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   Abstract — In this  paper,  a  family  of  binary  se-
quences derived from Euler quotients with RSA modulus
pq is  introduced.  Here  two  primes p and  q are  distinct
and satisfy gcd(pq, (p−1)(q−1))=1. The linear complexit-
ies  and  minimal  polynomials  of  the  proposed  sequences
are  determined.  Besides,  this  kind of  sequences  is  shown
not to have correlation of order four although there exist
some special  relations  by  the  properties  of  Euler  quo-
tients.

   Key words — Cryptography, Binary sequences, Lin-

ear complexity, Euler quotients, RSA modulus.

 I. Introduction
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Pseudo random binary threshold sequences derived
from the  Fermat  quotient  can  achieve  good  crypto-
graphic properties [1]. For example, they have high lin-
ear complexities [2] and stable -error linear complexit-
ies  [3].  The  study  of  linear  complexities  of  sequences
defined from polynomial quotients, a variant of the Fer-
mat  quotient,  was  given  in  [4].  Chen  described  trace
representations  for  binary  sequences  defined  from  the
Fermat quotient  and also  determined linear  complexit-
ies of the corresponding sequences [5]. A natural exten-
sion of  binary  threshold  sequences  from  Fermat  quo-
tients was considered for its cryptographic properties in
[6]. The linear complexity of a family of -periodic bin-
ary sequences  derived  from polynomial  quotients  mod-
ulo an odd prime  was determined in [7].

By the  Euler’s  Theorem,  Fermat  quotients  can be

k
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pq p q

p q − 1

generalized for composites [8]. Therefore, it is natural to
construct binary  sequences  derived  from  Euler  quo-
tients for  cryptographic  purposes.  Firstly,  the distribu-
tion  of  vectors  of  consecutive  Euler-Fermat  quotients
modulo a composite was described in [9]. Trace repres-
entations  of  sequences  deduced  from  Euler  quotients
modulo  a  prime  power  were  studied  in  [10]. Further-
more, the -error linear complexity of binary sequences
deduced  from  Euler  quotients  modulo  a  prime  power
was  determined  [11].  Zhang  determined  linear
complexities  of  binary  sequences  deduced  from  Euler
quotients modulo a product , where  and  are two
distinct  odd  primes  and  is  a  divisor  of  [12 ].  A
novel  approach  for  sequence  constructions  based  on
Euler quotients was presented in [13]. In summary, the
pseudo  random  sequence  derived  from  Fermat/Euler
quotients and their variants is one of important classes
in sequence sets.

s

m = pq

p q

t ≥ 0 gcd (t,m) = 1

Ψ(t) (mod m)

In  this  paper,  a  family  of  binary  sequence  de-
rived  from  the  Euler  quotient  is  investigated.  In  our
case,  RSA  modulus  number  is  taken  for  the
Euler  quotient  where  and   are  two  distinct  odd
primes.  For  an  integer  with  ,  the
Euler quotient  is defined by
 

Ψ(t) =
tφ(m) − 1

m
(mod m) (1)

φ(·)
Ψ(t) = 0 gcd (t,m) ̸= 1

where  is  the  Euler-phi  function.  One  can  define
 if . 
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It can be seen easily that
 

Ψ(t+ km) ≡ Ψ(t) + kt−1φ(m) (mod m) (2)

t, k gcd(t,m) = 1.where  are positive integers with 
p

q

S = (st)
∞
t=0

m = pq

S = (st)
∞
t=0

Without  loss  of  generality,  one  can assume that 
is smaller than . The following is devoted to the study
of  a  binary  threshold  sequence  from  the
Euler  quotient  modulo .  The  sequence

 can be defined as
 

st =


0, if 0 ≤ Ψ(t)

m
<

1

2

1, if
1

2
≤ Ψ(t)

m
< 1

(3)

For our purpose, the concept of the linear complex-
ity of binary sequences is needed in the sequel.

L(G) N
G = (gi)

∞
i=0 F2

L
a1, a2, . . . , aL ∈ F2

The  linear  complexity  of  an -periodic se-
quence  over the binary field  is the smal-
lest  nonnegative  integer  for which  there  exist  ele-
ments  such that
 

gi + a1 · gi−1 + · · ·+ aL · gi−L = 0, for all i ≥ L

G(x) = g0 + g1x+ · · ·+ gN−1x
N−1 ∈ F2[x]

G

G

Let  be
the generating polynomial of sequences . Then the lin-
ear complexity of sequences  can be computed as fol-
lows [14]:
 

L(G) = deg
(

xN − 1

gcd(xN − 1, G(x))

)

k

In  sequences  designs  [14]–[16], the  linear  complex-
ity plays  a  vital  role  as  a  complexity  measure  for  bin-
ary sequences.  Depending  on  the  requirements  in  ap-
plications  of  communication  and  cryptography,  other
measures including low autocorrelation or cross-correla-
tion [17], [18], good nonlinear properties [19]–[21], -er-
ror  complexity  [3],  [22]  are  also  required.  According to
the  Berlekamp-Massey  algorithm  [14],  [23],  the  linear
complexity  of  a  cryptographically  strong  sequence
should be greater than a half of the least period of the
sequence.

pq gcd((p− 1)(q − 1),

pq) = 1

gcd((p− 1)(q − 1), pq) = p

p q

The presented paper contributes to the calculation
of  linear complexities  of  the sequence defined from the
Euler quotients (3) with RSA modulus. The modulus in
the Euler quotients is equal to  with 

. Note that this result is different from [12] since
the  latter  is  considered  under  the  condition  that

.  The  proposed  sequence  will
be balanced when both primes  and  tend to the in-
finity. The  main  result  shows  that  the  proposed  se-
quences have high linear complexities. It should be em-
phasized that the proposed sequences have no high cor-
relations of order four at the end.

The remainder of this paper is organized in the fol-
lowing way. In Section II,  we give a proof of the main
result. Section III concludes this paper.

 II. Main Result
This  section  is  devoted  to  the  proof  of  the  main

theorem given in the following:
p q

gcd((p− 1)(q − 1), pq) = 1

2q−1 ̸≡ 1 (mod q2) 2p−1 ̸≡ 1 (mod p2)
S = (st)

∞
t=0

Theorem 1　Let two odd primes  and  be dis-
tinct  with . Suppose  that

 and  . A  binary
threshold sequence  can be defined by
 

st =


0, if 0 ≤ Ψ(t)

pq
<

1

2

1, if
1

2
≤ Ψ(t)

pq
< 1

Then
S p2q21) The least period of  is ;

S2) The minimal polynomial of  is
 

M(x) =

{
Φp2q2(x)Φp2q(x)Φpq2(x), if pq ≡ 1 (mod 4)
Φp2q2(x)Φp2q(x)Φpq2(x)Φpq(x), otherwise

Φn(x) nwhere we denote by  for a positive integer ;
S3) the linear complexity of  is given as follows:

 

L(S) =

{
(p2−1)(q2−1)−(p−1)(q−1), if pq≡1 (mod 4)
(p2 − 1)(q2 − 1), otherwise

For the proof of the main theorem, a series of the
useful lemmas are required in the following.

p2q2

S p q

(p− 1)(q − 1)

It  is  first  shown  that  is a  period  of  the  se-
quence  under the condition that both  and  are not
the divisors of .

m = k = pqSetting  in (2), we get
 

Ψ(t+ p2q2) = Ψ(t) (mod pq)�  

st+p2q2 = st t ≥ 0

S p2q2

p2q2

S

which yields  for  all  and thus  the  se-
quence  is  -periodic.  In  the  following,  it  will  be
demonstrated  that  is the  least  period  of  the  se-
quence .

S N = p2q2
Lemma 1　Using  the  same notation  as  previous,

the sequence  has the least period .
pq2

S

pq2 S

Proof　 It  will  be  first  proved  that  is  not  a
period of the sequence . This is argued by contradic-
tion. Assume that  is a period of the sequence . On
one hand, it follows that
 

s−1+apq2 = s−1+(p−a)pq2

0 < a < pwhere  by assumption.
t = −1

k = aq k = (p− a)q

On  the  other  hand,  letting  and  taking
 and  respectively in (2), one can ob-

tain the following two equalities 
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Ψ(apq2 − 1) ≡Ψ(−1)− aq(p− 1)(q − 1)

≡aq(q − 1) (mod pq)  

and
 

Ψ((p− a)pq2 − 1) ≡ (p− a)q(q − 1) (mod pq)

respectively. It can be inferred from
 

(p− a)q(q − 1) + aq(q − 1) = pq(q − 1) ≡ 0 (mod pq)

{(p− a)q(q − 1), aq(q−1)}
pq/2 pq/2

that one element in the set  is
greater  than  and  the  other  is  smaller  than .
This implies that
 

s−1+apq2 + s−1+(p−a)pq2 = 1

s−1+apq2 =

s−1+(p−a)pq2

qp2

S

This  is  a  contradiction  to  the  equality 
. Hence, the assumption is not valid. Simil-

arly, it can be shown that  is not a period of the se-
quence . This completes the proof.

Zn = {0, 1, . . . ,n− 1}
n Z∗

n

n Zn,

S N = p2q2

S = (st)
N−1
i=0

Ψ
Zp2q2

Denote by  all representatives
for the residue classes of integers modulo  and by 
all representatives that are relatively prime to  in 
respectively.  Since  the  least  period  of  is  ,
one  only  need  to  analyze  properties  of .
Therefore,  the  action  of  is  sometimes  restricted  to

.
d e

p− 1 q − 1

d = gcd(p−1, q−1) e = lcm(p−1,

q−1) = (p−1)(q−1)/d α ∈ Z∗
p2q2

p2 q2

β

Z∗
p2q2

Let  and  be the greatest common divisor (gcd)
and least common multiple (lcm) of  and  re-
spectively.  Write  and  

.  Let  be a  fixed  com-
mon primitive  root  of  both  and .  By the  Chinese
Reminder Theorem (CRT), there exists an element  of

 such that
  {

β ≡ α (mod p2)
β ≡ 1 (mod q2)

As a consequence, we have
 

Z∗
p2q2 = {αiβj : 0 ≤ i < pqe, 0 ≤ j < d} (4)

Ψ

Ψ
Z∗
p2q2

The  following  lemma  shows  that  the  map  is  a
group  homomorphism  when  the  action  of  is restric-
ted to the unit group .

Ψ : t→ Ψ(t)

⟨Z∗
p2q2 , ·⟩ ⟨Zpq,+⟩ Ψ

Lemma  2  Let  be  the  map  from
 to  . Then  is a  surjective  group ho-

momorphism.
gcd(Ψ(α), pq) = 1 Ψ(αpq) = Ψ(βp) =

0 (mod pq).
Ψ

And then  and 
 Furthermore,  the  image  and  the  kernel  of

 is
 

Img(Ψ) = Zpq

and 

Ker(Ψ) = ⟨αpq, βp⟩ = {αipqβjp : 0≤ i<e, 0≤j<d}

respectively.
u, v ∈ Z∗

p2q2Proof　For  ,  by  the  Euler’s  Theorem,
we have
 

Ψ(uv) =
(uv)φ(pq) − 1

pq

=
(uv)φ(pq) − uφ(pq) + uφ(pq) − 1

pq

=uφ(pq)Ψ(v) + Ψ(u)

≡Ψ(u) + Ψ(v) (mod pq)

Ψand thus  is a group homomorphism.
a1 αq−1 =

1 + a1q gcd(a1, q) = 1 α

Z∗
q2

There  is  a  positive  integer  such  that 
 with   as   is  a  generator  in  the

group . This gives
 

Ψ(α) =
αφ(pq) − 1

pq

≡ (1 + a1q)
p−1 − 1

pq

≡ a1(p− 1)p−1 ̸≡ 0 (mod q)

gcd(Ψ(α), q) = 1

gcd(Ψ(α), p) = 1 gcd(Ψ(α),

pq) = 1 Ψ(α)

⟨Zpq,+⟩ Ψ
⟨Z∗

p2q2 , ·⟩ ⟨Zpq,+⟩ Ψ

and so . In a similar manner, it can be
shown  that .  It  follows  that 

.  It can be seen that  is a generator of the
cyclic  group .  This  implies  that  the  map  is
surjective from  to . Hence,  is a sur-
jective group homomorphism.

Ψ

On the basis of homomorphic properties of the map
, it yields that

 

Ψ(αpq) = pqΨ(α) ≡ 0 (mod pq)

αpq ∈ Ker(Ψ)

βp ∈ Ker(Ψ) βp ≡ 1 (mod q2)
βp = 1 + q2b1 b1

Therefore .  Now  it  is  claimed  that
. By noting that  and writ-

ing  for  some integer .  We immediately
derive that
 

Ψ(βp) ≡ p−1 (1 + q2b1)
φ(pq) − 1

q
≡ 0 (mod q)

Ψ Ψ(βp) = pΨ(β) ≡ 0 (mod p)
Ψ(βp) ≡ 0 (mod pq)

It  follows from the homomorphic properties  of  the
map  that .  Thus,  by the
CRT,  it  can  be  seen  that . There-
fore, it follows that
 

⟨αpq, βp⟩ ⊆ Ker(Ψ)

|⟨αpq, βp⟩| = (p− 1)(q − 1)

⟨αpq, βp⟩ = {(αpq)iβpj (mod p2q2) : 0 ≤ i < e, 0 ≤
j < d}

Now  it  is  claimed  that 
and 

. In fact, it follows from the Second Isomorphism
Theorem (see [24] page 227) that 
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⟨αpq, βp⟩/⟨αpq⟩ ≃ ⟨βp⟩/⟨αpq⟩ ∩ ⟨βp⟩

x ∈ ⟨αpq⟩ ∩ ⟨βp⟩ x = αipq ≡
βjp (mod p2q2) 0 ≤ i ≤ e− 1 0 ≤ j ≤ p− 2

Choose .  Then  write 
 for some  and .

By the CRT, it follows that
  {

αipq ≡ βjp ≡ 1 (mod q2)
αipq ≡ βjp ≡ αjp (mod p2)

This implies that
  {

ipq ≡ 0 (mod q(q − 1))
ipq ≡ jp (mod p(p− 1))

e
q−1

i0
q − 1

i0 i0 j0
d = gcd(p− 1, q − 1) j0

|⟨βp⟩/⟨αpq⟩ ∩ ⟨βp⟩| = p−1
e/(q−1) = d

There  exist  many solutions  of  the  first  equa-
tion in the above. Furthermore, Let  be a solution of
the first equation in the above. One can see that 
divides . Thus, for each , there exists one solution 
and  divides  .  Hence,  we  obtain

. This gives that
 

⟨βp⟩/⟨αpq⟩ ∩ ⟨βp⟩ = {βpj(⟨αpq⟩ ∩ ⟨βp⟩) : 0≤j≤d− 1}

By the group isomorphism, it yields
 

⟨αpq, βp⟩/⟨αpq⟩ ≃ ⟨βp⟩/⟨αpq⟩ ∩ ⟨βp⟩

⟨αpq, βp⟩ = {(αpq)iβpj (mod p2q2) :
0 ≤ i < e, 0 ≤ j < d} |⟨αpq, βp⟩| = (p− 1)(q − 1)

|Ker(Ψ)| ≥ (p− 1)(q − 1)

This means that 
 and  .

This  implies  that .  Moreover,
by the Fundamental  Homomorphism Theorem [24],  we
get
 

|Ker(Ψ)| =
|Z∗

p2q2 |
|Img(Ψ)|

=
(p−1)(q−1)pq

pq
= (p−1)(q−1)

Ker(Ψ) = ⟨αpq, βp⟩and thus . This completes the proof.
Z∗
p2q2

S

It  will  be  given  that  a  partition  of  is  useful
for giving an equivalent definition of the sequence  in
the following.

Lemma  3 Using  the  same  notation  as  above,
define
 

Dℓ = {t : Ψ(t) ≡ ℓ (mod pq), t ∈ Z∗
p2q2}

ℓ = 0, 1, . . . , pq − 1.

D0 = Ker(Ψ) b ∈ Z∗
pq

α̂ = αb Z∗
p2q2 Ψ(α̂) ≡ 1 (mod pq)

for  In  particular,  we  have
. There exists an integer  such that

 in  satisfies .
Define

 

D̂ℓ = α̂ℓD0 = {α̂ℓ · t (mod p2q2) : t ∈ D0}

ℓ = 0, 1, . . . , pq − 1. Dℓ = D̂ℓ = α̂ℓD0

ℓ ∈ Zpq Z∗
p2q2 =

∪pq−1
ℓ=0 Dℓ Dℓ

|Dℓ| = (p− 1)(q − 1).

for  Then   for  all
. Hence,   and  each  set  has

the same cardinality 
D0

Ker(Ψ) D0 = Ker(Ψ)

Proof 　 According  to  the  definition  of  and
, it is seen that . From the proof of

Ψ(α) ≡ a (mod pq) a

gcd(a, pq) = 1 b Zpq

ab ≡ 1 (mod pq) α̂ = αb Z∗
p2q2

Lemma 2 it follows that  for some 
with . Let  be an integer in  such that

 and  in . Then
 

ψ(α̂) ≡ b ·Ψ(α) ≡ 1 (mod pq)

Ψsince the map  is a homomorphism.
α̂ℓt ∈ D̂ℓ t ∈ D0 = Ker(Ψ)For  with  it follows that

 

Ψ(α̂ℓt) = ℓ ·Ψ(α̂) + Ψ(t) ≡ ℓ (mod pq)

D̂ℓ ⊆ Dℓ t ∈ Dℓand hence we have . Conversely, for  one
can obtain
 

Ψ(t) = ℓ = ℓΨ(α̂) = Ψ(α̂ℓ) (mod pq)

and thus
 

Ψ

(
t

ĝℓ

)
≡ 0 (mod pq)

Ψsince the map  is a homomorphism. Hence, we have
 

t

α̂ℓ
∈ Ker(Ψ) = D0

t0 ∈ D0and there exists an element  such that
 

t

α̂ℓ
≡ t0 (mod pq)

t = α̂ℓ · t0 ∈ α̂ℓD0 = D̂ℓ

Dℓ = D̂ℓ Dℓ |Dℓ| =
|D0| = (p− 1)(q − 1) ℓ = 0, 1, . . . , q − 1.

This  means  that  and  thus
.  By  the  definition  of ,  we  obtain 

 for   This com-
pletes the proof.

T = {t : t ∈ Zp2q2 , gcd(t, pq) ̸= 1}
S = (st)

N−1
t=0

Let .  The  first
period value of the sequence  can be stated
as
 

st =

{
0, if t ∈ D0 ∪ · · · ∪D(pq−1)/2 ∪ T
1, if t ∈ D(pq+1)/2 ∪ · · · ∪Dpq−1

(5)

S

It  will  be  useful  to  compute  the  linear  complexity
from the pointview of different interpretation of the se-
quence .  To prove Theorem 1,  we need the following
lemmas.

0 ≤ i < pq, u (mod p2q2) ∈
Dj 0 ≤ j < pq,

Lemma 4  For any  if 
 for some  the following equality holds

 

uDi = {uv (mod p2q2) : v ∈ Di} = Di+j

u ∈ Dj v ∈ Di u = α̂ju0
v = α̂iv0 u0, v0 ∈ D0

uv= α̂i+ju0v0∈α̂i+jD0= Di+j uDi ⊆ Di+j

Di+j⊆uDi

Proof  If  and , we can get 
and  for  .  This  means  that

 and  thus .  It
is easy to see that  and so the result follows.

A n

n ∗A A
n

For an arbitrary set  and a positive integer , de-
note by  the multiset in which each element of 
appears with multiplicity  from now on.
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ℓ ∈ ZpqLemma 5　 Let be an nonnegative integer.
Then we have
 

{u (mod p) : u ∈ Dℓ} = (q − 1) ∗ Z∗
p

and
 

{u (mod q) : u ∈ Dℓ} = (p− 1) ∗ Z∗
q

u Dℓ.

u = α̂ℓαpqiβpj i ∈ Ze

j ∈ Zd. α̂ = αb b ∈ Z∗
pq

Proof　We take an arbitrary element  in   It
follows from Lemma 3 that  where 
and  Let  for some fixed . Then
 

u = α̂ℓαqiβpj ≡ αpqi+bℓ+pj ≡ αbℓ+pj ·(αpq)i (mod p)

pq p− 1.

p

j0 ∈ Zd u ≡ αpqi+bℓ+pj0 modulo p
Z∗
p i Ze

u Z∗
p i j Ze Zd

Note  that  is  coprime  to  Therefore αpq

must  be  a  primitive  root  modulo .  For  any  chosen
,  the  element  runs

over  when  runs over the set . Now we count the
multiplicity of  in  when  and  run over  and 
respectively. Let
 

u ≡ αpqi+bℓ+pj0 ≡ αa0 (mod p)

a0 ∈ Zp.for  Then
 

i ≡ (a0 − pj0 − bℓ)(pq)−1 (mod p− 1)

i ∈ Ze p− 1 p qfor  since  has no divisors  and .
 

i ≡ (pq)−1(a0 − j0 − bℓ) (mod p− 1)

q−1
d

i0, i0 + (p− 1), . . . , i0 + ( q−1
d − 1)

(p− 1) i0 ≡ (pq)−1(a0 − j0 − bℓ) (mod p− 1).

j0 d

(q − 1) Dℓ

Z∗
p.

Note  that  there  are  many solutions  of  the  in-
teger i  in  the  form of 

 with    In
addition, the integer  can be chosen in  ways. Hence
there  exist  many  elements  in  mapping  into
one element in  The second equality is proved simil-
arly.

f : Dℓ → Z∗
pq2

f(u) = u (mod pq2)
Lemma  6　 The  map  defined  by

 is injective, i.e.,
 

{u (mod pq2) : u ∈ Dℓ} ⊂ Z∗
pq2

f

u v

Dl f(u) = f(v) u v

α β

Proof　Note  that  the  map  is  naturally  defined
well. The remained task is to prove that the map is in-
jective indeed. Assume that  and   be two elements in

 such that  .  Write  and  by using the
powers of  and . The whole idea of the proof of this
lemma can be finished on the basis of the Chinese Re-
minder Theorem.

f(u) =

f(v) u = v (mod pq)
u =v (mod p)

u = v (mod q)

It  follows  from  the  basic  of  definition  of 
 that we can see that . We can con-

vert this equality into the two equalities 
and .

pq2 p2q2Note that  is  a divisor of .  On the basis of
the Chinese Reminder Theorem, we can consider the re-

u = v (mod p) u = v (mod q)
u v α

β u v

u v

u v p q

lations  of  and  .  We  can
express  and  by using the product of the powers of 
and . By comparing the exponents of  and , we can
establish  the  relations  for  the  exponents  of  and  
when  and  are equal modulo  or .

pq (p− 1)(q − 1)

(p− 1) (q − 1) d = gcd(p− 1,

q − 1) e = lcm(p− 1, q − 1)

u v p− 1 q − 1

Since  is  relatively  prime  to ,  we
consider  the  equality  relations  of  the  exponents  (mod

)  and  (mod ).  Recall  that 
 and  . We  can  prove  the  ex-

ponents for  and  are identical up to  (or ).
This means that the map is injective which finishes the
proof of this lemma.

α̂ (mod n) α (mod n) α̂(n) α(n)

n 0 ≤ ℓ < pq,

Lemma  7　 With  above  notations,  we  denote
 and   by   and   for an  in-

teger , respectively. For  we have
 

{u (mod q2) : u∈Dℓ}=(p−1)∗α̂ℓ
(q2)⟨α

q
(q2)⟩⊂(p−1)∗Z∗

q2

and
 

{u (mod p2) : u ∈ Dℓ} = (q−1)∗α̂ℓ
(p2)⟨α

p
(p2)⟩⊂(q−1)∗Z∗

p2

u = α̂ℓαpqiβpj Zp2q2 q2

p2q2
Proof　Since  in  and  is a di-

visor of , it gives that
 

u = α̂ℓαpqiβpj ≡ α̂ℓ
(q2) · (α

q
(q2))

pi (mod q2)

(u (mod q2)) α̂ℓ
(q2)⟨α

q
(q2)⟩

Z∗
q2 Dℓ α̂ℓ

(q2)⟨α
q
(q2)⟩

u→ u (mod q2)

It follows that  belongs to 
in .  Hence  the  map  from  to   with

 is well-defined. Supppose that
 

αbℓ · (αq)pi ≡ αbℓ · (αq)pa0 (mod q2)

a0 ∈ Zq−1.for some fixed This implies that
 

pqi ≡ pqa0 (mod q(q − 1))

and thus
 

i ≡ a0 (mod q − 1)

p−1
d i ∈ Ze

a0, a0 + (q − 1), . . . , q0 + (p−1
d − 1)(q − 1).

j ∈ Zd

p− 1 u Dℓ

There  exist  many  solutions  for  in  the
form  of  To-
gether with  and this shows that the multiplicity
is  when   runs  through  the  set .  The  second
equality can be proved in a similar manner.

0 ≤ ℓ < pq,Lemma 8　With above notations, for 
we have
 

{u (mod pq2) : u ∈ Dℓ} = α̂ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩⊂Z∗

pq2

 

{u (mod pq2) : u ∈ Dℓ} = {u (mod pq2) : u ∈ Dℓ+q}

and
 

Z∗
pq2 =

q−1∪
ℓ=0

α̂ℓ
pq2⟨α

pq
(pq2), β

p
(pq2)⟩
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Similarly, we get
 

{u (mod p2q) : u ∈ Dℓ} = α̂ℓ
(p2q)⟨α

pq
(p2q), β

p
(p2q)⟩ ⊂ Z∗

p2q

 

{u (mod p2q) : u ∈ Dℓ} = {u (mod p2q) : u ∈ Dℓ+p}

and
 

Z∗
p2q =

p−1∪
ℓ=0

α̂ℓ
p2q⟨α

pq
(p2q), β

p
(p2q)⟩

u = α̂ℓαpqiβpj Zp2q2 pq2

p2q2
Proof　Since   in   and   is  a

divisor of , it is seen that
 

u = α̂ℓαpqiβpj ≡ α̂ℓ
(pq2)(α

pq
(pq2))

i(βp
(pq2))

j (mod pq2)

u (mod pq2) ∈ α̂ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩⊂Z∗

pq2

Dℓ

Z∗
pq2 u→ u (mod pq2)

Dℓ = α̂ℓ⟨αpq, βp⟩

Therefore .
By  Lemma  6,  we  conclude  that  the  map  from  to

 with   is  injective.  In  addition,  it
follows from  that
 

{u (mod pq2) : u ∈ Dℓ} = α̂ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩ ⊂ Z∗

pq2

gcd(ℓ, q) = 1

α̂ℓ
(pq2) ̸∈ ⟨αpq

(pq2), β
p
(pq2)⟩ ⊂ Z∗

pq2

α̂ℓ
(pq2) ∈ ⟨αpq

(pq2), β
p
(pq2)⟩ ⊂ Z∗

pq2

x∈⟨αpq
(pq2), β

p
(pq2)⟩

⊂ Z∗
pq2

Now  it  is  claimed  that  if ,  then
; otherwise, it follows that
.  Now  the  proof  of  the

above claim is given. In fact,  for any 
, it follows from

 

x ≡ αipq (mod q2)

that
 

xq−1 ≡ 1 (mod q2)

gcd(ℓ, q) = 1 α̂ℓ
(pq2) ∈ ⟨αpq

(pq2),

βp
(pq2)⟩ ⊂ Z∗

pq2

If ,  assume  that 
. Then

 

α̂
ℓ(q−1)
(pq2) = α

bℓ(q−1)
(pq2) ≡ 1 (mod q2)

bℓ(q − 1) q

gcd(ℓ, q) = 1 α̂ℓ
(pq2) ̸∈ ⟨αpq

(pq2), β
p
(pq2)⟩ ⊂

Z∗
pq2 gcd(ℓ, q) = 1

This  yields  that  is  divisible  by ,  which
contradicts .  So 

 under the condition that .
gcd(ℓ, q) = q α̂ℓ

(pq2) = αqt
(pq2) ∈

⟨αpq
(pq2), β

p
(pq2)⟩ ⊂ Z∗

pq2 t α̂ℓ
(pq2) ∈ ⟨αpq

(pq2),

βp
(pq2)⟩ ⊂ Z∗

pq2

i j

If ,  it  is  seen  that 
 for some . Thus, 

 if and only if the following equation with
respect to unknown integers  and  have solutions
  {

αpqi+pj ≡ αqt (mod p)
αpqi ≡ αqt (mod q2)

Equivalently,
  {

qi+ j ≡ qt (mod p− 1)
pi ≡ t (mod q − 1)

j ≡ q(1− a)t (mod d) a =

(p−1 mod q − 1) j i

αqt = αipqβpj ∈ ⟨αpq
(pq2), β

p
(pq2)⟩

⊂ Z∗
pq2

By the generalized Chinese Reminder Theorem (see
[25] Lemma 1), we see that the equations have one solu-
tion  if  and  only  if  where  

.  So  two  suitable  integers  and   can
be  selected  such  that 

. This finishes the proof of the claim.
Dℓ = α̂ℓ⟨αpq, βp⟩Since , it follows that

 

{u (mod p2q) : u ∈ Dℓ} = {u (mod p2q) : u ∈ Dℓ+q}

α̂q
(pq2)∈⟨αpq

(pq2), β
p
(pq2)⟩ ⊂ Z∗

pq2 0≤ℓ1<ℓ2≤q − 1by .  Let .
It gives that
 

∅ = α̂ℓ1
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩ ∩ α̂

ℓ2
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩ ⊂ Z∗

pq2

α̂ℓ1−ℓ2
(pq2) ̸∈ ⟨αpq

(pq2), β
p
(pq2)⟩ ⊂ Z∗

pq2∪q−1
ℓ=0 α̂

ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩

by .  Therefore  the  set
 is a disjoint union and

  ∣∣ q−1∪
ℓ=0

α̂ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩

∣∣ = q(p− 1)(q − 1)

∪q−1
ℓ=0 α̂

ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩ ⊂ Z∗

pq2∪q−1
ℓ=0 α̂

ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩ = Z∗

pq2

The  fact  that 
yields that . In a simil-
ar manner, the second part of the lemma can be proved.

Dℓ(x) =
∑

u∈Dℓ

xu ∈ F2[x]

0 ≤ ℓ < pq.

S

S

Define  a  polynomial  for
 Based  on  the new interpretation of  the  se-

qeunce  in (5), we see that its the generating polyno-
mial of  is
 

Λ0(x) =

pq−1∑
ℓ=

pq+1
2

Dℓ(x)

Dℓ(x) Λ0(x)Now  some  useful  lemmas  about  and  
are given as follows.

γ p2q2

F2 v ∈ Zp2q2

Lemma 9  Let  be a fixed -th primitive root
of unity in . For ,
 

Dℓ(γ
v) =

{
1, if gcd(v, p2q2) = pq
0, if gcd(v, p2q2) ∈ {p2, q2, p2q, pq2, p2q2}

m = gcd(v, p2q2) n = p2q2/m

γv n

F2

Proof  Let  and  .
This means that  is a -th primitive root of unity in

.
m = p2q2 n = 1If  and , then

 

Dℓ(γ
v) = |Dℓ| · 1 = (p− 1)(q − 1) ≡ 0 (mod 2)

m ∈ {p2, q2, p2q, pq2} n ∈ {q2, p2, p, q}
{u mod n : u ∈

Dℓ}

If ,  then .  By
Lemmas 5 and 7, it can be found that 

 is always a multiset and the multiplicity is even. It
follows that
 

Dℓ(γ
v) ≡ 0 (mod 2)
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m = pq n = pq {u mod n : u ∈ Dℓ} =

Z∗
pq

If  and ,  then 
 in this case. It follows that

 

Dℓ(γ
v) =

∑
u∈Dℓ

γuv =
∑

u∈Z∗
pq

(γv)u

∑
u∈Z∗

pq
γuv

Φpq(x)

F2

By noting that  is the coefficient of the
second highest term of the cyclotomic polynomial

that is also equal to the sum of all pq-th primitive roots
of unity in . It follows from Exercise 2.57 in [26] that
for
 

Φpq(x) =
Φq(x

p)

Φq(x)
=
xp(q−1) + xp(q−2) + · · ·+ 1

xq−1 + xq−2 + · · ·+ 1

=x(p−1)(q−1) + 1 · x(p−1)(q−1)−1 + · · ·

We have
 

Dℓ(γ
v) =

∑
u∈Dℓ

γuv =
∑

u∈Z∗
pq

γuv = 1

I = {i ∈ Z : pq+1
2 ≤ i ≤ pq − 1}

Ip = {i ∈ Z : p+1
2 ≤ i ≤ p− 1} Iq = {i ∈ Z : q+1

2 ≤
i ≤ q − 1}

Lemma  10  Let ,
 and  

, respectively. Then the following two multis-
et equalities hold
 

{ℓ (mod p) : ℓ ∈ I} =

(
q − 1

2
∗ Zp

)
∪ Ip

and
 

{ℓ (mod q) : ℓ ∈ I} =

(
p− 1

2
∗ Zq

)
∪ Iq

Proof  Note that
 

pq + 1

2
+i =

pq − p+ p+ 1

2
+i =

(
q − 1

2

)
p+

p+ 1

2
+i

0 ≤ i ≤ pq−3
2 . Ifor  Then the set  can be written as

 

I =

q−1
2∪

j=1

{(
j +

q − 1

2

)
p+ i : 0 ≤ i ≤ p− 1, i ∈ Z

}
∪{(

q − 1

2

)
p+ i :

p+ 1

2
≤ i ≤ p− 1, i ∈ Z

}
We have 

{ℓ (mod p) : ℓ ∈ I} =

(
q − 1

2
∗ Zp

)
∪ Ip

Similarly, the second assertion can be proved. This
finishes the proof of the lemma.

Dℓ = α̂ℓ
(pq2)⟨α

pq
(pq2), β

p
(pq2)⟩ ⊂ Z∗

pq2

ℓ∈Zq j∈Zq Γj(x)=
∑q−1

ℓ= q+1
2

Dj+ℓ(x).

Lemma  11 Let  
for .  For , denote  

2q−1 ̸≡ 1 (mod q2) Γ0(γ
p) ̸= 0.

2p−1 ̸≡ 1 (mod p2), Λ0(γ
p) ̸= 0

Λ0(γ
q) ̸= 0

If , we have  Furthermore,
if  we  have  and

.
2 ̸∈ D0

2q−1 ̸≡ 1 (mod q2) 2 ∈ D0,

2 ∈ ⟨αpq
(pq2), β

p
(pq2)⟩ D0

2 ≡ αi0pq
(pq2)β

j0p
(pq2) (mod pq2)

Proof  It is first proved that  provided that
.  Assume  that  i.e.,
 according to the definition of . Put

. This implies that
 

2q−1=α
i0pq(q−1)
(pq2) β

j0p(q−1)
(pq2) =

(
α
q(q−1)
(pq2)

)i0p

·1≡1 (mod q2)

2 ∈ Dσ σ ∈ Z∗
q

which  is  a  contraction.  Hence,  by  Lemma  8,  we  get
 for some fixed .
θ = γp j ∈ Zq

Γj(θ) ̸= 0

j0 ∈ Zq Γj0(θ) = 0.

Let  for  simplicity.  For ,  now  it  is
claimed that .Suppose that there exists an ele-
ment  such  that  It  can  be  inferred
from Lemmas 4 and 8 it that
 

0 = Γj0(θ)
2i = Γj0(θ

2i) = Γj0+iσ(θ)

i ∈ Zq σ ̸= 0 Zq

i Zq j0 + iσ.

Γj(θ) = 0 j ∈ Zq

Γ0(θ) = 0

for  any .  It  is  worth  noting  that  in  .
When  the  number  runs  through ,  so  does 
Hence we have  for all . Particularly, we
have .

v ∈ Dj j ∈ Zq,By  Lemma  4,  for  any  with   we ob-
tain
 

Γ0(θ
v) =

q−1∑
ℓ=

q+1
2

Dℓ(θ
v) =

q−1∑
ℓ=

q+1
2

Dℓ+j(θ) = Γj(θ) = 0

Z∗
pq2 =

∪q−1
j=0 Dj

Γ0(θ
v) = 0 v ∈ Z∗

pq2 .

Φpq2(x) Γ0(x)

Φq2(x) Γ0(x).

Φpq2(x)Φq2(x) Γ0(x)

gcd(Φpq2(x),Φq2(x)) = 1.

Note that  by Lemma 8. It is imme-
diate that  for any  Thus the cyclo-
tomic  polynomial  divides  .  Following  the
proof process of Lemma 9, we get  divides 
Therefore  divides   according  to

 It  follows  from  Exercise  2.57
in [26] that
 

Φpq2(x)Φq2(x) = Φq2(x
p) =

q−1∑
j=0

xjpq

Let
 

Γ0(x) ≡ Φq2(x
p)Ω(x) (mod xpq

2

− 1)

Note that
 

xpqΦq2(x
p) = xpq

q−1∑
j=0

xjpq

≡
q−1∑
j=0

xjpq

≡ Φq2(x
p) (mod xpq

2

− 1)
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degΩ(x) < pq

Ω(x) =
∑t−1

i=0 x
νi 0 ≤ ν0 < ν1 < · · · < νt−1

< pq

Thus  we  can  limit .  Then  it  can  be
stated as  with 

. This implies that
 

Γ0(x) ≡Ω(x)Φq2(x
p)

≡
t−1∑
i=0

xνi

q−1∑
j=0

xjpq

≡
t−1∑
i=0

q−1∑
j=0

xνi+jpq (mod xpq
2

− 1)

Γ0(x)
1
2 (p− 1)(q − 1)2∑t−1

i=0

∑q−1
j=0 x

νi+jpq qt

q
1
2 (p− 1)(q − 1)2 Γj(θ) ̸= 0

j ∈ Zq Γ0(θ) ̸= 0

Note  that  has   terms,  but
 has   terms, which  give  us  a  con-

tradiction  since  the  prime  does  not  divide
.  Hence,  we  have  for  any

, particularly, .∑q−1
ℓ=0 Dℓ(θ) =

∑
u∈Z∗

pq2
θu∑

u∈Z∗
pq2

θu

xq(p−1)(q−1)−1

Φpq2(x) Φpq2(x) = Φpq(x
q)

xq(p−1)(q−1)−1 Φpq2(x)

By  Lemma  8,  we  have  .
It  is  known that  is  equal  to  the  coefficient
of the second highest term  of the polyno-
mial .  Using  implies that the
coefficient of  in  is  equal to zero.
Therefore, by Lemma 10, it gives that
 

Λ0(θ) = Γ0(θ) +
p− 1

2

∑
u∈Z∗

pq2

θu = Γ0(θ) ̸= 0

Λ0(γ
q) ̸= 0

2p−1 ̸≡ 1 (mod p2)
Similarly,  it  can  be  shown  that  under

the assumption that .
j ∈ Zpq

Λj(x) =
∑pq−1

ℓ= pq+1
2

Dj+ℓ(x). 2q−1 ̸≡ 1 (mod q2)

2p−1 ̸≡ 1 (mod p2) Λj(γ) ̸= 0

Lemma 12 　With  above  notations,  for ,
denote   If  

and , we have .

2q−1 ̸≡1 (mod q2) 2p−1 ̸≡
1 (mod p2) 2∈Dσ gcd(σ, pq) =

1
2= α̂σαi0pqβj0p ∈ Zp2q2

Proof　Similarly as in the proof of Lemma 11, un-
der  the  condition  that  and  

, it is claimed that  where 
.  According  to  Lemma  3,  it  can  be  seen  that

. This implies that
 

2q−1 = α̂σ(q−1)αi0pq(q−1)βj0p(q−1) ≡ α̂σ(q−1) (mod q2)
(6)

and
 

2p−1 = ĝσ(p−1)gi0pq(p−1)hj0p(p−1) ≡ ĝσ(p−1) (mod p2)
(7)

q σ 2q−1 ≡ 1 (mod q2)
p σ 2p−1 ≡ 1 (mod p2)

2 ∈ Dσ

gcd(σ, pq) = 1

If  divides  ,  (6)  shows  that  ;
and if  divides  ,  (7)  implies  that .
This  contradicts  the  assumption.  Hence  with

.
σ

⟨Zpq,+⟩ i0

Since  is  a  generator  of  the  additive  group
, there exists a number  such that 

i0σ ≡ 1 (mod pq)

2i0D0 = Di0σ = D1It  follows  from Lemma 4  that .
Therefore,
 

2i0 ∈ D1

j ∈ Zpq Λj(γ) ̸= 0

j0 ∈ Zpq Λj0(γ) = 0.

k

For ,  it  is  claimed  that .  Assume
that  there  exists  some  such  that 
By Lemma 4, for any , we get
 

0 = Λj0(γ)
2i0k

= Λj0(γ
2i0k

) = Λj0+k(γ)

j ∈ Zpq k = j − j0 ∈ Zpq

Λj(γ) = Λj0+k(γ) = 0

For ,  let .  It  follows  that
, and

 

0 =Λj(γ)
2i0

=

j+pq−1∑
ℓ=j+ pq+1

2

Dℓ(γ
2i0 )

=Dpq+j(γ) +

j+pq−1∑
ℓ=j+ pq+1

2 +1

Dℓ(γ) (8)

2i0 ∈ D1by using . On the other hand, we have
 

0 = Λj(γ) = Dj+ pq+1
2

(γ) +

j+pq−1∑
ℓ=j+ pq+1

2 +1

Dℓ(γ) (9)

(8) (9)Combining  with  one can obtain that
 

Dj(γ) = Dj+ pq+1
2

(γ) (10)

j = pq + j ∈ Zpq

∑
u∈Z∗

p2q2
γu

xpq(p−1)(q−1)−1 Φp2q2(x)

Φp2q2(x) = Φpq(x
pq)

xpq(p−1)(q−1)−1

Φp2q2(x)

by using . It is known that 

is  equal  to  the  coefficient  of  the  second  highest term
 of  the  polynomial .  Note  that

. It is seen that the coefficient of the
second  highest  term  of  the  polynomial

 is equal to 0. Therefore, by Lemma 3, one can
see that
 

pq−1∑
ℓ=0

Dℓ(γ) =
∑

u∈Z∗
p2q2

γu = 0

(10)Using , it follows that
 

pq−1
2 −1∑
l=0

Dl(γ) +

pq−1∑
l= pq−1

2 +1

Dl(γ)

=

pq−1
2 −1∑
l=0

(Dl(γ) +Dl+ pq+1
2

(γ)) = 0
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Since
 

pq−1∑
ℓ=0

Dℓ(γ) =

pq−1
2 −1∑
ℓ=0

Dℓ(γ) +

pq−1∑
ℓ= pq−1

2 +1

Dℓ(γ)+D pq−1
2

(γ)

D pq−1
2

(γ) = 0it has been shown that .
j = (pq − 1)/2 D0(γ) =

0 Dk(γ) = D0(γ)
2i0k

= 0 k ∈ Zpq

Replacing  in  (10),  we find 
. Hence  for .

v ∈ Dj

j ∈ Zpq

Then it follows from Lemma 4 for any  with
 that

 

Dℓ(γ
v) = Dℓ+j(γ) = 0

Z∗
p2q2 =

∪pq−1
j=0 Dj ,

Dℓ(γ
v) = 0 v ∈ Z∗

p2q2 .

Φp2q2(x) Dℓ(x)

By  noting  that  we  immediately
derive that  for any  Hence, we get
the cyclotomic polynomial  divides .

θ = γp pq2

F2

α̂ℓ+q⟨αpq, βp⟩ = α̂ℓ⟨αpq, βp⟩ ⊂ Z∗
pq2

Dℓ(θ)=Dℓ+q(θ) Dℓ(θ)+Dℓ+q(θ)=

0 v ∈ Z gcd(v, pq) =1 v

Dj0 j0

Setting , we see that it is a -th primitive
root  of  unity  in .  By  Lemma  8,  it  follows  that

. Therefore, it can be
seen that . It follows that 
.  And  for  and  ,  it  follows  that 

must belong to  for some . This gives that
 

Dℓ(θ
v) +Dℓ+q(θ

v) = Dℓ+j0(θ) +Dℓ+j0+q(θ) = 0

Φpq2(x) Dℓ(x) +Dℓ+q(x)

Dℓ(x) +Dℓ+q(x)

Φpq2(x)

This shows that all roots of the cyclotomic polyno-
mial  are also the roots of , i.e.,
the  polynomial  is  divisible  by  the
polynomial .

Φq2(x) Dk(x)

k ∈ Zpq

By Lemma 9, it gives that  divides  for
all .

Φp2q2(x) = Φpq(x
pq) = Φq(x

p2q)/Φq(x
pq)

Φq(x
pq)/Φq(x

q) = Φpq(x
q) = Φpq2(x)

Since  and
 (see  Exercise  2.57

in [26]), it follows that
 

Φq(x
p2q) = Φp2q2(x)Φpq2(x)Φq2(x)

Φq(x
p2q)

Dℓ(x) +  Dℓ+q(x) ℓ

Because  these  three  cyclotomic  polynomials  are
pairwise  coprime,  this  means  that  divides

 for all .
Let

 

Dℓ(x) +Dℓ+q(x) ≡ Φq(x
p2q)∆(x) mod (xp

2q2 − 1)

Note that
 

xp
2qΦq(x

p2q) =xp
2q

q−1∑
j=0

xjp
2q ≡

q−1∑
j=0

xjp
2q

=Φq(x
p2q) mod (xp

2q2 − 1)

∆(x)

∆(x) =
∑t−1

i=0 x
νi ,

0 ≤ ν0 < ν1 < · · · < νt−1 < p2q

and the degree of the polynomial  is less than p2q.
Thus  it  can  be  stated  as  in  which

.  We  can  observe  that

Dℓ(x) +Dℓ+q(x) 2 (p− 1)(q−1)∑t−1
i=0

∑q−1
j=0 x

νi+jp2q qt

q 2(p−1)(q−
1) Λj(γ) ̸= 0 j ∈ Zpq.

 has   terms,  while
 has  terms, which give us a con-

tradiction since the prime  does not divide 
. Hence, we obtain  for any 

We are  now in a  position to  give  a  short  proof  of
Theorem 1.

Proof  of  Theorem 1　1)  It  is  obvious  by  Lem-
ma 1.

S2) Since the minimal polynomial of  is
 

xN − 1

gcd(xN − 1, G(x))

G(x) = Λ0(x).

where the  generation  polynomial  of  the  proposed  se-
quence is 

gcd(xN − 1, G(x))

Φp2q2(x)Φp2q(x)Φpq2(x)

G(x)

It  is  required  to  compute .  By
Lemmas 11 and 12, it is seen that there exists no com-
mon root of the polynomial  and

. It follows that
 

gcd(Φp2q2(x)Φp2q(x)Φpq2(x), G(x)) = 1

By Lemma 9, it can be found that
 

Φ1(x)Φp(x)Φq(x)Φp2(x)Φq2(x)

G(x)divides .
gcd(Φpq(x), g(x))

Dℓ(γ
pq) = 1

γ p2q2 F2

For  the  divisor ,  there  are  two
cases.  By Lemma 9,  it  follows that ,  where
 is  a -th  primitive  root  of  unity  in .  It  is  seen

that
 

Λ0(γ
pq) =

pq−1∑
ℓ= pq+1

2

Dℓ(γ
pq) = pq−1− pq + 1

2
+1 =

pq − 1

2

Λ0(γ) = 0 pq ≡ 1 (mod 4)

Λ0(γ) = 1 pq ≡ 3 (mod 4) Λ0(x)

G(x) pq ≡ 1 (mod 4)

G(x) xN − 1

Therefore,  if   and
 if . Thus, it is seen that 

divides  if  and  only  if .  Therefore,
the  common factor  of  and  is  described in
Theorem 1.

3) It is obvious by 2).
In  the  following,  some  facts  are  given  about  the

proposed sequence.
m = pqRemark  1  Recall  that . Although  there

exists an equality in the following
 

Ψ(t)−Ψ(t+pm)−Ψ(t+qm)+Ψ(t+(p+q)m) = 0 (mod pq)

t gcd(t,m) = 1for any integer  with  by using the prop-
erties of Euler quotients, it can not be obtained that the
following relation
 

st + st+pm + st+qm + st+(p+q)m = 0

t ∈ Z st+st+pm+st+qm+

st+(p+q)m F2

holds for all . In fact, the sum 
 will vary in the finite field  along with the
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tvalue  changing.

p = 3 q = 5 t = 2

Ψ(t) = 2 Ψ(t+ pm) = 14

Ψ(t+ qm) = 7 Ψ(t+ (p+ q)m) = 4

Finally,  a “toy”  example  is  taken  for  illustrating
this  fact.  Assume  that  and  .  Let . A
direct  computation  gives , ,

 and  . This  indeed
yields that
 

Ψ(t)−Ψ(t+pm)−Ψ(t+qm)+Ψ(t+(p+q)m) = 0 (mod pq)

st=0 st+pm=1 st+qm=0 st+(p+q)m=0

However,  by  the  definition  of  proposed  sequence,
we  have , , ,  and .
This implies that
 

st + st+pm + st+qm + st+(p+q)m = 1

t st+st+pm+

st+qm + st+(p+q)m = 0. t = 1

Ψ(t) = 0 Ψ(t+pm) = 9 Ψ(t+qm) = 10 Ψ(t+(p+

q)m) = 4 st = 0 st+pm = 1 st+qm = 1

st+(p+q)m = 0

For some other value , one can get that 
 For instance,  letting  gives

, ,  and  
. Thus  we  have , , ,

and . This means that
 

st + st+pm + st+qm + st+(p+q)m = 0

t = 1

4

for . Therefore,  the  proposed  sequence  can  not
have a high correlation of order .

 III. Conclusions
p2q2

gcd(pq, (p−1)(q−1))=1 2p−1 ̸≡ 1 (mod p2)
2q−1 ̸≡ 1 (mod q2)

The  linear  complexities  of -periodic  sequences
derived  from  Euler  quotients  can  be  determined
provided  that , 
and . Our results showed that binary
pseudo random sequences with long periods can also be
deduced from Euler quotients with RSA modulus. Fur-
thermore, it  was  pointed  out  that  this  kind  of  se-
quences can not have high correlation of order four.
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