be removed. We give a
new efficient  security  enhancement  method  by  redesign-
ing an  authentication  message  and  by  adjusting  the  au-
thentication timing. The new method produces an secure
aggregation protocol against an active adversary with less
communication and computation costs.

   Key words — Secure aggregation, Security enhance-

ment, Eclipse attack, Authentication.

 I. Introduction
The  federated  learning  (FL)  in  [1]  and  [2]  is  a

paradigm of decentralized machine learning. Initially, a
parameter server  has  a  global  parameter  set.  A  learn-
ing  process  includes  some  learning  rounds.  In  each
round,  the  parameter  server  selects  a  set  of  users  to
download the global parameter set. Then the users up-
date  their  local  learning  network  by  the  downloaded
parameters.  And  then  the  users  provide  local  data  to
run  their  learning  network  in  their  devices.  After  the
local learning network is trained, the local model para-
meters are uploaded to the parameter server. The serv-
er then averages the collected parameters to update the
global  parameter  set  and  goes  to  the  next  learning
round. In  a  new  round,  the  parameter  server  may  se-
lect a  totally  new  user  set.  In  the  whole  learning  pro-

cess, user data do not leave their devices.
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The FL is used in some practical projects in [3]–[6]
to train models.  In commercial production Google key-
board  application  (Gborad),  Hard et  al. [3 ]  apply  the
FL  for  mobile  keyborad  prediction.  About  million
mobile  users  contribute  million  sentences  in  their
experiments.  The FL shows a better  recall  and a good
performance. Yang et al. [4] apply the FL for searching
query suggestions. They require  users with % re-
porting back within two minutes to close a round. The
training  period  of  each  user  is  about  minutes.  They
train and evaluate their model on a population with the
locale restriction of en-US or en-CA in Android devices.
The  FL  shows  an  improvement  in  click  through  rate.
Xiao et al. [5] apply the FL in the Internet of things for
human activity recognition. Feki et al. [6] apply the FL
in the medical diagnosis for COVID-19 screening.

The FL has privacy problems. Although users only
upload local model parameters to the parameter server,
their  raw data could be recovered.  Zhu et  al. [7 ]  show
how to recover the raw data from local model paramet-
ers  of  a  user.  Their  recovery  is  pixel-wise  accurate  for
images and token-wise matching for texts. Zhao et al. [8]
show how to extract ground-truth labels based the work
in  [7].  Jonas et  al.  [9]  show  that  averaging  gradients
over several iterations or images does not prevent leak-
age of the raw data. Yin et al. [10] show how to recov-
er a  batch of  images  from average  gradients.  Their  al-
gorithm takes 8 to 48 images as a batch for large net-
works such as ResNets (residual networks) on complex
datasets such as ImageNet.

Researchers  have  proposed  several  approaches  to
enhance  user  privacy.  Martin et  al. [11 ]  propose  using
differential privacy to protect local model parameters. If 

Manuscript Received Oct. 19, 2021; Accepted Aug. 3, 2022. This work was supported by the Key-Area Research and Development
Program of Guangdong Province (2020B010166005) and the Huawei Technologies Co., Ltd. (TC20210407007,YBN2019105017).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.370

Chinese Journal of Electronics
Vol.32, No.3, May 2023



the number of users in each round is large enough, the
accuracy of this approach is  good enough. Bonawitz et
al. [12 ]  propose  protocols  based  on  a  secret  sharing
scheme and a double masking technique to protect user
privacy. Their protocols are more suitable for moderate
scale users in each learning round. Tian et al. [13] pro-
pose  using  threshold  additive  homomorphic  encryption
to protect user data. It may be used in the scenario of
small scale users since their proposal needs to share vec-
tor of secrets. Mo et al. [14] use trusted execution envir-
onment to protect user inputs. It has a better perform-
ance than other approaches at the cost of hardware as-
sumptions.

This  paper  focuses  on  Bonawitz et  al.’s  work  in
[12]. We analyze the security enhancement method pro-
posed in [12], which transfers a secure aggregation pro-
tocol (SAP) against a semi-honest adversary to an SAP
against an active adversary. And our analysis shows an
Eclipse  attack  against  their  enhanced  five-round  SAP.
We  then  propose  an  efficient  security  enhancement
(ESE)  method  which  produces  a  four-round  SAP
against an active adversary with less computations and
communications.

 1. Related works
The FL is a method to train a model from data in

different devices.  We give a brief  review of  its  history.
Merugu and Ghosh [15] present a framework for cluster-
ing  distributed  data.  They  transmit  the  parameters  of
models built  at  each  local  data  site  to  a  central  loca-
tion. They show that the best representative of all  the
data  is  a  certain “mean”  model.  Dean et  al. [16 ] con-
sider the  problem of  training a  deep network with bil-
lions  of  parameters  using  tens  of  thousands  of  CPU
cores. They  develop  an  asynchronous  stochastic  gradi-
ent  descent  procedure  supporting  a  large  number  of
model replicas which have different data subsets with a
parameter server. Damiani et al. [17] introduce and em-
pirically  test  a  distributed  learning  approach  where
data  are  spread  across  hospitals.  Each  hospital  uses  a
salve node to train on local data and exchange part of
the results  with  a  master  node.  The  master  node  col-
lects  the  results,  calculates  new  coefficients  and  sends
them back to salve nodes. McMahan et al. [1],  [2] coin
the word “federated learning” and propose a model av-
eraging algorithm that is robust to the unbalanced and
non-IID  (independently  and  identically  distributed)
data  distributions.  It  allows  high-quality  models  to  be
trained in relatively few rounds of communication.

The SAP in FL is to compute the sum of user in-
puts privately. We give a brief survey of secure aggrega-
tion  protocols  with  different  techniques.  Rastogi  and
Nath  [18] propose  differentially  private  aggregation  al-
gorithm  for  distributed  time-series  data  without  any

trusted server. Halevi et al. [19] propose to use garbled
circuits  to  compute  functions  where  a  server  interacts
with users one by one to get garbled circuits. Kadhe et
al. [20] propose using multiple secret sharing to aggreg-
ate  user  inputs  within  three  rounds.  Many  researchers
propose  using  homomorphic  encryption  to  aggregate
data.

• In some proposals  in [21]–[23],  all  users share a
common homomorphic decryption key.

• Chen et al. [24] propose using homomorphic en-
cryption with  group  key  agreement  protocols  for  dy-
namic users.

• Shi et al. [25] show how to utilize homomorphic
encryption with the secret sharing of zero for secure ag-
gregation.  The  aggregation  server  could  decrypt  the
sum from  multiple  ciphertexts  encrypted  under  differ-
ent  user  keys.  Then  the  same  team  [26]  extend  their
work to tolerate user dropout at the cost of communica-
tion. Leontiadis et al. [27] add a tag to ciphertexts in [25]
to make the process of server aggregation verifiable.

• Leontiadis et al. [28] propose another scheme us-
ing the Paillier homomorphic encryption with verifiabil-
ity.  Hu et  al. [29 ]  propose  using  Paillier  homomorphic
encryption  for  epidemic  disease  surveillance  with  a
blockchain.

•  He et  al. [30 ]  propose  using  Boneh-Goh-Nissim
homomorphic  encryption  for  secure  aggregation  in  the
smart grid environment.

Although there  are  many  proposals  for  secure  ag-
gregation,  it  is  the  work  of  Bonawitz et  al. [12 ]  that
could satisfy the strict limitations of FL including user
dropout, large  data dimension,  without an online  serv-
er and low accuracy loss. These limitations are summar-
ized in [12].

The  protocol  in  [12]  could  aggregate  hundreds  of
vectors where the dimension of each vector is about half
million. A main trick is using a pseudo random generat-
or  (PRG)  to  produce  masking  vectors  whose  inputs
could be recovered or whose outputs could be added to
zero in pairs. A main limitation of their protocol is that
as  the  number  of  users  increases,  the  communication
and computation costs increase rapidly. A natural idea
is to divide users into groups such that secrets are only
shared in a small group. Bell et al. [31] use the Harary
graph with  a  random permutation to  divide  users  into
random  groups.  Choi et  al. [32 ]  use  the  Erdos-Rényi
graph to divide users. So et al. [33] and Tayyebeh et al.
[34] divide  users  to  fixed groups  before  a  training  pro-
cess  begins.  The  random  graph  methods  in  [31],  [32]
need no extra assumption about the distribution of cor-
rupted users. Liu et al. [35] propose a new aggregation
method where  a  user  only  needs  to  share  one  masking
seed, which reduces the cost of secret sharing by half.

ESE: Efficient Security Enhancement Method for the Secure Aggregation Protocol in Federated Learning 543



Note that the protocols in [12], [31], [35] have two
versions. One is secure against a semi-honest adversary
and the  other  is  secure  against  an active  adversary.  A
semi-honest  adversary  could  corrupt  parties  and  infer
sensitive information  of  uncorrupted  parties  in  a  pro-
tocol but should execute the protocol honestly. An act-
ive adversary could deviate from the protocol, send in-
correct and arbitrarily chosen messages to honest users,
abort, omit messages and share their entire view of the
protocol  with  each  other  in  [12].  Bonawitz et  al.  [12]
propose a security enhancement method making a pro-
tocol secure  against  a  semi-honest  adversary  to  a  pro-
tocol  secure  against  an  active  adversary.  The  same
method is used in [31], [35]. The method is the target of
this paper.

 2. Contributions
We first analyze the security enhancement method

in [12]. Our analysis show that if we consider ephemer-
al secret leakage, there is an Eclipse attack to reveal the
inputs of a target user. Then we design a new security
enhancement method. The new method only needs one
round communication. We then find a different place to
embed  the  new  method.  The  place  is  the  second  and
third rounds of the SAP. Then we prove the security of
the new enhanced SAP. And finally, we implement the
protocols  with  the  two  enhancement  methods  to  show
their performances.

 II. Preliminaries
We  show  the  definitions  of  some  cryptographic

tools, the SAP against a semi-honest adversary and the
security enhancement method in [12].

 1. Cryptographic tools
 1) Secret sharing

t nThe protocol  in  [12]  relies  on  the -out-of-  secret
sharing scheme of Shamir in [36]. It mainly includes two
algorithms. The algorithm
 

{(v, suv )}v∈U ← SS.share(su, t, U) (1)

su F U

t v ∈ U suv

shares  a  value  in  a  finite  field  among users  in 
with a threshold . A user  has a secret share .
The algorithm
 

su ← SS.recon({(v, suv )}v∈V ) (2)

su V ⊆ U |V | ≥ treconstructs the value  where  and .

∀su, s′u ∈ F V ⊆ U |V | < t

We use the security definition of the secret sharing
in [12].  and any  such that ,
 

{{(v, suv )}v∈U ← SS.share(su, t, U) : {(v, suv )}v∈V }
≡ {{(v, suv )}v∈U ← SS.share(s′u, t, U) : {(v, suv )}v∈V }

≡where “ ” denotes  that  the  two  distributions  are
identical.

 2) Key agreement
Bonawitz et  al. [12 ]  use  the  Diffie-Hellman  key

agreement  protocol  in  [37]  to  generate  encryption  keys
and masking seeds. The protocol mainly includes three
algorithms. The algorithm
 

(G, g, q,H)← KA.setup(κ) (3)

G q

g H κ

(sku, pku) u

samples a cyclic group  of prime order  with a gener-
ator  and  a  hash  function  where   is  a  security
parameter. A key generation algorithm produces a pair
of keys  for a user  as
 

(xu, g
xu)← KA.gen(G, g, q,H) (4)

xu Zq

suv u v

where  a  non-zero  element  in . An  agreement  al-
gorithm produces a shared secrete  for users  and 
as
 

H((gxu)xv )← KA.agree(pku, skv) (5)

suv = svuA basic property of the protocol is .

A 2ODH-EXP(κ)

A two oracle  Diffie-Hellman assumption is  defined
in  [12].  Given  a  probabilistic  polynomial  time  (PPT)
adversary ,  a  security  game  is as  fol-
lows:

(G, g, q,H)← KA.setup(κ)• .
a, b ∈ Zq

A = ga, B = gb
•  Sample  non-zero  elements  randomly

and compute .
b ∈ {0, 1} b = 1

s = H(gab) s ∈ {0, 1}κ
•  Sample  randomly  and  if ,

, else .
b′ ← AOa(·),Ob(·)(G, g, q,H,A,B, s)

Oa(X) H(Xa) X ̸= B Ob(X)

H(Xb) X ̸= A

•  where an  or-
acle  returns   on  any  and  
returns  on any .

b = b′• Output 1 if  otherwise 0.
AThe advantage of  is defined as

 

AdvA = |Pr[2ODH-EXP(κ) = 1]− 1/2|

A
ϵDH AdvA ≤ ϵDH(κ)

The two oracle  Diffie-Hellman assumption holds  if
for any PPT adversary , there is a negligible function

 such that .
 3) Authenticated encryption
An authenticated encryption scheme is used in [12]

to  protect  secret  shares.  The  scheme  mainly  includes
three algorithms. The algorithm
 

key ← AE.gen(κ) (6)

produces a symmetric key. The algorithm
 

c← AE.enc(key,m) (7)

mproduces a ciphertext of a message . The algorithm
 

{m,⊥} ← AE.dec(key, c) (8)

⊥produces  a  message  or  a  symbol  as  an output  for  a
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c ⊥ciphertext , where “ ” means a failed decryption.

A IND-CCA-EXP(κ)

Bonawitz et  al. [12 ] require  the  authenticated  en-
cryption  scheme  satisfying  indistinguishability  under  a
chosen plaintext  attack  (IND-CPA)  and  ciphertext  in-
tegrity  (IND-CTXT)  which  are  defined  in  [38].  Since
Bellare  and  Namprempre  [38]  have  proved  that  the
IND-CPA  and  IND-CTXT  imply  indistinguishability
under a chosen ciphertext attack (IND-CCA). We show
the  IND-CCA definition  in  [38]  directly.  Given a  PPT
adversary ,  a  security  game  is  as
follows.

key ← AE.gen(κ)• .
b ∈ {0, 1}• Sample  randomly.

b′ ← AOenc(·,·,b,key),Odec(·,key)(κ)

Oenc(·, ·, b, key) AE.enc(key, xb)

(x0, x1) Odec(·, key) c

c

Oenc(·, ·, b, key)

•  where  an  oracle
 returns   on  a  query

,  and  decrypts  an  input  and re-
turns the decryption result if  is not produced by the
oracle .

b = b′ 0• Output 1 if  otherwise .
AThe advantage of  is defined as

 

AdvA = |Pr[IND-CCA-EXP(κ) = 1]− 1/2|

A
ϵAE AdvA ≤ ϵAE(κ)

An  authenticated  encryption  scheme  is  IND-CCA
secure if for any PPT adversary , there is a negligible
function  such that .

 4) Pseudorandom generator

PRG

The algorithm is  crucial  to deal  with huge dimen-
sional data in [12]. According to the definition in [39], a
pseudorandom  generator  is  a  deterministic  polynomial
time algorithm  satisfying the following two condi-
tions:

l : N→ N l(κ) > κ

κ ∈ N |PRG(s)| = l(|s|) s

• There is a function  such that 
for all , and  for all .

A
ϵPRG

• Given a PPT adversary , there is a negligible
function  such that
  ∣∣∣∣ Pr[A({PRG(Uniκ)}κ∈N, 1

κ) = 1]
−Pr[A({Unil(κ)}κ∈N, 1

κ) = 1]

∣∣∣∣ < ϵPRG(κ)

{Uniκ}κ∈Nwhere  is the uniform ensemble.
 5) Signature scheme
A signature  scheme  in  their  security  enhancement

method  in  [12]  is  for  user  authentication  and  user  set
confirmation. A  signature  scheme  includes  three  al-
gorithms. The algorithm
 

(σku, vku)← SIG.gen(κ) (9)

κ

(σku, vku) u

takes  as  input  a  security  parameter  and  produces  a
pair of keys  for a user . The algorithm
 

σu ← SIG.sign(σku,m) (10)

σku m

σu

takes as inputs a private key  and a message , and
produces a signature . The algorithm

 

{True,False} ← SIG.ver(vku,m, σu) (11)

vku m

σu

takes as inputs a verifying key , a message  and a
signature , and then produces a verification result.

CMA-EXP(κ)

A  signature  scheme  should  be  existentially  secure
against  chosen-message  attacks.  A  security  game

 is as follows:
(σku, vku)← SIG.gen(κ)• .
(m∗, σ∗

u)← AS(·,σku)(κ, vku)

S(·, σku)
Q

• , in which the oracle
 returns  a  signature  on  a  query  message.  Let

the returned signatures of the oracle be a set .
1 SIG.ver(vku,m

∗, σ∗
u) = True

m∗ /∈ Q 0

•  Output  if   and
 otherwise .

AThe advantage of  is defined as
 

AdvA = Pr[CMA-EXP(κ) = 1]

A ϵσ
AdvA ≤ ϵσ(κ)

A signature  scheme  is  secure  if  for  any  PPT  ad-
versary ,  there  is  a  negligible  function  such  that

.
 2. The SAP

S1

Ue e

u S1

We show the SAP against a semi-honest adversary
in [12] in Fig.1. The entities in SAP include a server 
and a set of users  for a learning round . Fig.1 just
shows the message flows of a user  with the server .
 

User u

Public keys of the user u

Set of user public keys

Encrypted secret shares of u 

Encrypted secret shares to u

Masked inputs of u

The current user set

Secret shares from u

Advertise
keys

Share keys

Masked input
collection

Unmasking

Server S1

Round 1

Round 2

Round 3

Round 4

 
Fig. 1. High-level overview of the SAP protocol.

 

S1

κ n

t F
(G, g, q,H)

D = Zd
p p d

Initially, a learning program invokes the server side
protocol to activate the server process. Then at the be-
ginning  of  each  learning  round,  the  learning  program
sends messages to activate the user process. There is a
secure  channel  between  a  user  and  the  server .  All
users  should  share  the  same  parameters  including  the
security parameter , the total number of users  in an
learning round, the threshold value , the finite field ,
the key agreement parameters , and the user
input domain  where  is the modulus and  is
the dimension.

U i
e

i

e 1 ≤ i ≤ 4 U i
e ⊆ U j

e 1 ≤ j < i ≤ 4

The  number  of  users  in  a  learning  round  may  be
reduced  since  users  may  drop  out  at  anytime.  Let 
denote the set of users in round  of the learning round
 where  .  Then  if  .  The

four-round SAP is as follows:
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u ∈ Ue

•  Round  1 (Advertise  keys).  When  the  user
 is active, it produces two pair of keys:

 

(sk0u, pk
0
u)← KA.gen(G, g, q,H) (12)

and
 

(sk1u, pk
1
u)← KA.gen(G, g, q,H) (13)

It packs a message as
 

mu
1 = (pk0u, pk

1
u) (14)

mu
1

S1

and sends  to the server. The user then waits for the
first response from the server  or stops.

S1 |U1
e | = n

U1
e

When the server  collects at least  mes-
sages from different users who form , it packs a mes-
sage as
 

mS
1 = {u,mu

1}u∈U1
e

(15)

mS
1

U1
e

The message  is broadcasted to all the users in
 as their responses.

u ∈ U1
e

mS
1 |U1

e | ≥ t

• Round 2 (Share keys). When a user  re-
ceives ,  it  verifies . If  the  verification  suc-
cesses, the user executes as follows:

su
U1
e

i)  Select  a  random  number  as  a  masking  seed
and share it among the users in 
 

{(v, su0v )}v∈U1
e
← SS.share(su, t, U

1
e ) (16)

sk1u
U1
e

ii) Share the agreement key  among the users in

 

{(v, su1v )}v∈U1
e
← SS.share(sk1u, t, U

1
e ) (17)

v ∈ U1
e \{u}iii) For each user , compute

 

key ← KA.agree(pk0v, sk
0
u) (18)

 

evu ← AE.enc(key, (v, u, su0v , su1v )) (19)

iv) Pack a message
 

mu
2 = {evu}v∈U1

e \{u} (20)

mu
2 S1and send  to the server .

u

S1

The user  then waits for the second response from
the server  or stops.

S1 |U2
e |

U1
e U2

e

When the server  collects  at  least  messages
from different users in  who form , it packs a mes-
sage 

mSv
2 = {u, evu}u∈U2

e \{v} (21)

v ∈ U2
e vfor each user  and sends it to .

u mSu
2

• Round 3 (Masked input collection).  When the
user  receives the message , it counts the number

|U2
e | − 1 |U2

e | ≥ t

x⃗u ∈ D

of  ciphertexts  as .  If ,  it  stores  the
ciphertexts and encrypts their sensitive data .

i) Compute
 

o⃗u = PRG(su) (22)

Compute
 

svu ← KA.Agree(pk1v, sk
1
u) (23)

 

o⃗u
v = ∆vu · PRG(svu) (24)

where
 

∆vu =

{
1, v < u
−1, v > u

(25)

v ∈ U2
e \{u}for each user .

ii) Compute
 

y⃗ u = x⃗u + o⃗u +
∑

v∈U2
e \{u}

o⃗u
v (26)

mu
3 = y⃗ u S1and send  to the server .

u

S1

The user  then waits for the third response from
the server  or stops.

S1 |U3
e |

U2
e U3

e

When the server  collects  at  least  messages
from different users in  who form , it packs a mes-
sage
 

mS
3 = {u}u∈U3

e
(27)

U3
eand sends it to users in .

u

mS
3 |U3

e | ≥ t

mSu
2

S1

•  Round  4 (Unmasking).  When  the  user  re-
ceives ,  it  verifies . If  the  verification  suc-
cesses,  it  decrypts  ciphertexts  in  and sends secret
shares to the server .

{euv}v∈U2
e \{u}i) Decrypt  to obtain

 

{(sv0u , sv1u )}v∈U2
e \{u} (28)

{sv0u }v∈U3
e

{sv1u }v∈U2
e \U3

e
mu

4

S1

ii)  Pack  seed  shares  and agreement  key
shares  as a message  and send it to the
server .

u

e

The  user  finishes  the  protocol  for  the  learning
round .

S1 |U4
e | ≥ t

U3
e mu

3

U3
e

When the  server  collects  at  least  mes-
sages from different users in , it aggregates  for all
users in .

u ∈ U3
e t

{su0v }v∈U4
e

su o⃗u

u

i)  For  each  user ,  collect  secret  shares
 to recover  and to compute  of the user

.
u ∈ U2

e \U3
e t

{su1v }v∈U4
e

sk1u S1 u

{svu}v∈U2
e \{u} {o⃗u

v }v∈U2
e \{u}

ii) For each user , collect  secret shares
 to recover . Then the server  acts as 

to compute  and .
iii) Compute the aggregated value as 
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z⃗ =
∑
u∈U3

e

y⃗ u −
∑
u∈U3

e

o⃗u +
∑

u∈U2
e \U3

e

∑
v∈U3

e \{u}

o⃗u
v (29)

e

The server finishes the server side protocol for the
learning round  and waits for the next round.

 3. Their security enhancement
Bonawitz et  al.  [12]  give  a  security  enhancement

method implicitly.  They  add  signatures  and  a  consist-
ency  check  round  to  change  the  SAP  against  a  semi-
honest adversary to a protocol secure against an active
adversary.

u ∈ Ue

(σku, vku)← SIG.gen(κ)

certu vku

Fig.2 shows  the  main  components  of  the  security
enhancement  method.  There  is  a  certificate  authority
(CA)  to  provide  certificate  services  for  all  users  in  all
learning rounds. A user  should have produced a
key pair  and applied for a cer-
tificate  about their verifying key .
 

Fisrt signature of the user u

Set of user first signatures
Round 1

Round 2

Round 3

Signatures 
verification

Secret shares from u
Round 5

Round 4

Second signature of the user u

Set of user second signatures
Signatures 
verification

Consistency
checks

CAUser u Server S1

 
Fig. 2. The security enhancement method for the SAP in [12].

   
 

The enhancement method is as follows:
u•  In  the  round  1,  the  user  additionally gener-

ates the first signature
 

σ0
u ← SIG.sign(σku, (pk

0
u, pk

1
u)) (30)

and the equation (14) is changed to
 

mu
1 = (pk0u, pk

1
u, σ

0
u, certu) (31)

u

mS
1

• In  the  round  2,  the  user  verifies the  certific-
ates and user signatures in . If any verification fails,
the user stops.

•  After  the  round  3,  a  new  consistency  check
round is  added.  In  this  round,  the  server  and user  ex-
ecute as follows:

u mS
3

|U3
e | ≥ t

mS
3

− When  the  user  receives  the  message ,  it
checks the number of users in the message. If ,
it signs  as its second signature
 

σ1
u ← Sig.sign(σku,m

S
3 ) (32)

mu
4 = σ1

u S1 u

S1

and  sends  to  the  server .  The  user  then
waits  for  the  fourth  response  from  the  server  or
stops.

S1 |U4
e | ≥ t

U3
e U4

e

mS
4 = {u,mu

4}u∈U4
e

U4
e

− When  the  server  collects  at  least 
messages  from  different  users  in  who  form ,  it
sends a message  to users in .

u

mS
4

• In the final round, the user  verifies user signa-
tures in . If any verification fails, the user stops.

u

U3
e

U3
e

Note  that  the  first  signature  is  mainly  to  defend
against a Sybil attack from an adversarial server. That
is,  the  server  sends  many  faked  key  pairs  to  a  target
user .  The  second  signature  is  to  make  sure  that  all
honest  users  have the  same view of  so that  an ad-
versarial  server  could not  give  different  sets to  dif-
ferent users.

 III. Security Property Analysis
We  show  our  observations  about  the  enhanced

SAP  protocol  in  [12]  and  the  Eclipse  attack  to  their
protocol.

Our  first  observation  is  that  the  introduction  of
certificates divides the secrets in the enhanced SAP in-
to two categories. The first category is long-term secrets
such as a signing key. The second is ephemeral secrets
such as the masking seed, the agreement keys etc. Eph-
emeral secrets in the memory of a mobile device may be
leaked  to  an  adversary  due  to  malicious  softwares  on
mobile  devices.  Kim et  al.  [40] show  such  an  experi-
ment in a mobile device running the Android operating
system. The method in [40] should overcome the access
rights problem.  However,  If  a  user  downloads  a  soft-
ware from an adversarial server and installs it on their
mobile devices to run FL with the server,  it  is  natural
to assume that the software could send a few ephemer-
al  secrets  to  the  server  stealthily.  Additionally,  it  is  a
common practice to separately deal with long-term and
ephemeral secrets especially when key agreement proto-
cols are involved in [41], [42]. We give a formal security
model to clarify this observation.

 1. Security model

S1

We introduce  the  security  model  for  key  agree-
ment  protocols  of  Canetti  and  Krawczyk  in  [41]  into
FL. The server  and users are taken as message-driv-
en entities which are initially invoked by some environ-
ment process  with  initial  states.  Once  invoked,  an  en-
tity waits for an activation that can happen for a mes-
sage from the network or another environment request.
On activation,  the  entity  processes  the  incoming  mes-
sage together with its current internal state, generating
a new internal state, outgoing messages and a cumulat-
ive output.  Once  the  activation  is  completed,  the  en-
tity waits for the next activation if it does not drop out
of the protocol.
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π

πS πU

S1 πS πS

πU

πS

We denote a protocol as  which consists of server
side protocol  and client side protocol . The server

 invokes  in each learning round. After invoked, 
selects a set of users. Each selected user invokes  to
exchange  messages  with  through  a  secure  channel.
There is no direct communication link of two users.

Active  adversaries  are  defined  in  [12].  They  are
defined  as  entities  (users  or  the  server)  that  deviate
from  the  protocol,  sending  incorrect  and/or  arbitrarily
chosen  messages  to  honest  users,  aborting,  omitting
messages,  and sharing their entire view of the protocol
with each other, and also with the server (if the server
is also an active adversary). When long-term secrets are
introduced,  the  ability  of “ sharing  their  entire  view  of
the  protocol” should  be  refined.  In  [41]  they  define  a
session-state  reveal  ability  that  allows  an  adversary  to
obtain ephemeral secrets. In this model, we give an act-
ive adversary the ability.

AThe  capabilities  of  an  adversary  are  defined  as
follows:

S1 n1
c

A
• It  could  corrupt  the  server  and  at  most 

users  in  each  learning  round.  When  the  adversary 
corrupts  an  entity,  it  knows  the  internal  states  and
long-term secrets  of  the entity and controls  all  the be-
haviours  of  the  entity.  The  internal  states  include  all
ephemeral secrets.

n0
c

A
• It could reveal session states of at most  users

in  each  learning  round.  When  the  adversary  reveal
the  session  states  of  an  entity,  it  knows  all  ephemeral
secrets of the entity.

AWith the adversary , we define
 

GOπ,e,{S1}
∪

Ue,A(x⃗, r⃗)

π e

x⃗ = {xS}
∪
{xu}u∈Ue

S1

Ue r⃗ = {r0, rS}
∪
{ru}u∈Ue

A S1

Ue GOπ,e,{S1}
∪

Ue,A(x⃗)

r⃗

as the global output for  in a learning round  where
 denotes the inputs of the server 

and users in , and  denotes the
random inputs of the adversary , server  and users
in .  Let  be  the  random variable
over .

SIM

u ∈ Ue

We keep  the  security  goal  in  [12]  unchanged.  We
define  an honest  user  as  a  user  that  has  not  lost  their
ephemeral or long-term secrets in a learning round. Let

 be  a  PPT  simulator.  Then  for  any  honest  user
, the privacy of its input is protected if

 

GOπ,e,{S1}
∪

Ue,A(x⃗) ≈ GOπ,e,SIM,A(x⃗
′)

x⃗′ = {xS}
∪
{xv}v∈Ue\{u}

∪
{0} ≈where  and  “ ” means

computationally indistinguishable.
Note that the security goal in [12] is only about in-

put privacy.  Corrupted  users  may  send  arbitrary  mes-
sages to make protocols fail. And the security goal does
not consider the possible information leakage of the in-

put  sum.  Kairouz  [43]  give  a  comprehensive  analysis
about the relations of the sum and an individual input.
They suggest  to  add Gaussian  noise  for  better  privacy
protection.

 2. Eclipse attack

mu
1 mu

4

Our second observation is  that  the  enhanced SAP
protocol  has  a  weakness  in  their  usage  of  signatures.
Their  signed  message  in  their  protocol  lacks  freshness
factors which is crucial to make signatures as authentic-
ators. Then an adversarial server could replay a signed
message.  For  example,  the  messages  and   have
signatures and they can be replayed at will.

S1

The  two  observations  make  an  Eclipse  attack.  By
Eclipse attack, we mean that an active adversary could
corrupt  the  server ,  reveal  ephemeral  secrets  of  a
small number of users in each learning round, and make
a special learning round where a target user is surroun-
ded by the users whose ephemeral secrets are revealed.
We next show the Eclipse attack to the enhanced SAP
in [12].

n0
c

n0
c = 1

(sk0u, sk
1
u) u ∈ Ue

e mu
1

⌈n−1
n0
c
⌉

n− 1

USSR

{sk0u, sk1u,mu
1}u∈USSR

u∗ e∗

Suppose  an  adversary  reveals  session  states  of 
users in each learning round. For example, if , the
adversary gets  of a user  in the learn-
ing  round .  The  adversary  also  records  the  mes-
sage of the user. Then after  learning rounds, the
adversary  obtains  at  least  ephemeral  secrets  and
messages.  Let  the  users  who have  lost  their  ephemeral
secrets  form  a  set .  Then  an  adversarial  server
knows .  The  Eclipse  attack  to  a
target user  in a learning round  is as follows:

u∗

mu∗

1 n− 1 USSR\{u∗}
USSR∗

1)  In  the  round  1,  the  server  invokes  to  send
 and selects  users in  to form a set

 and sends
 

mS
1 = {u∗,mu∗

1 } ∪ {u,mu
1}u∈USSR∗ (33)

u∗ {mu
1}u∈USSR∗

mS
1

to the user .  Note that all  messages in 
are  recorded  before.  So  signatures  are  in  the  message

.
mu∗

2

mS
1

mSu∗

2 u∗

mSu∗

2

pk0u∗ {sk0v, sk1v}v∈USSR∗

v ∈ USSR∗

eu∗v u∗

mSu∗

2

2) In the round 2, the server receives  since all
signatures in  are correct. Then the server creates a
message  and sends it to the user . Note that the
server  could create a totally  valid  since it  knows
the values  and . That is,  for any
user ,  the  adversary  computes  formulas
(16)–(20) to get  for the target user ,  and packs
the results as .

mu∗

3

t

{sk0u}u∈USSR∗ 2t

mu∗

2 su∗ sk1u∗

mu∗

3

3)  In  the  round  3,  the  server  could  receive 
since a user only needs to check the number of cipher-
texts in this round. The server now could select  eph-
emeral secrets  to decrypt  secret shares
in  and  recover  both  and  .  The  adversary
then  could  remove  the  masking  vectors  in ,  and
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x⃗u∗ ∈ D u∗then recover the input  of the target user .
Note  that  the  above  attack  is  possible  in  a  real

learning  round.  Considering  the  experiments  in  [4],  we
know the user number in each learning round is about 100
and  the  rounds  are  several  thousands.  Suppose  the
learning rounds are  1000.  An adversary could accumu-
late  ephemeral  secrets  and  signed  messages  of  some
users at the initial 100 rounds, and could get the sensit-
ive data of any other users in the following 900 rounds
using  the  above  Eclipse  attack.  There  is  no  needs  to
corrupt users.

 IV. ESE Method and SAP

mu
1

We have  shown  the  Eclipse  attack  to  the  en-
hanced SAP in [12]. The attack exploits the weakness of
the enhanced SAP where no freshness factors are used.
There are two recommended mechanisms to make a sig-
nature as an authenticator in [44]. One is the challenge-
response  mechanism.  The other  is  to  use  a  timestamp.
Considering that  mobile  devices  have  good  clock  syn-
chronization ability, we suggest the timestamp mechan-
ism.  Then  if  we  include  a  timestamp  in  the  mes-
sage of the enhanced SAP, the above attack fails.

However,  their  security  enhancement  method  has
two rounds, which leads to a five-round SAP. We try to
give a one-round security enhancement method.  To do
this,  we  choose  a  different  authentication  timing.  As
shown in Fig.3 , we choose the rounds 2 and 3 to em-
bed  our  security  enhancement  method.  This  choice
makes users in a learning round have an opportunity to
check the consistency of their views in the round 1. We
give security conditions to show that the same views in
the round 1 are enough to defend against an active ad-
versary, which leads to a four-round SAP.

 1. The ESE method

(n t ξ) ξ

The ESE method is as follows. Initially, the server
has given all users the parameters , ,  where  be
the  proportion  of  dishonest  users  in  total  users.  The
consistency of these parameters are checked during the
protocol.

u

mS
1 n

• In  the  round  2,  the  user  additionally  checks
that the user number in  is , and then generates
 

σu ← SIG.sign(σku, (m
S
1 , Tu, t, ξ)) (34)

Tuwhere  is  a timestamp. The formula (20) is  changed
to
 

mu
2 = {{evu}v∈U1

e \{u}, (Tu, σu)} (35)

On the server side, the formula (21) is changed to
 

mSv
2 = {u, evu, (Tu, σu, certu)}u∈U2

e \{v} (36)

{u, evu}u∈U2
e \{v}

v {(Tu, σu, certu)}u∈U2
e

U2
e

Note  that  should  be  sent  to  the
user  directly  while  could  be
broadcasted to users in  if the communication cost of
broadcasting is cheap.

u

mSu
2 |U2

e | − 1

|U2
e | ≥ t

U2
e ⊆ U1

e 2t > (1 + ξ)n ⌊ (1−ξ)(n−t)n
t−ξn ⌋ < t− 1− ξn

• In the round 3, the user  counts the number of
users  in  as  . If  all  certificates  and  signa-
tures of users are verified, the user verifies that ,

,  and  .
If any verification fails, the user stops.

 2. Security proof

U3
e

n− t

n = 9 n0
c + n1

c = 2

t = 6 2t > n+ n0
c + n1

c

u4 C = {u1, u2}

The consistency check round in the enhanced five-
round  SAP  protocol  makes  sure  that  the  users  in  the
last  round  has  the  same  view  of  so  that  at  most

 agreement keys are recovered. The SAP with the
ESE method removes the consistency check round so an
adversary may exploit honest users with different views
to get more shares and recover more keys. We give ex-
amples to show these cases. Suppose , 
and  such that .  More concretely,
let  be  the  target  user  and  be the  dis-
honest users.

U3
e

n− t = 3 U2
e \U3

e

U2
e \U3

e = {u3, u4, u5}

In the five-round enhanced SAP in [12],  is  the
same. So at most  users are in the set .
One  possible  setting  is  that  and
the key agreement keys of them are recovered.

U2
e U3

e

u4 u4

u4 U2
e

i

ui

In the SAP with our ESE method,  and  may
be different for different users. There are only two ways
for an adversary to recover user input directly. One way
is to recover the masking seed and the agreement key of

. The other way is to recover the masking seed of 
and all other agreement keys owned by the neighbors of

 in .  Two possible  settings are shown in Tables  1
and 2 , where the users in a column  are dropped users
in the view of the user .

{u3, . . . , u7}

u4 u4

{u4, u7, u9}

In Table 1, five agreement keys of  are
recovered. A closer look shows that the recovery of the
agreement key of  makes the masking seed of  hid-
den  since  only  users  in  shall  contribute
masking  seed  shares.  So  the  private  inputs  of  honest
users are not affected.

 

Set of user signatures

Round 1

Round 2

Round 3

Signatures 
verification

Round 4

A signature of the user u

CAUser u Server S1

 
Fig. 3. Our ESE method and the enhanced SAP.
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U2
e u4 U2u4

e = {u1, . . . , u6} U2
e

{u1, . . . , u9}
{u3, u5, u6}∑

v∈U
2u4
e \{u4} o⃗

u4
v

u4

Table 2 shows another setting. The adversary sets
 of   as   and  the  of  other

users as . Then Table 2 shows how to recov-
er  the  agreement  keys  of  users  in .  These
secret keys and the corrupted users  could help the ad-
versary  to  compute .  Then  the  secret
inputs of  are recovered!

We  next  prove  the  security  of  the  SAP  with  our
ESE method against an active adversary. It shows how
the problem in Table 2 could be solved by setting pro-
tocol parameters correctly.

2ODH-EXP(κ)
ϵDH(κ)

ϵAE(κ) ϵPRG(κ)

ϵσ(κ) n

t

ξ

Theorem 1　Suppose the advantage of  an active
adversary  against  the  security  game  is

, against the authenticated encryption scheme is
, against the PRG is  and against a sig-

nature scheme is . Let  be the number of users in
the round 1,  be the threshold value in the secret shar-
ing scheme, and  be the proportion of dishonest users
in total users. If
 

n(1 + ξ) < 2t (37)

and
  ⌊

(1− ξ)(n− t)n

t− ξn

⌋
< t− 1− ξn (38)

u SIM

SIM

for  any honest  user ,  there  is  a  PPT simulator 
such that the output with  is computationally in-
distinguishable from the output in a real running, i.e.,
 

GOπ,e,{S1}
∪

Ue,A(x⃗) ≈ GOπ,e,SIM,A(x⃗
′) (39)

x⃗′ = {xS}
∪
{xv}v∈Ue\{u}

∪
{0}

ϵσ(κ) + ϵAE(κ) + 3ϵDH(κ) + 3nϵPRG(κ)

where . The advantage of
the adversary to distinguish the two outputs is bounded
by .

S1 U1
e

e 0 GOπ,e,{S1}
∪

Ue,A(x⃗, r⃗)

Proof　Let  a  real  execution  of  and   in  an
epoch  be the game  denoted by .

1 v u

SIM KA.agree(pk0v, sk
0
u)

KA.agree(pk0u, sk
0
v)

In game , for any honest users  and , in round 2,
 replaces  the  encryption  key 

and  by a random key. The two or-
acle Diffie-Hellman assumption makes an adversary dis-
tinguish  the  two  games  with  a  negligible  advantage

ϵDH(κ).
2 v u

ϵAE(κ)

In game , for any honest users  and , in round 2,
the  encrypted  secret  shares  are  set  to  zeros  with  the
same length as before. Note that in the last round, the
behaviours of honest users are unchanged. Since the au-
thenticated  encryption  scheme  is  IND-CCA  secure,  an
adversary could distinguish the two games with a negli-
gible advantage at most .

3 u

v ∈ U2u
e \{u} u

In game , for the honest user  and honest users
 in  the  view  of ,  in  round  3,  instead  of

sending
 

y⃗ u = x⃗u + PRG(su)+
∑

v∈U2u
e \{u}\C

∆vu · PRG(o⃗u
v )

+
∑

v∈U2u
e ∩C

∆vu · PRG(o⃗u
v ) (40)

SIM u sends as 
 

y⃗ u = x⃗u + PRG(su) +
∑

v∈U2u
e \{u}\C

∆vu · PRG(rvu)

+
∑

v∈U2u
e ∩C

∆vu · PRG(o⃗u
v )

(41)

vand sends as 
 

y⃗ v = x⃗ v + PRG(sv) + ∆uv · PRG(rvu)

+
∑

u′∈U2
e

∆u′v · PRG(o⃗ v
u′) (42)

o⃗u
v rvu u

v

where  is defined in (24),  is a random value for 
and .

u

ϵσ(κ)

•  At  first,  if  there  is  the  Eclipse  attack  in  the
round 1, the honest user  will not send anything in the
round  3  since  there  are  no  enough  fresh  signatures.
Note  that  an  adversary  only  has  negligible  ad-
vantage to forge fresh signatures.

u

v U2u
e

ϵDH(κ)

• Secondly,  before  the  last  round,  the  differences
of the formulas (40) and (41), or the formulas (40) and
(42) are that the masking vectors of the user  and oth-
er honest users  in the  set are generated by ran-
dom  seed.  The  two  oracle  Diffie-Hellman  assumption
makes the  adversary  could  distinguish  the  two  equa-
tions with a negligible advantage at most .

su u

u U2u
e

• Thirdly, with the help of the last round, an ad-
versary  may  recover  or  the  agreement  key  of  or
keys of ’s honest neighbors in the  set.

su n(1 + ξ) < 2t

sk1u

n− ξn+ 2ξn

i) If the adversary recovers , and if ,
the  adversary  could  not  recover .  Since  an  honest
user  only  provides  a  secret  share  of  one  user,  which  is
described  in  the  last  round  of  the  SAP,  the  maximal
number  of  secret  shares  belonging  to  one  honest  user
obtained by an adversary is . According to

   
U2e\U3eTable 1.   setting I

u1 u2 u3 u4 u5 u6 u7 u8 u9

– – u4 u5 u6 u7 u3 u4 u5

– – u6 u7 u3 u4 u5 u6 u7

– – – u3 u4 u5 u6 u7 u3
 

   
U2e\U3eTable 2.   setting II

u1 u2 u3 u4 u5 u6 u7 u8 u9

– – u5 – u3 u3 u3 u3 u3

– – u6 – u6 u5 u5 u5 u5

– – – – – – u6 u6 u6
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su
t u

sk1u
n− ξn+ 2ξn− t t

3.1

sk1u

zero

the  security  of  the  secret  sharing,  the  recovery  of 
consumes at least  secret shares of  the user .  So the
number  of  available  shares  of  is  not  greater  than

 which is  less  than .  In this  case,  the
simulator  could  run  a  game  with  the  adversary
where the shares of  are replaced by shares of a ran-
dom value, which could be distinguished with a probab-
ility  according  to  the  security  definition  of  the
secret sharing scheme.

su

⌊ (1−ξ)(n−t)n
t−ξn ⌋ < t− 1− ξn

u

U2u
e t

t− 1− ξn

U2
e

n− ξn

|U2
e \U3

e | ≤ n− t

U3
e ≥ t

(1− ξ)(n− t)n

t− ξn

u ⌊ (1−ξ)(n−t)n
t−ξn ⌋ t− 1− ξn

u

ii)  If  the  adversary  recovers ,  and  if
, the  adversary  could  not  re-

cover  all  agreement  keys  of ’s  honest  neighbors.  The
minimal  size  of  the  set  is  according  to  round  3
specification of the SAP. The adversary has to recover
at least  agreement keys to remove the mask-
ing vector. Note that for different honest users,  may
be different.  The number  of  honest  users  who may re-
veal  shares  of  agreement  keys  is  at  most .  That
is, all honest user could be exploited by the adversary.
Each  honest  user  may  reveal  secret
shares since  in the last round of the SAP. So the
maximal  number  of  shares  of  agreement  keys  obtained
by  the  adversary  is .  To  recover  an
agreement  key,  the  adversary  needs  at  least 
secret shares  from honest  users.  So  the  maximal  num-
ber of recovered agreement keys of honest neighbors of
 is  .  If  the  value  is  less  than ,

there is at least one honest neighbor of  whose agree-
ment key is not recovered.

su
sk1u sk1v u

U2u
e v∗

iii) Then if the adversary recovers , it could not
recover  or  of all honest neighbors of  in the set

. Then suppose  is the only neighbor whose agree-
ment key is not recovered. Then the right-hand side of
equation (40) is changed to
 

x⃗u +∆v∗uPRG(KA.agree(pk1v∗ , sk1u)) (43)

The right-hand side of equation (41) is changed to
 

x⃗u +
∑

v∈U2u
e \{u}\C

∆vuPRG(rvu)− C1
A (44)

C1
A =

∑
v∈U2

e \{u,v∗}\C ∆vuPRG(o⃗ v
u )

3.2

sk1v∗

KA.agree(pk1v∗ , sk1u)

3.2

ϵDH(κ) 2
3.3 PRG

D

where .  In  this  case,
the simulator runs a game  with the adversary where
the  shares  of  are  replaced  by  shares  of  zero,  and

 is  replaced  by  a  random  value.
Then  the  two  oracle  Diffie-Hellman  assumption  makes
the game  distinguished with a negligible advantage

 from  the  game .  Then  the  simulator  runs  a
game  with the adversary where the output of 
is  replaced  by  a  random  value  in  the  domain .  The
formula (43) is then changed to 

x⃗u +∆v∗urv∗ (45)

and the formula (44) is changed to
 

x⃗u +
∑

v∈U2u
e \{u}\C

∆vurv − C1
A (46)

D = Zd
pNote  that  and  under  modulus  operation,

the sum of uniformly selected independent random vari-
ables  is  uniformly distributed.  The distributions  of  the
two random variables (45) and (46) are identical.

su
sk1u
x⃗u + PRG(su)

iv)  If  the  adversary  does  not  recover , the  ad-
versary could recover . Then the right hand of equa-
tion (40) is changed to . The right hand
of equation (41) is changed to
 

x⃗u + PRG(su) +
∑

v∈U2u
e \{u}\C

∆vuPRG(rvu)

−
∑

v∈U2u
e \{u}\C

∆vuPRG(o⃗u
v ) (47)

3.4

{PRG(su), {PRG(rvu)}v∈U2u
e \{u}\C}

D
nϵPRG(κ)

PRG

In  this  case,  the  simulator  could  run  a  game 
with  the  adversary  in  which  the  values  in

 are  replaced  by
random values in the domain , which could be distin-
guished  with  a  negligible  advantage  at  most 
according to the definition of  and a hybrid argu-
ment.

3.4Then in the game , the formula (47) is changed
to
 

x⃗u + ru +
∑

v∈U2u
e \{u}\C

∆vu · rv − C2
A (48)

ru rv D
C2

A
x⃗u + ru

where  and   are  random  values  in  the  domain 
and  is  the  value  produced  by  the  adversary.  With
the same reason, the random variables (48) and 
have the same distribution.

4 u

v ∈ U2u
e \{u} SIM

In the game , for the honest user  and the hon-
est users , in the round 3,  sends
 

y⃗ u = x⃗u + PRG(su) +
∑

v∈U2u
e \{u}\C

∆vu · rv

+
∑

v∈U2u
e ∩C

∆vu · PRG(o⃗u
v )) (49)

{rv}v∈U2
e \{u}\C

D
nϵPRG(κ)

3 4

where  are random values in the domain
. The PRG definition makes the adversary has a neg-

ligible advantage at most  to distinguish game
 and game .

5 u

v ∈ U2
e \{u} u

SIM x⃗u

In the game , for the honest user  and the hon-
est  users  in the view of ,  in the round 3,

 replaces the input  in the equation (49) with a
random value following the distribution of other inputs.
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u y⃗ u

5

4

Since the  distribution  of  equation  (49)  is  not  determ-
ined by the input of , the values  in the two games
have  the  same  distribution.  And  the  final  aggregated
value  in  the  game  is  statistically  indistinguishable
from that in the game  since all user inputs follow the
same distribution in the learning round.

u

SIM 5

0

ϵσ(κ) + ϵAE(κ) + 3ϵDH(κ) + 3nϵPRG(κ)

Since in the final game, the input of user  is not
used,  could run as in the game  to paly with the
adversary. The generated view is computationally indis-
tinguishable from a real running in the game . The ad-
vantage of an adversary to distinguish the two games is
bounded  by  the  sum  of  all  advantages  in  the  above
proof, that is .

t/n

t/n

0.62

t/n

0.27 t/n 0.72

⌊0.27n⌋ t ≥ ⌊0.72n⌋

Note  that  the  parameter  setting  in Table  2 does
not satisfy the condition (38). In fact, the condition (38)
requires  a  balance  about  the  threshold  value  and  the
proportion  of  dishonest  users. Fig.4 (a) shows  the  min-
imal  and  related  proportion  of  dishonest  users.  If
there  are  almost  no  dishonest  users,  the  ratio  is
close to . Fig.4(b) shows the maximal proportion of
dishonest users and related minimal . When the user
number increases,  the maximal proportion of  dishonest
users  is  about  and  the  ratio  is  close  to .
That is, we can allow a server to collaborate with up to

 users  if  we  set  at  the  same  time

⌊0.45n⌋
⌊0.28n⌋

ξ + t/n ≤ 1

guaranteeing that  the  sum  learned  by  the  server  con-
tains  the  values  of  at  least  users, and the  pro-
tocol  is  robust  up  to  users  dropping  out.  We
naturally require  to obtain these results.

 3. Performance analysis
Since  the  SAP  with  the  ESE  method  has  four-

round, we here call it as a four-round protocol. The pro-
tocol in [12] is then called as a five-round protocol. We
add a timestamp in the round 1 of the five-round pro-
tocol  to make it  secure against  the Eclipse  attack.  We
implement  both  protocols  in  python  by  the  following
modules.

SS

256

•  The  is  the  Shamir’s  secret  sharing  scheme
with a -bit secret as an input, which is provided by
the “secretsharing” python module.

KA•  The  is  the  elliptic-curve  Diffie-Hellman
(ECDH) protocol  over the “NIST P-256” curve that is
provided by the “OpenSSL” python module.

AE
128

• The  is the AES-GCM in [45] authenticated
encryption  scheme with  a -bit  key  that  is  provided
by the “Crypto” python module.

RPG• The  uses  the  AES-CTR algorithm where
the  a  seed  is  taken  as  the  encryption  key,  which  is
provided by the “Crypto” python module.

SIG

3072 p 256 q

• The  is  the  DSA  signature  scheme  with  a
-bit  and  a -bit  that  is  provided  by  the

“OpenSSL” python module.
We  run  these  modules  in  a  64-bit “ Windows  7”

system.  The  CPU  is  Intel(R)  Xeon(R)  CPU  E3-1241
(3.50 GHz, 3.50 GHz) and the RAM is 32 GB. We use
the  python  time  evaluation  function “time.process_
time()” to estimate the time cost of each module.

n t

|U2
e | = |U1

e | = n |U3
e | = |U4

e | = t

300

We set the same  and  for the two protocols and
set , .  We  compare  the
time  costs  of  the  two  protocols. Fig.5 (a)  and Fig.5(b)
show  the  computation  time  of  the  two  protocols  on
both the user and server sides. The computation time of
the four-round protocol is less than the five-round pro-
tocol on the user side. As the number of users increases,
the  difference  of  the  two  computation  times  increases.
On  the  server  side,  the  computation  times  of  the  two
protocols are almost the same when the user number is
less  than .  After  that,  the  message packing time of
the five-round protocol makes it a little slower.

| · |

Theoretically,  we  count  the  main  computations  in
the  five-round and  four-round protocols.  The  user  side
computation costs are in the Table 3, where  is also
used to denote the cost of an operation. Table 3 clearly
shows  the  mainly  reduced  computation  of  the  four-
round protocol, which is
 

(n− 1 + |U4
e | − |U2

e |)|Sig.ver()|+ |Sig.sign()| (50)

The server  side  computation  mainly  keeps  un-
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changed, which includes
 

|U2
e | · |SS.recon()|+ |U2

e \U3
e |(|KA.agree()|+ |PRG|)

+ |U3
e | · |PRG| (51)

These  results  are  consistent  with  the  measured
computation times in Fig.5.
  

Table 3. User side computation costs comparison

Round No. Five-round protocol Four-round protocol
1 KA.gen() Sig.sign()2| |+| | KA.gen()2| |

2

2|SS.share()|
+(n− 1)|Sig.ver()|
+(n− 1)|KA.agree()|
+(n− 1)|AE.enc()|

|Sig.sign()|
+2|SS.share()|
+(n− 1)|KA.agree()|
+(n− 1)|AE.enc()|

3
|PRG|
+(|U2

e | − 1)|KA.agree()|
+(|U2

e | − 1)|PRG|

|PRG|
+(|U2

e | − 1)|Sig.ver()|
+(|U2

e | − 1)|KA.agree()|
+(|U2

e | − 1)|PRG|

4 |Sig.sign()| (|U2
e | − 1)|AE.dec()|

5
(|U4

e | − 1)|Sig.ver()|
+(|U2

e | − 1)|AE.dec()| 0

 
 

| · |
The  communication  costs  of  both  protocols  could

be  computed  precisely.  We  also  user  to  denote  the
size of an element. Table 4 shows the user side commu-
nication costs of  the two protocols.  It  is  clear that the
reduced communication  costs  of  the  four-round  pro-

|σ0
u|tocol in the user side are . The server side commu-

nication costs are shown in Table 5. The reduced com-
munication costs of the four-round protocol in the serv-
er is
 

(n+ |U4
e | − |U2

e |)|σu|+ (n− |U2
e |)(|certu|+ |Tu|) (52)

  
Table 4. User side communication costs comparison

Round No. Five-round protocol Four-round protocol

1
2|pk0u|+ |σ0

u|
+|certu|+ |Tu|

2|pk0u|

2 (n− 1)|evu|
(n− 1)|evu|+ |Tu|+ |σu|
+|certu|

3 |y⃗ u| |y⃗ u|
4 |σ1

u| |U2
e | · |sv0u |

5 |U2
e | · |sv0u | 0

  
Table 5. Server side communication costs comparison

Round No. Five-round protocol Four-round protocol

1
n(2|pk0u|+ |σ0

u|)
+n(|certu|+ |Tu|)

2n|pk0u|

2 (n− 1)|U2
e | · |evu| |U2

e |

 (n− 1)|evu|
+|Tu|+ |σu|
+|certu|


3 |U3

e | |U3
e |

4 |U4
e | · |σ1

u| 0

5 0 0
 
 

144

|U2
e | = |U1

e | = n |U3
e | =

|U4
e | = t

0.1t

As  a  DSA  signature  in  our  experiment  takes 
bytes, the saved communication cost on the user side is
about  0.1  KB.  If  we  set  and  

,  the  saved  communication  cost  on  the  server
side is about  KB .

 V. Conclusions
Bonawitz et al. [12]  propose a cryptography based

SAP for  the federated learning.  Their  work is  followed
in [31] and [35] to improve the efficiency of the SAP it-
self.  We  review  their  security  enhancement  method  to
change the SAP against a semi-honest adversary to an
SAP against an active adversary. We show their secur-
ity  enhancement  method  separately  and  analyze  their
enhanced  SAP.  We  believe  Bonawitz et  al.  ignore  the
differences  of  long-term  secrets  and  ephemeral  secrets
and  also  use  signatures  as  authenticators  imprudently.
We define a stricter security model with a session-state
reveal ability to show a possible Eclipse attack against
their enhanced SAP. Then we give a new ESE method
by redesigning  the  authentication  messages  in  a  signa-
ture  and  reselecting  the  timing  to  integrate  into  the
SAP. This gives us a four-round SAP against an active
adversary.  We  give  a  hybrid  proof  of  the  four-round
protocol  to  show  that  the  input  of  any  user  could  be
protected well  with  new  security  conditions.  We  ana-
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Fig. 5. User  and  server  computation  time  with  different

users. (a) User computation time; (b) Server compu-
tation time.
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lyze the performance of  the two protocols,  which show
the efficiency of our ESE method.

0.72n 0.67n

100 80%

Our new security condition is stricter since the al-
lowable threshold increases to  which is  in [12].
Since Yang et al. [4] require  users with  report-
ing  back,  we  believe  the  new  threshold  is  acceptable.
One  may  apply  our  ESE  method  to  the  works  in  [31]
and [35]  to  get  a  more efficient  SAP against  an active
adversary.  It  is  also  interesting  to  consider  corrupted
users  who  may  send  arbitrary  messages  since  they  are
out of the scope of the current security model.
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