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   Abstract — Quantum algorithms  are  raising  con-
cerns  in  the  field  of  cryptography  all  over  the  world.  A
growing  number  of  symmetric  cryptography  algorithms
have been attacked in the quantum setting. Type-3 gener-
alized  Feistel  scheme  (GFS)  and  unbalanced  Feistel
scheme  with  expanding  functions  (UFS-E)  are  common
symmetric cryptography schemes, which are often used in
cryptographic  analysis  and  design.  We  propose  quantum
distinguishing  attacks  on  Type-3  GFS and UFS-E in  the
quantum  chosen  plaintext  attack  setting.  The  results  of
key  recovery  are  better  than  those  based  on  exhaustive
search in the quantum setting.

   Key words — Quantum attacks, Block  ciphers, Un-

balanced Feistel scheme with expanding functions, Type-
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 I. Introduction
It is well known that the development of quantum

computing has a significant impact on cryptographic al-
gorithms.  Particularly,  there  has  been  a  turning  point
in quantum  cryptanalysis  in  accordance  with  the  ad-
vent that a new quantum attack was identified [1], [2].
Even-Mansour  (EM)  cipher  [3]  and  3-round  Feistel
scheme  [4] can  be  attacked  in  polynomial  time.  Sub-
sequently, quantum cryptanalysis  of  symmetric  crypto-
graphy has  become  a  hot  spot  in  the  current  crypto-
graphy. Over  the  past  decade,  based  on  the  accelera-
tion advantage of quantum algorithms [5],  [6] in previ-
ous research, various symmetric crypto-graphic schemes

have been attacked in the quantum setting [7]–[16].
Feistel  scheme  [17]  is  very  important  and  widely

studied. Many standards ciphers are designed based on
Feistel.  Zheng et  al.  [18]  summarize  some  generalized
Feistel schemes (GFSs) as Type-1/2/3 GFS. CAST-256,
RC6, CLEFIA, FMix and AEGIS are designed based on
the three GFSs. In addition, unbalanced Feistel scheme
(UFS) with contracting functions is denoted as UFS-C,
SMS4  is  designed  based  on  this  scheme.  The  block
cipher MARS and the hash function CRUNCH is based
on UFS with expanding functions (UFS-E) [19].

Because  of  the  importance  of  the  Feistel  schemes,
studying the security of GFS, UFS-E, and UFS-C is of
great  significance  in  postquantum  conditions.  Dong et
al.  [8]  propose quantum distinguishing attacks and key
recovery  attacks  on  Type-1  and  Type-2  GFSs  in  the
quantum chosen  plaintext  attack  (qCPA)  setting,  re-
spectively.  In  PQCrypto  2020  [12],  Hodžić et  al. pro-
pose  the  quantum polynomial  cryptanalysis  of  4-round
4-branch Type-3 GFS, while the complexity of the dis-
tinguishing attack  of  5-round  Type-3  GFS is  exponen-
tial level. You et al. propose a 6-round distinguisher of
SMS4 in the qCPA setting in polynomial  time [14].  In
INDOCRYPT  2020  [15],  Cid et  al.  investigate  the
quantum security  of  7-round SMS4,  and  prove  that  7-
round SMS4 is insecure. Qian et al. study the quantum
security  of  UFS-E  [16].  They  propose  two  quantum
chosen ciphertext attack (qCCA) setting, respectively.

Our  contributions　We carry  out  quantum  at- 
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tacks on the Type-3 GFS and UFS-E in this paper. Our
results are better than those of Hodžić et al.’s [12] and

Qian et al.’s [16]. Our main results are shown in Table 1
and Table 2.

  
Table 1. The quantum distinguishing attacks on the Type-3 GFS and UFS-E

Schemes Settings #Branches #Rounds Complexity Source

Type-3 GFS qCPA

d d+ 1 O(n) Section Ⅲ

4
4 O(n) [12]

5
O(n) Section Ⅲ
O(2n) [12]

UFS-E
qCPA

d d+ 1 O(n) Section Ⅳ
d d O(n) [16]

qCCA d d+ 1 O(n) [16]
 
 
  

Table 2. The quantum key-recovery on the Type-3 GFS and UFS-E

Schemes #Branches #Rounds Complexity (log) Trivial bound (log)
Type-3 GFS d r ≥ d+ 2 (d− 1)(r − d− 1)k/2 (d− 1)rk/2

UFS-E d
d+ 2 ≤ r ≤ 2d (r − d− 1)(r − d)k/4 (d− 1)rk/2

r > 2d (d− 1)(2r − 3d)k/4 (d− 1)rk/2
 
 

Firstly, a quantum distinguishing analysis on Type-
3 GFS is proposed in the qCPA setting. We construct a
periodic  function  by  using  the  XOR  of  two  different
outputs of the same branch, and give a distinguisher of
reduced  round  Type-3  GFS  in  the  qCPA setting.  The
quantum  query  complexity  of  distinguishing  attack  is
polynomial time. Note that, Hodžić et al. show that the
5-round  Type-3  GFS  with  4-branch  is  secure  in  the
qCPA setting  in  PQCrypto  2020.  In  addition,  we  give
key recovery on Type-3 GFS. Assume that the sub-keys
are independent. Our result is better than that based on
exhaustive search in the quantum setting.

Secondly, we also evaluate UFS-E against quantum
attacks,  and  it  has  not  been  addressed  in  previous
works.  In  the  qCPA  setting,  we  construct  a  periodic
function  of  UFS-E  by  using  the  XOR of  two  different
outputs of the same branch and exchanging two differ-
ent  terms,  and  give  a  distinguisher  of  UFS-E.  The
quantum query complexity is polynomial time. In addi-
tion, we give key recovery on UFS-E. We assume that
the sub-keys are independent of each other. Our results
are better than those based on exhaustive search.

Organization　To begin with, we introduce some
preliminaries in  Section  Ⅱ . Section  Ⅲ  illustrates  our
quantum attacks  on  Type-3  GFS.  Section  Ⅳ  demon-
strates the quantum attacks of UFS-E. Finally, this pa-
per concludes in Section Ⅴ.

 II. Preliminaries
 1. Simon’s algorithm
We briefly introduce Simon’s problem and Simon’s

algorithm [4] firstly.
f : {0, 1}n →

{0, 1}n s ∈ {0, 1}n x′ = x⊕ s ⇔ f(x) =

Simon’s  problem.  Assume  function 
 has a period , and 

f(x′) x ̸= x′ s for , our goal is to find the period .
O(2n/2) s

s O(n)

One needs  queries to find  in the classical
setting. Simon’s algorithm could find  with  quer-
ies. The algorithm repeats the following quantum steps.

|0⟩|0⟩
Step  1:  Giving  two  quantum  registers  with  state
,  then Hadamard transform is  applied to  the first

register.
f(x) 2−n/2

∑
x |x⟩|f(x)⟩Step 2: Querying to , get .

2−n/2
∑

x,y (−1)
y·x|y⟩|f(x)⟩

Step 3: Applying Hadamard transform on the first
register, then gives .

x′=x⊕s⇔f(x′)=f(x) |y⟩|f(x⊕ s)⟩=
|y⟩|f(x)⟩ 2−n/2

∑
x,y (−1)

y·x|y⟩|f(x)⟩ =
2−n

∑
x∈V,y ((−1)

y·x
(1 + (−1)

y·s
))|y⟩|f(x)⟩ V

{0, 1}n V + s V

y · s = 0

O(n)

If , we can get 
.  Then,  we  get 

, where  is a
linear  sub-space.  is  divided  into  and  .
Consequently,  if  we  measure  the  state,  we  can  get  a
random  vector  such  that .  By  repeating  these
steps  times,  we can obtain adequate  independent
vectors with high probability.

 2. Quantum distinguisher
f x′ = x⊕ s ⇔ f(x) =

f(x′) s

O : {0, 1}n → {0, 1}n

Π EK

UO
fO {0, 1}n →

{0, 1}n O = EK fO s

fΠ

The function  has  to  satisfy 
 to get  based on Simon’s algorithm. Nonetheless,

the condition can be relaxed in distinguishing attack. If
we get an oracle  which is either a
permutation  or an encryption algorithm , and our
question is how do we distinguish the two cases. Let or-
acle  be given in quantum circuit. We can apply the
distinguisher in [13] to  a  function , which is 

. When ,  has a non-zero period . We
expect that  does not have any period, and the prob-
ability is  very  high.  The  distinguisher  is  shown as  fol-
lows:

YStep 1: Starting with a set , which is empty.
η

y Y
Step 2: Measure the first register for  times, then

add the values of vector  to set  and span to a vec-
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tor space.
dStep  3:  Compute  the  dimension  of  the  vector

space.
O = Π d = l

O = EK d < l

Step  4:  Output ,  if ;  while  output
, if .

s fO y

d l − 1 d

l fO

π

If  is the period of , it is orthogonal to . Thus,
dimension  is at most . On the other side,  can
reach  if  does not have a period. Therefore, the two
cases can be distinguished by examining the dimension.
To analyze the probability when the distinguisher suc-
ceeds, let  be a fixed permutation, we define
 

ϵπf = max
t∈{0,1}l\{0l}

Pr
x
[fπ(x) = fπ(x⊕ t)]

0 ≤ δ < 1 ϵπf > 1− δ

π

Take an arbitrary constant . If ,
we  say  is  irregular  permutation.  What  is  more,  we
define the irregular permutations set as
 

irrδf = {π ∈ Perm(n)|ϵπf > 1− δ}

The following theorem is proved in [13].

O(poly(l,m))

fO O(1)

O(η)

Theorem 1 (Theorem 2 in [13])　Assume that one
has a quantum circuit,  which has  qubits.
The quantum circuit  can compute  by making 
queries.  When the distinguisher  takes  queries,  we
can distinguish the two cases with probability 

1− 2l

eδη/2
− Pr

Π
[Π ∈ irrδf ]

 III. Quantum Attacks on Type-3 GFS
(d+ 1)

(d+ 1)

We  propose  a  distinguishing  attack  of -
round Type-3 GFS in polynomial time in the qCPA set-
ting in this section. Then the 5-round 4-branch Type-3
GFS is studied as an example. We construct a periodic
function by using the XOR of two different outputs of
the same branch, and then offset a same term about the
input variable. The result shows that the -round
Type-3 GFS is  insecure  in  the  qCPA setting.  In  addi-
tion, we propose key recovery attacks on Type-3 GFS,
and  give  the  comparison  with  quantum  exhaustive
search.

 1. Specification of Type-3 GFS
d d ≥ 3

n Etype−3
r

r Ri,j (1 ≤ j ≤ d− 1)

{0, 1}n {0, 1}n Ri,j

k ki,j

Ri Ri = (Ri,1, . . . ,

Ri,d−1) Etype−3
r (x0

0, . . . , x
0
d−1) ∈

({0, 1}n)d (xr
0, . . . , x

r
d−1) ∈

({0, 1}n)d i

Let Type-3 GFS have  branches, where  and
each branch has an -bit sub-block. Let  denote
the -round  Type-3  and  be  keyed
sub-round  functions  from  to  .  Let 
take  a -bit  independent  round  key  as  the  input,
and the round function  is defined as 

.  inputs  a  plaintext 
,  and  outputs  a  ciphertext 
,  and  the th-round  Type-3  GFS  is  shown  in

Fig.1.

...x
0

i−1 x
2

i−1 x
d

i

−1
−1

x
d

i

−1

x1
i−1

x
0

i x
2

ix1
i

Ri, d−1Ri, 2Ri, 1

...

 
Fig. 1. The round function of Type-3 GFS.

 

d+ 1 2. Distinguishing  attacks  on  the  ( )-
round Type-3 GFS

α0, α1 ∈ {0, 1}n
x0
1, . . . , x

0
d−2 ∈ {0, 1}n

O

Let  be constants,  which  are  arbit-
rary  distinct.  And  be  arbitrary
constants  (as  shown  in Fig.2 ).  If  we  get  the  oracle ,
we can define
 

fO : {0, 1}n → {0, 1}n

x 7→ zd−1 ⊕ z′d−1

zd−1 z′d−1

O(α0, x
0
1, . . . , x

0
d−2, x) O(α1, x

0
1, . . . , x

0
d−2, x)

O EType-3
d+1 fO

where  and  are the last branches of the out-
puts of  and 
respectively. If  is ,  is described as
 

fO(x) = xd+1
d−1 ⊕ x′d+1

d−1

 

xd
d

−1
+1xd

d

−2
+1

xd
d

−1
−2

xd
1

−1

xd
0

−2 xd
0

−1=xx1
0 x2

0

x1
1 x2

1

R1, d−1R1, 2R1, 1

R2, d−1R2, 2R2, 1

Rd−1, d−1Rd−1, 2Rd−1, 1

Rd+1, d−1Rd+1, 2Rd+1, 1

Rd, d−1Rd, 2Rd, 1

x0

0=αb

xd
d

−1

x0

d+1

x0

d−1

x2
d+1x1

d+1

x2
d−1x1

d−1

x0

d x2
dx1

d

x0

d−2

x0

1

x2
d−2x1

d−2

xd
d

−1
−1

...

...

 
(d+ 1)Fig. 2.  -round distinguisher on Type-3 GFS.

 

(d+ 1)

The  following  lemma  is  our  main  observation  for
-round Type-3 GFS.

O EType-3
d+1

x ∈ {0, 1}n
Lemma 1　If the oracle  is , then for any

, we can get
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fO(x) =fO(x⊕Rd−1,1(F d−1,1(α0, x
0
1, . . . , x

0
d−2))

⊕Rd−1,1(F d−1,1(α1, x
0
1, . . . , x

0
d−2)))

s = Rd−1,1(F d−1,1(α0, x
0
1, . . . , x

0
d−2))⊕

Rd−1,1(F d−1,1(α1, x
0
1, . . . , x

0
d−2)) fO

F d−1,1

That  is, 
 is  the  period  of ,

where  is a fixed function.

(d− 1)

Proof　Firstly, we  consider  the  value  of  the  out-
put of the first  rounds:
 

(xd−1
0 , xd−1

1 , . . . , xd−1
d−1) = Etype−3

d−1 (αb, x
0
1, . . . , x

0
d−2, x)

αb

xd−1
0 xd−1

1

Meanwhile,  reaches  the  second  position  from
left.  Then,  we can get  and  by the following
equations:
 

xd−1
0 = Rd−1,1(xd−2

0 )⊕ xd−2
1

xd−2
0 = Rd−2,1(xd−3

0 )⊕ xd−3
1

xd−2
1 = Rd−2,2(xd−3

1 )⊕ xd−3
2

...
x1
0 = R1,1(αb)⊕ x0

1
...

x1
d−3 = R1,d−2(x0

d−3)⊕ x0
d−2

x1
d−2 = R1,d−1(x0

d−2)⊕ x

and 

xd−1
1 = Rd−1,2(xd−2

1 )⊕ xd−2
2

xd−2
1 = Rd−2,2(xd−3

1 )⊕ xd−3
2

xd−2
2 = Rd−2,3(xd−3

2 )⊕ xd−3
3

...
x2
1 = R2,2(x1

1)⊕ x1
2

...
x2
d−3 = R2,d−2(x1

d−3)⊕ x1
d−2

x2
d−2 = R2,d−1(x1

d−2)⊕ αb

...
x1
1 = R1,2(x0

1)⊕ x0
2

...
x1
d−3 = R1,d−2(x0

d−3)⊕ x0
d−2

x1
d−2 = R1,d−1(x0

d−2)⊕ x
 

So, we can easily get
 

xd−1
0 =x⊕R1,d−1(x0

d−2)⊕R2,d−2(F 2,d−2(x0
d−3, x

0
d−2))

⊕ · · · ⊕Rd−2,2(F d−2,2(x0
1, . . . , x

0
d−2))

⊕Rd−1,1(F d−1,1(αb, x
0
1, . . . , x

0
d−2))

and
 

xd−1
1 =αb ⊕R2,d−1(F 2,d−1(x0

d−2, x))

⊕ · · · ⊕Rd−1,2(F d−1,2(x0
1, . . . , x

0
d−2, x))

F 2,d−2, . . . , F d−1,1 F 2,d−1, . . . , F d−1,2where  and  are  all

nfixed functions with an output length of -bit.
b = 0, 1For , let

 

Γαb
=R1,d−1(x0

d−2)⊕R2,d−2(F 2,d−2(x0
d−3, x

0
d−2))

⊕ · · · ⊕Rd−2,2(F d−2,2(x0
1, . . . , x

0
d−2))

⊕Rd−1,1(F d−1,1(αb, x
0
1, . . . , x

0
d−2))

and
 

Λx =R2,d−1(F 2,d−1(x0
d−2, x))

⊕ · · · ⊕Rd−1,2(F d−1,2(x0
1, . . . , x

0
d−2, x))

xd−1
0 = x⊕ Γαb

xd−1
1 = αb ⊕ Λx

x0
1, . . . , x

0
d−2 n Γαb

αb Λx x

xd+1
d−1 = xd

0 = αb ⊕ Λx ⊕Rd,1(x⊕ Γαb
)

We can get  and . As
 are arbitrary -bit constants, thus  is a

function about ,  is a function about . Finally, as
we have seen, , we
have
 

fO(x) = xd+1
d−1 ⊕ x′d+1

d−1

= α0 ⊕ α1 ⊕Rd,1(x⊕ Γα0
)⊕Rd,1(x⊕ Γα1

)

So, we can get
 

fO(x⊕ Γα0
⊕ Γα1

) = fO(x)

fO(x)So,  has the period
 

s =Γα0
⊕ Γα1

=Rd−1,1(F d−1,1(α0, x
0
1, . . . , x

0
d−2))

⊕Rd−1,1(F d−1,1(α1, x
0
1, . . . , x

0
d−2))

Hence the lemma follows.
(d+ 1)

fO(x)

fO(x)

s (d+ 1)

Ed−1
d+1,(αi)

(d+ 1) (αi, x
0
1, . . . ,

x0
d−2, x) i ∈ {0, 1}

Since  the  output  of -round  Type-3  GFS
could be truncated based on the approach in SCN 2018
[20],  could  be  used  as  the  oracle  in  quantum
cryptanalysis based on Simon’s algorithm. As  has
period , -round Type-3  GFS  can  be  distin-
guished based on the quantum distinguisher in Section
II in polynomial time. The Simon’s function for (d+1)-
round  Type-3  GFS  is  illustrated  in Fig.3 ,  where

 denotes  the  output  of  the  last  branch  when
the  input  of -round  Type-3  GFS  is 

, .
 

x x

0

0

Uα UαUα

x

1

Ed
d

+1,(α
0
)

−1
Ed
d

+1,(α
1
)

−1

⊕Ed
d

+1,(α
0
)
 (x)−1 Ed

d

+1,(α
1
)
 (x)−1

Ed
d

+1,(α
0
)
 (x)−1

 
(d+ 1)Fig. 3. Simon’s function for -round Type-3 GFS.

 

η = 4n δ = 1/2 (2/e)n PrΠ[Π ∈
irrδf ]

1− (2/e)n − PrΠ[Π ∈ irrδf ] 4n

We  use  and  ,  and  
 are both small values. The success probability is at

least  with  measuring 
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times.
Next, the  attack  of  4-branch  Type-3  GFS  is  in-

cluded to illustrate the computational procedure.

d

Example of 4-branch Type-3 GFS. When the num-
ber of branch  is 4, we get a 5-round quantum distin-
guisher (as shown in Fig.4).
 

x1

0 x2

0

x1

1
x2

1

R1, 2 R1, 3

R2, 3

R1, 1

R3, 2 R3, 3R3, 1

R4, 2 R4, 3R4, 1

R5, 2 R5, 3R5, 1

R2, 2R2, 1

x0

0=αb x3

0=x

x1

5 x2

5 x3

5

x3

4

x3

3

x3

2

x3

1x0

1

x1

2
x2

2
x0

2

x1

3
x2

3
x0

3

x1

4
x2

4
x0

4

x0

5

 
Fig. 4. 5-round distinguisher on 4-branch Type-3 GFS.

 
Based on the Lemma 1, we can get

 

xd+1
d−1 =x5

3 = αb ⊕R2,3(x⊕R1,3(x0
2))

⊕R3,2(x⊕R1,3(x0
2)⊕R2,2(x0

2 ⊕R1,2(x0
1)))

⊕R4,1(x⊕R1,3(x0
2)⊕R2,2(x0

2 ⊕R1,2(x0
1))

⊕R3,1(x0
2 ⊕R1,2(x0

1)⊕R2,1(x0
1 ⊕R1,1(αb))))

OGiven the oracle  of 5-round Type-3 GFS, we can
define
 

fO : {0, 1}n → {0, 1}n

x 7→ x5
3 ⊕ x′5

3

x5
3 x′5

3

O(α0, x
0
1, x

0
2, x) O(α1, x

0
1, x

0
2, x)

where  and  are the last branches of the outputs of
 and   respectively.  Then,

we can get
 

fO(x) =α0 ⊕ α1

⊕R4,1(x⊕R1,3(x0
2)⊕R2,2(x0

2 ⊕R1,2(x0
1)))

⊕R3,1(x0
2 ⊕R1,2(x0

1)⊕R2,1(x0
1 ⊕R1,1(α0)))

⊕R4,1(x⊕R1,3(x0
2)⊕R2,2(x0

2 ⊕R1,2(x0
1)))

⊕R3,1(x0
2 ⊕R1,2(x0

1)⊕R2,1(x0
1 ⊕R1,1(α1)))

fO(x)The period for  is

 

s =R3,1(x0
2 ⊕R1,2(x0

1)⊕R2,1(x0
1 ⊕R1,1(α0)))

⊕R3,1(x0
2 ⊕R1,2(x0

1)⊕R2,1(x0
1 ⊕R1,1(α1)))

Similar  to  the  above  attack,  the  5-round 4-branch
Type-3 GFS can be distinguished in polynomial time.

 3. Key recovery attack on Type-3 GFS
(d+ 1)

r

(d+ 2)

Based on the -round distinguisher, we intro-
duce  how  to  solve  the  keys  of -round  Type-3  GFS.
When  the  output  of  the -round  Type-3  GFS  is
known (shown in Fig.5), we can get
 

xd+1
d−1 = Rd+2,d−1(· · · (Rd+2,1(xd+2

d−1)⊕ xd+2
0 )⊕ · · · )⊕ xd+2

d−2

(d+ 2)

d− 1

(d− 1)k xd+1
d−1

That is, when we get the output of -round Type-
3  GFS,  we  need  to  guess  sub-keys  for  a  total  of

 bits to recover the intermediate state .
 

(d+1)-round distinguisher

Rd+2, 1 Rd+2, 2 Rd+2, d−1

xd
d

−1
+2
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d

−1
+1
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d

−2
+2

xd
0
−2 xd

0
−1=xx1

0 x2
0 ...

...

x0
0=αb

x0
d+2 x2

d+2x1
d+2

x0
d+1 x2

d+1x1
d+1

 
Fig. 5. Key recovery attack on Type-3 GFS.

 

r ≥ d+ 2 r

(d− 1)(r − d− 1) (d− 1)(r − d−
1)k xd+1

d−1

(d+ 1)

O(2(d−1)(r−d−1)k/2)

For ,  when  the  output  of  the -round
Type-3  GFS  is  known,  we  need  to  guess  the  value  of

 sub-keys for a total of 
 bits  to  recover  the  intermediate  state .  With

the -round distinguisher in qCPA setting, we can
solve the key in time  combining Si-
mon’s and Grover’s algorithms.

r d (d− 1)rk

O(2(d−1)rk/2)

2(d−1)rk/2−(d−1)(r−d−1)k/2 =

2(d
2−1)k/2

For -round -branch  Type-3  GFS,  bits
key need to be found by using the quantum exhaustive
search  to  recover  the  key,  and  the  time  complexity  is

.  Therefore,  this  attack  is  better  than  the
exhaustive search by factor 

.

 IV. Quantum Attacks on UFS-E

(d+ 1) d

(d+ 1)

(d+ 1)

In  this  section,  we  give  a  distinguishing  attack  of
-round -branch UFS-E with polynomial time in

the qCPA setting. The quantum attack of UFS-E shows
that the -round is insecure in the qCPA setting,
however,  the -round is  PRP in the classical  set-
ting. In addition, we carry out key recovery attacks on
UFS-E.

 1. Specification of UFS-E
d d ≥ 3

n EUFS−E
r r

Let UFS-E have  branches, where  and each
branch has an -bit sub-block. Let  denote the -

Quantum Attacks on Type-3 Generalized Feistel Scheme and Unbalanced Feistel Scheme with Expanding... 213



Ri,j(1 ≤ j ≤ d− 1)

{0, 1}n {0, 1}n Ri,j

k ki,j

Ri Ri = (Ri,1, . . . , Ri,d−1)

EUFS−E
r (x0

0, . . . , x
0
d−1) ∈ ({0, 1}n)d

(xr
0, . . . , x

r
d−1) ∈ ({0, 1}n)d

i

round  UFS-E  and  be  keyed  sub-
round functions from  to . Let  take a
-bit  independent  round  key  as  input,  and  the

round function  is  defined as .
 inputs  a  plaintext ,

and  outputs  a  ciphertext .
The th-round UFS-E is shown in Fig.6.
 

x
0

i−1 x
2

i−1 x
d

i

−1
−1

x
d

i

−1

x1
i−1

x
0

i x
2

i ...

...

x1
i

Ri

 
Fig. 6. The round function of UFS-E.

 

d+ 1 2. Distinguishing  attacks  on  the  ( )-
round UFS-E

α0, α1 ∈ {0, 1}n
x0
1, . . . , x

0
d−2 ∈ {0, 1}n

O

Let  be constants,  which  are  arbit-
rary  distinct.  And  be  arbitrary
constants  (as  shown  in Fig.7 ).  If  we  get  the  oracle ,
we can define
 

fO : {0, 1}n → {0, 1}n

x 7→ zd−1 ⊕ z′d−1

zd−1 z′d−1

O(α0, x
0
1, . . . , x

0
d−2, x) O(α1, x

0
1, . . . , x

0
d−2, x)

O EUFS−E
d+1 fO

where  and   are the  last  branches  of  the  out-
puts of  and 
respectively. If the oracle  is ,  is described
as
 

fO(x) = zd−1 ⊕ z′d−1 = xd+1
d−1 ⊕ x′d+1

d−1

(d+ 1)

The  following  lemma  is  our  main  observation  for
-round UFS-E.

O EUFS−E
d+1

x

Lemma 2　If the oracle  is , then for any
, we can get

 

fO(x⊕ Γα0
⊕ Γα1

) = fO(x)

fO = Γα0
⊕ Γα1

That is,  has the period s ,
where 

Γαb
=R1,d−1(αb)⊕R2,d−2(F 2,d−2(αb, x

0
1))

⊕ · · · ⊕Rd−1,1(F d−1,1(αb, x
0
1, . . . , x

0
d−2))

F 2,d−2, . . . , F d−1,1 nand  are  fixed  functions  with -bit
output.

(d− 1)

Proof　Firstly, we  consider  the  value  of  the  out-
puts of the first  rounds:
 

(xd−1
0 , xd−1

1 , . . . , xd−1
d−1) = EUFS−E

d−1 (αb, x
0
1, . . . , x

0
d−2, x)

αbMeanwhile,  reaches  the  second  position  from
left. Similar as Lemma 1, we can get:
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(d+ 1)Fig. 7.  -round distinguisher on UFS-E.

 
 

xd−1
0 =x⊕R1,d−1(αb)⊕R2,d−2(F 2,d−2(αb, x

0
1))

⊕ · · · ⊕Rd−1,1(F d−1,1(αb, x
0
1, . . . , x

0
d−2))

 

xd−1
1 =αb ⊕R2,d−1(F 2,d−1(αb, x

0
1))

⊕R3,d−2(F 3,d−2(αb, x
0
1, x

0
2))

⊕ · · · ⊕Rd−1,2(F d−1,2(αb, x
0
1, . . . , x

0
d−2))

F 2,d−1, . . . , F d−1,2 F 2,d−2, . . . , F d−1,1

n

where  and  are  all
fixed functions with -bit output.

b = 0, 1For , let
 

Λαb
=αb ⊕R2,d−1(F 2,d−1(αb, x

0
1))

⊕R3,d−2(F 3,d−2(αb, x
0
1, x

0
2))

⊕ · · · ⊕Rd−1,2(F d−1,2(αb, x
0
1, . . . , x

0
d−2))

and
 

Γαb
=R1,d−1(αb)⊕R2,d−2(F 2,d−2(αb, x

0
1))

⊕ · · · ⊕Rd−1,1(F d−1,1(αb, x
0
1, . . . , x

0
d−2))

xd−1
1 = Λαb

xd−1
0 = x⊕ Γαb

x0
1, . . . , x

0
d−2 n Λαb

Γαb
αb

We  can  get  and  .  As
 are arbitrary -bit constants, thus  and

 are functions of .
xd+1
d−1=xd

0=Λαb
⊕Rd,1(x⊕

Γαb
)

Finally, as we have seen, 
, and

 

fO(x) = xd+1
d−1 ⊕ x′d+1

d−1

= Λα0
⊕Rd,1(x⊕ Γα0

)⊕ Λα1
⊕Rd,1(x⊕ Γα1

)

fOThe  function  has  the  claimed  period  since  it
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satisfies
 

fO(x⊕ Γα0
⊕ Γα1

) = fO(x)

fO s = Γα0
⊕ Γα1That is,  has the period .

Hence the lemma follows.
(d+ 1)

fO

fO s

(d+ 1)

(d+ 1)

(d+ 1)

Since the output of -round UFS-E could be
truncated  based  on  the  approach  in  SCN2018  [20], 
could  be  used  as  the  oracle  in  quantum  cryptanalysis
based  on  Simon’s  algorithm.  As  has  the  period ,

-round UFS-E can be distinguished based on the
quantum distinguisher in Section II in polynomial time.
The  Simon’s  function  of -round  UFS-E  and  the
success  probability  are  the  same  as  those  of -
round Type-3 GFS.

 3. Key recovery attack on UFS-E
(d+ 1)

r

(d+ 2)

Based on the -round distinguisher, we intro-
duce  how  to  solve  the  keys  of -round  UFS-E.  When
the  output  of  the -round  UFS-E  is  known  (as
shown in Fig.8), we can get
 

xd+1
d−1 = Rd+2,d−1(xd+2

d−1)⊕ xd+2
d−2

(d+ 2)

k

xd+1
d−1

That is, when we get the output of -round UFS-
E, we need to guess the one sub-key for a total of  bits
to recover the intermediate state .
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Fig. 8. Key recovery attack on UFS-E.

 
r

(r − d)(r − d− 1)/2

(r − d)(r − d− 1)k/2

xd+1
d−1

O(2(r−d)·(r−d−1)·k/4)

d+ 2 ≤ r ≤ 2d

When the output of the -round UFS-E is known,
we need to guess the value of  sub-
keys for a total of  bits to recover
the intermediate state . With the distinguisher, we
can solve the key of UFS-E in time 
by  combining  Grover’s  and  Simon’s  algorithms  when

.

r > 2dIf  we  attack  rounds,  we  need  to  guess  the
value of
 

(2d−d)(2d−d−1)/2+(r−2d)(d−1) = (r − 3d/2) (d−1)

(r − 3d
2 )(d− 1)k

xd+1
d−1 (d+ 1)

r

O(2(2r−3d)(d−1)k/4)

sub-keys  for  a  total  of  bits  to  recover
the intermediate state . With the -round dis-
tinguisher, we can solve the key of the -round UFS-E
in  time  combining  Grover’s and  Si-
mon’s algorithm.

r d r(d− 1)k

O(2r(d−1)k/2) d+ 2 ≤ r ≤ 2d r > 2d

2r(d−1)k/2−(r−d)(r−d−1)k/4 = 2(4rd−d2−d−r2−r)k/4

2r(d−1)k/2−(2r−3d)(d−1)k/4 = 23d(d−1)k/4

For -round -branch  UFS-E,  bits  key
need  to  be  found  by  using  the  quantum  exhaustive
search  to  recover  the  key,  the  complexity  is

.  For  and  , our  at-
tacks  are  better  than  the  exhaustive  search  by  factors

 and
, respectively.

 V. Conclusions

(d+ 1) d

In this paper, the quantum security of Type-3 GFS
and  UFS-E  are  studied.  The  5-round  4-branch  Type-3
GFS  has  been  proved  secure  in  the  qCPA  setting  in
previous work, while -round -branch UFS-E has
not been studied in the qCPA setting.

d

(d+ 1)

(d+ 1)

(d+ 1)

(d+ 1)

For -branch Type-3 GFS and UFS-E, we propose
quantum distinguishing attacks on -round Type-
3 GFS and -round UFS-E in polynomial time in
the  qCPA  setting.  The  results  show  that  the -
round  Type-3  GFS  and -round  UFS-E  which
proved to  be  PRP are  not  secure  in  the  quantum set-
ting.  In  addition,  based  on  Grover’s  and  Simon’s al-
gorithm, we give key recovery on the Type-3 GFS and
UFS-E, which are better than the quantum exhaustive
search.
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