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   Abstract — Although  millimeter-wave  aerial  base
station (mAeBS)  gains  rich  wireless  capacity,  it  is  tech-
nically difficult for deploying several mAeBSs to solve the
surge  of  data  traffic  in  hotspots  when  considering  the
amount  of  interference  from  neighboring  mAeBS.  This
paper introduces  coordinated  multiple  points  transmis-
sion (CoMP) into  the mAeBS-assisted network for  capa-
city  enhancement  and  designs  a  two-timescale  approach
for three-dimensional  (3D)  deployment  and  user  associ-
ation  of  cooperative  mAeBSs.  Specially,  an  affinity
propagation clustering based mAeBS-user cooperative as-
sociation scheme  is  conducted  on  a  large  timescale  fol-
lowed by modeling the capacity evaluation, and a deploy-
ment algorithm based on multi-agent (MA) deep determ-
inistic  policy  gradient  (MADDPG)  is  designed  on  the
small timescale to obtain the 3D position of mAeBS in a
distributed manner. Simulation results show that the pro-
posed approach has significant throughput gains over con-
ventional  schemes  without  CoMP,  and  the  MADDPG is
more efficient  than centralized  deep reinforcement  learn-
ing (DRL) algorithms in deriving the solution.

   Key words — Aerial  base  station, mmWave,  Capa-

city  enhancement, Cooperative  communication, Multi-
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 I. Introduction
The increasing  high-data-rate  network  services  ex-

ert strong data traffic load pressure in user-dense areas,
such as  in big stadiums and concerts,  which form hot-
spots and impact the consistency of service quality. Mil-
limeter-wave  (mmWave)  communication  has  been  one
of the  important  technical  means  to  improve  the  net-
work capacity by exploring new frequency bands [1]. Al-
though mmWave  communication  system  has  the  ad-

vantages  of  broad  bandwidth,  high  antenna  gain,  and
tiny component size, it is also faced with the challenges
of  high  propagation  loss,  poor  diffraction  ability,  etc.
[2].  Especially  in  high-rise  building intensive  areas,  the
transmission of mmWave signal is probably blocked by
obstacles, which  seriously  deteriorates  the  communica-
tion performance. The unmanned aerial vehicle (UAV)-
assisted  network  typically  performs  the  line-of-sight
(LoS)  communication  with  ground  user  equipments
(UEs),  which  is  very  suitable  for  mmWave  to  achieve
high  beamforming  gain  [3]. mmWave  aerial  base  sta-
tion  (mAeBS),  mmWave  BS  mounted  on  UAV,  has
unique  advantages,  which  can  be  concluded  as  [2]–[5]:
1) mAeBS can provide significant LoS links and reduce
the blocking effect in the transmission process; 2) mAeBS
can flexibly adjust its location with the change of distri-
bution and  traffic  demand  of  UEs;  3)  mmWave  spec-
trum  can  provide  higher  capacity  without  interference
to the current terrestrial networks; 4) The tiny compon-
ent  sizes  of  mmWave BS make it  easy to  be  equipped
on  the  space-limited  UAV.  In  light  of  these  benefits,
mAeBS is  expected  to  become an  effective  supplement
to the existing cellular networks to address the needs of
ultra-intensive services in hotspot areas.

Generally,  a  single  mAeBS  only  serves  a  limited
number of  UEs.  In order to expand the coverage area,
multiple  mAeBSs  can  be  deployed  together  [6].
However, the  interference  between  these  mAeBSs  be-
comes a critical impacting factor, since strong LoS links
usually  dominate  in  air-to-ground  (A2G)  channel  and
the cross-link interference is unavoidable. In the mean-
while,  although  the  main  lobe  of  mmWave  beam  has
high directivity, the negative effect of the side lobe can 
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not be ignored because it will cause interference to the
adjacent  region  [7].  Especially  the  number  of  antenna
elements carried by UAV is  limited due to the limited
space of UAV, which results in a poor sidelobe suppres-
sion  effect.  Coordinated  multiple  points  transmission
(CoMP) has been viewed as a powerful interference con-
trol  approach  in  traditional  cellular  systems  [8]. Com-
pared  with  other  interference  mitigation  methods  such
as  power  control  and  frequency  reuse,  CoMP  has  the
unique  advantage  of  significantly  improving  the
throughput performance  since  it  can  exploit  the  inter-
ference  as  a  beneficial  signal.  In  CoMP,  each  UE  is
served by several  BSs collaboratively,  and the interfer-
ence signal is transformed into desired signal sources [9].
However, according to our knowledge, there is no previ-
ous  work  on  CoMP-assisted  multi-mAeBS  networking
for capacity enhancement in hotspot areas.

How  to  deploy  multiple  AeBSs  collaboratively  is
also  a  challenging  problem.  Conventional  optimization
algorithms are usually impractical for problems in com-
plex  UAV-assisted  networks,  since  they  usually  have
high computational complexity, and they need to calcu-
late again and again even when encountering a similar
decision  scenario.  Deep  reinforcement  learning  (DRL)
provides a solution for decision systems to learn and use
experience  in  changing environments  [10].  The existing
works have investigated the 3D deployment problems in
AeBS networks with the help of DRL algorithms, such
as Q-learning [11], deep Q-network (DQN) [12], dueling
DQN (DDQN) [13]. However, these approaches follow a
centralized paradigm, which perform poorly in scalabil-
ity  and  flexibility  due  to  their  huge  state  and  action
space. Fortunately, these challenges can be handled by
invoking  multi-agent  deep  reinforcement  learning
(MADRL)  algorithms,  which  conducts  in  distributed
manners  [14].  However,  MADRL  is  inherently  more
complicated  than  single-agent  DRL,  since  agents  need
to  interact  with  other  agents  and  the  environment  at
the same time. It is still questionable whether it can be
applied in UAV-assisted networks.

To deal  with  these  challenges,  this  paper  intro-
duces CoMP into  the  multi-mAeBS  network  for  capa-
city enhancement in hotspot areas,  and designs a two-
timescale  mechanism  for  3D  deployment  of  mAeBSs
and the  mAeBS-UE  association.  The  main  contribu-
tions of this paper can be summarized as follows: 1) A
capacity  evaluation  model  of  cooperative  mAeBSs  for
wireless capacity enhancement in hotspot areas is estab-
lished, considering  the  characteristics  of  A2G propaga-
tion, CoMP, and 3D mmWave beam scheduling. 2) On
the  large  timescale,  a  clustering-based  user  association
algorithm  is  proposed,  which  can  divide  mAeBSs  that
severely interfere with each other into a cluster, to form

cooperative  mAeBS-UE  associations,  so  as  to  achieve
considerable  capacity  enhancement.  3)  On  the  small
timescale,  the  multi-agent  deep  deterministic  policy
gradient  (MADDPG)  algorithm is  adopted  to  let  each
mAeBS make its motion decision based on its own ob-
servation,  in  the  direction  of  maximizing  the  wireless
network capacity.  Particularly,  an autonomous  deploy-
ment  management  architecture  is  designed,  in  which
mAeBSs  exchange  information  with  aerial  base  station
controller (ABC) in the network side, without the need
to communicate with each other directly.

The rest  of  the paper is  organized as follows.  Sec-
tion II presents the related works and the system mod-
el  is  depicted  in  Section  III.  Then,  the  two-timescale
mechanism  for  UE  association  and  3D  deployment  of
mAeBSs  is  specified  in  Section  IV.  Section  V  presents
the discussions of simulation results. Finally, Section VI
makes a conclusion.

 II. Related Work
There are some instructive survey papers on UAV

mmWave  communications  [2]–[4],  [15].  The  first  work
on enabling  AeBS  with  mmWave  networks  was  ex-
plored  in  [15],  where  the  key  challenges  and  possible
solutions  in  mmWave  UAV  networks  are  discussed.
Several works have been studied focusing on A2G mm-
Wave  channel  characteristics  [16],  [17], beam  manage-
ment  [18]–[20],  secure  transmission  [21] and  deploy-
ment  [6].  Early  research  on  mAeBS  networks  mainly
considers the  scenario  that  only  one  mAeBS  is  de-
ployed. Recently, with the increasingly intensive distri-
bution of UEs, it is difficult to deploy a single mAeBS
to meet the communication demands. Toward this end,
the multi-mAeBS  network  calls  for  great  research  ef-
forts.

 1. Interference issue in the multi-AeBS net-
works

Interference  is  usually  dominant  in  multi-UAVs
networks and  it  severely  deteriorates  the  communica-
tion performance. Many previous works adopt user clus-
tering methods,  such as  K-means [12],  [22] and its  im-
proved  versions  [23],  [24],  to  cluster  AeBSs  and  UEs
based  on  geographical  information,  ignoring  the  inter-
cluster interference to simplify the model,  which is not
the case  in  practical  scenarios.  Some works  take  inter-
ference into consideration. In [25], the minimum achiev-
able system throughput is maximized in the presence of
co-channel  interference.  Authors  in  [26] optimizes  tra-
jectory and power control of AeBSs to obtain a higher
system sum rate, considering the cross-link interference.
These  works  consider  the  interference  in  multi-AeBS
networks, but they do not utilize CoMP to convert the
interference into capacity gain.
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CoMP has been widely adopted as an effective in-
terference  control  technique.  Extensive  works  have
shown  that  it  can  improve  the  coverage  and  capacity
performance in terrestrial cellular systems [8], [9]. Affin-
ity propagation clustering (APC), first proposed in [27],
has  been  used  as  a  CoMP  clustering  method  and  has
shown its  good  performance  in  improving  the  capacity
performance  [28].  In  [28]  and  [29],  APC  is  used  in
CoMP  clustering  to  mitigate  cell  edge  users’ interfer-
ence in heterogeneous cloud small cell networks and pi-
cocell systems, respectively. The above works mainly fo-
cus  on  the  terrestrial  network.  In  [30],  power  control
and  APC-based  CoMP  scheme  are  designed  to  reduce
the interference in the UAV-assisted network. However,
this  paper  assumes  the  network  environment  is  static
and  does  not  consider  the  deployment  design,  which
fails to fully exploit the mobility of UAVs.

 2. Deployment design of multiple AeBSs
The 3D UAV deployment is one of the fundament-

al problems  of  UAV-assisted  networks,  and  the  ad-
justable  altitude  of  UAVs  and  their  potential  mobility
provide freedom for effective deployment. In [6], the au-
thors decouple the joint optimization problem of the de-
ployment,  UE  association  and  hybrid  beamforming  of
mAeBSs into  two  subproblems  and  solve  them  altern-
ately.  Ref.[31]  designs  an  iterative  algorithm to  jointly
optimize AeBSs’ deployment and UE association. Ref.[32]
focuses  on  maximizing  the  throughput  and  proposes  a
heuristic algorithm to optimize the placement of AeBSs.
These  aforementioned  algorithms  usually  have  high
complexity, and more importantly, and the results need
to  be  calculated  again  once  the  network  environment
changes.  The recalculation process  is  too slow for  real-
time  operation,  which  greatly  limits  the  application  of
these algorithms in practical multi-AeBS networks.

 3. DRL in the deployment design of AeBSs
To address these issues, many works have invoked

DRL algorithms  to  solve  the  deployment  design  prob-
lem. Authors in [11] use Q-Learning to make motion de-
cisions for AeBSs to maximize the data which is collec-
ted from UEs while minimizing power consumption. In
[12], a  DQN-based  mAeBS  placement  algorithm  is  de-
signed to  achieve  maximal  spectral  efficiency  consider-
ing  the  quality  of  service  (QoS)  of  UEs.  Ref.[13]  uses
DDQN to optimize  the  deployment of  AeBSs with the
movement of UEs for better downlink capacity perform-
ance.  However,  these  above  works  assume  that  each
UAV has complete network information, while in prac-
tical  applications,  due  to  the  high  movement  speed  of
UAVs,  it  is  difficult  for  each  UAV  to  obtain  a  global
understanding  of  the  dynamic  environment.  At  the
same  time,  these  aforementioned  DRL  algorithms  are
performed in a centralized way, and the size of action-

space and state-space will explosively grow as the num-
ber  of  network  nodes  increases,  which  occupies  a  large
amount  of  memory  and  brings  a  lot  of  time  overhead.
Additionally,  these  centralized  DRL  algorithms  also
face the problem of poor scalability and flexibility.

The emergence  of  MADRL  provides  a  new  solu-
tion to  address  these  challenges.  MADDPG,  first  pro-
posed in [33], is a popular MADRL algorithm which has
a good  performance  in  multi-agent  collaborative,  com-
petitive,  or  mixed environments,  and has been used to
manage  the  trajectory  of  UAVs  recently.  Ref.[34] in-
vokes MADDPG algorithm to design the dynamic  tra-
jectory of each AeBS, aiming to maximize secure rate in
the  presence  of  ground  eavesdroppers.  Authors  in  [35]
use  MADDPG to  manage  the  trajectory  of  each  UAV
independently on  the  premise  of  meeting  the  con-
straints  of  fairness  and  energy  consumption.  In  [36],  a
trajectory design algorithm based on MADDPG is pro-
posed  to  ensure  the  freshness  of  the  collected  data.
These  aforementioned  articles  are  not  in  the  scope  of
capacity  enhancement,  and  do  not  consider  mmWave
characteristics and interference between aerial base sta-
tions, so  they  cannot  be  directly  applied  to  this  scen-
ario.  However,  these  articles  show that  MADDPG can
effectively improve  training  efficiency,  these  factors  in-
spire us to solve the deployment problem of mAeBSs by
invoking this algorithm.

Motivated by these aforementioned works, we util-
ize  an  APC-based  CoMP clustering  scheme  to  address
the interference  issue  and  adopt  the  MADDPG to  op-
timize  the  3D  deployment  of  mAeBSs  for  better
throughput. Table 1 summarizes the difference between
our work and the existing literature on the deployment
of AeBSs.

 III. System Model

M U

M = {1, 2, . . . ,M}
U = {1, 2, . . . , U} m

u (xm, ym, hm) (xu, yu, 0)

We consider a multi-mAeBS downlink communica-
tion scenario where  mAeBSs serve  ground UEs, as
shown  in Fig.1  The  set  of  mAeBS  is  denoted  as

, and the ground UEs set is represen-
ted as . The coordinates of mAeBS 
and  UE  are  denoted  as  and  ,
respectively.

 1. Air-to-ground channel model

m u

In  the  A2G  channel,  the  radio  signal  transmitted
by  mAeBS  first  propagates  in  free  space,  and  then  is
shadowed and scattered by obstacles  such as  buildings
and trees when it reaches the urban environment. This
process  brings  excessive  pathloss  on  top  of  the  free
space  pathloss.  Thus,  the  A2G  pathloss  between
mAeBS  and ground user  under the LoS and non-
line-of-sight  (NLoS)  propagation  environment  can  be
modeled as [38]:
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Lm,u
LoS = Lm,u

FS + ηLoS (1)
 

Lm,u
NLoS = Lm,u

FS + ηNLoS (2)

Lm,u
FS

Lm,u
FS = 20 log(4πfcdm,u/c) fc

c dm,u

m u

ηLoS ηNLoS

where  represents the free space pathloss which can
be  expressed  as ,  where  is
the carrier frequency,  is the speed of light, and  is
the  distance  between  mAeBS  and  ground  user ,
which can be measured by coordinates.  and 
refers  to  the  mean  value  of  the  excessive  pathloss  in
LoS and NLoS links respectively.

θm,u

m u

The probability of LoS is a continuous function de-
termined by the  environment  and elevation  angle 
between mAeBS  and UE :
 

Pm,u
LoS =

1

1 + a exp (−b (θm,u − a))
(3)

a b

θm,u

θm,u = sin−1(hm/dm,u)

Pm,u
NLoS = 1− Pm,u

LoS

where  and   are environment-related  S-curve  para-
meters.  The  elevation  angle  can  be  obtained  as

. The probability of NLoS can be
obtained as .

m uHence, the pathloss between mAeBS  and UE 
can be obtained as: 

Lm,u = I (Pm,u
LoS )L

m,u
LoS + (1− I (Pm,u

LoS ))L
m,u
NLoS (4)

I(r)
r

where  is a Bernoulli random variable whose value is
1 with the probability .

 2. Beam scheduling

GM

GS

GM

Besides the  A2G propagation  path  loss,  the  direc-
tional  mmWave  antenna  gain  is  also  an  important
factor in the mAeBS channel. In this work, we suppose
that a 3D beam has the same gain  within its beam-
width and a small constant sidelobe gain  outside the
beamwidth,  as  shown  in Fig.2 (a).  The  main  lobe  gain

 can be obtained as follows [18]:
 

GM =
2− (2− (1− cos δu))GS

1− cos δu
(5)

δu
u

where  is  the  cone  half  angle  of  the  mmWave  beam
for UE .
 

Main lobe gain GM

Side lobe gain Gs

x

y

mAeBS m

UE u

(b)(a)

δu

δT,u

δT,s

δR,u

δR,s

hm

θm, u

 
Fig. 2. mAeBS  serving  UE  with  directional  beam.  (a)  3D

Beam; (b) Beam alignment.
The  main  beams  of  the  transmitter  and  receiver

should  be  aligned  before  the  data  transmission  starts,
which  will  bring  time  overhead.  We adopt  the  widely-
used two-stage  beam  search  scheme  for  beam  align-
ment, in  which  the  coarse-grained  scanning  is  conduc-
ted on the sector level at first, and then the beam-level

   
Table 1. Comparison between our work and the existing literature on deployment of AeBSs

Reference Optimization goal mmWave Interference modeling CoMP Deployment method
[6] Capacity ✓ ✓ × Alternating optimization
[11] Data collection × × × Q-learning
[12] Capacity ✓ × × DQN
[13] Capacity × ✓ × DDQN
[14] Capacity × ✓ × Multi-agent Q-learning
[23] Transmission power × ✓ × Alternating optimization
[25] Capacity × ✓ × Successive convex optimization
[26] Capacity × ✓ × Successive convex optimization
[31] Capacity ✓ ✓ × Iterative algorithm
[32] Capacity × × × Heuristic algorithm
[34] Security × × × MADDPG
[35] Fairness × × × MADDPG
[36] Data collection × ✓ × MADDPG
[37] Security × ✓ ✓ Alternating optimization

Our work Capacity ✓ ✓ ✓ MADDPG
 

 

mAeBS

mAeBS
mAeBS

mAeBS

mAeBSs clusering

 
Fig. 1. Multi-mAeBS serving for hotspot area.
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δT,s δR,s

δT,u δR,u

m u

τ

scanning is carried out in the selected sector range. The
beam alignment process is illustrated in Fig.2(b), where

 and  depict the sector width at transmitter and
receiver  respectively,  and  and   represent  the
beamwidth of the beam link from mAeBS  to UE  at
both ends.  The  time  cost  of  beam  alignment  is  basic-
ally  in  the  second  stage  as  the  time  spent  in  the  first
stage  is  negligible.  The  beam  alignment  time  is de-
rived as [18]:
 

τ =
1− cos δT,s

1− cos δT,u
· 1− cos δR,s

1− cos δR,u
Tp (6)

Tpwhere  is the time when the beam traverses through
the entire sector and sends a pilot  signal  at each posi-
tion for alignment.

Nb

Nu

ηu u

Due to  the  strong  directivity  of  the  narrow  mm-
Wave beam, it is is required to conduct beam scanning
to cover the whole considered area. Assuming that each
mAeBS casts  narrow beams in 3D space,  when the
number of associated UEs  is higher than the beams
of the mAeBS, a round-robin scheme needs to be adop-
ted for beam scheduling. The average ratio of time-fre-
quency resources  occupied by UE  is approximated
as
 

ηu =


1, Nb ≤ Nu

Nb

Nu
, Nb > Nu

(7)

 3. Capacity evaluation model under cooper-
ative scheme

n i

Mi Ui M1 ∪ · · ·Mi · · · ∪
· · ·Mn = M U1 ∪ · · ·Ui · · · ∪ · · ·Un = U

Unlike fixed ground BSs, mAeBSs have a fluid ar-
rangement, so their coverage may often overlap and in-
terference from other mAeBSs will occur. Therefore, an
interference  reduction  method  is  required.  To  address
this  issue,  we  introduce  CoMP  technology  to  suppress
the  significant  interference.  We  assume  that  multiple
mAeBSs provide services for ground UEs collaborately,
forming  cooperative  mAeBS-UE  clusters.  In th co-
operative cluster,  the  set  of  mAeBSs  and  UEs  are  de-
noted as  and , respectively, and 

, .

ξu u

i

We divide the mAeBSs with strong interference in-
to  a  cooperative  set  and  the  joint  transmission  CoMP
(JT-CoMP)  scheme  is  adopted  within  the  cooperative
BS cluster.  With JT-CoMP,  from the  point  of  view of
the  selected  UE,  the  signal  from other  mAeBSs  is  not
treated as interference but the desired signal [8]. There-
fore, the  strong  interference  is  eliminated  and the  use-
ful signal is increased, and the signal to interference and
noise ratio (SINR)  of the signal received at UE  in
the th cooperative set can be approximated as: 

ξu =

∑
m∈Mi

PmGT,MGR,ML−1
m,u

σ2
, u ∈ Ui

(8)

Pm m σ2

GT,M GR,M

where  is  the  transmit  power  of  mAeBS ,  de-
notes the power of  thermal noise,  and  are
the main lobe antenna gain of transmitter and receiver.

uThen the throughput of user  can be expressed as
 

ϱu = ηu

(
1− τ

T

)
B log2 (1 + ξu) (9)

B τ

T τ

T

where  represents  the  channel  bandwidth,  is  the
beam alignment  time  in  (6),  is  the  time  slot  and 
needs to be less than one slot  to ensure enough time
for data transmission.

The system throughput can be expressed as
 

ϱ =

n∑
i=1

[∑
u∈Ui

ϱu

]
(10)

 4. Problem formulation
In this  paper,  we aim to adjust  the 3D placement

of mAeBSs  and  the  cooperative  mAeBS-UE  associ-
ations to  achieve  optimal  system  throughput.  The  op-
timization problem is formulated as follows:
 

max
xm,ym,hm,n,Mn,Un

ϱ

s.t. C1: xmin < xm < xmax,∀m ∈ M

C2: ymin < ym < ymax,∀m ∈ M

C3: hmin < hm < hmax,∀m ∈ M

C4: (xm, ym, hm) ̸= (xl, yl, hl),∀m, l ∈ M ,m ̸= l

C5: M1 ∪ · · · ∪Mn = M

C6: U1 ∪ · · · ∪Un = U
(11)

ϱwhere  is  the system throughput in (10).  C1–C3 con-
straint mAeBSs from flying out of  the area,  and C4 is
the collision constraint that prevents mAeBSs from fly-
ing  to  the  same  position.  C5  and  C6  ensure  that  all
users in the system can be covered.

 IV. Two-Timescale Framework for User
Association and 3D Deployment of Co-

operative mAeBSs
In this section, a two-timescale approach, as shown

in Fig.3 ,  is  designed to solve the problem in (11).  The
whole process can be divided into two procedures in dif-
ferent  timescales.  On  the  large  timescale,  the  mAeBSs
periodically perform APC based on the large-scale inter-
ference characteristics,  and the cooperative mAeBS-UE
association  is  established.  On  the  small  timescale,  a
MADDPG-based  deployment  algorithm  is  designed  to
move mAeBSs to achieve optimal throughput. Specific-
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ally,  each  mAeBS  selects  its  actions  based  on  its  own
observation in each subframe, aiming to increase the re-
ward,  which  is  related  to  the  large  timescale  mAeBS-
UE association.
 

…

…
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Fig. 3. The framework of the proposed approach.

 

 1. APC-based  cooperation  mechanism  for
mAeBSs

S

We adopt  APC  for  mAeBS-UE  partitioning,  con-
sidering  the  interference  characteristics.  APC  clusters
data points based on a similarity matrix .  Generally,
APC uses negative Euclidean distance to represent sim-
ilarity, so  the  higher  the  similarity,  the  closer  the  dis-
tance between two points.  In this paper,  the similarity
is  calculated  to  characterize  the  interference  between
mAeBSs, so that the strong interfering mAeBSs can be
clustered  into  a  cluster.  After  APC,  mAeBSs  within  a
cluster  serve  their  UEs  collaboratively,  transforming
strong interference signals into useful signals.

MConsidered  a  network  of  mAeBSs, the  similar-
ity matrix is denoted as
 

S = [sm,l]M×M (12)

sm,l l

m sm,l =
∑

Um
PmGT,SGR,SL

−1
m,i

GT,S GR,S

where  indicates  the  interference  of  mAeBS  to
mAeBS  associated users, ,
where  and  are the side lobe antenna gain of
transmitter and receiver.

Instead of specifying the number of clusters in ad-
vance, APC treats all mAeBSs as potential cluster cen-
ters,  called exemplar s. The  core  idea  of  APC is  to  se-
lect the  exemplar  by  continuously  passing  responsibil-

R = [rm,l]M×M A = [am,l]M×M

rm,l l

m am,l

m l

rm,l am,l

l

m

l rm,l am,l

ity  and  availability ,
between data points.  indicates whether mAeBS  is
suitable to be the exemplar of mAeBS , and  re-
flects the suitability of mAeBS  to choose mAeBS  as
its exemplar. The stronger  and  are, the higher
the probability that mAeBS  is the exemplar, and the
higher  the  probability  that  mAeBS  belongs  to  the
cluster with mAeBS  as the exemplar.  and  are
iteratively updated  and  the  update  equations  are  ex-
pressed as [27]:
 

rt+1
m,l = sm,l −max

l′ ̸=l

{
atm,l′ + sm,l′

}
(13)

 

at+1
m,l = min

(
rt+1
l,l +

∑
m′ /∈{m,l}

max
{
0, rt+1

m′,l

}
, 0

)
(14)

The  detailed  procedures  of  our  proposed  APC-
based  cooperative  mAeBS-UE  association  is  illustrated
in Algorithm 1.

Nu

Un

Nu

First  of  all,  each  UE  associates  with  the  mAeBS
with the strongest received signal in the initial stage. At
this time, each mAeBS serves a set of UEs, we refer it
to  the  initial  UE  set .  Then,  the  modified  APC  is
conducted. When the algorithm converges, mAeBSs will
be divided  into  several  clusters  according  to  the  inter-
ference characteristics. mAeBSs within each cluster per-
form  cooperative  communication,  and  the  associated
UE set  of each mAeBS is a collection of the initial
UE set  of the mAeBSs within the cluster.

Algorithm 1  APC for mAeBSs cooperation

Input: Positions of mAeBSs and UEs.
Mn UnOutput: mAeBS-UE cooperative association  and .

R = [0]M×M A =
[0]M×M

Initialize:  Responsibility  and  availability 

u

argmaxm∈MPmGT,MGR,ML−1
m,u

Nu

1: Get  initial  mAeBS-UE  association:  UE  chooses  the
mAeBS  with  the  strongest  receiving  power,  namely,

. Each mAeBS serves a set
of UEs .

S2: Calculate similarity  according to (12)．
3: REPEAT

R = [rm,l] A = [am,l]4: Update  and  according to (13) and (14)
and broadcast．

5: UNTIL max iteration or the APC algorithm converges
m ∈M6: FOR each mAeBS 
l

exemplar(m) =

argmaxl∈M {am,l + rm,l}

7: Select  the  mAeBS  with  the  largest  sum of  responsibility
and  availability  as  its  exemplar,  namely, 

．

Mn n8: Obtain clustered mAeBSs set ,  where  is  the number
of exemplars.

Un Mn

Nu

9: Obtain the associated UE set  according to  and ini-
tial UE set .
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 2. MADDPG  for  3D  Deployment  of  the
mAeBSs

We model  the  proposed  multi-mAeBS  cooperation
problem as a Markov game, which can be regarded as a
multi-agent  extension  of  the  Markov  decision  process.
In our proposed multi-mAeBS cooperation scheme,  the
basic components are defined as follows:

Agent　Each  mAeBS can  be  viewed  as  an  agent
and each agent gets its own observation and selects ac-
tions according  to  its  own  policy,  then  receives  a  re-
ward from the environment and moves to its next state.

om = {(xm, ym,

hm)} o = {om,m ∈ M}

Observation　The observation of each mAeBS is
the current 3D location of each mAeBS 

. .

am = {(∆xm,∆ym,∆hm)}

a = {am,m ∈ M}

Action　The  action  of  each  agent  is  the  moving
distance torward 6 directions ,
i.e., left or right, forward or backward, and up or down.

.

t

Reward　 In  our  proposed  system,  the  reward  is
the  system  throughput  calculated  according  to  (10)
after  each  mAeBS’s  location  changes  at  time .  Since
there  is  a  cooperative  relationship  between  mAeBSs,
mAeBSs share the same reward at the same time.

MADDPG is  an  extended  algorithm  of  deep  de-
terministic policy gradient algorithm (DDPG) in multi-
agent  environments.  DDPG  is  essentially  realized  by
combining the  ideas  of  DQN  and  Actor-Critic  al-
gorithms.  In  MADDPG,  each  agent  has  two  modules:
actor  and  critic.  The  actor  is  trained  for  generating  a
deterministic  policy  which  chooses  a  random  action
from a determined distribution, and the critic is trained
to  simulate  the  real  Q-table  using  neural  networks.
Both the actor and critic have an online network and a
target  network,  and  the  target  network  has  the  same
architecture as the online network and is introduced to
solve the instability problem.

M
µ =

{µ1, . . . , µM} θ = {θ1, . . . , θM}

m

The actor  gets  the  selection  probability  of  the  ac-
tion according to the current state. In the game with 
agents,  the  deterministic  policies  for  all  agents 

 are  parameterized  by .
The actor network is updated by minimizing the gradi-
ent  of  the  expected  return  for  agent ,  which  can  be
written as:
 

∇θmJ=E
[
∇θmµm

(
ojm
)

×∇amQµ
m

(
oj , aj1, . . . , a

j
M

)∣∣∣
am=µm(ojm)

]
(15)

µm θmwhere  represents the policy with respect to .
The  critic  approximates  the  value  function  of  the

state-action pair to judge the quality of the actor’s se-
lected action. It is updated by minimizing the following
loss function: 

L (ωm) = E
[
yj −Qµ

m

(
oj , aj1, . . . , a

j
M

)]2
(16)

yjwhere  is the target value and can be estimated as:
 

yj=rjm+ γ ·Qµ′

m

(
oj
new, a

′
1, . . . , a

′
M

)∣∣∣
a′
m=µ′

m(o
j
m)

(17)

µ′ θ′m
γ

where  is the target policy set with parameter  and
 denotes the discount factor.

N

(o,a, r,onew) D

The  complete  process  of  our  proposed  MADDPG-
based  multi-mAeBS  3D  deployment  algorithm  are
shown in Algorithm 2. At first, each mAeBS initializes
its own four deep neural networks with random weights,
i.e.,  online  actor  network,  target  actor  network,  online
critic  network,  and  target  critic  network.  The  replay
memory  buffer  which  enables  agents  to  remember  and
reuse past  experiences  is  also  initialized.  Then,  the  ex-
ploration  process  is  conducted  in  the  training  process.
The  action  derived  from  the  current  actor  network  is
added  with  noise  for exploration.  The  capacity  un-
der the  large  timescale  mAeBS-UE  association  is  em-
ployed  to  update  the  reward  function.  The  transitions

 in   are  then  stored  in  the  replay
memory and critic networks can thus obtain the obser-
vations  and actions  of  all  agents.  By exploration,  each
mAeBS  will  choose  an  action  with  the  highest  reward
and fly  along  this  direction.  Next,  we  use  the  mini-
batch method to randomly collect samples from the re-
play  memory  and  update  the  weight  of  the  actor  and
critic network accordingly. In order to improve the sta-
bility of learning, the parameters of the target network
are softly updated.

Algorithm 2　MADDPG-based Deployment of mAeBSs

Input: Locations  of  UEs;  structures  of  actor  and  critic  net-
works; training episodes; max steps of each episode.

Output: Trained actor network of each mAeBS.
µm

Qm m θm ωm

µ′
m

Q′
m m θ′m = θm

ω′
m = ωm D K

Initialize: Online actor network  and online critic network
 for  each  mAeBS  with  random weights  and  ,

respectively; target actor network  and target critic net-
work  for  each  mAeBS  with  weights  and

, respectively; replay memory  with capacity .
1: For each training episode:
2: 　Update the location of UEs if there is any change;
3: 　Initialize the locations of mAeBSs;

N4: 　Initialize a random noise  for action exploration;
5: 　　For each step:

m om

am = µ(om|θm) +N

6:　　　Each  mAeBS  obtains  its  observation , and  se-
lects  the  action  based  on  its  own  observation

;
m

am onew

7:　　　Each  mAeBS  sets  its  own  location  based  on  the
action  and  obtains  new  observation .  Note
that the mAeBS will stay at its current location if it
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flies  out  of  the  region  or  it  collides  with  another
mAeBS;

ϵ

onew

8:　　　Every  steps  execute  mAeBSs  clustering  based  on
 according to Algorithm 1;

r9:　　　Observe reward ;
(o,a, r,onew) D10: 　　Store transitions  in ;

o← onew;11: 　　

m ∈M12: 　　For each mAeBS  :

(
oj ,aj , rj ,oj

new

)
D

13: 　　　Sample  a  random  minibatch  of  transitions
 from ;

14: 　　　Update the critic according to (16);
15: 　　　Update the actor according to (15);

m ω′
m ← τωm + (1− τ)ω′

m θ′m ← τθm + (1− τ)θ′m

16: 　Every  C  steps  update  target  network  for  each  mAeBS
: , .

At the execution stage, each mAeBS downloads its
well-trained actor network and receives initial  observa-
tion. Then, each mAeBS selects its action based on its
own  observation,  without  the  need  of  communicating
with other  mAeBSs.  The  centralized  training  and  dis-
tributed  execution  framework  is  especially  suitable  for
UAV-assisted networks since it  brings less  communica-
tion  burden  to  resource-limited  UAVs.  The  time-con-
suming centralized training process can be conducted at
the  aerial  base  station controller  (ABC).  Each mAeBS
downloads  the  well-trained  actor  network  from  the
ABC and makes motion decisions based on its own ob-
servation. The  proposed autonomous  deployment  man-
agement architecture of mAeBSs is shown in Fig.4.
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Fig. 4. The architecture  of  autonomous  deployment  man-

agement of mAeBSs.

O(M2I) M

I

Na
h qai

The  complexity  of  the  proposed  mechanism  is
mainly  composed  of  two  parts:  MADDPG  algorithm
complexity  and  APC  algorithm  complexity.  The  time
complexity of the APC algorithm is , where 
is the number of mAeBSs, and  is the iteration times.
The time complexity of MADDPG is determined by the
operations in deep neural networks. We assume that an
actor  network  has  hidden  layers,  which  have 

i=1, . . . , Na
h

N c
h j

qcj

O
(∑Na

h−1
i=0 qai q

a
i+1 +

∑Nc
h−1

j=0 qcjq
c
j+1

)

O
(∑Na

h−1
i=0 qai q

a
i+1

)

neurons  respectively, .  Similarly,  a  critic
network has  hidden layers, and the th hidden lay-
er contains  neurons. And in each iteration, the time
complexity  of  MADDPG  can  be  obtained  as

 [36]. Here, the oper-
ations at input and output layers are ignored since they
are relatively trivial. In the execution process, the time
complexity  can  be  reduced  to  since
no critic network is needed.

 V. Simulation Results and Discussions

6 ×
6

In  this  section,  the  performance  of  our  proposed
scheme is evaluated. We consider a square area of  km 
 km, in which ground UEs follow the 2D Gaussian dis-

tribution to model the user aggregation in the real hot-
spot  scenario.  The  vertical  flying  region  of  mAeBSs  is
[10 m, 200 m]. The simulations are implemented based
on the python 3.8 and torch 1.7.0+cu110 environment.
The main  parameters  of  the  environment  and  hyper-
parameters  of  MADDPG are  listed  in Tables 2  and  3,
respectively.
  

Table 2. Main parameters of the environment

Parameters Values
Carrier frequency 30 GHz

BChannel bandwidth 100 MHz
PmTransmit power of mAeBSs 50 dBm

GT,S GR,SSide lobe gain , −10 dB, −10 dB
δT,s δR,sSector width , π/2 π/2, 

δT,u δR,uBeamwidth , π/6 π/6, 
a bS-curve parameters , 9.61, 0.16

ηLoS ηNLoSExcessive pathloss , 1, 20
σ2Thermal noise power density −174 dBm/Hz

Tp/TPilot duration ratio 2× 10−4

  
Table 3. Hyperparameters of the MADDPG

Hyperparameters Values
Layers of actor, critic 4, 4

Learning rate of actor, critic 0.01, 0.01
Layer type of actor Fully connected

Neurons of hidden layers for actor [64,64]
Layer type of critic Fully connected

Neurons of hidden layers for critic [64,64]
Optimizer Adam

Activation function Leaky ReLU
KMemory capacity 10000

Minibatch size 1256
γDiscount factor 0.97

Soft updating rate 0.5
 
 

First  of  all,  we  compare  our  proposed  MADDPG
with  two  baseline  DRL  algorithms,  i.e.,  DQN  and
multi-agent  DQN  (MADQN).  DQN  is  a  widely-adop-
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m

ted  single-agent  DRL  algorithm.  To  make  the  DQN
suitable for the proposed scenario, we discretize the ac-
tion space and define it as moving the th mAeBS for-
ward, backward, left, right, up, or down, a total of 6M
options. MADQN is an extended version of DQN in the
multi-agent  environment. Fig.5  shows the  averaged re-
wards  obtained  by  these  3  algorithms  in  the  training
and execution  process.  The  training  process  is  conduc-
ted in the first  400 episodes.  In the next 400 episodes,
the  trained  networks  are  uploaded  to  mAeBS  agents
and  agents  make  action  decisions  accordingly.  Results
show that  rewards  of  three  algorithms  increase  gradu-
ally  and  MADDPG can  achieve  a  higher  reward  since
its  continuous action space makes it  possible to obtain
more accurate results.  In the execution process,  all  the
three  algorithms  can  stay  at  a  stable  and  high  level.
However,  different  from DQN and MADQN,  agents  in
MADDPG do not need global  observations in the exe-
cution process. It means that mAeBS does not need to
communicate  with  each other  when deciding  its  action
after  being  fully  trained,  which  is  practical  in  the  real
multi-mAeBS network.
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Fig. 5. Rewards versus episodes in training and execution process.
 

We  also  compare  MADDPG  with  DQN  and
MADQN  in  training  time,  as  shown  in Fig.6 .  As  the
result  shows,  multi-agent  DRL  consumes  less  time  to
train  than  centralized  single-agent  DRL.  In  terms  of
running  time,  compared  with  multi-agent  algorithms,
DQN needs  more  training  time  due  to  its  large  action
space, and this gap has the tendency to be wider with
the increase of the number of mAeBSs.

Fig.7 shows the impact of  the number of  mAeBSs
on the  capacity  performance.  We  compare  our  pro-
posed  scheme  with  two  baseline  scenarios:  DQN  with
APC  and  MADDPG  without  APC.  In  the  DQN  with
APC scheme, mAeBS-UE cooperative association is ob-
tained through APC, similarly to the proposed scheme,
and a  central  controller  makes  decisions  through DQN
to move  mAeBSs  for  better  throughput.  In  the  MAD-
DPG  without  APC  scheme,  each  UE  associates  with
the  mAeBS  which  is  with  the  strongest  signal,  i.e.,

CoMP  is  not  introduced  in  this  scheme,  and  mAeBSs
make decisions through MADDPG to move to the place
where the  system  throughput  can  be  maximized.  Res-
ults  show  that  in  both  the  proposed  and  DQN  with
APC scheme, the throughput per UE is generally on the
rise with the increase of the number of mAeBSs, while
the  increase  of  mAeBSs  has  a  negative  impact  on  the
throughput of each user in the MADDPG without APC
scheme. This is because more mAeBSs bring more inter-
ference to  the  network  and  thus  deteriorate  the  capa-
city  performance,  and  the  introduction  of  CoMP  can
solve this problem. In addition, compared to DQN with
APC,  the  proposed  scheme gains  a  better  performance
with the help of MADDPG.
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Fig. 7. Averaged throughput for different numbers of mAeBSs.

 

10 10%

Apart from the capacity performance, we also ana-
lyze  the  coverage  performance,  as  shown  in Fig.8 .  We
utilize  coverage  probability  to  characterize  coverage
performance,  which  is  defined  as  the  probability  that
the  SINR  received  by  the  UE  is  greater  than  a  given
threshold. As result shows, when the SINR threshold is
set as  dB, only  UEs can be covered when three
mAeBS  are  deployed  under  the  MADDPG  without
APC  scheme  and  the  situation  is  even  worse  as  more
mAeBSs  deployed.  When  CoMP  is  introduced,  the
covered UE increases to 50% under the same condition.
In  addition,  compared  with  DQN,  the  application  of
MADDPG can also improve the system performance.
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Fig. 6. Computational  time  of  different  algorithms  under

different numbers of mAeBSs.
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Fig. 8. Coverage probability with different numbers of mAeBSs.

 

In order to verify the capacity enhancement effect
of CoMP in this scenario, the proposed scheme is com-
pared with the  MADDPG without  APC scheme. Fig.9
shows  the  effect  of  the  number  of  beams  of  mAeBSs
and the density of UEs on the throughput performance.
As the density of UEs increases, the throughput of each
UE of the two schemes gradually declines. In the case of
a small  number  of  users,  the  performance  of  the  pro-
posed  scheme  is  130%–190%  better  than  that  of  the
MADDPG without APC scheme, but with the increase
of  the user  density,  the  gap is  gradually  narrowing.  In
addition,  compared  with  the  MADDPG  without  APC
scheme,  the number of  beams has a greater  impact  on
the  proposed  scheme,  since  each  mAeBSs  associates
with more users in the cooperative mechanism, so more
beams are  needed to  provide  services  for  them.  There-
fore, although the proposed scheme can significantly in-
crease the throughput performance,  it  is  at  the cost  of
the beam resources of mAeBSs.
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Fig. 9. Averaged throughput under different numbers of UEs.

 

Fig.10 shows  the  relationship  between  coverage
probability and SINR thresholds, which is helpful to ob-
serve the bearing capacity of mAeBS systems for differ-
ent scenarios,  since  different  services  may  have  differ-
ent  communication  threshold  requirements.  As  results
show, the coverage probability of  the proposed cooper-
ative scheme is  higher under the same SINR threshold
and remains stable over a wider range compared to the
MADDPG without APC scheme. Additionally, increas-

ing the  number  of  deployed  mAeBS  is  helpful  to  im-
prove the coverage performance in our proposed scheme
while it  will  deteriorate  the  performance  of  the  MAD-
DPG  without  APC  scheme  since  more  interference  is
introduced.
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Fig. 10. Coverage probability under different SINR thresholds.

 

It  can  be  seen  from  the  above  analysis  that  the
proposed cooperation scheme can improve the capacity
and  coverage  performance  of  multi-mAeBS  networks,
and the  proposed  MADDPG-based  deployment  al-
gorithm  has  the  advantages  of  less  training  time  and
higher converged reward in the multi-mAeBS scenario.

 VI. Conclusions
This paper studies the deployment and UE associ-

ation problem of using cooperative mAeBSs to enhance
capacity for hotspot areas. We propose a two-timescale
mechanism  for  capacity  maximization  in  the  multi-
mAeBS  network,  in  which  APC  is  adopted  to  obtain
the cooperative mAeBS-UE association according to the
interference  characteristics  and  MADDPG  is  used  to
make deployment  decisions  of  mAeBSs.  In  our  pro-
posed  scheme,  after  being  fully  trained,  each  mAeBS
can make appropriate decisions based on its own obser-
vations,  without  the  need of  communicating  with  each
other.  Simulation  results  show  the  superiority  of  our
proposed  MADDPG-based  multi-mAeBS  deployment
algorithm in  convergency  and  time  efficiency  by  com-
paring with  baseline  algorithms.  Results  also  demon-
strate that the proposed cooperative scheme can greatly
improve the coverage and capacity of the network since
strong interference is eliminated.
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