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   Abstract — In unsupervised  video  object  segmenta-
tion (UVOS),  the  whole  video might  segment  the  wrong
target due to the lack of initial prior information. Also, in
semi-supervised  video  object  segmentation  (SVOS),  the
initial video frame with a fine-grained pixel-level mask is
essential  to  good  segmentation  accuracy.  It  is  expensive
and laborious to provide the accurate pixel-level masks for
each training sequence. To address this issue, We present
a  weak  user  interactive  UVOS  approach  guided  by  a
simple  human-made  rectangle  annotation  in  the  initial
frame.  We  first  interactively  draw  the  region  of  interest
by  a  rectangle,  and  then  we  leverage  the  mask  RCNN
(region-based  convolutional  neural  networks)  method  to
generate  a  set  of  coarse  reference  labels  for  subsequent
mask propagations. To establish the temporal correspond-
ence between the coherent frames, we further design two
novel temporal  modulation  modules  to  enhance  the  tar-
get  representations.  We  compute  the  earth  mover’s dis-
tance (EMD)-based similarity between coherent frames to
mine the co-occurrent objects in the two images, which is
used  to  modulate  the  target  representation  to  highlight
the foreground target. We design a cross-squeeze tempor-
al modulation module to emphasize the co-occurrent fea-
tures  across  frames,  which  further  helps  to  enhance  the
foreground target  representation.  We  augment  the  tem-
porally modulated  representations  with  the  original  rep-
resentation  and  obtain  the  compositive  spatio-temporal
information, producing a more accurate video object seg-
mentation  (VOS)  model.  The  experimental  results  on
both  UVOS  and  SVOS  datasets  including  Davis2016,
FBMS,  Youtube-VOS,  and  Davis2017,  show  that  our
method yields favorable accuracy and complexity. The re-
lated code is available.

   Key words — Unsupervised video  object  segmenta-

tion, The  earth  mover’s distance  (EMD)-based  modula-

tion, Cross-squeeze  modulation, Weak  interaction, Re-

gion-based convolutional neural networks (RCNN).

 I. Introduction
Video  object  segmentation  (VOS)  is  designed  to

separate the  foreground  object  from  a  single  video  se-
quence. It has wide applications in self-driving, surveil-
lance camera, online video conference system, and oth-
er  real-world  applications  [1]–[4].  The  task  normally  is
handled  by  either  semi-supervised  methods  (the  initial
mask  is  labeled  manually)  [5],  [6] or  unsupervised  ap-
proaches (no artificial labeling in the first frame) [7]–[9].
However, both  semi-supervised  and  unsupervised  al-
gorithms have their inherent limitations [5], [6]. On the
one  hand,  semi-supervised  (also  named  one-shot)  VOS
significantly  depends  on  the  accurate  pixel-level  labels
in  the  first  frame,  which  automatically  predicts  the
masks  in  following  frames.  Although  the  initial  strong
pixel-level  mask  contributes  to  the  performance  gains,
the manual human annotations are expensive and time-
consuming in  the  real-world  VOS applications.  On the
other hand, unsupervised (also namely zero-shot) VOS,
given no  initial  guidance,  the  model  is  easy  to  misun-
derstand user’s  intention and obtains  inaccurate  initial
mask, yielding inferior subsequent VOS results (see the
first two rows in Fig.1 [10]). As illustrated in Fig.1, the
first and third rows are the initialization of FSNet and
ours. The second and fourth rows are the feature maps
and  predicted  results  in  the  subsequent  frame.  It  is 
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noted that the feature map (in 1st row) of no weak user
interaction is  noisy  and  progressively  accumulates  er-
rors to the subsequent frame (in 2nd row), obtaining a
suboptimal segmentation  result.  However,  when  as-
sisted  by  the  weak  user  interaction  initialization,  both
the initial  and  subsequent  frames  are  clear  and  con-
sequently achieves the optimal pixel-wise predictions.
 

Frames

Subsequent 
frame (ours)

Initializtion
[10]

Feature maps Results

Weak user 
interaction 

initializtion (ours)

Subsequent 
frame [10]

 
Fig. 1. Visualization of the initialization comparison between

FSNet [10] and RectVOS (ours).
 

To alleviate the issues above, an intuitive solution
is to leverage a user-friendly human interaction [11]–[13]
(e.g. scribbles, strokes). These methods aim to find the
target  in  the  beginning  of  each  video,  using  various
types of interactions, e.g. scribbles, points, circles. Roto-
scoping based interactive video cutout methods [14], [15]
need the user  to verify  and update the object  mask in
each video  frame,  which  requires  much  effort  for  hu-
man  intervention.  Recently,  Nagaraja  [16] et  al. integ-
rate motion  and  point  trajectories,  enforcing  the  con-
sistency  of  the  color  distribution  among  successive
frames, which yields favorable performance on ego mo-
tion videos.  Then, Yang et al. [17 ]  propose to find the
corresponding patches between reference frame and tar-
get frame  to  enhance  the  interactive  pixel-wise  predic-
tions, while maintaining the balance between the accur-
acy  and  performance.  To  establish  human-in-the-loop
interactive  VOS system in  the  wild,  Benard et  al. [18]
present to  modify  the  existing  semi-supervised  ap-
proaches to  adapt  the  interactive  scenario.  Very  re-
cently,  given  strokes  or  clicks,  Oh et  al. [19 ]  jointly
train two separate network modules to select the initial
target  and propagate  the masks,  respectively.  The two
networks are connected internally to solve the complex
VOS task.

However, these methods above employ multiple hu-
man interactions, i.e. scribbles, strokes, clicks or cycles,
leading  to  heavy  user  intervention  burden.  That  is  to
say,  it  is  essential  to  simplify  the  human  interactions
and keep the interactive VOS system to be more user-
friendly.  Furthermore,  the  aforementioned  approaches
learn a fixed offline VOS model to infer all  the testing

frames,  which  cannot  take  full  advantage  of  the  time-
level contextual  information.  As  the  objects  dramatic-
ally move in the video, these approaches cannot effect-
ively adjust the model in following frames, which leads
to the suboptimal results.

To alleviate the problems above, in this paper, we
design a  weakly-interactive  VOS  method  with  a  rect-
angle annotation in the first frame as prior (termed as
RectVOS) that seamlessly integrates the earth mover’s
distance  (EMD)  temporal  modulation  module  (ETM)
and  the  cross-squeeze  temporal  modulation  module
(CTM) into  the  VOS  framework  for  end-to-end  learn-
ing.  Specifically,  the  ETM  is  designed  to  learn  the
EMD-based  associations  between  coherent  frames,
which  co-operatively  gives  higher  weight  to  the  object
that simultaneously exists in both frames. Furthermore,
the CTM is inspired by the cross-reference operation in
the  field  of  co-segmentation  [20]  that  is  able  to  stress
the invariant features in two images and generate rein-
forced  representations.  Different  from  the  majority  of
VOS methods  that  directly  employ  local  temporal  in-
formation  [21],  [22] to  assist  the  consistent  segmenta-
tion,  our  ETM exploits  the  cross-reference  information
from  coherent  frames,  which  produces  a  temporally
modulated representation. Both the ETM and CTM en-
hance the representations of co-existed objects between
consecutive  frames,  which  is  essential  to  the  precise
VOS.  Extensive  valuations  on  both  unsupervised  and
semi-supervised  VOS  benchmarks  containing  DAVIS-
2016 [23],  FBMS [24],  Youtube-VOS [25],  and DAVIS-
2017 [26] demonstrate that the proposed RectVOS yield
favourable  performance  against  the  other  compared
VOS methods.  We conclude  the  main  contributions  as
follows:

• To  reduce  the  time-consuming  pixel-level  an-
notations  in  labeling  the  initial  frame  in  semi-super-
vised VOS task and enhance the initial  prior in un-su-
pervised VOS  framework,  we  leverage  a  weak  user  in-
teractive rectangle annotation as guidance signal to ini-
tialize the VOS model.

•  On  the  spatio-temporal  dimension,  we  employ
the EMD-based  similarity  maps  to  temporally  modu-
late the current frame’s representation, which is able to
highlight the  co-existing  foreground  objects  in  the  co-
herent frames.

•  On  the  channel  dimension,  we  design  a  cross-
squeeze  temporal  modulation  module  to  emphasize  the
co-occurrent  representations  of  the  raw  features.  As  a
result,  only  the  common  features  in  the  two  branches
will be assigned with a high importance.

• Our  RectVOS  keeps  good  balance  between  ac-
curacy and complexity on both unsupervised and super-
vised benchmarks including DAVIS-2016 [23], FBMS [24],
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Youtube-VOS [25], and DAVIS-2017 [26].

 II. Related Work
 1. Interactive VOS, UVOS, and SVOS
The VOS task is mainly divided into three sub dir-

ections:  UVOS,  Interactive  VOS,  and  SVOS,  which
have their own characteristics.

UVOS　Ji  et.  al. [10 ] studied  a  new network  ar-
chitecture  to  combine  the  features  of  appearance  and
movement.  Wang et.  al. [7 ]  propose  a  real-time  video
object  segmentation  network.  When  the  video  frames
input, it  is  performed  by  the  encoder  and  then  pro-
cessed by the pixel-level memory matching module.

Interactive  VOS　Zhang  et  al. [27 ]  present  a
joint  learned  self-paced  fine-tuning  network  (SPFTN)
to localize objects with weakly labelled training videos.
Afterwards,  Benard et  al. [18 ]  present a human-in-the-
loop system for interactive VOS, which is able to accur-
ately segment targets using only a handful of clicks (3.8
clicks  on  average).  Recently,  Miao et  al. [28 ]  integrate
the  interaction  and  the  propagations  into  one  network
with the memory aggregation mechanism, which consid-
erably improves  the  efficiency  of  VOS  without  lever-
aging the strategy of multi-round interactions.

SVOS　Mao et al. [29] design a framework to in-
tegrate transductive  and inductive  learning into  a  uni-
fied  one.  Recently,  Duke et  al. [30 ] propose  a  trans-
former-based approach  to  extract  per-pixel  representa-
tions for semi-supervised VOS.

 2. EMD learning
As the EMD is able to calculate the structured dis-

tance between the two image representations, a series of
works utilize the metric to promote the few-shot image
classification  and  matching  tasks.  Rubner et  al. [31]
combine EMD metric with a representation scheme that

is  based  on  vector  quantization,  successfully  handling
image retrieval task. Ling et al. [32] propose a fast and
exact  algorithm  named  the  earth  mover’s  L1  distance
(EMD-L1) to compute the similarity between a pair of
histograms,  which  simplifies  the  objective  function  of
the linear  program  and  reduces  the  number  of  con-
straints. To  enhance  the  complicated  inter-class  rela-
tionships  that  always  exist  in  the  realistic  applications
such as the age classification, Hou et al. [33] propose to
use  the  EMD2 loss  to  penalize  the  miss-predictions,
which yields competitive performance. Zhang et al. [34]
attempt to directly classify image representations using
the EMD that is able to be taken as a structured fully
connected layer into the network in an end-to-end man-
ner.

 3. Tracking-based segmentation
Recently, video object tracking (VOT) community

has attempted to develop an unified framework for both
the VOT and VOS tasks. Yeo et al. [35] utilize Absorb-
ing Markov chain on superpixel segmentation to devel-
op a  simple  yet  effective  tracking-by-segmentation  al-
gorithm.  Wang et  al. [36 ]  augment  the  fully-convolu-
tional Siamese  tracking  framework  with  a  binary  seg-
mentation  branch.  Motivated  by  the  aforementioned
methods, Voigtlaender et al. [37] combine detection and
design a novel dynamic programming algorithm to util-
ize tracklets from both initial frame and previous frame.

 III. Methodology
Fig.2 illustrates the pipeline of the presented Rect-

VOS,  which  mainly  contains  three  designed  modules:
the weak user interaction prior (Section III.1), the earth
mover’s  distance  temporal  modulation module  (Section
III.2), and the cross-squeeze temporal modulation mod-
ule (Section III.3).

Interactive weak 
supervision

Current input frame

Past key frame

Up-sampling 
and prediction

Earth mover’s distance temporal modulation

Global average

pooling
· ·

Cross-squeeze temporal modulation

Sampling

LCE

 
Fig. 2. Network pipeline of the proposed RectVOS including three components of interactive weak supervision, ETM and CTM.
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Specifically,  we  first  interactively  draw  the  region
of  interest  by  a  rectangle,  and  then  we  leverage  the
mask RCNN method  to  generate  a  set  of  reference  la-
bels for subsequent mask propagations. Then, the ETM
is designed  to  highlight  the  co-existing  foreground  ob-
jects in  the  two  frames,  while  the  CTM is  able  to  as-
sign  the  higher  weights  to  the  informative  channels.
Furthermore, the multi-modal representations are integ-
rated  to  yield  the  modulated  spatio-temporal  features.
Finally,  both  the  initial  multi-stage  features  (trans-
ferred  by  the  blue  dotted  line)  and  enhanced  spatio-
temporal  representations  are  put  into  the  up-sampling
and  prediction  module  (Section  III.4)  to  obtain  the
pixel-level masks.

 1. Weak user interaction prior
In the semi-supervised VOS community, it is time-

comsuming to label the ground-truth of the first frame
in the practical applications. To reduce the user effort,
inspired  by  the  interactive  (e.g.,  scribbles  and  points)
methods  in  co-segmentation  community  [19],  [20],  we
propose an interactive weak supervision strategy to ini-
tialize the semi-supervised and unsupervised video seg-
mentation tasks.

As illustrated in Fig.2, instead of labeling the com-
plex ground-truth, we directly employ the user interac-
tion interface  to  give  a  weak  supervision  (e.g.,  rect-
angle) to initialize the video sequence. Then, we utilize
the  image  segment  method  (mask  RCNN [38]) to  nor-
malize  the  foreground  and  background  likelihoods  to
achieve  a  2-class  reference  mask.  It  is  aggregated  with
the initial  representations  and  viewed  as  the  supple-
mentary reference feature.

 2. Earth mover’s distance temporal modula-
tion

S = {si|i = 1, 2, . . . ,m}
D = {dj |j = 1, 2, . . . , n} si

i di
j

i j

cij

Inspired  by  the  earth  mover’s distance  based  im-
age  matching  methods  [31],  [34],  [39],  we  propose  the
temporal modulation module to enhance the representa-
tions  of  current  input  frame.  The  earth  mover’s dis-
tance measures two sets of weighted distributions or ob-
jects, which can be formalized to the optimal transport-
ation  problem  [31].  Specifically,  a  set  of  suppliers

 need to be transported to a set
of  destination ,  where  indic-
ates  the  unit  of  supplier  and   denotes the  destina-
tion of the -th demander. The price of each unit that is
taken from the supplier  to destination  is represented
by .

πij

π∗ = {π∗
ij |i =

1, 2, . . . ,m, j = 1, 2, . . . , n}

In the  similar  manner,  the  number  of  units  trans-
ported  is  indicated  by . The  aim  of  the  transporta-
tion  problem  is  finding  a  optimal  flow  

 from suppliers  to  destina-
tions: 

min
πij

m∑
i=1

n∑
j=1

cijπij

s.t.
n∑

j=1

πij = si, i = 1, . . . ,m

m∑
i=1

πij = dj , j = 1, . . . , n

πij≥0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (1)

dj si

n∑
j=1

πij = si
m∑
i=1

πij = di

i

The  and  are named as weights of  the nodes,
which takes control of the total matching flows that are
generated by each node. In order to properly constrain

the  total  matching  flows  and  ,

the weight of the node  is obtained by the node repres-
entation  and  the  average  node  representation  in  the
other structure:
 

si = max

0, u⊤i · 1

WH

WH∑
j=1

vj

 (2)

vj ui

max (·)

dj

where  and  indicate the vectors from the two fea-
ture maps, respectively, the function  makes sure
that  the  generated  weights  are  non-negative.  For  the
weights of , we can achieve the value using the same
operations.  Furthermore,  we  normalize  the  weights  in
the structure by
 

s̄i = si

WH

/
WH∑
j=1

sj

 (3)

cij

U ∈ RH×W×C

V ∈ RH×W×C

H, W

{u1,u2, . . . ,uHW }
C

ui vj

cij

Back to equation (1), in order to obtain , we em-
ploy  a  fully  convolutional  network  [40]  to  obtain  the
current-frame  image  embedding ,  and
previous-frame  image  embedding , re-
spectively,  where  indicate  the  spatial  positions
and  is the  local  representation  vec-
tors,  while  denotes  the channel  number.  Known the
embedding nodes  and  of two coherent frames, the
cost of each unit  is computed via
 

cij = 1− uT
i vj

∥ui∥ ∥vj∥
(4)

s̄i d̄j

π∗ = {π∗
ij |i = 1, 2, . . . ,m, j =

1, 2, . . . , n}
i

Mi

where  nodes  with  similar  representations  produce  less
matching cost. As in equation (3), we achieve the node
weights  and  that gets the balance between two co-
herent image frames. Then, we obtain the approximate
optimal  matching  flows 

 by  the  solution  of  linear  programming [34].
Afterwards,  we  compute  the -th  position  of  the  EMD
similarity map  via 
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Mi =

HW∑
j=1

(1− cij)π
∗
ij (5)

U ∈ RW×H×C

which is able to assign the large weight to the co-occur-
rent objects and the background regions have the smal-
ler  weights.  We  weight  the  current  representations

 according to their degrees similar to the
previous frame,  yielding  the  modulated  object  repres-
entation:
 

Ū = softmax(M)⊙U (6)

⊙
softmax(·) M

where  refers to the hadamard product, and we lever-
age the function  to normalize the weights .
Based on the theorem of implicit function [34], [41], [42]
on  the  optimality  (KKT)  conditions,  we  are  able  to
yield a closed-form gradient of the optimal match with
respect to  the  linear  programming  parameters,  ensur-
ing the back-propagation through the end-to-end train-
ing phase.

 3. Cross-squeeze temporal modulation

U

V

To restrain  the  noisy  and  highlight  the  informat-
ive  representation  for  video  segmentation,  we  propose
the cross-squeeze  temporal  modulation  module.  Motiv-
ated by the squeeze and excitation neural network [43]
and the cross reference operations in the fields of co-sa-
liency  and  co-segmentation  [20],  [44],  [45],  our  CTM
squeezes both the current input representations  and
the  previous  representations  to  highlight  the  co-oc-
current objects in the frame pair (see Fig.2).

c

g ∈ RC×1

Cross  squeeze　To mine  the  jointly  owned  ob-
jects  in  the  pair  of  images,  we  simultaneously  obtain
the global statistics in the two images via cross squeeze
operations. Specifically, we firstly utilize the global av-
erage  pooling  operation  to  produce  two  channel
descriptors  that  capture  the  channel-wise  contextual
cues.  Then,  the -th  unit  of  the  current  weight  vector

 is acquired by
 

gc =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (7)

uc(i, j) ij

U ∈ RH×W×C c

f ∈ RC×1

V ∈ RH×W×C

where  indicates  the -th  unit(position)  of  the
input feature  in -th channel. Then, the
global  statistic  vector  of  the  previous  frame
can be obtained in the similar manner. The only differ-
ence  is  that  it  is  applied  to  the  previous  frame

 via
 

fc =
1

H ×W

H∑
i=1

W∑
j=1

vc(i, j) (8)

uc(i, j) ijwhere  means  the -th  position  of  the  input

c

h ∈ RC×1

tensor  in -th  channel.  Based  on  the  aforementioned
global  statistic  vectors,  we  obtain  the  cross  squeezed
weights  by
 

hc = fc · gc (9)

c ·where  represents  the index of  channel,  and  denotes
the ordinary scalar multiplication.

h
Cross  excitation　 Furthermore,  the  obtained

vector  is introduced into the excitation function, get-
ting
 

e = σ (W2δ (W1h)) (10)

W1 ∈ RC
r ×C

γ

W2 ∈ RC×C
r γ

σ(·)
δ(·)

Ũ ∈ RH×W×C

U

where  is a parameter matrix (fully connec-
ted layer) that has the dimensionality reduction ratio ,

 has  the  same  ratio  for  dimensionality
changing,  denotes a sigmoid function, and a ReLU
function  is leveraged here. Then, the enhanced fea-
ture tensor  is computed by re-weighting
the input feature : 

ũc = ec · uc (11)

ũc ∈ RH×W c

Ũ ∈ RH×W×C (·)
uc

ec

where  indicates the -th feature map of the
tensor , and  is channel-wise multiplic-
ation  operation  between  the  feature  map  and  the
scalar .

 4. Augmentation and decoder sub-network

Ū

Ũ

We augment the earth mover’s distance based tem-
poral  modulated  (ETM)  representation  and  the
cross-squeeze temporal  modulated  (CTM)  representa-
tion  via
 

X = (1− λ) Ū ⊕ λŨ (12)

λ

⊕ X

X F

where the  controls the balance of the two representa-
tions,  denotes the add operation, and  indicates the
enhanced representation. Also, as a common practice in
VOS [46],  we  extract  the  optical  flow between  current
frame and previous frame to supplement the representa-
tion of  current  frame.  Then,  the  supplemented  repres-
entations  (with  flow-based  representation )  are
transported  to  the  up-sampling  and  decoder  part,  and
the  whole  model  is  supervised  by  the  binary  cross-en-
tropy (BCE) loss [47]. Specifically, the BCE loss is cal-
culated on the ground truth mask and the output pre-
dicted map.

Similar  to  the U-shape in  MATNet [46], we lever-
age a multi-stage decoder to up-sample and predict the
target mask.  The  ETM  and  CTM  modules  are  simul-
taneously trained in an end-to-end manner, which util-
izes stochastic gradient descent (SGD) as the optimizer.

 IV. Experiments
In  this  part,  we  briefly  describe  the  experimental

Unsupervised Video Object Segmentation via Weak User Interaction and Temporal Modulation 511



settings in Section IV.1.  Section IV.2 presents the cor-
responding UVOS  and  SVOS  datasets  and  their  met-
rics.  Secstion  IV.3–IV.4  express  the  evaluations  on
UVOS and SVOS benchmarks that includes DAVIS-2016
[23], FBMS [24], DAVIS-2017 [26], and Youtube-VOS [25].
Moreover, Section  IV.5,  IV.6  and  IV.7  show  the  abla-
tion study, speed analysis and qualitative examples, re-
spectively. Finally,  Section  IV.8  has  relevant  discus-
sions  of  the  temporal  modulation  and  the  subsistent
failure cases.

 1. Setup
We  implement  the  proposed  RectVOS  in  Pytorch

1.6 [48] on the platform with a core i7-4790 CPU, single
Nvidia RTX 2080Ti GPU, and 16.0 GB RAM.

150

4, 453

We utilize  the  ShuffleNet  [49]  as  backbone,  which
is pre-trained in several datasets and we freeze the 1–4
layers.  Following  MATNet  [46], the  multi-level  encod-
ing  features  are  propagated  to  the  decoding  phase,
which aims to preserve the local conditions in different
receptive  fields.  Specifically,  we  train  the  SVOS model
using  the  DAVIS-2017  [26]  dataset  that  contains 
training videos, and Youtube-VOS [25] dataset that has

 training sequences.  For  UVOS model,  the  DAV-
IS-2016 [23] and FBMS [24] sets are utilized to train the
RectVOS.  To  supervise  the  UVOS  and  SVOS  model,
we  employ  the  cross-entropy(CE)  loss  to  monitor  the
segmentation.

 2. Datasets and evaluation schemes
We  evaluate  the  method  on  DAVIS-2016  [23],

FBMS [24], Youtube-VOS [25], and DAVIS-2017 [26].
Un-supervised  VOS  datasets　 We  leverage

DAVIS-2016  and  FBMS  benchmarks  to  evaluate  the
performance  of  the  unsupervised  VOS  task.  It  has  50
full  high-resolution videos  with thousands  of  pixel-wise
annotations.  Following  the  standard  evaluation
schemes, based on the contour accuracy, we report the
intersection over union and F-measure, respectively.

J

Semi-supervised VOS datasets　For DAVIS-2017
dataset,  we  leverage  the  intersection-over-union  (IOU)
between  the  ground  truth  and  the  predicted  mask,
which is termed as the Jaccard index .

4, 453

3, 471 474

For  Youtube-VOS  benchmark,  it  contains 
video  sequences  (including  training  videos, 
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F
J J

validation videos, and  testing videos). Following the
metrics in [23], we employ the the contour precision 
and region similarity  to calculate scores  [25].

 3. Overall  quantitative  performance  on
UVOS datasets

Results  on  the  DAVIS-2016  and  FBMS
datasets  To  further  demonstrate  the  effectiveness  of
our RectVOS  in  the  unsupervised  situations,  we  con-
duct  adequate  evaluations  on  the  DAVIS-2016  and
FBMS unsupervised validation datasets, which includes
realistic  videos  with no initial  binary pixel-level  labels.
Table 1 and Table 2 illustrates the results on the DAV-
IS-2016 and FBMS datasets.

84.5% J&F 77.6% J

83.3%
1.2%

Our RectVOS obtains the state-of-the-art scores of
 (mean ) and  ( ) in DAVIS-2016 and

FBMS, respectively. We can observe that the proposed
method outperforms other competitors over all the met-
rics  across  the  dataset.  This  brilliant  performance
mainly  thanks  to  the  weak  rectangle  supervision  that
we  interactively  obtain,  which  has  more  instructional
information  than  a  completely  unsupervised  approach.
Owing  to  the  full-duplex  strategy,  the  very  recent
method FSNet [10] obtains the state-of-the-art perform-
ance of , which is lower than the proposed Rect-
VOS by a margin of , which demonstrates  the ef-
fectiveness  of  the  user  interaction  proposed  by  the
method.  Also,  the  learned  EMD  and  cross-squeeze
based temporal modulation plays significant role in the
object  representations,  especially  in  the  fast-moving
video scenarios.

77.5% −0.1%

2.9%

Although  F2Net  [50]  utilizes  both  the  motion  and
appearance  cues  to  model  the  spatio-temporal  relation
and gets a competitive score of ( ) than the
proposed  RectVOS  in  FBMS  [24] benchmark,  our  ap-
proach  is  capable  to  model  long-range  spatio-temporal
using  the  EMD-based  temporal  modulation,  surpassing
the MATNet by  in the mainstream dataset DAV-
IS-2016.  The  evaluation  results  significantly  verify  the
effectiveness of  the  proposed  EMD  temporal  modula-
tion mechanism  in  RectVOS  that  contributes  to  a  ro-
bust representation when meeting the challenging video
scenarios.

  
Table 1. Quantitative comparisons against state-of-the-arts on DAVIS-2016 [23] dataset that is widely used in UVOS.

The other results with no citations are borrowed from [44], [46]

Method NLC CUT FSEG LMP SFL LVO UOVOS ARP PDB MotAdapt AGNN
F 52.3 55.2 65.3 65.9 66.7 72.1 68 65.3 72.1 70.6 79.1
J 55.1 55.2 70.7 70 64.7 75.9 73.9 76.2 77.2 77.2 80.7

J&F 53.7 55.2 68 68 65.7 74 71 70.8 74.7 73.9 79.9
Method LSMO AGS AnDiff [51] COSNet [52] MATNet [46] WCS [53] DFNet [54] F2Net [50] RTNet [3] FSNet [10] RectVOS(ours)

F 74.5 77.4 80.5 79.4 80.7 80.7 81.8 84.4 83.5 83.1 84.8
J 78.2 79.7 81.7 80.5 82.4 82.2 83.4 83.1 84.8 83.4 84.2
J&FMean 76.4 78.6 81.1 80 81.6 81.5 82.6 83.8 84.2 83.3 84.5 
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Table 2. Comparison with recent UVOS approaches on the FBMS [24]

Method NLC FST ARP MSTP FSEG IET OBN
JMean 44.5 55.5 59.8 60.8 68.4 71.9 73.9

Method PDB[55] SFL[56] COSNet[52] MATNet[46] F2Net[50] IMP[3] RectVOS(ours)
JMean 74.0 56.0 75.6 76.1 77.5 77.5 77.6

 
 

 4. Overall  quantitative  performance  on
SVOS datasets

J
F

J

J&F
70.9%
70.0%

J&F F 70.9% 72.4%

J&F 68.8%

2.1%

General quantitative evaluations on DAVIS-
2017  dataset　 The  general  quantitative  comparison
on  DAVIS-2017  [26]  validation  dataset  is  listed  in  the
Table  3 using  the  metrics  of  Jaccard-based  score ,
boundary-based  score , and  the  speed  (fps).  The  ta-
ble  contains  several  SVOS methods  including  Premvos
[57], RGMP [58], VideoMatch [59], FEELVOS [60], OS-
VOS [61],  AGAME [5],  OnAVOS [62],  SiamMask  [36],
FRTM [63],  and  the  proposed  RectVOS.  We  can  note
that,  for  mean ,  our  RectVOS  achieves  the  second
place comparing with the other solutions. It is because
that the generative VOS model in AGAME has the su-
perior ability on localizing body of the target, but ours
has better boundary precision than the compared meth-
od  AGAME.  Hence,  our  method  has  a  mean 
score  of ,  which  is  significantly  higher  than
AGAME ( ). Moreover, the proposed RectVOS ob-
tains  the  best  performance  on  the  metrics  of  mean

 and mean  with scores of  and . Al-
though  the  FRTM [63] utilizes  fast  optimization  tech-
niques to predict the target segmentation and achieves
mean  of  ,  the  presented  RectVOS  yields
higher performance  than  FRTM  by  a  significant  mar-
gin of . This is owing to that our method employs
the  Earth  Mover’s  Distance  based  similarity  maps  to
temporally modulate the current frame’s representation,
which is able to highlight the co-existing foreground ob-
jects in the coherent frames. As a result, our VOS mod-
el  has  superior  segmentation  accuracy  on  consecutive
frames.

J
J F

F

Results  on  Youtube-VOS  dataset　Youtube-
VOS  [25]  is  a  large-scale  dataset  for  semi-supervised
VOS, which has both seen and unseen (not exist in the
training set) categories. We use the region similarity ( _
seen  and _unseen)  and  contour  accuracy  ( _seen
and _unseen),  respectively.  As  listed  in Table  4,  we
compare RectVOS  with  recent  SVOS  methods  includ-
ing S2S [25], Premvos [65], AGAME [5], OnAVOS [62],
RGMP [58], Rvos [65], OSVOS [61], and TVOS [22].
  
Table 4. Performance comparisons on the SVOS dataset
(Youtube_vos validation set). The evaluated metrics are

consists of overall performance

Method Overall J _seen F_seen J _unseen F_unseen
OnAVOS [62] 0.552 0.601 0.627 0.466 0.514
OSVOS [61] 0.588 0.598 0.605 0.542 0.607
RGMP [58] 0.538 0.595 – 0.452 –

S2S [25] 0.644 0.710 0.700 0.555 0.612
Premvos [57] 0.669 0.714 0.759 0.565 0.637

Rvos [65] 0.568 0.636 0.672 0.455 0.510
AGAME [5] 0.660 0.678 0.695 0.612 0.662

SiamMask [36] 0.528 0.602 0.582 0.451 0.477
TVOS [22] 0.678 0.671 0.694 0.630 0.716

RectVOS(ours) 0.688 0.704 0.696 0.686 0.667
 
 

J

F J

±0.01 ±0.006

We can note that our RectVOS surpasses the com-
petitors in majority of the metrics. Specifically, in terms
of  overall  performance  and _unseen,  we  obtain  the
best  score  of  0.688  and  0.686,  which  demonstrates  the
effectiveness of the proposed user interaction strategy in
first frame for SVOS. It has the ability of rough localiz-
ation in the first frame and even without the target pri-
or, the model is able to find the accurate position of the
unseen  objects  in  the  training  sets.  Consequently,  our
method has superior performance than the competitors
in the unseen categories. While in terms of _seen, _
seen, we has the top 3 performance with scores of 0.704
and 0.696. This is owing to the earth mover’s distance
temporal  modulation,  which  dynamically  handles  the
drastic appearance variations of  the target.  The Prem-
vos  and  S2S  has  superior  performance  than  ours  with
tiny margins of  and , while relying on the
large-scale  statical  image  training  datasets  (borrowing
from image  semantic  segmentation,  instance  segmenta-
tion  or  saliency  detection).  It  is  noted  that  the  heavy
training phase makes the model overfitting and hard to
generalize  to the other unseen objects,  which naturally
leads  to  the  poorer  performance  in  unseen  categories.

   

J&F J F

Table 3. Comparison results of SVOS models on DAVIS-
2017 [26] validation dataset. The common metrics are

utilized in evaluations, containing mean , , , and
speed (fps)

Method J&FMean- J F OF Speed
OSVOS [61] 60.3 61.0 66.1 ✓ <1

OnAVOS [62] 63.6 61.6 69.1 ✓ <1
RGMP [58] 66.7 64.8 68.8 × 4

SiamMask [36] 56.4 54.3 58.8 × 55
VideoMatch [59] 62.4 56.5 68.2 × 4
FEELVOS [60] 69.1 65.9 72.3 × 2
AGSS-VOS [64] 66.6 63.4 69.8 × 10

AGAME [5] 70.0 72.7 67.8 × 30
FRTM [63] 68.8 66.4 71.2 × 8

RectVOS(ours) 70.9 69.6 72.4 × 22
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0.704 0.696

Moreover, without extra pre-training or online fine-tun-
ing,  our RectVOS achieves the relatively good score of

 and  in unseen categories, which shows that
the proposed  method  RectVOS  has  better  generaliza-
tion capability and efficiency than competitors. For the
rectangle  initialization  based  method  SiamMask,  our
RectVOS  significantly  exceeds  SiamMask  in  both  seen
and unseen categories performance by large margins.

 5. Ablation study of various components

J

To  analyze  the  effectiveness  of  each  variations  in
RectVOS, we exhibit the RectVOS variations including
without  the  earth  mover’s distance  temporal  modula-
tion (ETM), cross-squeeze temporal modulation (CTM),
ResNet50,  weak  user  interaction,  and  optical  flow.  In
detail,  we  apply  FBMS  dataset  to  analyze  different
variations, which are reported in Table 5 in the term of
mean .
  
Table 5. By using different part models, we conduct ab-
lative experiments on the UVOS dataset (DAVIS2016).

Comparing with the variants

Variations JMean Gain
RectVOS w/o ETM 76.5 ±1.1
RectVOS w/o CTM 76.9 ±0.7

RectVOS w/o ResNet50 72.4 ±5.2
RectVOS w/o weak user interaction 75.5 ±2.1

RectVOS w/o optical flow 74.6 ±3.0
RectVOS 77.6 ±0.0

 
 

±1.1% J

77.6% 76.9%

77.6%
72.4% 5.2%

2.1%

3.0% J

Without  ETM,  the  model  dramatically  gains  by
 in mean , showing the effectiveness of the pro-

posed earth mover’s distance temporal modulation mod-
ule. Then,  the  RectVOS  (without  CTM)  performs  su-
perior than the RectVOS-ETM principally owing to the
reason that  the  RectVOS only  with  CTM fails  to  seg-
ment  accurately  when  the  object  suffering  from  heavy
occlusion,  which  drops  from  to  . After-
wards, if the backbone changes from ResNet101 to Res-
Net50,  as  reported  in  the Table  5,  the  performance  of
the RectVOS (without ResNet50) drops from  to

,  which  has  a  large  gain  of .  Moreover,
without weak  user  interaction  in  first  frame,  the  per-
formance has  a  decline  of  because  of  the absence
of  unseen categories.  Also,  if  dropping the optical  flow
between successive  frames,  the  proposed  method  re-
duces by  in mean .

 6. Speed and complexity analysis
We can note that in Table 3 our method runs at 22

fps in  the  phase  of  inference.  Specifically,  we  imple-
ment  the  speed  analysis  in  the  platform  with  an  Intel
Core 4790  CPU,  16GB  RAM,  and  a  Nvidia  RTX
2080Ti  GPU  on  DAVIS-2017  dataset.  As  in Table  3,
OnAVOS,  OSVOS,  and  Premvos  nearly  run  at  the
speed  of  lower  than  1  fps,  which  is  mainly  because  of

22

J&F
14.9% 0.9%

the time-consuming online finetuning in each frame. In
addition,  the  inference  speeds  of  FEELVOS,  RGMP,
VideoMatch, and FRTM are less than 10 fps, and runs
faster than these online fine-tuning solutions.  The pro-
posed RectVOS obtains the third place with a fps of ,
which is lower than SiamMask and AGAME. Although
the SiamMask  and  AGAME  obtain  better  speed  per-
formance  than  ours,  our  RectVOS  yields  much  better
performance  in  mean  by  the  improvements  of

 and  ,  which  demonstrates  the  balance
between accuracy and speed in the proposed RectVOS.
Furthermore,  we  have  investigated  the  complexity  of
each module in the proposed RectVOS. The time com-
plexity of weak user interaction module is depended on
human factors, which is not a fixed time. Moreover, the
CTM takes 0.006 seconds to handle one frame. Similar
to DeepEMD [34], the EMD layer in ETM can be accel-
erated by the QPTH libraty, which takes 0.021 seconds.
In a word, without the online fine-tuning and post pro-
cessing, our  method  RectVOS  achieves  favorable  bal-
ance  between  accuracy  and  speed  against  state-of-the-
art approaches.

 7. Qualitative analysis
Fig.3 qualitatively  shows  remarkable  instances  of

the proposed RectVOS on Youtube dataset  and DAV-
IS-2017  dataset.  We  select  several  frames  at  various
time on 6 sequences, from top to bottom where are par-
rots, sea snake, owls,  bus,  dancer ,  and dog .  It  is  noted
that,  the  presented  RectVOS  favourably  handles  the
challenging  scenarios  (e.g.  heavy  occlusion  and  drastic
appearance  variation)  in  sequences parrots  and  sea
snake.  In  the  1st  row,  although  the  parrot  is  occluded
by  the  similar  parrot  in  the  background,  the  proposed
EMD  based  temporal  modulation  module  accurately
distinguishes foreground  and  background  areas.  In  se-
quences sea snake and owls, owing to the weak user in-
teraction  of  the  initialization,  our  method  successfully
localizes  the  position  of  the  uncommon  categories  e.g.
snake  and  owl.  While  in  the  forth  row,  the  presented
model  has  a  superior  performance  in  the  challenging
scene in video bus, which suffers from occlusion and fast
moving.  Moreover,  the  last  two  sequences dancer  and
dog have the fast-changing appearances as time goes by,
which  leads  to  the  inaccurate  contour  segmentation.
However, with the long-range temporal modulation, our
model results in the robust representations and obtains
the accurate pixel-wise predictions.

 8. Discussions
Temporal Modulation  To enhance the tempor-

al  consistency  between  the  current  frame  and  the  key
frame, we  propose  the  two  different  temporal  modula-
tion  strategy  to  enhance  the  target  representations.  In
this work, we directly set a keyframe every ten frames
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(e.g.,  1,  11,  21,...).  As  illustrated  in Fig.2 ,  the  cross-
squeeze temporal modulation and the earth mover’s dis-
tance  temporal  modulation  both  play  vital  role  in  the
modulation phase.  Furthermore,  the  modulation  mod-
ule is  able  to  transmit  the  temporal  slow-changing  in-
formation  from  the  past  video  frames  to  the  current
frame. The purpose of temporal modulation is to high-
light  the  co-occurrent  objects  in  the  sequence.  When

the target suffers from fast moving, the learned repres-
entations  are  polluted  by  the  low-quality  frames.
However,  thanks  to  the  EMD-based  (ETM)  and  cross
temporal  modulation  (CTM),  our  model  is  capable  of
establishing  the  temporal  consistency  and  relieves  the
inaccurate contour  brought  by  fast  motion.  In  sum-
mary,  it  alleviates  the  segmentation  of  target  contour
when meeting the fast-moving scenarios.
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Fig. 3. Qualitative examples of the proposed RectVOS on Youtube-Objects dataset [25] and DAVIS-2017 benchmark [26].

 

Failure Cases　It illustrates some failure cases of
the proposed RectVOS in Fig.4.
 

Our results Ground truthVideo frames 
Fig. 4. Several failure cases of our RectVOS.

 

In the first row of Fig.4, the RectVOS cannot dis-
tinguish  the  contour  of  tiny  components  in  sequence
dancer. This is because that the dancer moves in a very
high speed, which limits the modulation ability of ETM
and CTM. In the second case, our method is capable of
discriminating  the  player,  his  backpack,  and  his  arm,
but  the  model  fails  to  find  the  ropes  in  the  air.  This
phenomenon is caused by the limited learning ability of
the  model,  the  EMD based  modulation  model  has  less
discriminative ability on background area. Moreover, in

the last  sequence,  our  RectVOS  inaccurately  distin-
guishes the poles as the foreground. Our method is not
able to segment the pole as it has very similar appear-
ance with the leg of cow. Also, the wood poles have the
challenging of low resolution, the RectVOS model can-
not accurately segment the contour of the target.  This
is because of that the CNNs is easy to limited to local
area. In the future work, we will relieve the issue by us-
ing the Transformer to establish the long-range depend-
encies.

 V. Conclusions and Future Work
In this work, we have presented a weakly-interact-

ive VOS architecture with rectangle  annotation as pri-
or for accurate VOS. We first manually draw the weak
user interaction (rectangle) of the target area in the ini-
tial  frame.  Second,  we  obtain  the  EMD  relation  map
between  the  current  and  key  frame  and  subsequently
highlight  the  current  representations  using  the  learned
similarity to temporally modulate the object representa-
tions in the current frame. Then, to emphasize the sali-
ent  representations  of  the  raw  representations,  we
present a  novel  CTM  module  to  enhance  the  robust-
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ness of the learned features against the drastic appear-
ance variations.  Finally,  both ETM and CTM features
are augmented with the raw representation to produce
the  refined  spatio-temporal  representation,  which  is
propagated into the decoder and predict the segmenta-
tion mask. Extensive evaluations have showed the bene-
fits  of  the  proposed  RectVOS  approach  against  the
state-of-the-art approaches.

The related code will be released at: https://github.
com/liyuwang2016/RectVOS.
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