
A Semi-shared Hierarchical Joint Model for
Sequence Labeling

LIU Gongshen1, DU Wei1, ZHOU Jie1, LI Jing2, and CHENG Jie2

(1. School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
(2. State Grid Information & Telecommunication Branch, Beijing 100761, China)

 
   Abstract — Multi-task  learning  is  an  essential  yet
practical mechanism for improving overall performance in
various  machine  learning  fields.  Owing  to  the  linguistic
hierarchy, the hierarchical joint model is a common archi-
tecture used in natural  language processing.  However,  in
the  state-of-the-art  hierarchical  joint  models,  higher-level
tasks  only  share  bottom  layers  or  latent  representations
with  lower-level  tasks  thus  ignoring  correlations  between
tasks  at  different  levels,  i.e.,  lower-level  tasks  cannot  be
instructed by the higher features. This paper investigates
how to advance the correlations among various tasks su-
pervised  at  different  layers  in  an  end-to-end  hierarchical
joint learning model. We propose a semi-shared hierarch-
ical  model  that  contains  cross-layer  shared  modules  and
layer-specific modules.  To  fully  leverage  the  mutual  in-
formation  between  various  tasks  at  different  levels,  we
design  four  different  dataflows  of  latent  representations
between the shared and layer-specific modules. Extensive
experiments  on  CTB-7  and  CONLL-2009  show  that  our
semi-shared approach outperforms basic hierarchical joint
models  on  sequence  tagging  while  having  much  fewer
parameters. It  inspires  us  that  the  proper  implementa-
tion  of  the  cross-layer  sharing  mechanism  and  residual
shortcuts  is  promising  to  improve  the  performance  of
hierarchical  joint  natural  language  processing  models
while reducing the model complexity.
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Natural  language processing, Cross-layer  sharing, Lexic-
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 I. Introduction
Multi-task learning  (MTL)  has  been  widely  ex-

plored in computer vision [1], speech recognition [2] and
natural  language  processing  (NLP)  [3].  Specifically,  it
has shown tremendous success in improving overall per-
formance  for  NLP tasks,  such  as  monolingual  machine

translation  [4],  text  classification  [5], and  sequence  la-
beling [6]. Moreover, it can be divided into the parallel
sharing and hierarchical joint learning model.

The  parallel  sharing  works  share  lower  layers
between  similar  tasks  or  various  datasets  of  the  same
task  in  a  hard-sharing  or  soft-sharing  manner,  which
can enhance the performance and overcome the over-fit-
ting problem. The former shares lower layers among all
tasks [7], [8] while the latter flexibly shares parameters
with constraints [5]. However,  its straightforward shar-
ing strategy might fail  to capture hierarchically-related
linguistic  features.  In  the  other  hand,  the  hierarchical
joint learning architecture is proved to be quite power-
ful in different NLP tasks [9]–[13].

In  natural  language  processing,  the  given  text
might first be processed by the fundamental tasks, such
as word segmentation, part-of-speech, dependency pars-
ing,  named  entity  recognition,  semantic  role  labeling
and so on. The pipeline is arranged according to the lin-
guistic  hierarchy  as  illustrated  in Fig.1 .  It  decomposes
the given  text  into  various  tags  and  is  widely  de-
veloped in different applications, such as information re-
trieval, machine reading comprehension, machine trans-
lation, etc.  Given  to  the  linguistic  hierarchy  informa-
tion,  the hierarchical  MTL methods could leverage the
complicated  linguistic  knowledge  based  on  the  simple
features.  In  a  hierarchical  joint  model,  as  depicted  in
Fig.2, all tasks are fed into the same model but super-
vised at  different  layers.  It  learns  various  linguistic  in-
formation  hierarchically,  such  as  syntactic,  grammar
and  semantic  meaning,  from  simple  tasks  to  complex
ones. Thus, complex tasks could directly utilize the pri-
or  knowledge  from  bottom  layers.  Sogaard et  al. [9],
Hashimoto et  al. [10 ],  and  Sanh et  al. [11 ]  proposed
three variants of the RNN-based hierarchical joint mod- 
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els with residual latent representations and figured out
the effectiveness of residual shortcuts for hierarchical se-
quence tagging tasks. Recently, Strubell et al. [6] intro-
duced  a  state-of-the-art  transformer-based  hierarchical
model that  incorporates  syntactic  information  to  se-
mantic  role  labeling  by  syntactically-informed  self-at-
tention. However, it might be difficult for the hierarch-
ical joint model to converge when the number of tasks
or the depth of model increases. Even though the hier-
archical models leverage linguistic features in a bottom-
up  hierarchical  manner,  the  current  architecture  lacks
universal  features among various tasks and the higher-
level  layers  cannot  be  instructed  by  lower  tasks.  It  is
worth  exploring  whether  hierarchical  models  could  be
further improved and shrunk.

Following  the  novel  transformer-based  hierarchical

model  [6],  our  paper  investigates  how  to  advance  the
correlations among hierarchical tasks with shared mod-
ules  and  rich  latent  representations  in  a  hierarchical
joint framework.  We  also  find  out  an  effective  ap-
proach to properly merge residual shortcuts and shared
modules. In order to maintain the hierarchy of linguist-
ic  features,  we propose to duplicate the shared module
across different layers  in the original  hierarchical  mod-
els. Notably, the shared module is reused in a hierarch-
ical  manner  during  training  and  inference  so  that  this
shared  module  could  be  instructed  by  all  tasks  and
learn how to extract universal linguistic features. Since
an additional shared module is added into the hierarch-
ical joint model, the size of those original layer-specific
modules  could  be  compacted  while  the  performance
could  also  be  maintained  or  even  improved.  In  other
words, our proposed cross-layer shared module can not
only advance performance but also shrink the model.

The  tasks  for  NLP  hierarchical  model  are  usually
selected according to interactions, such as semantic fun-
damental  tasks  [11],  syntactic  tasks  [9],  both  syntactic
and semantic tasks [6], or even fundamental and applic-
ation  tasks  [10].  In  this  work,  we  conduct  experiments
across part-of-speech tagging,  dependency parsing,  pre-
dicate detection and semantic role labeling on CONLL-
2009 Chinese subset and CTB-7.

Our contributions are as follows:
•  We  propose  a  novel  semi-shared  hierarchical

joint  model  (SSHM)  with  a  new  sharing  mechanism
that not only shares the parameters of lower layers hier-
archically,  but  also  shares  the  modules  across  different
depths of the hierarchical model parallelly.

•  We  explore  different  dataflows  between  the
shared and layer-specific modules in the SSHM. In gen-
eral, the  full-combined  dataflow  achieves  better  per-
formance compared  to  crossed  or  semi-combined  data-
flows. It shows that both universal and task-specific fea-
tures benefit the hierarchical joint learning.

• We clarify the proper implementation of rich re-
sidual shortcuts in our semi-shared manner.

8/8 %

• We validate SSHM on CTB-7 and CONLL-2009
datasets. Extensive  experiments  show  that  our  ap-
proach  surpasses  previous  joint  many-task  models  and
the state-of-the-art  transformer-based hierarchical  joint
model LISA  while  containing  fewer  parameters.  Com-
pared  with  LISA,  our  proposed  model  with  shared
heads  ratio  of  obtains  1.86  macro  improvement
with nearly 0.5 × size of parameters.

 II. Our Approach
In this section, we first introduce the transformer-

based  hierarchical  model  and  residual  shortcuts.  Then,
we clarify our semi-shared mechanism with the usage of
the  shared  module  and  dataflows  among  shared  and
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Fig. 1. Example of the linguistic hierarchical structure.
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Fig. 2. The basic transformer-based hierarchical model.
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private  modules.  Also,  four  variants  are  explored  via
different dataflows. The overall framework for the mul-
tiple tasks are introduced at the end.

 1. Hierarchical transformer model
As in Fig.2, the basic hierarchical transformer mod-

el  is  similar  to  the  classical  RNN-based  hierarchical
model  [9].  Different  tasks  are  supervised  at  different
depths  with  a  task-specific  classifier.  The  lower  tasks
share  all  their  encoder  layers  with  higher  tasks.  Thus,
the  higher  task  models  directly  learn  from  the  hidden
states  of  the  lower  task  models,  which  helps  the  deep
model  directly  leverage  the  simple  features  from  lower
tasks.

J X

T

H0

(j − 1) j

H
j

Formally, suppose that the holistic transformer en-
coder has  layers.  Assume that the given sentence 
has  tokens.  It  would  be  represented  by  pretrained
word  embedding,  and  then  the  positional  embedding
and word embedding are concatenated as the token in-
puts of the transformer encoder. The positional embed-
ding  allows  the  self-attention  module  to  be  aware  of
each token position. Then the token inputs as  is fed
into  the  first  layer  of  the  transformer  encoder.  The
transformer  encoder  [14]  is  constructed  by  multi-head
self-attention  and  feed-forward  network  with  residual
connection and layer  normalization.  The output  of  the

-th stacked layer is taken as the input of the -th
one.  Based  on  the  scaled  dot  product  attention,  the
multi-head attention sublayer obtains intermediate rep-
resentation output  by
 

H
j
= LN(SelfAtt(Hj−1) +Hj−1) (1)

LN(·)
SelfAtt(·)

N

N

Hj−1 Qj ∈ RT× dk Kj ∈ RT× dk

V j ∈ RT× dv

Qj Kj

Aj ∈ RT×T

n

where  denotes the layer normalization operation.
 means the  multi-head  self-attention  mechan-

ism.  The  multi-head  attention  submodule  contains 
attention heads, which enables  distinct scaled self-at-
tention transformation views to attend to the tokens in
text  sequence.  As  for  each  attention  head,  the  input

 is firstly projected into , ,
, respectively  as  query,  key  and value  rep-

resentations. Then the module multiplies  by  and
get  the  attention  weight  of  the  pair-wise
tokens.  The self-attention submodule of  attention head
 is as follows:

 

SelfAttn(Hj−1) = softmax(
Qj

nK
j
n
T

√
dk

)V j
n

= Aj
nV

j
n

(2)

dk

N

where  is the dimension of the query and key vector,
which is used to scale the dot products to avoid push-
ing the softmax function into regions having extremely
small  gradients.  All  outputs  of  attention  heads  is
concatenated  as  the  hidden  states  of  the  multi-head

H
j

Hj

self-attention sublayer.  is then fed into the feed-for-
ward sublayer  to  generate  the  final  output  of  this  en-
coder layer :
 

Hj = LN(FFN(H
j
) +H

j
) (3)

FNN(·)where  represents  the  fully  connected  feed-for-
ward  networks.  The  feed-forward  network  consists  of
linear transformations with leaky ReLU [15], layer nor-
malization and residual connection.

The hierarchical  transformer  joint  model  is  con-
structed by the aforementioned stacked transformer en-
coder layers. And multiple tasks would be supervised at
different layers  with  distinct  classifiers  as  different  de-
coders.

 2. Residual latent representation

l
(t)
i i t

To leverage linguistic information better,  the label
embedding of  lower  tasks  could  be  added  into  the  in-
put  of  higher  tasks.  Label  representation  is  generated
from label probabilities and label embedding. The aver-
aged  label  embedding  of  -th  token  from  task  is
calculated as
 

l
(t)
i =

n(t)∑
m=1

P (y
(t)
i = m|s(t)i ) · e(t)m

(4)

s
(t)
i P (y

(t)
i =m|s(t)i )

m s
(t)
i n(t)

where  is the layer-normalized output, 
is the probability of tagging as  according to , 
refers to the number of labels.

e
(t)
m

m

tj−1 tj

 is randomly  initialized  label  embedding  of  la-
bel .  The  label  representations  from lower  tasks  and
origin  token  embedding  are  concatenated  as  the  input
of  higher  tasks.  With  the  layer-normalized  output  of
task , the input of task  is concatenated as
 

x
(tj)
i = [s

(tj−1)
i ; ewi ; l

(t1)
i ; . . . ; l

(tj−1)
i ] (5)

ewi i

l
(tk)
i i

tk

where  refers  to  origin  token  embedding  of  the -th
token and  denotes the global representation of the -
th token on task .

 3. Semi-shared hierarchical model
The traditional  hierarchical  model  enables  com-

plex  tasks  to  utilize  the  features  of  simple  tasks
however  lacks  the  universal  features  and  fine-grained
mutual information among all  tasks.  Also,  the  conven-
tional  architecture  improve  the  higher  tasks  from  the
fundamental  ones  in  a  bottom-up  manner  but  ignores
the instruction of  complicated tasks for  the lower ones
in the top-down view. In order to make multiple tasks
learn from each other better and shrink the model,  we
propose  to  share  parameters  across  lower  and  higher
tasks  at  different  depths  in  the  hierarchical  model.
Those  shared  parameters  can  be  taken  as  the  shared
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module  across  tasks  and  also  across  various  depths  of
the  hierarchical  model.  To  be  specific,  those  shared
modules are reused in all tasks and self-cascaded across
layers in the overall structure so that it would leverage
the  mutual  information  among  tasks  and  compact  the
overall hierarchical framework.

As illustrated in Fig.3, we propose to add a shared
module which is reused throughout the overall model in
a  hierarchical  manner.  Thus,  partial  parameters,  the
shared  ones,  in  higher  layers  learn  from  bottom  tasks
while partial parameters in lower layers also take com-
plex linguistic information of higher tasks into account.
In the other words, shared modules learn the linguistic
hierarchy  in  both  top-down  and  bottom-up  manner.
The  shared  module  reused  across  the  model  learns  to
leverage both simple and complicated linguistic inform-
ation  from  bottom  to  top  tasks.  Thus,  a  hierarchical
model with the additional shared module could extract
more abundant linguistic representations. To differ from
the  traditional  one,  we  call  such  a  hierarchical  model
with both the cross-layer shared module and hierarchic-
al  task-specific  module  as  a  semi-shared  hierarchical
model.
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Fig. 3. The proposed semi-shared hierarchical model.
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The input of task  can be divided into the input
 of  the  shared module  and the  input  of  the

layer-specific module .  Moreover, the output of task
 consists  of  the output  of  shared module  and

the output  of layer-specific module . The overall
dataflow is as follows:
 

h(tj)
p = Mj(x

(tj)
p )

h(tj)
s = M0(x

(tj)
s )

y(tj) = Decoder([h(tj)
p ;h(tj)

s ]) (6)

y(tj) tj
htj
s htj

p

where the final prediction  of task  is based on the
concatenation of  and .

Based on the multi-head self-attention mechanism,

the  ratio  of  shared  modules  and  layer-specific  modules
can be varied by the number of attention heads used in
shared  and  layer-specific  modules.  The  value  of  ratio
could refer to
 

Ratio =
Ns

Ns +Np
(7)

Ns Np

Ns +Np

where  and   refers  to  the  number  of  attention
heads in the shared and the layer-specific module. Note
that the sum  is set as a specified number while
we conduct the ablation study of the sharing ratio.

The model with ratio of 0 refers to the traditional
hierarchical  joint  model.  Obviously,  the  parameters  of
our  semi-shared  model  would  decrease  while  the  ratio
increase. While the ratio equals to 1, the model is con-
structed  by  cascading  the  same  reused  module.
However,  the  ratio  would  affect  the  performance  of
SSHM upon different collections of multiple tasks.

 4. Different dataflows
The layer-specific module mainly focuses on its su-

pervised task while the shared module pays attention to
overall tasks. The former extracts task-specific linguist-
ic information and the latter generates the common lin-
guistic  feature.  Thus,  the  arrangement  of  dataflows
between  those  two  modules  is  critical  to  our  semi-
shared framework.

tj

1) Straight. The simplest dataflow is to directly use
their own output as the input of next task, as straight
dataflow in Fig.4(a). It allows task-specific and univer-
sal  features  to  be  independent,  which  seems  to  split  a
hierarchical model into two parts in a parallel manner.
The input of task  is constructed as
 

x(tj)
p = F ([h(tj−1)

p ; ew; l(t1); . . . ; l(tj−1)])

x(tj)
s = F ([h(tj−1)

s ; ew; l(t1); . . . ; l(tj−1)]) (8)

Fwhere  means projection  layer  for  linear  transforma-
tion.

tj
tj−1

2)  Crossed.  The  task-specific  features  might  be
more important than the universal information from the
shared  module.  We  could  apply  the  cross-task  module
for leveraging  common  representations  from  the  previ-
ous task-specific features. As Fig.4(b), the crossed vari-
ant  employs  the  output  of  layer-specific  module  from
previous task as the input for both private and shared
modules.  The  output  of  shared  module  would  not  be
transferred  into  next  task  but  used  in  decoder,  which
allows  common  linguistic  feature  for  task  to  learn
from task-specific information of task .
 

x(tj) = F ([h(tj−1)
p ; ew; l(t1); . . . ; l(tj−1)]) (9)

x(tj)where  is  fed  into  both  shared  and  task-specific
modules as their inputs.
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p

x
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3)  Semi-combined.  The  third  variant  applies  the
combination of task-specific outputs and universal out-
puts  from  the  previous  task  to  the  shared  module,
which extracts common linguistic information better. In
Fig.4(c),  Its  input  consists  of  layer-specific  input 
and shared input , which enriches the common fea-
tures.
 

x(tj)
p = F ([h(tj−1)

p ; ew, l(t1); . . . ; l(tj−1)])

x(tj)
s = F ([h(tj−1)

p ;h(tj−1)
s ; ew; l(t1); . . . ; l(tj−1)]) (10)

tj

tj−1

4) Full-combined. To extract abundant features in
both  private  and  shared  modules,  the  input  of  task 
combines  the  outputs  of  those  two  modules  from  task

.  As  shown in Fig.4 (d),  the  full-combined dataflow
leverages advantages  of  semi-shared  and  crossed  data-
flow  but  has  a  slightly  larger  amount  of  parameters
than  the  aforementioned  dataflows.  To  obtain  both
task-specific  and  common  linguistic  feature  better,  it
combines outputs of shared and layer-specific module as
the input of next task.
 

x(tj) = F ([h(tj−1)
p ;h(tj−1)

s ; ew; l(t1); . . . ; l(tj−1)]) (11)

x(tj)where  is  the  input  of  the  shared and task-specific

modules.
 5. Multiple tasks
We conduct experiments on sequence tagging tasks,

including  part-of-speech  tagging  (POS),  dependency
parsing (DEP), predicate detection (PRE) and semant-
ic role labeling (SRL). The label structure of each task
is  the  same  as  that  in  [16].  We  use  Word2Vec  [17]  to
pretrain word  embedding  as  initial  trainable  token  in-
put.

1) Part-of-speech tagging
Part-of-speech tagging is a lexical task for marking

each  word  in  the  given  text  with  a  specified  part  of
speech.  As for  the  first  task,  its  initial  inputs  for  both
shared  and  layer-specific  module  are  token  embedding
and position embedding. Then the concatenated output
is fed into a softmax classifier to generate the probabil-
ities of  predictions.  Those  probabilities  would  be  util-
ized in the following tasks for the global label represent-
ations of POS.

2) Dependency parsing
Dependency  parsing,  as  a  syntactic  analysis  task,

divides the  given  sentence  into  various  parts  and  ana-
lyze  the  parts  with  the  corresponding  formal  grammar
rules.  Its  input consists  of  the hidden state from POS,
origin word embedding and label representation of POS.
The input is fed into a task-specific projection layer as
 

x
(dep)
Mi

= F
(pos)
i ([h(pos); ew; l(pos)]) (12)

where  projection  layer  differs  upon  the  following  task-
specific  and  cross-layer  shared  module.  Notably,  the
shared  module  utilized  at  POS  is  reused  for  DEP  at
higher layers of the overall model.

t q

Following the  syntactically  self-attention  mechan-
ism [6], root token is defined as a self-loop. Head predic-
tions are calculated by the attention weight from token
 to a candidate head  and softmax function. Depend-

ency labels  are  generated  by  per-class  biaffine  opera-
tions between  the  head  and  dependency  representa-
tions [18].

3) Predicate detection
PRE is  a  simple  task to identify  the predicates  in

the given  sentence.  The  predicates  represents  the  de-
scription of the subjects in the sentence. It benefits the
dependency parsing and semantic role labeling task yet
strongly depends  on  POS.  In  our  experiments,  it  dir-
ectly leverage linguistic information from POS. Besides,
the  complexity  of  training  a  hierarchical  joint  learning
model  would  increase  with  the  depth  of  the  overall
model.  Separating  PRE  could  accelerate  the  learning
process. Therefore,  PRE directly follows POS and sep-
arates  from  DEP  and  SRL,  which  is  different  from
LISA.  Its  input  is  similar  to  DEP,  which  is  calculated
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from the task-specific projection layer with the concat-
enation of the hidden state from POS, origin word em-
bedding and label representation of POS.
 

x
(pre)
Mi

= F
(pos)
i ([h(pos); ew; l(pos)]) (13)

where projection  layer  differs  upon  the  following  mod-
ules. The  probabilities  are  obtained  by  softmax  func-
tion.

4) Semantic role labeling
Semantic role labeling is a difficult semantic funda-

mental task in the natural language processing and as-
signs the semantic role of the word or phrase in the sen-
tence.  Its  input  consists  of  hidden  representation  of
DEP, origin word embedding and label  representations
of POS, PRE and DEP. The input is calculated as
 

x
(srl)
Mi

= F
(dep)
i ([h(dep); ew; l(pos); l(pre); l(rel)]) (14)

l(rel)where  refers  to  dependency  labels  and  projection
layer differs upon the following module.

Adep

Adep

To  make  full  use  of  syntactic  information,  head
predictions  are  taken  into  SRL  as  the  head  attention
weight.  Specifically,  the  head  attention  is  used  as  one
special attention head  in multi-head self-attention
submodules  in  the  first  layer  of  layer-specific  module.
Note  that  we  use  the  probabilities  as  the  attention
weight  for the special  attention head that replace
the  attention  weight  in  (2).  Thus,  the  self-attention
submodules of the first layer in layer-specific SRL mod-
ule are constructed by
 

SelfAttn(Hj−1) = softmax(
Qj

nK
j
n
T

√
dk

)V j
n

SelfAttdep(Hj−1) = Aj
depV

j
dep, (15)

SelfAttdep
Adep

where  refers to the special attention head and
 is the probability of predicted dependency head.
When it comes to the shared module, head predic-

tions are  taken  as  dot-product  attention  weight,  mul-
tiplying the holistic shared input as
 

x
(srl)
M0

= Adep · F (dep)
0 ([h(dep); ew; l(pos); l(pre); l(rel)]) (16)

Adepwhere  is  the  probability  of  predicted  dependency
head.

t kThe  role  label  of  token  towards  predicate  is
scored  by  bilinear  operation  of  predicate-specific  and
role-specific  representation  projected  from  latent  token
representation.  With  the  given  score  and  transition

yktprobabilities  from  the  training  corpus,  role  label  is
predicated through CRF layer [19], [20].

5) Training

J(θ)

The  model  is  jointly  trained  across  all  tasks.  The
overall objective function  is defined as
 

J(θ) =− 1

T

T∑
t=1

[αpos logP (y
(pos)
t |x(pos)

p , x(pos)
s )

+ αrel logP (y
(rel)
t |x(dep)

p , x(dep)
s )

+ αhead logP (y
(head)
t |x(dep)

p , x(dep)
s )

+ αpre logP (y
(pre)
t |x(pre)

p , x(pre)
s )

+ αsrl

T∑
k=1

(logP (y
(srl)
kt |x(srl)

p , x(srl)
s , y

(pre)
k )]

+ λ∥θ∥2 (17)

θ λ∥θ∥2
λ

αtask

where  is  set  of  model  parameters,  is  the  L2-
norm  regularization  term,  is  a  hyperparameter  and

 is penalty of different task loss.
Note that  gold  annotations  are  not  leveraged dur-

ing training, which is different from LISA [6]. The mod-
el is  optimized  by  mini-batch  Nadam stochastic  gradi-
ent  descent  and  gradient  clipping.  The  learning  rate
schedule  follows  [14].  To  avoid  over-fitting,  dropout  is
added into encoders and classifiers and employed in the
input of label and word embedding.

 III. Experiments
We  experimented  our  proposed  model  with  POS,

DEP,  PRE  and  SRL  on  CONLL-2009  Chinese  subset,
using LISA*1 [6] as our baseline model. Our model also
experimented POS and DEP task on Chinese Treebank
7.0  (CTB-7).  We  pretrain  Chinese  word  embedding
with Wikipedia corpus*2 by Word2Vec using Skip-gram
model  with  negative  sampling  [17].  The  results  show
that  our  semi-shared  hierarchical  joint  model  strongly
outperforms the baseline.

 1. Experimental setup
The  CTB-7  dataset  is  splitted  into  train/dev/test

subsets  according  to  [21].  Dependencies  of  CTB-7  are
converted by Penn2Malt  tool*3.  The head-finding rules
refers  to  [16]  and  [22].  The  detailed  statistics  is
provided  in Table  1.  Note  that  the  Chinese  subset  of
CONLL-2009 is utilized in experiments.

POS and  PRE  are  evaluated  by  accuracy  accord-
ing to the gold tag of corpus. DEP of CTB-7 corpus are
evaluated excluding punctuation while DEP of CONLL-
2009 are evaluated including punctuation, via standard
evaluation  script  of “eval.pl”  CONLL  script.  SRL  is
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*1
 https://github.com/strubell/LISA

*2
 https://dumps.wikimedia.org/zhwiki/

*3
 https://cl.lingfil.uu.se/nivre/research/Penn2Malt.html



evaluated  by  standard  evaluation  script “eval09.pl”.
The  results  in  the  following  tables  are  the  accuracy  of
POS, labeled attachment score (LAS) and unlabeled at-
tachment score (UAS) of DEP, labeled F1-score of SRL
and macro average F1-score of joint DEP and SRL.

10−9 10−8

Hyperparameters  and  settings  are  similar  to  [6].
We  set  different  regularization  coefficient  for  classifier
and transformer module,  for transformer and 
for classifier. The dropout rate is set to 0.2 for residual
shortcuts, token  embedding  and  average  label  embed-
ding while dropout rate for Transformer and classifiers
is set to 0.1.

The shared module is designed as a transformer en-
coder with 3 layers. The total layer-specific module is a
11-layer  transformer  encoder.  POS  is  assigned  at  the
second  layer.  DEP  is  assigned  at  the  fifth  layer  and
SRL  is  at  the  end.  Whereas,  following  POS,  PRE  is
predicted by additional 1-layer encoder. The sum of the

2/8

number  of  multi-heads  in  the  shared and layer-specific
modules is set to 8 and each has the dimension of 25. In
the ablation study of  dataflows and residual  shortcuts,
the ratio of shared heads is  .

 2. Different dataflows
To evaluate  the  effectiveness  of  various  dataflows,

we validate  these  four  proposed  hierarchical  model  ar-
chitectures on four tasks given above. To be consistent,
the non-shared and semi-shared models used in experi-
ments  integrate  word  embedding  of  tokens  and  label
embedding  of  POS  tags,  dependency  labels  as  residual
latent  representations. Table  2 presents the  perform-
ance comparison of different dataflows on CONLL-2009
development  and test  subset.  The non-shared model  is
trained with residual shortcuts but without any shared
module.  Apart  from  LISA  that  employs  gold  head  in
training,  our  models  are  trained  with  predicted  head
and labels.

  
Table 2. Performance of different dataflows

Development subset POS LAS PRE SRL Macro
LISA 92.37 78.36 95.78 74.33 76.35

Non-shared 92.96 77.21 96.39 75.54 76.38
Model-I 93.09 77.58 96.33 75.72 76.65
Model-II 93.17 79.13 96.48 77.08 78.11
Model-III 92.84 78.05 96.30 75.82 76.94
Model-IV 93.09 80.47 96.50 77.24 78.86

Test subset POS LAS PRE SRL Macro
LISA [6] 92.12 78.89 95.56 74.51 76.70

Non-shared 92.82 77.22 96.25 74.86 76.04
Model-I 92.94 77.86 96.27 75.40 76.63
Model-II 93.00 79.26 96.35 76.57 77.92
Model-III 92.82 78.35 96.16 75.43 76.89
Model-IV 92.96 80.04 96.37 76.43 78.24

 
 

Compared  to  LISA  and  the  baseline  non-shared
model,  our  semi-shared  mechanism  consistently  results
in substantial improvement on four tasks, especially for
higher-level  complex  tasks  such  as  DEP  and  SRL.
Meanwhile,  we  find  crossed  dataflow  (Model-II)  and
fully-combined  dataflow  model  (Model-IV)  outperform
two other models significantly.

Specifically, Model-IV archives 76.57% F1-score on
SRL with an increase of  1.17% and 1.14% points com-
pared to Model-I and Model-III while Model-IV obtains
much better results in DEP and has similar nice results
of SRL. Model-IV outperforms LISA by about 0.8–1.5%

points  in  all  four  tasks,  especially  1.54%  improvement
on  macro  F1-score.  The  semi-shared  mechanism  has
somehow  shrunk  the  hierarchical  model.  To  improve
overall multi-tasks, Model-IV is the best method among
the mentioned variants.

 3. Residual latent representation
Apart from  dataflow,  residual  latent  representa-

tion  also  plays  an  important  role  in  the  hierarchical
model [10], [11]. In what follows, we empirically invest-
igate  the  effectiveness  of  different  combinations  of  the
residual  latent  representation  on  Model-IV  (Fig.4(d))
due  to  its  highly  efficient  sharing  mechanism  referring

   
Table 1. Statistics of train/dev/test sets

Corpus
# of sentences

Training set Development set Test set
CTB-7 31k 10k 10k

CONLL-2009 22k 1.7k 2.5k
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to Table  2. Moreover,  various  shortcuts  also  experi-
ment on the baseline non-shared model.

Table 3 provides the ablation study of residual lat-
ent representations. Note that w/o denotes the model is
trained without residual  shortcuts:  word (word embed-
ding),  pos (part-of-speech tag embedding),  pre (predic-
ate  label  embedding),  dep  (dependency  parsing  label
embedding).  There  is  large  performance  discrepancy
after residual word embedding is deprived. Specifically,

Model-IV  is  less  susceptible  to  latent  representations
than Model-II, which even leads to 79.02% macro score
even if all the latent label embedding are removed. This
is because  Model-IV has  densely  shared the useful  fea-
tures among multiple tasks thus decreasing the depend-
ency  on  auxiliary  information  of  label  embedding.  On
the  contrary,  due  to  insufficient  communications
between different tasks, Model-II suffers from a signific-
ant performance loss without word or label embedding.

  
Table 3. Experimental results with different combinations of residual latent representations

Model Residual shortcuts
Development set Test set

POS LAS PRE SRL Macro POS LAS PRE SRL Macro
LISA [6] w/o all 92.37 78.36 95.78 74.33 76.35 92.12 78.89 95.56 74.51 76.70

Non-shared
all 92.96 77.21 96.39 75.54 76.38 92.82 77.22 96.25 74.86 76.04

w/o word 93.11 77.33 96.39 75.53 76.43 92.79 77.51 96.13 74.95 76.23
w/o pos + pre + dep 92.96 77.34 96.26 76.52 76.93 92.74 77.27 96.05 75.83 76.55

Model-II
all 93.17 79.13 96.48 77.08 78.11 93.00 79.26 96.35 76.57 77.92

w/o word 92.82 76.20 96.26 74.64 74.89 92.59 76.10 96.04 73.68 74.89
w/o pos + pre + dep 93.00 75.53 96.13 75.47 75.50 92.74 75.69 95.98 74.89 75.29

Model-IV

all 93.09 80.47 96.50 77.24 78.86 93.04 80.57 96.42 76.84 78.71
w/o word 92.64 80.12 96.39 76.65 78.39 92.59 80.25 96.25 75.94 78.10

w/o word + pos 92.91 79.15 96.49 76.13 77.64 92.78 79.33 96.34 75.89 77.61
w/o word + pre + dep 92.51 77.51 96.03 75.87 76.69 92.51 77.88 96.03 75.59 76.74
w/o pos + pre + dep 93.01 80.48 96.42 77.84 79.16 92.84 80.48 96.35 77.56 79.02

w/o all 92.42 80.11 96.36 77.07 78.59 92.33 80.33 96.27 76.72 78.53
 
 

Furthermore, with  semi-shared  mechanism,  resid-
ual  latent  representations  do  help  hierarchical  models
obtain better results. Without training randomly initial-
ized  label  embedding,  SSHM with  residual  shortcut  of
only  word  embedding  leads  to  the  best  performance.
However, the model with all word and label embedding
could provide pretrained label embedding of those fun-
damental tasks, which might benefit different NLP ap-
plications.

 4. Shared heads ratio
The  shared  parameters  affect  the  performance  of

our semi-shared hierarchical model over multiple tasks.
Furthermore,  the  setting  of  shared  ratio  is  critical  to
the performance of our SSHM. Specifically, Model-IV is
evaluated  with  various  ratio  of  shared  heads  on  the
CONLL-2009  Chinese  subset.  The  experiment  of  POS
and  DEP  includes  residual  shortcut  of  word  and  POS

tag  embedding.  Whereas,  the  experiment  of  all  four
tasks only employs residual word embedding.

2/8 8/8

0/8

0/8

2/8

According  to Table  4 and  Fig.5 ,  there  is  a  slight
decrease for joint learning of all four tasks while the ra-
tio of shared heads is increasing from  to . Note
that the ratio of  refers to non-shared model. Com-
pared with LISA, the projection layers among the layer-
specific  and  shared  modules  make  the  parameter  size
seems to be slightly larger than LISA in ratio from 
to .  As  a  semantic  task,  SRL  focuses  on  semantic
meaning  while  POS  and  DEP  focus  on  grammar  and
syntax. Thus,  even  though  SRL  leverage  syntactic  in-
formation to  improve  results,  performance  might  de-
crease  while  we  try  on  sharing  too  many  parameters.
However,  compared  to  LISA,  our  semi-shared  strategy
with rich residual representations could obtain great im-
provement of 2.5% SRL F1 and 1.86% macro F1 points

   
Table 4. Results for different shared heads ratio

Ratio Size of parameters POS LAS UAS PRE SRL Macro
LISA [6] 1 × 92.12 78.89 83.65 95.56 74.51 76.70

0/8 1.01 × 92.74 77.27 81.53 96.05 75.83 76.55
1/8 1.08 × 92.77 80.73 85.14 96.43 77.91 79.32
2/8 1.03 × 92.84 80.48 84.78 96.35 77.56 79.02
4/8 0.96 × 92.58 80.18 84.51 96.25 76.90 78.54
6/8 0.90 × 92.81 79.75 84.19 96.23 76.70 78.23
8/8 0.46 × 92.87 80.10 84.47 96.36 77.01 78.56
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even with only 0.46 × size of parameters.
Table 5 and Fig.6 provide the performance of Mod-

el-IV for joint syntactic  tasks of  POS and DEP. Para-
meter refers to the number of parameters without word
embedding. As the ratio of shared heads increases, there
will  be  a  notable  promotion  for  both  tasks  with  fewer
parameters.  It  shows  that  shared  parameters,  among
different  depth  in  hierarchical  model,  could  not  only
shrink  model  but  also  obtain  strong  improvement  of
performance, in the case of strongly related tasks.

These results  show  that  our  semi-shared  mechan-
ism  has  promising  performance  in  sequence  tagging
tasks with smaller model, which indicates its capacity of
rich linguistic hierarchy information.

  
Table 5. Comparison of joint POS & DEP learning

Ratio Parameter POS LAS UAS
1/8 1× 93.04 80.44 84.86
2/8 0.96× 93.23 80.22 84.64
6/8 0.94× 93.12 80.39 84.75
8/8 0.55× 93.42 80.77 85.10
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Fig. 6. The ablation study of shared ratio on POS & DEP.

 

 5. Comparison
To demonstrate the performance of our semi-shared

hierarchical model,  we  compare  our  models  with  cur-
rent  state-of-the-art  MTL approaches  on  CONLL-2009
and CTB-7. Extensive experiments show that our meth-
od  successfully  leverages  latent  features  of  multiple

tasks and  results  in  significant  performance  improve-
ment even if not using gold tags of lower tasks such as
POS, PRE or DEP in higher tasks.

1/8

0.46×

Table 6 shows the comprehensive comparison with
previous  MTL works  that  are  jointly  learning  for  SRL
and  DEP  tasks.  Note  that  we  set ‘–’  for  the  usage  of
gold tags and the Model-IV has ratio of  with only
word  embedding  as  residual  shortcut.  Compared  to
LISA, our Model-IV achieves better performance on all
four tasks and leads to a higher 79.32% macro F1, even
without gold  tags  of  lower  tasks  as  auxiliary  informa-
tion for  higher  tasks  during training.  It  implies  its  po-
tentiality of  finetuning  on  higher  tasks  by  data  argu-
mentation of a complex task without gold tags of lower
tasks. According to Table 4, our model with only 
size of LISA outperforms in all tasks and improves 1.86%
marco F1 points.  Our model  also  strongly  outperforms
the  top  3  results  in  the  CONLL-2009  shared  tasks  of
joint  DEP  and  SRL  even  without  leveraging  the  gold
tag of lower tasks during predicting.

  
Table 6. Comparison of all four tasks

Model POS LAS PRE SRL Macro
LISA [6] 92.12 78.89 95.56 74.51 76.70

Che et al. [23] – 75.49 – 77.15 76.38
Zhao et al. [24] – 75.67 – 76.77 76.23

Gesmundo et al. [25] – 76.11 – 76.05 76.15
Ours (Model-IV) 92.77 80.73 96.43 77.91 79.32

 
 

Similarly,  for  a  board  evaluation  with  previous
works on  POS  &  DEP,  we  repeat  the  experiment  ex-
cept for removing the SRL branch. For our model, the

8/8shared head ratio is .
For  the  model  in  [26],  we  use  beam  search  with

beam search size of 16. For the model in [27], we train
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Fig. 5. The ablation study of shared ratio on all tasks.
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it  in word segmentation pipeline. As shown in Table 7
and Table  8,  our  semi-shared  model  obtains  the  best
performance in DEP on both CTB-7 and CONLL-2009

Chinese test datasets. Our model outperforms the local
model  of  Andor et  al.’s  [26]  by  2.51% LAS and  2.88%
UAS points.

  
Table 7. Comparison to MTL models

Model LAS UAS
Ballesteros et al. [28] 76.52 80.64

Zhang & McDonald [29] 78.57 82.87
Lei et al. [30] 76.71 81.67

Bohnet et al. A [31] 78.51 82.52
Bohnet et al. B [31] 77.00 81.18

Albert et al. [32] 79.90 83.57
Andor et al. [26] B=16 78.26 82.22

LISA [6] 78.47 83.26
Ours (Model-IV) 80.77 85.10

  
Table 8. Comparison of results on CTB-7

Model POS LAS UAS
Yan et al. [27] – 77.93 81.96

Ours 92.86 79.13 82.84
 
 

 IV. Related Work
Deep learning  methodologies  have  obtained  tre-

mendous success on NLP tasks. There is a tendency to
improve  performance  of  a  single  task  by  leveraging
more linguistic  features,  which inspires  lots  of  complex
architectures.

Some  approaches  have  made  large  progress  in  the
parallel model for different tasks [33], [34]. Liu et al. [5]
explored  different  methods  of  sharing  parameters  in
parallel RNN models. Bert-based MT-DNN is proposed
to learn representation by sharing lower layers of token
embedding  encoders  for  multiple  tasks  [8].  Pentyala et
al. [35 ]  proved  the  universal  and  task-specific  features
to  be  complementary.  Ruder et  al. [36 ]  leverage  the
meta-architecture  for  the  dynamic  search of  multi-task
parallel sharing mechanism and focus on the latent sub-
space  among  the  main  task  and  auxiliary  task.  Liu et
al. [37] proposes to learn the global features based on a
single shared  network  and  conducted  task-specific  fea-
ture-level  attention.  Standley et  al. [38 ]  focuses  on the
problem  of  task  compatibility  as  it  pertains  to  multi-
task  learning.  Its  framework  offers  a  time-accuracy
trade-off and can produce better accuracy using less in-
ference time  than  both  a  large  multi-task  neural  net-
work and a single-task network.

Hierarchical  model  has  shown  its  great  ability  of
leveraging  linguistic  feature  in  the  NLP tasks  [9],  [11],
[12],  [39],  [40].  Some  work  focused  on  joint  syntactic
and semantic tasks to obtain linguistic information bet-
ter, by  instructing  model  to  understand  natural  lan-
guage  with  syntax  [6],  [10],  [41].  Gong et  al. [41 ]  adds
residual  connections  to  the  hierarchical  model  which
jointly  learns  segment  tagging,  named  entity  tagging

and slot  filling  tasks.  Hashimoto et  al. [10 ]  proposed a
joint  many-task  model  with  successive  regularization
method and  residual  latent  representations,  which  ob-
tained great improvement on joint tasks of fundament-
al  sequence  labeling  task  and  semantic  understanding
tasks.

However,  the  complex  successive  regularization
method  leads  to  the  problem  of  time  complexity  and
computational complexity. Following [10], a novel work
on semantic tasks also proved the effectiveness of resid-
ual token embedding [11]. Zhe et al. [42] learns the en-
tity and relation extraction in a joint manner to lever-
age the hierarchical semantic inter-dependency.

LISA [6] shows the capacity of syntactical informa-
tion on the semantic tasks, finding a new way of lever-
aging  syntactic  information  by  head attention  [6].  Our
baseline  model  without  semi-shared  mechanism  is
mostly similar as LISA, the state-of-the-art transformer-
based hierarchical model for sequence tagging.

 V. Conclusions
We  propose  a  new  hierarchical  joint  model  for

multi-task  learning,  accompanied  by  the  semi-shared
strategy. Compared with previous MTL approaches, we
propose  to  use  both  layer-specific  and  shared  modules
from  bottom  to  top  tasks,  which  is  beneficial  for  the
hierarchical  model  with  residual  latent  representations.
To  fully  investigate  the  latent  features  in  multiple
tasks,  we  design  four  data  flows  between  layer-specific
and shared module. Extensive experiments on CONLL-
2009  Chinese  subset  and  CTB-7  dataset  demonstrate
that  our  proposed  model  outperforms  previous  joint
models and achieve great improvement on the state-of-
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the-art transformer-based hierarchical model. In partic-
ular, on CONLL-2009 Chinese dataset, we obtain marco
F1-score of  79.32% in the overall  joint experiment and
LAS  of  80.77%  in  joint  POS  and  DEP  experiment.
Moreover, we explore shared ratio and different combin-
ations of residual shortcuts and find out a simple mech-
anism for shrinking model and improving performance.

The  source  code  accompanying  with  this  paper  is
available at: https://github.com/SJTUDuWei/SSHM-for-
Sequence-Labeling
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