
Convolution Theorem Associated
with the QWFRFT

MEI Yinyin, FENG Qiang, GAO Xiuxiu, and ZHAO Yanbo
(School of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China)

 
   Abstract — The  quaternion  windowed  fractional
Fourier  transform  (QWFRFT)  is  a  generalized  form  of
the  quaternion  fractional  Fourier  transform (QFRFT),  it
plays a crucial role in signal processing for the analysis of
multidimensional  signals.  In  this  paper,  we  first  give  the
definition of  the  two-sided  QWFRFT  and  some  funda-
mental  properties.  Then,  the  quaternion  convolution  is
proposed, and the relation between the quaternion convo-
lution and the classical convolution is also given. Based on
the  quaternion  convolution  of  the  QWFRFT,  relevant
convolution  theorems  for  the  QWFRFT  are  studied.
Moreover,  the  fast  algorithm for  QWFRFT is  discussed.
Finally,  the  complexity  of  QWFRFT and the  quaternion
windowed fractional convolution are given.

   Key words — Windowed fractional  Fourier  trans-

form, Convolution theorem, Quaternion algebra.

 I. Introduction
The fractional Fourier transform (FRFT), which is

very  suitable  for  signal  characterization  and  analysis,
plays a vital role in quantum physics, applied mathem-
atics, optics,  communications,  image  and  signal  pro-
cessing  [1]–[4].  However,  we  all  know  that  classical
FRFT is ineffective in representing and calculating the
local  information of  a signal.  In order to overcome the
above deficiencies, some scholars try to apply FRFT to
research  generalized  windowed  functions  and  propose
windowed fractional  Fourier  transform (WFRFT).  The
WFRFT  [5],  also  called  short-time  fractional  Fourier
transform (STFRFT), providing simultaneously inform-
ation  in  time  and  frequency  domains,  has  been  widely
used  in  applied  mathematics,  signal  processing,  radar
system  analysis,  pattern  recognition,  and  many  other
fields [6]–[9]. Some important properties of the WFRFT
are discussed,  including  convolution,  uncertainty  prin-

ciple (UP), reconstruction formula, etc [10]–[12].
Quaternions [13], [14] are one of the generaliza-

tions  of  complex  numbers,  which  was  introduced  by
Hamilton in 1843. It has been used for signal and color
image processing [15], [16]. For the past few years, some
authors  have  extended  the  integral  transform  into  the
quaternion algebra domain and established the theoret-
ical  system of  quaternion  fractional  transform,  such  as
quaternion Fourier  transform (QFT) [17]–[20],  QFRFT
[21]–[23],  and  quaternion  linear  canonical  transform
(QLCT) [24], [25].

R

Recently, some studies have tried to generalize the
windowed  integral  transform  to  quaternion  algebra.
Quaternion  windowed  Fourier  transform  (QWFT)  was
first  proposed by Bahri  and Hitzer  [26],  they extended
the  windowed  Fourier  transform  (WFT)  to  the  right-
sided QWFT,  and  some  important  properties  and  ap-
plications to  a  linear  time-varying  system  were  ana-
lyzed.  Then,  some scholars  have also paid attention to
QWFT [27]–[31], they derived several important proper-
ties and a number of UP of QWFT. Roopkumar [32] ex-
tends  the  STFRFT  to  a  suitable  space  of  quaternion-
valued functions on , proposed quaternionic short-time
fractional  Fourier  transform  (QSTFRFT),  and  some
properties  including  Parseval’s formula,  inversion  for-
mulae and the UP are discussed. In [33], [34], Gao and
Li  presented  quaternion  windowed  linear  canonical
transform  (QWLCT)  and  obtained  different  kinds  of
UP for  the  QWLCT,  such  as  the  Lieb  UP,  the  logar-
ithmic  UP,  the  entropy  UP,  Donoho-Stark’s  UP,  and
Heisenberg UP.

However, to  the  best  of  our  knowledge,  convolu-
tion  and  corresponding  convolution  theorem  for  the
QWFRFT  have  not  been  presented  in  the  literature.
Since the  convolution  plays  an  essential  part  in  math- 
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ematics,  the  study  of  quaternion  convolution  in  the
QWFRFT  domain  is  not  only  theoretically  interesting
but also practically useful. The main goal of this paper
is to construct the quaternion convolution for the QW-
FRFT. Firstly, we propose the QWFRFT and some ba-
sic properties are obtained. Then, the quaternion convo-
lution is given and the corresponding convolution theor-
em is derived. Thirdly, fast algorithm for QWFRFT are
discussed, the  complexity  of  QWFRFT  and  the  qua-
ternion windowed fractional convolution via the convo-
lution and product theorem are discussed.

 II. Preliminaries
In  this  section,  we  mainly  review  some  essential

facts of quaternion algebra and the QFRFT, which will
be used in this article.

 1. Quaternion algebra

H

Quaternion  algebra  [13],  [14]  was  introduced  by
Hamilton  in  1843,  which  is  an  extension  of  complex
numbers  to  4D algebra.  A quaternion  is  denoted  as 
and each of its elements has form given by
 

H = {q|q = q0 + iq1 + jq2 + kq3, q0, q1, q2, q3 ∈ R} (1)

which obey Hamilton’s multiplication rules
 

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1 (2)

q q = q0 − iq1 − jq2−
jq3 q ∈ H

The conjugate of  is defined by 
. And the norm of  defined as

 

|q| =
√
qq =

√
q20 + q21 + q22 + q23 (3)

So, we can get
 

pq = qp, |qp| = |q||p|, ∀q, p ∈ H (4)

f(x) ∈ L2(R2,H),x = (x1, x2)Let ,  then  we  have
an expression.
 

f(x) = f0(x) + f1(x)i+ f2(x)j + f3(x)k (5)

f0(x), f1(x), f2(x), f3(x) ∈ R2.where 
f, g ∈ L2(R2,H)The inner product of  is given by

 

(f, g)L2(R2,H) =

ˆ
R2

f(x)g(x)dx (6)

f(x) ∈ L2(R2,H)The  associated  scalar  norm of  is
defined as:
 

∥f∥2L2(R2H) = (f, f)L2(R2,H) =

ˆ
R2

|f(x)|2dx <∞ (7)

We have  the  quaternion  Cauchy-Schwarz  inequal-
ity: 

∣∣∣∣ˆ
R2

f(x)g(x)dx

∣∣∣∣ ≤ ∥f∥2∥g∥2 (8)

 2. The quaternion  fractional  Fourier  trans-
form

The QFRFT [22] is a generalization of the FRFT.
Because  quaternion  multiplication  does  not  satisfy  the
commutative  law,  there  are  three  kinds  the  QFRFT:
the left-sided QFRFT, the right-sided QFRFT, and the
two-sided  QFRFT.  We  emphatically  discuss  the  two-
sided QFRFT in this article.

f(x) ∈ L2(R2,H),Let  the  two-sided  QFRFT  is
defined as
 

F p1,p2i,j (v) =

ˆ
R2

Ki
p1(x1, v1)f(x)K

j
p2(x2, v2)dx (9)

Ki
p1(x1, v1) Kj

p2(x2, v2)where ,  is given by
 

Ki
p1(x1, v1) = Aαei((x

2
1+v

2
1)Cα−x1v1Bα) (10)

 

Kj
p2(x2, v2) = Aβej((x

2
2+v

2
2)Cβ−x2v2Bβ) (11)

and
 

Aα =

√
1− i cotα

2π
, Aβ =

√
1− j cotβ

2π
(12)

 

Cα =
cotα
2

, Cβ =
cotβ
2

, Bα = cscα, Bβ = cscβ,

α = p1
π

2
, β = p2

π

2
(13)

f(x)A quaternion signal  can be reconstructed via
QFRFT.
 

f(x) = F−p1,−p2
i,j {F p1,p2i,j (v)}

=

ˆ
R2

Ki
−p1(x1, v1)F

p1,p2
i,j (v)Kj

−p2(x2, v2)dv (14)

f, g ∈ L2(R2,H) ⋆Let , the convolution operator  for
QFRFT is defined as
 

(f ⋆ g)(x)

= (Aα,βe
i(x2

1Cα+x2
2Cβ)ei(x

2
1Cα+x2

2Cβ
)f(x))

∗ (g(x)ei(x
2
1Cα+x2

2Cβ
)) (15)

Aα,β =

√
(1−i cotα)(1−i cot β)

2π ∗where ,  is the classical con-
volution operator.

 III. Quaternion Windowed Fractional
Fourier Transform

In this section, the QWFRFT is proposed, the con-
volution  operation  for  QWFRFT  is  defined,  and  the
corresponding convolution theorem is derived. In detail,
several basic properties for the QWFRFT are investig-
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ated.
 1. 2D QWFRFT
In this  subsection,  two-sided  QWFRFT  is  pro-

posed,  and  the  relationship  between  QWFRFT  and
QFRFT is also given.

f(x) ∈ L2(R2,H)

f(x)

Definition  1　Let  ,  the  two-
sided QWFRFT of  is defined as
 

Gp1,p2ϕ (f)(v,u)

=

ˆ
R2

Ki
p1(x1, v1)f(x)ϕ(x− u)Kj

p2(x2, v2)dx (16)

Ki
p1(x1, v1) Kj

p2(x2, v2)

ϕ ∈ L2(R2,H)

where ,  are  same  in  (10)  and
(11),  be a quaternion windowed function.

α = β = π
2 (p1 = p2 = 1)

α = π
2 β = 0 (p1 =

1 p2 = 0) α = 0 β = π
2 (p1 = 0 p2 = 1)

f(x)

x1 x2 α = 0 β = 0 (p1 = 0

p2 = 0) f(x)

Note: 1)  , the equation (16)
is reduced to the QWFT [19]; 2)  and 
 and , or  and  and ,

the equation (16) is reduced to the QWFT [19] of 
for  variable  or  ;  3)  and    and

, the equation (16) is reduced to the .
Lemma  1　 The relationship  between  the  QW-

FRFT and QFRFT can be obtained as follows:
 

Gp1,p2ϕ (f)(v,u) = F p1,p2i,j {f(x)ϕ(x− u)}(v) (17)

 2. Properties of QWFRFT
In this subsection, we will  give some basic proper-

ties about the QWFRFT.
ϕ ∈ L2(R2,H)\{0}

f, g ∈ L2(R2,H)

Property  1 (Linearity) 　Let  ,
, then we get

 

Gp1,p2ϕ (λ1f + λ2g)(v,u)

= λ1G
p1,p2
ϕ (f)(v,u) + λ2G

p1,p2
ϕ (g)(v,u) (18)

λ1, λ2 ∈ Hwhere .
Proof　From the equation (16), we can easily get

it.
ϕ∈L2(R2,H)\{0}

f(x) ∈ L2(R2,H),

Property 2 (Boundedness)　Let 
and  then we have
 

|Gp1,p2ϕ (f)(v,u)| ≤ Aα,β∥f∥L2(R2)∥ϕ∥L2(R2) (19)

Proof　By using (8), we obtion
 

|Gp1,p2ϕ (f)(v,u)|2

=

∣∣∣∣ˆ
R2

Ki
p1(x1, v1)f(x)ϕ(x− u)Kj

p2(x2, v2)dx

∣∣∣∣2
= Aα,β

(ˆ
R2

∣∣∣f(x)ϕ(x− u)
∣∣∣ dx)2

≤ Aα,β

(ˆ
R2

|f(x)|2 dx
)(ˆ

R2

∣∣∣ϕ(x− u)
∣∣∣2 dx)

= Aα,β ∥f∥2L2(R2) ∥ϕ∥
2
L2(R2) (20)

The proof is completed.

ϕ ∈ L2(R2,H)\{0}
f(x) ∈ L2(R2,H),

Property  3 (shift) 　Let   and
 then we obtian

 

Gp1,p2ϕ (Thf)(v,u)

= ei
h2
1
2 sinαcosαe−ih1v1 sinαGp1,p2ϕ (f)(z,u− h)

· ej
h2
2
2 sin β cos βe−jh2v2 sin β (21)

Thf = f(x− h) h = (h1, h2) z = (z1, z2) z1 =

v1 − t1 cosα z2 = v2 − t2 cosβ
where , , , 

, .
Proof　See Appendix A.

ϕ ∈ L2(R2,H)\{0}
f(x) ∈ L2(R2,H), Msf(x) = eix1s1f(x)ejx2s2

s = (s1, s2)

Property 4 (Modulation)　Let 
and   with

, then we have
 

Gp1,p2ϕ (Msf)(v,u)

= eiv1s1 cosαe−i
s21
2 sinα cosαGp1,p2ϕ (f)(z,u)

· ejv2s2 cos βe−j
s22
2 sin β cos β (22)

z = (z1, z2) z1 = v1 − s1 sinα z2 = v2 − s2 sinβwhere , , .
Proof　See Appendix B.

ϕ ∈ L2(R2,

H)\{0} f ∈ L2(R2,H)

Property  5 (Inversion  formula)　Let  
 and  .  Then  we  give  the  inversion

of the QWFRFT as
 

f(x) =
1

∥ ϕ ∥2

ˆ
R2

ˆ
R2

Ki
p1(x1, v1)G

p1,p2
ϕ (f)(v,u)

·Kj
p2(x2, v2)ϕ(x− u)dvdu (23)

Proof　See Appendix C.
 3. Convolution of QWFRFT
In  this  subsection,  we  introduce  a  new quaternion

convolution operation for the QWFRFT. And the QW-
FRFT convolution theorem is derived.

h(x) = f(x)Θg(x) f(x), g(x) ∈
L2(R2,H) Θ

Definition 2　Let ,  
,  the  convolution  operator  for the  QW-

FRFT is defined as
 

h(x) = (fΘg)(x)

=

ˆ
R2

Aα,βeix
2
1Cαe−jx

2
2Cβeiz

2
1Cαf(z)ejz

2
2Cβ

· ei(x1−z1)2Cαg(x− z)ej(x2−z2)2Cβdz (24)

∗Based  on  the  classical  convolution  operator ,  the
QWFRFT convolution expression (24) can be rewritten
as follows:
 

h(x) = (fΘg)(x) = Aα,βe−ix
2
1Cαe−jx

2
2Cβ (eix

2
1Cαf(x)

· ejx
2
2Cβ ) ∗ (eix

2
1Cαg(x)ejx

2
2Cβ )

(25)

which means that the convolution operation in (25) can
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Θ ∗
be expressed as classical form. From Fig.1, we can cal-
culate convolution  in (25) by using classical .
 

eix1
2Cα

Aα,βe
−ix1

2Cα

e jx2
2Cβ

eix1
2Cα

h (x)

g (x)

f (x)

e jx2
2Cβ

e−jx2
2Cβ

Convolution

 
Fig. 1. Convolution operation for QWFRFT.

 

f, g ∈ L2(R2,H)Theorem  1　Let  , the  convolu-
tion theorem for the WFRFT is obtained
 

Gp1,p2ϕ∗ψ (f ⋆ g)(v,u)

= Aα,βe−i(v
2
1Cα+v22Cβ)

ˆ
R2

Gp1,p2ϕ (f)(v,y)

·Gp1,p2ψ (g)(v,y)e2i(y
2
1−(u1−y1)s1−z1y1−z1s1)Cα

· e2i(y
2
2−(u2−y2)s2−z2y2−z2s2)Cβdy (26)

Proof　See Appendix D.
f, g ∈ L2(R2,H)Theorem  2　Let  , the  convolu-

tion production theorem for WFRFT is achieved
 

Gp1,p2ϕ {ei(x
2
1Cα+x

2
2Cβ)f(x)g(x)ϕ(x− u)

2
}

= A−α,−β(G
p1,p2
ϕ f(v)⋆Gp1,p2ϕ g(v)) (27)

where
 

A−α,−β = −
√
(1− i cotα)(1− i cotβ)

2π

Proof　See Appendix E.
f, g ∈ L2(R2,H) f(x) = f0(x)+

if1(x)+jf2(x)+kf3(x) = fa(x) + fb(x)j g(x) = g0(x)+

ig1(x) + jg2(x) + kg3(x) = ga(x) + gb(x)j fa(x) =

f0(x) + if1(x) fb(x) = f2(x) + if3(x) ga(x) = g0(x)+

ig1(x) gb(x) = g2(x) + ig3(x)

Theorem 3　Let  , 
, 
, where 

, , 
, .  Then  the  convolution

theorem associated with the QWFRFT is given by
 

Gp1,p2ϕ∗ψ (fΘg)(v,u)

=

ˆ
R2

Aα,βBi[G
p1,p2
ϕ (fa)(v,y) + jGp1,p2ϕ (fb)(v,y)]

· [Gp1,p2ψ (ga)(v,u−y)+jGp1,p2ψ (gb)(v,u−y)]Bjdy
(28)

where
 

Bi = ei(−v
2
1+y

2
1−2z1(s1+y1)+(u1−y1)2−2s1(u1−y1))Cα

 

Bj = ej(−v
2
2+y

2
2−2z2(s2+y2)+(u2−y2)2−2s2(u2−y2))Cβ

Proof　From the Definitions 1 and 2, we have 

Gp1,p2ϕ∗ψ (fΘg)(v,u)

=

ˆ
R2

Ki
p1(x1, v1)(fΘg)(x)ϕ ∗ ψ(x− u)Kj

p2(x2, v2)dx

=

ˆ
R2

ˆ
R2

ˆ
R2

A3
αe
i(v21Cα−x1v1Bα)

· eiz
2
1Cαf(z)ejz

2
2Cβei(x1−z1)2Cαg(x− z)ej(x2−z2)2Cβ

· e−ix
2
1Cαe−jx

2
2Cβeir

2
1Cαϕ(r)ejr

2
2Cβ

· ei(x1−u1−r1)2Cαψ(x− u− r)ej(x2−u2−r2)2Cβ

·A3
βe
j(v22Cβ−x2v2Bβ)dxdzdr (29)

r = z − y x = z + sLet , , the equation (29) can be
rewritten as
 

Gp1,p2ϕ∗ψ (fΘg)(v,u)

=

ˆ
R2

ˆ
R2

Aαei(−v
2
1+y

2
1−2z1(s1+y1))

· ei((u1−y1)2−2s1(u1−y1))Cα ·Aαei((v
2
1+z

2
1)Cα−z1v1Bα)

· [fa(z) + fb(z)j]ϕ(z − y) ·Aβej(v
2
2+z

2
2)Cβ−z2v2Bβ)

·
ˆ
R2

Aαei(v
2
1+s

2
1)Cα−s1v1Bα)

· [ga(s) + gb(s)j]ψ(s− (u− y))

·Aβej(v
2
2+s

2
2)Cβ−s2v2Bβ)Aβej(−v

2
2+y

2
2−2z2(s2+y2))

· ej((u2−y2)2−2s2(u2−y2))Cβdzdsdy

=

ˆ
R2

Aα,βBi[G
p1,p2
ϕ (fa)(v,y) + jGp1,p2ϕ (fb)(v,y)]

· [Gp1,p2ψ (ga)(v,u−y)+jGp1,p2ψ (gb)(v, (u−y)]Bjdy
(30)

The proof is achieved.
f, g ∈ L2(R2,H) f(x) = fa(x)+

fb(x)j g(x) = ga(x) + gb(x)j fa(x) = f0(x)+

if1(x) fb(x)=f2(x)+if3(x) ga(x)=g0(x)+ig1(x)

gb(x)=g2(x)+ ig3(x)

Corollary 1　Let , 
, ,  where 
, , ,

.  Then  the  convolution  theorem
associated with the QFRFT is given by
 

F p1,p2i,j (fΘg)(v)

= e−i(v1Cα+v2Cβ)[F p1,p2i,j (fa)(v) + jF p1,p2i,j (fb)(v)]

· [F p1,p2i,j (ga)(v) + jF p1,p2i,j (gb)(v)]

(31)

 IV. Fast Algorithm of QWFRFT

f, g ∈ L2(R2,H)

In this section, we will discuss the fast algorithm of
QWFRFT  and  estimate  the  complexity  of  quaternion
windowed fractional  convolution for  in
the transform domain.

f(x) ∈ L2(R2, H) p1, p2 ∈ [−1, 1]For , ,  from  (16),
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we have
 

Gp1,p2ϕ {f(x)}

=

ˆ
R2

Ki
p1(x1, v1)f(x)ϕ(x− u)Kj

p2(x2, v2)dx

= Ai(v1)

ˆ
R2

e−i(v1x1 cscα)q(x)e−j(v2x2 csc β)dxAj(v2)

(32)

where
 

q(x) = eix
2
1Cαf(x)ϕ(x− u)ejx

2
2Cβ (33)

 

Ai(v1) = Aαei
v2
1
2 cotα, Aj(v2) = Aβej

v2
2
2 cot β (34)

Let
 

M(v) =

ˆ
R2

e−i(v1x1 cscα)q(x)e−i(v2x2 csc β)dx (35)

then
 

M(v1, v2) +M(v1,−v2)
2

=

ˆ
R2

e−i(v1x1 cscα)q(x) cos(v2x2 cscβ)dx (36)

 

M(v1, v2)−M(v1,−v2)
2

=

ˆ
R2

e−i(v1x1 cscα)q(x)(−i) sin(v2x2 cscβ)dx (37)

therefore,
 

M(v1, v2)+M(v1,−v2)
2

+
M(v1, v2)−M(v1,−v2)

2
(−k)

=

ˆ
R2

e−i(v1x1 cscα)q(x)e−j(v2x2 csc β)dx

(38)

Then we obtain
 

Gp1,p2ϕ f(v,u)

= Ai(v1)
M(v1, v2)(1− k) +M(v1,−v2)(1 + k)

2
Aj(v2)

(39)

q(x)From the  quaternion  algebra,  in  (33)  can  be
expressed as 

q(x) = q0(x) + iq1(x) + jq2(x) + kq3(x)

= qa(x) + qb(x)j (40)

qa(x) = q0(x) + iq1(x) qb(x) = q2(x) + iq3(x)where , ,
we have
 

M(v) =

ˆ
R2

e−i(v1x1 cscα)qa(x)e−j(v2x2 csc β)dx

+ (

ˆ
R2

e−i(v1x1 cscα)qb(x)e−j(v2x2 csc β)dx)j

= F{qa(x)}(v1 cscα, v2 cscβ)
+ F{qb(x)}(v1 cscα, v2 cscβ)j

(41)

The QWFRFT can be calculated by 2D FFT. The
calculation steps of QWFRFT are as follows:

q(x) f(x)Step 1: Calculate  from  using equations (33)
and (40).

M(v) q(x)Step 2: Calculate  from  using (41).
Ai(v1) Aj(v2)Step 3: Calculate  and  using (34).
Gp1,p2ϕ f(x)Step 4: Calculate  using (39).

M×N
MN log2(MN)

f(x) O(2MN log2(MN))

q(x) M(v)

Now,  we  give  the  computational  complexity  of
QWFRFT. For a 2D discrete signal of size , a 2D
discrete  Fourier  transform  requires a  
real-number multiplications [20], [35], [36]. By (39) and
(41), we can calculate the complexity of QWFRFT for
quaternion  signals  is  . Obvi-
ously, the computational complexity of QWFRFT is the
same  as  that  of  QFRFT.  Therefore,  we  can  seen  that
the major computational for QWFRFT load of calcula-
tion  of  and   due  to  the  windowed  function,
which leads to an increase in the amount of calculation.
But  we  can  calculate  QWFRFT by  using  classical  2D
FFT from Fig.2 which is very important to engineering
usage.

f(x) g(x) (x1 ∈ [1,M ]

x2 ∈ [1, N ] f(x),

g(x) ∈ L2(R2,H)

Next, we  estimate  the  complexity  of  the  QW-
FRFT convolution by taking  and  ,

)  over  the  transform  domain.  Given 
, we can rewrite them as follows:

 

f(x) = f0(x) + if1(x) + jf2(x) + kf3(x)

= fa(x) + fb(x)j (42)
 

g(x) = g0(x) + ig1(x) + jg2(x) + kg3(x)

= ga(x) + gb(x)j (43)

f(x) = fa(x) + fb(x)j g(x) = ga(x)+

gb(x)j

Substitute  and  
 into (25), we have 

eix1
2Cα+jx2

2Cβ Ai (w1) Aj (w2)

M (w1, w2) (1−k)+M (w1, −w2) (1+k)

2
f (x)

ϕ (x−u)
Gϕ

p1, p2 f (w, u)

2D QFT

(with it argument

scaled by csc(·))

Windowed signal

 
Fig. 2. The calculation process of QWFRFT.
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(fΘg)(x)

= Aα,βe−ix
2
1Cαe−jx

2
2Cβ

·
{
(eix

2
1Cαfa(x)ejx

2
2Cβ ) ∗ (eix

2
1Cαga(x)ejx

2
2Cβ )

+ (eix
2
1Cαfa(x)ejx

2
2Cβ ) ∗ (eix

2
1Cαgb(x)ejx

2
2Cβ )j

+ (eix
2
1Cαfb(x)ejx

2
2Cβ ) ∗ (eix

2
1Cαga(x)ejx

2
2Cβ )j

− (eix
2
1Cαfb(x)ejx

2
2Cβ ) ∗ (eix

2
1Cαgb(x)ejx

2
2Cβ )

}
(44)

O(16MN log2(MN))

From the Theorem 1, Theorem 3, Corollary 1 and
the calculation steps of QWFRFT, we obtain the com-
plexity of  the quaternion windowed fractional  convolu-
tion via 2D FFT is .

 V. Conclusions
In this research, we proposed the QWFRFT based

on quaternion algebra and FRFT, which can be seen as
the  generalization  of  the  QWFT.  Some  properties  for
the QWFRFT  are  given.  A  novel  QWFRFT  convolu-
tion  operation  is  defined,  and  the  convolution  and
product theorem  associated  with  the  QWFRFT  is  de-
rived.  Finally,  the  fast  algorithm  for  QWFRFT  is
presented,  the  complexity  of  QWFRFT,  quaternion
windowed  fractional  convolution  via  the  convolution
and product  theorem  are  discussed  in  this  paper.  Al-
though QWFRFT requires a large amount of computa-
tion, its complexity is the same as 2D FFT, hence, we
can calculate QWFRFT by using classical 2D FFT.

Since  quaternion  plays  an  important  role  in  color
images processing  for  the  multidimensional  signal  ana-
lysis,  in  practical  application,  the most  important part
is to seek the appropriate convolution theorem and the
corresponding filter design. Our future work will be fur-
ther focused  on  the  convolution  theorem  in  the  qua-
ternion  fractional  domain  and  its  filter  design  in  color
image processing.

 Appendix A. Proof of the Property 3

1By Definition , we have
 

Gp1,p2ϕ (Thf)(v,u)

=

ˆ
R2
Ki
p1

(x1, v1)(f)(x− h)ϕ(x− u)Kj
p2

(x2, v2)dx (A-1)

t = x− hLet  in (A-1) we obtain
 

Gp1,p2ϕ (Thf)(v,u)

=

ˆ
R2
Aαe

i

(
(h1+t1)2+v2

1
2

cotα−(h1+t1)v1 cscα
)

· f(t)ϕ(t− (u− h))

·Aβe
j

(
(h2+t2)2+v2

2
2

cot β−(h2+t2)v2 csc β
)
dt

= ei
h2
1
2

sinαcosαe−ih1v1 sinαGp1,p2ϕ (f)(z,u− h)

· ej
h2
2
2

sin β cos βe−jh2v2 sin β (A-2)

The proof of Property 3 completed.

 Appendix B. Proof of the Property 4

From Definition 1, it follows that
 

Gp1,p2ϕ (Msf)(v,u)

=

ˆ
R2
Aαe

i

(
x2
1+v2

1
2

cotα−x1v1 cscα
)
eix1s1f(x)

· ϕ(x− u)ejx2s2Aβe
j

(
x2
2+v2

2
2

cot β−x2v2 csc β
)
dx

=

ˆ
R2
Aαeiv1s1 cosαe−i

s21
2

sinα cosα

· e
i

(
x2
1+z21
2

cotα−x1z1 cscα
)
f(x)ϕ(x− u)Aβ

· e
j

(
x2
2+z22
2

cot β−x2z2 csc β
)
ejv2s2 cos βe−j

s22
2

sin β cos βdx

= eiv1s1 cosαe−i
s21
2

sinα cosαGp1,p2ϕ (f)(z,u)

· ejv2s2 cos βe−j
s22
2

sin β cos β (B-1)

The proof is completed.

 Appendix C. Proof of the Property 5

f(x) ∈ L2(R2,H)Applying the inversion QFRFT of  , we get
 

f(x)ϕ(x− u)

= F−p1,−p2
i,j {Gp1,p2ϕ (f)(v,u)}

=

ˆ
R2
Ki
p1

(x1, v1)G
p1,p2
ϕ (f)(v,u)Kj

p2 (x2, v2)dv (C-1)

ϕ(x− u)multiplying by  on the both side of (C-1), we have
  ˆ

R2
f(x) ∥ ϕ ∥2 du =

ˆ
R2

ˆ
R2
Ki
p1

(x1, v1)G
p1,p2
ϕ (f)(v,u)

·Kj
p2 (x2, v2)ϕ(x− u)dvdu (C-2)

hence, we get
 

f(x) =
1

∥ ϕ ∥2

ˆ
R2

ˆ
R2
Ki
p1

(x1, v1)G
p1,p2
ϕ (f)(v,u)

·Kj
p2 (x2, v2)ϕ(x− u)dvdu (C-3)

The proof is achieved.

 Appendix D. Proof of the Theorem 1

By the equation (15), we have
 

Gp1,p2ϕ∗ψ (f ⋆ g)(v,u)

=

ˆ
R2
Kp1 (x1, v1){f ⋆ g}(x)ϕ ∗ ψ(x− u)Kp2 (x2, v2)dx

=

ˆ
R2

ˆ
R2
A2
α,βe

i((x21+v
2
1)Cα−x1v1Bα)e−i(x

2
1Cα+x22Cβ)

· ei(z
2
1Cα+z22Cβ

)
f(z)g(x− z)

· ei((x1−z1)
2Cα+(x2−z1)2Cβ)dxdz

·
ˆ
R2
Aα,βe

−i(x21Cα+x22Cβ)ei(r
2
1Cα+r22Cβ)ϕ(r)

· ψ(x− u− r)ei((x1−u1−r1)2Cα+(x2−u2−r2)2Cβ)

· ei((x
2
2+v

2
2)Cβ−x2v2Bβ)dr (D-1)

490 Chinese Journal of Electronics 2023



r = z − y x = z + sLet , , we get
 

Gp1,p2ϕ∗ψ (f ⋆ g)(v,u)

=

ˆ
R2

ˆ
R2

ˆ
R2
A3
α,βe

i(v21Cα+v22Cβ)e−i(z1+s1)
2Cα

· e−i(z2+s2)
2Cβ e−i((z1+s1)v1Bα+(z2+s2)v2Bβ)

· ei(z
2
1Cα+z22Cβ

)
f(z)g(s)ei(s

2
1Cα+s22Cβ)

· ei((z1−y1)
2Cα+(z2−y2)2Cβ)ϕ(z − y)ψ(s− (u− y))

· ei(s1−(u1−y1))2Cα+(s2−(u2−y2))2Cβdzdsdy

Hence, we obtain
 

Gp1,p2ϕ∗ψ (f ⋆ g)(v,u)

= Aα,βe
−i(v21Cα+v22Cβ)

·
ˆ
R2
Gp1,p2ϕ (f)(v,y)Gp1,p2ψ (g)(v,y)

· e2i(y
2
1−(u1−y1)s1−z1y1−z1s1)Cα

· e2i(y
2
2−(u2−y2)s2−z2y2−z2s2)Cβdy (D-2)

which completes the proof of Theorem 1.

 Appendix E. Proof of the Theorem 2

With Definition 1, we have
 

F−p1,−p2
ϕ A−α,−β(G

p1,p2
ϕ (f)(v)⋆Gp1,p2ϕ (g)(v))

= A−α,−β

ˆ
R2

e−i((x
2
1+v

2
1)Cα+(x22+v

2
2)Cβ)

· {A−α,−β(G
p1,p2
ϕ f(v)⋆Gp1,p2ϕ g(v))}

· ei(x1v1Bα+x2v2Bβ)dv

= (A−α,−β)
2e−i(x

2
1Cα+x

2
2Cβ)

·
ˆ
R2

ˆ
R2

(Gp1,p2ϕ g(v − z)

· e−i((v1−z1)
2)Cα+(v2−z2)2Cβ))

· (Gp1,p2ϕ f(z)e−i(z
2
1Cα+z21Cβ))

· ei(x1v1Bα+x2v2Bβ)dxdz (E-1)

s = v − zLet , we have
 

F−p1,−p2
ϕ A−α,−β(G

p1,p2
ϕ f(v)⋆Gp1,p2ϕ g(v))

= (A−α,−β)
2e−i(x

2
1Cα+x

2
2Cβ)

·
ˆ
R2

ˆ
R2

(Gp1,p2ϕ g(s)e−i(s
2
1Cα+s

2
2Cβ))

· (Gp1,p2ϕ f(z)e−i(z
2
1Cα+z22Cβ))

· ei((s1+z1)x1Bα+(s2+z2)x2Bβ)dsdz

= e−i(x
2
1Cα+x

2
2Cβ)

·
ˆ
R2
A−α,−β(G

p1,p2
ϕ g(s)

· e−i(s
2
1Cα+s

2
2Cβ))ei(s1v1Bα+s2v2Bβ))

·
ˆ
R2
A−α,−β(G

p1,p2
ϕ f(z)

· e−i(z
2
1Cα+z

2
2Cβ)ei(z1v1Bα+z2v2Bβ))dsdz

= f(x)g(x)ϕ(x− u)
2
ei(x

2
1Cα+x

2
2Cβ) (E-2)

Hence, we achieve
 

(Gp1,p2ϕ f(v)⋆Gp1,p2ϕ g(v))

= (A−α�−β)
2e−i(v

2
1Cα+v

2
2Cβ)(Gp1,p2ϕ f(v)

· e−i(v
2
1Cα+v

2
2Cβ�)) ∗ (Gp1,p2ϕ g(v)e−i(v

2
1Cα+v

2
2Cβ))

The proof of Theorem 2 is achieved.
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