
LBA-EC: Load Balancing Algorithm Based on
Weighted Bipartite Graph for Edge Computing

SHAO Sisi1,2, LIU Shangdong1,2,3,4, LI Kui1,2, YOU Shuai1,2, QIU Huajie1,2,
YAO Xiaoliang1,2, and JI Yimu1,2,3,4

(1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
(2. Institue of High Performance Computing and Bigdata, Nanjing University of Posts and Telecommunications,

Nanjing 210003, China)
(3. Nanjing Center of HPC China, Nanjing 210003, China)

(4. Jiangsu HPC and Intelligent Processing Engineer Research Center, Nanjing 210003, China)

 Abstract — Compared with cloud computing envir-
onment, edge computing has many choices of service pro-
viders due to different deployment environments. The
flexibility of edge computing makes the environment more
complex. The current edge computing architecture has
the problems of scattered computing resources and lim-
ited resources of single computing node. When the edge
node carries too many task requests, the makespan of the
task will be delayed. We propose a load balancing al-
gorithm based on weighted bipartite graph for edge com-
puting (LBA-EC), which makes full use of network edge
resources, reduces user delay, and improves user service
experience. The algorithm is divided into two phases for
task scheduling. In the first phase, the tasks are matched
to different edge servers. In the second phase, the tasks
are optimally allocated to different containers in the edge
server to execute according to the two indicators of en-
ergy consumption and completion time. The simulations
and experimental results show that our algorithm can ef-
fectively map all tasks to available resources with a short-
er completion time.

 Key words — Edge computing, Weighted bipartite

graph, Load balancing.

 I. Introduction
With the continuous development of the Internet

of things, the number of terminal devices such as smart
phones and smart glasses continues to increase. The

growth rate of data is far faster than that of network
bandwidth. Although the integration of intelligent In-
ternet of things and cloud computing supports many
applications, it is inefficient to move all tasks to cloud
computing in some cases [1]. For example, when the
bandwidth is limited and the response time is strict, up-
loading data to the cloud for processing may lead to a
longer response time and occupy a large portion of
bandwidth. In this case, edge computing [2], [3] came
into being. Edge computing allows data processing at
the edge of the network and computing near the data
source to avoid unnecessary data movement [4]. Com-
pared with the traditional cloud computing mode, edge
computing can better support mobile computing and
Internet of things applications.

Edge computing not only has computing and stor-
age capacity but also has the advantages of high band-
width and low latency [5], which can significantly im-
prove the real-time experience and satisfaction of users.
However, the resources of edge computing nodes are
scattered, and the computing performance is limited.
Facing the applications that require high computing re-
sources (i.e., multimedia processing, social network and
natural language processing), edge computing is still
limited by resources [6]. When the edge server carries
too many task requests, the response time of some tasks
will be delayed, even longer than that of calling tasks to

Manuscript Received Feb. 3, 2021; Accepted Dec. 4, 2021. This work was supported by the National Key R&D Program of China
(2020YFB2104000, 2020YFB2104002), Natural Science Foundation of the Jiangsu Province (Higher Education Institutions) (BK20170900,
19KJB520046, 20KJA520001), Innovative and Entrepreneurial Talents Projects of Jiangsu Province, Jiangsu Planned Projects for
Postdoctoral Research Funds (2019K024), Six Talent Peak Projects in Jiangsu Province (JY02), Postgraduate Research and Practice
Innovation Program of Jiangsu Province (KYCX19 0921, KYCX19 0906), Open Research Project of Zhejiang Lab (2021KF0AB05), and
NUPT DingShan Scholar Project and NUPTSF (NY219132).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.289

Chinese Journal of Electronics
Vol.32, No.2, Mar. 2023

the remote cloud server. It can be seen that task load
balancing algorithm and computing offload strategy
play an important role in edge computing, which de-
termines the computing efficiency and quality.

As mentioned above, we design a framework of
task load balancing for edge computing, and propose a
task load balancing algorithm based on weighted bi-
partite graph (LBA-EC). The algorithm is divided into
two phases: load balancing between edge nodes and
load balancing between containers. First, the task is
mapped to different edge nodes. Second, the tasks are
optimally allocated to different containers in the edge
server to execute according to the two indicators of en-
ergy consumption and completion time. The algorithm
makes full use of network edge resources, reduces user
delay, and improves user service experience. The main
contributions of this work are as follows.

1) We design a load balancing framework for edge
computing, which is composed of edge device layer,
edge layer and cloud layer. When an edge device sends
a task request, it can select a nearby edge data center
to process the task.

2) The phase of load balancing between edge nodes
is responsible for matching tasks from edge devices to
different edge data centers. In this phase, combined
with the queuing theory model, the task scheduling
problem is modeled as a dynamic weighted bipartite
graph maximum perfect matching problem. Then the
task is matched to different edge data centers by find-
ing the maximum perfect match of the current bipart-
ite graph.

3) The phase of load balancing between containers
is responsible for allocating the tasks in the edge data
center to a specific container for execution. In this
phase, we describe quantitatively the makespan and the
energy consumption of the edge nodes. Then, the
particle swarm optimization algorithm is used to find
the optimal value of the objective optimization prob-
lem and decide which specific Docker container the task
is allocated to.

The rest of this paper is structured as follows. Sec-
tion II presents existing related works. Section III gives
the framework of task load balancing for edge comput-
ing. Section IV proposes a two-stage load balancing al-
gorithm based on bipartite graph. Section V verifies the
effectiveness of the algorithm through experiments. Sec-
tion VI summarizes the research work of this paper and
points out our future work.

 II. Related Work
Compared with the powerful cloud server, the re-

source of edge server is limited. When the edge server
carries too many task requests, the makespan of some

tasks is extended, even exceeding the response time of
calling services on the remote cloud server [7]. How to
effectively solve the problem of task load balancing in
edge computing environment has become a research
hotspot. By assigning tasks to different edge data cen-
ters for processing through task scheduling, the edge
data center and cloud computing resources can be ef-
fectively utilized, the completion time of applications
can be reduced, and the quality of computing experi-
ence can be improved. The fundamental purpose of task
load balancing is to effectively support real-time data.
It is necessary to schedule various tasks optimally to
meet various SLA parameters, such as response time,
power consumption, delay, and cost [8]. Many studies
show that the task load balancing problem belongs to
NP-hard optimization problem. Many heuristic al-
gorithms are used to solve the multi-objective optimiza-
tion problem, such as particle swarm optimization
(PSO) [9], ant colony algorithm (ACO) [10], genetic al-
gorithm (GA), simulated annealing algorithm (SA) [11],
etc. For the task assignment problem in edge comput-
ing environment, researchers provide different heuristic
and meta-heuristic algorithms. Among the heuristic al-
gorithms, particle swarm optimization is the most
widely used. Zhan et al. [12] describe the resource
scheduling problem and its solutions, using several nat-
ural heuristic evolutionary methods (i.e., ant colony al-
gorithm, genetic algorithm, particle swarm optimiza-
tion). Kaur et al. [8] use Docker containers instead of
traditional virtual machines (VMs) to manage task
scheduling and load balancing in a virtualized environ-
ment, and propose a container-based edge service man-
agement system, which reduced bandwidth utilization
and energy consumption. Yang et al. [13] develop differ-
ent service load optimization algorithms and service al-
location algorithms for different service providers. Guo
et al. [14] propose a PSO-based task scheduling optimiz-
ation method to minimize the cost. Wan et al. [15] pro-
pose an energy aware task scheduling method based on
fog computing to solve the energy consumption prob-
lem of task clusters in the manufacturing industry,
which can achieve load balancing in the multi-task and
multi-objective environments.

Effective load balancing is one of the most com-
mon methods to reduce service delay in edge comput-
ing, to avoid overload or waste of resources of any edge
server. In order to shorten the task completion time as
much as possible, Zeng et al. [16] comprehensively con-
sider the load balance between edge devices and edge
servers, the placement of task images, and the balance
of I/O interrupt requests between storage servers, and
propose a solution with high computational efficiency.
Souza et al. [17] propose a strategy for service alloca-

314 Chinese Journal of Electronics 2023

tion problem as a multidimensional knapsack problem.
They apply their model to the integration of fog and
cloud computing to optimize latency, load, and energy
consumption. Mishra et al. [18] propose a service alloca-
tion framework based on meta-heuristics to adapt to
the heterogeneity of resources in the fog computing en-
vironment by analyzing the equipment energy consump-
tion and the maximum task completion time. Liu et al.
[19] balance the load according to the queuing time, ex-
ecution time and transmission time of tasks, and pro-
pose a one-dimensional search algorithm to find the op-
timal task scheduling strategy. Li et al. [20] propose a
two-stage algorithm for computing resource scheduling
in edge layer based on task delay constraint and
threshold strategy.

Some researchers have solved the load balancing
problem by modeling the relationship between comput-
ing nodes and tasks as a weighted bipartite graph. Li et
al. [21] propose a task scheduling method based on
cache location for intensive data tasks in edge comput-
ing environment. First, the cache is placed, and then
the data location is used as the weight to establish a
weighted bipartite graph to solve the task scheduling
problem. Wang et al. [22] propose a dynamic task
scheduling algorithm based on weighted bipartite graph
considering the dynamic characteristics of tasks and
computing nodes, which transforms the scheduling
problem into the maximum weighted bipartite graph
matching problem. Zhang et al. [23] propose a service
adaptation method for cloud end dynamic integration.

In this method, the adaptation problem between cloud
services and end services is modeled as a bipartite
graph matching problem to ensure the minimum global
average request response time of end service instances
in the adaptation process.

As mentioned above, many researchers have estab-
lished different objective functions to reduce various
SLA parameters of services (i.e., response time, service
availability, delay and cost). Each method plays an im-
portant role in a specific edge computing scene. To
solve the problem of limited resources of edge comput-
ing nodes, we propose a two-phase load balancing al-
gorithm based on weighted bipartite graph, which
makes full use of network edge resources, reduces the
makespan of users, and improves the user service exper-
ience.

 III. Load Balancing Framework for Edge
Computing

Our proposed load balancing architecture for edge
computing consists of three layers, namely edge device
layer, edge layer and cloud layer, as shown in Fig.1.
The edge device layer (including different smart
devices) sends the tasks to the nearby edge data center.
The edge data center consists of edge servers. Inside the
edge server is a cluster based on Docker container.
Compared with the traditional virtual machine cluster,
Docker container has the characteristics of less resource
consumption, fast startup, high deployment efficiency

Cloud data center
Edge data center 1

Edge data center n

App B

Server

App A

App B

Server

App A

Edge devices

Cloud server 1

Cloud server 2

Cloud server m

Docker engine

Bins/Libs Bins/Libs

Host OS

Docker engine

Bins/Libs Bins/Libs

Host OS

Controller

Proxy 1

Proxy 2

Proxy 3

Proxy n

Controller

Proxy 1

Proxy 2

Proxy 3

Proxy n

Local

controller

Local

controller

...

...

...

...

...

...

Fig. 1. Load balancing architecture for edge computing.

LBA-EC: Load Balancing Algorithm Based on Weighted Bipartite Graph for Edge Computing 315

and good scalability. Container can better ensure the
reliability and effectiveness of the flexible supply of
cluster resources, so that applications can run almost
anywhere in the same way. After receiving the task re-
quest, the edge data center selects the appropriate
Docker container for processing through the internal
scheduling algorithm, and finally returns the processing
result to the edge device. The cloud server can provide
all the services.

According to the above system architecture, we
have the following assumptions.

1) The edge data center can completely cover the
entire network service area of the edge device, so when
the edge device sends the task request, it can select the
nearby edge data center to process the task.

2) For any two edge data centers, network paths
are connecting them. For each edge data center, there is
a network path to connect it with the cloud data cen-
ter.

3) For each task request, if the resources in the
edge data center are insufficient to process the task, the
task will be sent to the cloud data for processing.

4) When the Docker in the edge server receives a
task, it can only process one task at a time. If new tasks
enter the container at this moment, they need to wait
for the previous task to complete. Cloud data center is
powerful, so it can perform multiple tasks at the same
time.

 IV. Load Balancing Algorithm Based on
Weighted Bipartite Graph

c m

n

The proposed load balancing algorithm is based on
the network architecture designed by Section III, which
is divided into two phases: load balancing between edge
nodes and load balancing between containers. Among
them, the load balancing between edge nodes is respons-
ible for matching tasks to a specific edge server. The
load balancing between containers is responsible for al-
locating tasks to a specific container. Suppose there are
 edge data centers, which contain edge servers; In

addition, there are tasks waiting to be processed.

M/M/m/∞

sp Sim

First, the load balancing phase between edge nodes
is carried out. After the user publishes the task request,
the task will be matched to the appropriate edge server.
In this process, the task matching problem is modeled
as a dynamic weighted bipartite graph maximum per-
fect matching problem. Combined with the queuing the-
ory of multi-server waiting system (), the
tasks in the queue are modeled. The average waiting
time of the task is minimized, and the optimization al-
gorithm is used to speed up the convergence speed. The
weight between task and edge server is obtained by task
scheduling priority (), task resource similarity ()

Costand data transmission cost (). The maximum per-
fect matching algorithm, i.e., Kuhn-Munkres (KM) al-
gorithm in a bipartite graph is optimized to minimize
the average response time and energy consumption.

Second, the load balancing phase between contain-
ers is performed to determine which Docker container
the task will be assigned to process. In this process, we
will first quantitatively describe the makespan and en-
ergy consumption to keep a balance between them. The
problem is defined as a bi-objective minimization prob-
lem. Then, the feasible solution space of the problem is
determined according to the particle swarm algorithm
for fast search. At this point, the Docker container al-
location process is over. After getting the specific alloca-
tion result, the cluster schedules the task and allocates
the task to a specific container for processing. Finally,
the cluster returns the processed result to the edge
device.

 1. Load balancing between edge nodes

M/M/m/∞

G

M/M/m/∞

sp Sim Cost

In the phase of load balancing between edge nodes,
the task scheduling problem is modeled as a dynamic
weighted bipartite graph maximum perfect matching
problem, and the task in the task queue is modeled
with queuing theory model. The load balancing al-
gorithm between edge nodes is shown in Fig.2. This sec-
tion mainly describes the construction of task matching
model based on dynamic weighted bipartite graph, the
construction of task queue based on , the
calculation of weight between task and edge server, and
the maximum weight perfect matching of bipartite
graph. The task matching model based on the dynamic
weighted bipartite graph is dynamic growth, so the
matching vertex in graph is deleted after the task is
matched, which means that the vertex is not con-
sidered in the next matching. The virtual node is ad-
ded to represent the adapted proxy vertex, and the
weight between task vertex and virtual node is 0. The
construction of task queue based on is to
get the optimal task sorting queue into bipartite graph
modeling, to reduce the average waiting time of tasks.
The weight between task and edge server is obtained by
(), () and ().

1) Task matching model based on dynamic
weighted bipartite graph

T = {tλ, |λ = 1,

2, . . . , n} P = {pγ , |γ = 1,

2, . . . ,m} n ≥ m

T

P G = ⟨V (G),

E(G)⟩ V (G) = T ∪ P E(G) ={eij , |eij = (tλ, pγ),

tλ ∈ T, pγ ∈ P}

We assume that the task set is
 and the edge server set is
, where . We model the matching

between tasks and edge servers as a dynamic weighted
bipartite graph problem. The vertex of one end of bi-
partite graph is task set , and the other end is edge
server set , so weighted bipartite graph

, where ,
. To get the best match, weight is ad-

316 Chinese Journal of Electronics 2023

sp

Sim Cost

G

G

ded between the vertices of bipartite graph. The weight
of each vertex is determined by the priority value of
task scheduling , the similarity between task and re-
source , and the cost of data transmission .
The specific calculation method of weight is shown in
Section IV.1.3). After that, we use the maximum per-
fect matching algorithm (KM) to get the maximum
matching. The number of edge servers can be predicted
in advance. However, tasks arrive dynamically, so the
corresponding weighted bipartite graph grows dy-
namically. In order to get the maximum perfect match
of bipartite graph, we need to satisfy that the number
of servers in the graph is equal to the number of tasks.
After the task gets the server matching, it will delete
the matching vertex in graph , which means that the
vertex will not be considered in the next matching, and
the virtual server node will be added to represent the
adapted proxy vertex. The weight between task vertex
and virtual server node is 0.

M/M/m/∞2) Task queue modeling based on
queuing theory

λ

µ t

n Pn(t) P (t)

n

N(T)

[0, t) m d = n− |T |

dmax = n n

pn (n = 0, 1, 2, . . .)

n

For tasks, its generation follows a negative expo-
nential distribution with mean value , and the pro-
cessing time of each task follows a negative exponential
distribution with parameter . At time , the probabil-
ity of system state is shown by . is the
probability that the system state is in steady state.

 is the number of tasks arriving in the period time
. Suppose there are edge servers, rep-

resents the maximum number of tasks that can be held
in the task set, . is the average number of
tasks matching the edge server in the task set, and

 is the distribution of the stationary
state of the queuing model. For any state , the aver-
age number of times to enter the state in unit time and
the average number of times to leave the state in unit
time should be equal, which is called “birth and death
process.” Therefore, according to the birth and death

process, the steady state of the queue in any state is as
follows:

0 µ1p1 = λ0p0
1 λ0p0 + µ2p2 = (λ1 + µ1)p1

2 λ1p1 + µ3p3 = (λ2 + µ2)p2
...

n λn−1pn−1 + µn+1pn+1 = (λn + µn)pn (1)

It can be seen from the above steady-state equa-
tion that

0 p1 =
λ0p0
µ1

1 p2 =
λ1λ0

µ1µ2
p0

2 p3 =
λ2λ1λ0

µ1µ2µ3
p0

...

n pn+1 =
λnλn−1 . . . λ0

µ1µ2 . . . µn+1
p0 (2)

Cn = λn−1λn−2...λ0

µ1µ2...µn
n = 1, 2, 3, . . . ,Let , then

pn = Cnp0, n = 1, 2, 3, . . . (3)

∑∞
n=0 pn = 1 [1 +

∑∞
n=1 Cn]p0 = 1

According to the requirement of probability distri-
bution: , so , then

p0 =
1

1 +
∑∞

n=1
Cn

(4)

m pn =

P {N = n} (n = 0, 1, 2, . . . , k)

For server nodes, record the distribution
 in stationary state,

λn = λ, n = 0, 1, 2, . . . ,m (5)

µn =

{
nµ, n = 0, 1, 2, . . . ,m
mµ, n = m,m+ 1, . . .

(6)

Edge devices

Task queue

Task Server

Task
p

1
t3

t3

t5

t4

t4

t4

t1

t1

t
n

t
2

t2

t2

p
2

p
3

p1

p410

6

5.6

6.2

10.4

7

11.5

8.3

9

7.9

9.6

10.88

13.2

12

p2

p3

pn−2pn−2

pn−1
pn−1

pntn−2

tn−1

tn

tn−1

tm

Queue up

Server

Maximum perfect matching

Matching

...

...

... ...

...

Fig. 2. Load balancing algorithm between edge nodes.

LBA-EC: Load Balancing Algorithm Based on Weighted Bipartite Graph for Edge Computing 317

ρ = λ
µ ρm = ρ

m = λ
mµ ρm < 1Let , because , so when ,

from (3) and (4), we can see that

Cn =


(λ/µ)n

n!
, n = 1, 2, . . . ,m

(λ/µ)n

m!mn−m
, n ≥ m

(7)

It can be deduced that

pn =


ρn

n!
p0, n = 1, 2, . . . ,m

ρn

m!mn−m
p0, n ≥ m

(8)

where

p0 =

[
m−1∑
n=0

ρn

n!
+

ρn

m!(1− ρm)

]−1

(9)

n < mIn the stationary state, if , the new task can
directly match the dynamic bipartite graph and the
proxy node without waiting, as shown in (10).

Pti = 1 (10)

n ≥ mOtherwise, if , the new task needs to wait
after entering the queuing system, as shown in (11).

Pti =

∞∑
n=s

pn =
ρm

m!(1− ρm)
p0 (11)

Lm

Lm Wm

Wq

Finally, we can get the average queue length ,
average queue length , average processing time ,
and the average waiting time of the task , as shown
in (12)–(15).

Lm = Lq + ρ (12)

Lq =
p0ρ

mρm

m!(1− ρm)
2 =

Ptiρm
1− ρm

(13)

Wm =
Lm

λ
(14)

Wq =
Lq

λe
= Wm − 1

µ
(15)

Generally, in the queuing system, the task is
queued according to the first come first served, but this
will cause the phenomenon of a long queue. To optim-
ize the average waiting time and reduce the length of
the task queue, we use PSO algorithm to manage the
task queue. Firstly, the average waiting time of the task
is calculated, then the optimal value returned by PSO
is the correct order of the task in the queue. The PSO
algorithm is used to get the optimal queue sequence to
minimize task congestion. Therefore, our goal is to min-
imize the average waiting time, as shown in (16).

ObjectiveFunction = min{Wq} (16)

In the PSO algorithm, the fitness function used to
calculate each particle solution is as follows:

Fitness = min

{
1

n

n∑
i=1

WTti

}
(17)

WTti ti
n

where is the average waiting time of the task
and is the number of tasks in the queue. When the
PSO algorithm returns the optimal value, we reorder
the task queue according to the value. When there is a
new task to enter the queue, it will first determine
whether the dynamic bipartite graph has completed a
maximum perfect match. If it is finished, the saturated
vertices in the bipartite graph will be deleted, and the
top task in the queue will be selected to insert into the
bipartite graph. Otherwise, the task will continue to
wait in the queue. Therefore, the optimized queue can
maintain a transient stable state in the process of bi-
partite graph matching.

3) Weight calculation between task and edge server

sp Sim Cost

In the process of modeling the task matching prob-
lem as the dynamic weighted bipartite graph maximum
matching problem, the definition of weight is very im-
portant. It determines the advantages and disadvant-
ages of the task allocation algorithm and whether it is
effective or not. Here, the weight between task and edge
server is calculated by , , and .

sp

sp

tpi i ith spi = tpi
tpi
tpi = {b1, b2, b3|b1 < b2 < b3}

Task scheduling priority value ()　Task
scheduling priority value is determined by the task
priority value (where is the task), so .

 is defined by the user when transferring tasks,
.

Sim

tλ = [tcλ, tmλ] tcλ
tλ tmλ

tλ

pγ = [pcγ , tmγ] pcγ
tmγ

Similarity between task and resource ()　A
task is defined as a row vector , which
represents the CPU requirement of the task and
represents the memory requirement of task . The re-
source of edge server is defined as row vector

, which represents the CPU of edge
server and represents the memory of edge server.
So the similarity between tasks and resources is as fol-
lows:

Sim(tλ, pγ) =
tλ · pγT

|tλ||pγ |
(18)

CostData transmission cost ()　The data trans-
mission cost is determined by the network bandwidth
and the distance between the task and the edge server,
so the data transmission cost is as follows:

Costλ,γ =
Lλ

Band
dis (19)

318 Chinese Journal of Electronics 2023

Lλ Band
dis

where represents the size of the task, repres-
ents the network bandwidth, and represents the dis-
tance between the task and the edge server.

wλ,γSo the weight is

wλ,γ = a1 ·
Sim(tλ, pγ)

Sim(tλ, pγ)
−a2 ·

spλ
spλ

− a3 ·
Costλ,γ
Costλ,γ

(20)

a1 a2 a3
Sim(tλ, pγ) sp Costλ,γ

where , and are the weight coefficients of the
three influence factors, and , and
are defined as follows:
 

Sim(tλ, pγ)=

∑
λ
∑

γSim(tλ, pγ)

λ · γ

sp =

∑
λ
∑

γspλ

λ · γ

Costλ,γ=

∑
λ
∑

γCostλ,γ

λ · γ

(21)

4) Maximum weight perfect matching of bipartite
graph

In our algorithm, we use KM algorithm [23] to get
the maximum weight perfect match of bipartite graph
and get the best allocation method after getting the
weight according to Section IV.1.3). The main steps of
the algorithm are as follows:

l

Gl M Gl

a) Select the initial feasible fixed-point label , de-
termine , and select a pair set in .

T M

M G

u Gl

S = {u} Q = ∅

b) If all the vertices in are paired by , then
stop, and is the most weighted perfect pair set of ;
Otherwise, take the unpaired vertex of , let

, .
NGl

(S) ⊃ Q NGl
(S)=Q

∂1 = minx∈S,y∈Q{l(x) + l(y)− w(xy)} l(v) = l(v)− ∂1, v ∈ S
l(v) + ∂1, v ∈ Q
l(v), otherwise

l = l̄ Gl = Gl̄ NGl
(S)

S Gl

c) If , go to step d); If , take
, in which

, , , and is the

set of adjacent vertices of in .

Algorithm 1　Load balancing between edge nodes

Ms Ns kInput: is a server instance, is a task instance, is the
node queue that enters the task instance.

map (Ms, Ns) = {ms→ ns,ms ∈Ms, ns ∈ Ns}Output: ．

Begin
Q′ ← PSO (Q) // Optimize queue sequence;
Q ̸= θif ()

G (Ms ∪ k,E) Ms k　Establish a bipartite diagram for and
according to Section IV.1.1);

ωλ,γ　calculate according to (20);
M ⊆ E (G)　initialize matching

∃ ms ∈Ms　if (is saturated and satisfies (10))
{WMW = M ; }　

　else

M Y ={y, y∈Ms} , T = Q　Get the unsaturated point of , ;
L Y　Initializing the feasible vertex label in according (11);

EL G　Obtain the equal subgraph of ;
∂L −min {L (x) + L (y)− w (xy) |x ∈ X, y ∈ (K − T)} ;　

l̄ (v) =


l (v)− ∂L, v ∈ S
l (v) + ∂L, v ∈ T
l (v) , otherwise

　Modify the feasible label of each vertex as

;

L = L′, EL = EL′ M ′ EL　Let , give a match of again;
P = (yk) M ′ EL　 is the augmented path of in ;

　then
M∗=M ′ ⊕ P

M∗ EL

　 // Execute the Hungarian algorithm until the
 of is found;

WMW = M∗;　

Ms = {ms = e.ms, e ∈WMW} ;　

k̄ = {k = e.k, e ∈WMW} ;　

Ns = {ns = k.sid, k ∈ k̄&e ∈ NS}　 ;
map (Ms, Ns) = {ms→ ns,ms ∈Ms, ns ∈ Ns}　

Ms = Ms −Ms + {m′
1,m

′
2,m

′
3, . . . ,m

′
c}　

k = k − k̄ + {k′
1, k

′
2, k

′
3, . . . , k

′
c} {k′

1, k
′
2, k

′
3, . . . , k

′
c} ∈ Q　 ,

Ns k |Ms| = |k|　//Update the and sets so that ;
map (Ms, Ns)　

End

O(n3)

G

Wq

O(Wqn
3) O(n3)

So far, the maximum weight perfect matching of
bipartite graph is obtained, that is, the specific match-
ing scheme of task mapping to edge server is obtained.
Algorithm 1 implements the load balancing phase
between edge nodes of the algorithm. The time com-
plexity of the KM algorithm is . When a virtual
server node is inserted into , the improved KM al-
gorithm is only called once, and the waiting time of the
key node is . Therefore, the time complexity of the
entire process is , which is .

 2. Load balancing between containers
Docker container has the characteristics of less re-

source consumption, fast startup speed, high deploy-
ment efficiency and good scalability. It can also ensure
the reliability and effectiveness of the flexible supply of
cluster resources, so that applications can run in the
same way almost anywhere. Compared with virtual ma-
chine (VM), container is a relatively lightweight virtu-
alization instance [24]. In a server, there can be many
containers to manage task scheduling and load balan-
cing in a virtualized environment. Therefore, in terms of
reducing the bandwidth utilization and energy con-
sumption, their scheduling and migration are more suit-
able than traditional VMs. As mentioned above, the
edge server we use is a cluster based on Docker contain-
er.

In this section, we will discuss the load balancing
phase between containers, which is mainly divided into
the modeling of bi-objective minimization problem and
the process of container cluster allocation. The bi-ob-

LBA-EC: Load Balancing Algorithm Based on Weighted Bipartite Graph for Edge Computing 319

jective minimization problem is modeled by quantitat-
ively describing the makespan and the energy consump-
tion to obtain the objective function. In the process of
container cluster allocation and scheduling, a particle
swarm optimization algorithm is used to determine the
feasible solution space of the above modeling problem.
The particle swarm algorithm performs a fast search to
obtain the approximate optimal value. Finally, the con-
tainer cluster schedules the tasks according to the res-
ults, assigns the tasks to a specific container for pro-
cessing, and returns the processed results to the edge
devices.

1) Modeling of bi-objective optimization problem

C = {cθ, |θ = 1, 2, . . . , s}

In the process of load balancing of edge nodes,
tasks are matched to each edge server. Then the al-
gorithm executes the task allocation process of the con-
tainer cluster to determine which specific Docker con-
tainer to assign the task to for processing. Suppose a
container set is . In this pro-
cess, the system first describes the problem quantitat-
ively according to the makespan and the energy con-
sumption, and defines the problem as a bi-objective
minimization problem.

CTλ

The makespan of a task represents the time re-
quired in the whole process from task input to result
output, so the makespan is mainly determined by task
calculation time, task waiting time and task transmis-
sion time. The calculation time of the task is de-
termined by the size of the task and the processing
speed, as shown in (22).

CTλ=
Lλ

Vλ
(22)

Lλ

Vλ

Waitλ
WTti

Delayλ

where is the size of the task (in millions of instruc-
tions (MI)) and is the processing speed of the task.
The task waiting time is the average waiting
time of the task matching phase with the edge
server and the service delay of the Docker con-
tainer allocation phase, as shown in the (23).

Waitλ = WTti +Delayλ (23)

Tλ

Lλ

Task transmission time is determined by task
size and network bandwidth, as follows:

Tλ=
Lλ

Band
(24)

So the makespan is

Makespan = CTλ +Waitλ + Tλ (25)

Energy consumption represents the energy con-
sumed by the edge server. The edge server has two
states: idle state and active state. It is assumed that the

%
cθ

βθ (Joules/MI) cθ
αθ (Joules/MI) βθ=10−8×

(MIPSθ)
2 αθ=0.6×βθ Joules/MI Lλ

Vλ

CTλ=
Lλ

Vλ

ETC

ETCλ,θ

energy consumption of an idle state is 60 of that of an
active state. When container is active, the energy
consumed is ; When container is idle,
the energy consumed is . Here,

, . The task size is ,
and the data processing speed is , so the task calcula-
tion time is , and each task will correspond to
a calculation time, so we put it into the matrix,
and the matrix elements are represented by . As
shown in (26).

ETCλ,θ= CTλ=
Lλ

Vλ
(26)

χλθ tλ
cθ χλθ=1 tλ

cθ χλθ=0 tλ
cθ cθ

Set to indicate whether task is executed in
container . If , task is executed in container

; If , it means that task is not executed in
container . So the total service time of is

ETθ =

n∑
λ=1

χλθ × ETCλ,θ (27)

cθSo the energy consumption of container is

E(cθ)=[ETθ×βθ+(Makespan−ETθ)]×MIPSθ (28)

The total energy consumption is

E =

s∑
θ=i

E(cθ) (29)

Therefore, the objective function of task allocation
optimization among containers is as follows:

Min : ΦLoad = λ1 ·Makespan+ λ2 · E (30)

λ1 λ2

Makespan E λ1=λ2=0.5

where and are the weight coefficients between
 and . Here, we set .

2) Container cluster allocation process
After the objective function is obtained, the feas-

ible solution space of the problem is determined accord-
ing to the PSO algorithm. The PSO algorithm will find
the optimal value of the dual-objective optimization
problem to complete the final task assignment. PSO al-
gorithm is simple to implement, high efficiency, and few
parameters. Especially the algorithm with natural real
number coding characteristics is more suitable for real-
time optimization problems. The notations and defini-
tions are shown in Table 1.

According to the basic formula of PSO algorithm,
we can get the following results:

V k+1
i =ω(k)V k

i +c1r1(P
k
best.i −Xk

i)+c2r2(P
k
global,i−Xk

i)
(31)

320 Chinese Journal of Electronics 2023

Xk+1
i = Xk

i + V k+1
i (32)

Table 1. Notations and definitions of particle swarm

optimization

Notartions Definitions
cθ Number of containers

m Number of particles
Xi The position of particle i
Vi The velocity of particle i

ω Inertia weightω ∈ [0, 1]

η Random number η ∈ [k, kmax]

c1, c2 Acceleration coefficient equal to 2

r1, r2 Pseudo random number r1, r2 ∈ [0, 1]

Pbest,i The best place in history for particle i
Pglobal,i The best position for all particles

ω

ω

ω

In (31), is an important parameter in PSO al-
gorithm. It balances the global or local search ability of
particles. Setting a higher will promote global search,
and a lower will promote fast read local search.
Therefore, to avoid premature convergence of particles,
we use the exponential decreasing weight formula [25]
to improve the global search ability and search accur-
acy of particle swarm optimization algorithm. The ex-
ponential decreasing weight formula is shown in (33).
When the maximum number of iterations or minimum
load balancing is achieved, the optimal particle posi-
tion can be determined.

ω(k) = (ωmax − ωmin)exp
[
− k2

ηkmax

]
+ ωmin (33)

n θ

O(θ × n)

At this point, the Docker container allocation pro-
cess is finished. After getting the specific allocation res-
ult, the cluster schedules the task to a specific contain-
er for processing, and returns the processed result to the
edge device. The container cluster is responsible for op-
timally assigning tasks to different containers with min-
imum energy consumption and makespan. Algorithm 2
implements the load balancing phase between the con-
tainers of the algorithm. The input of the algorithm has
 task requests and Docker containers. Therefore, the

time complexity of Algorithm 2 is .

Algorithm 2　Load balancing between containers

λ ξInput: is the number of iterations, is the minimum bal-
ance difference, ETC matrix

Output:Allocation result of services to Dockers.
Begin
 initialization // initialized particle;

i← 1 m for to
j ← 1 n for to

X0
i,j = θΓi (mj)

 end for
 end for

 do
i← 1 m for to //update the position of particle;

 //achieve the previous best position of particle;
j ← 0 n for to
ΦLoad // is calculated according to the public (30);
ΦLoad

(
Xj

i

)
≤ ΦLoad (Pbest,i) if()then

 // update the best position for particle;
Pbest,i = Xj

i ;
 end if
 end for

ΦLoad (Pglobal) ≤ ΦLoad (Pbest,i) if () then
Pglobal = Pbest,i //achieve the best neighbor particle

 end if
V k+1
i

Xk+1
i = Xk

i + V k+1
i

k ++
 //the terminal condition

ΦLoad (Xbest) ≤ ξ or k ≥ λwhile ()
end while

 V. Experimental and Performance
Evaluation

 1. Experimental environment
server1) Edge

Each edge data center uses four edge servers to
build a container cluster. In this cluster, there are one
master node and three slave nodes. The specific config-
uration information of each server node is shown in
Table 2.

Table 2. Calculate node configuration information

CPU Intel E5-2680 @2.80 GHz
Memory 4GB
Disk 6300GB
OS CentOS 6.5

JVM version Java 1.8.0
Docker version Docker 1.5

2) Network environment
The edge servers in the edge data center are con-

nected through 56 Gbps high-speed switch, and the
edge servers and external devices are connected through
the Gigabit Ethernet switch of TP-Link.

3) Dataset
Since there is no standard experimental platform

and test data set, we generate the experimental data
asynchronously. We assume that the number of incom-
ing task requests per time unit is fixed, and the num-
ber of available edge servers per request ranges from 2
to 8. Three positive integers are assigned to each task,
which are task priority value, task data size and task
location. Each task needs three kinds of CPU or
memory resources, and the number of each resource is

LBA-EC: Load Balancing Algorithm Based on Weighted Bipartite Graph for Edge Computing 321

(2, 5)randomly generated in . Each edge server has three
kinds of resources, and the available quantity range of
each resource is 5–10. The processing speed of each edge
server task is randomly generated from 1–5, and the
data transmission speed between each edge server and
the cloud is 1.

 2. Experiment and analysis
1) Response time
We analyze the effect of different parameters on

the task response time. We set two groups of paramet-
ers, which are the number of task requests per unit time
and the number of edge servers, as shown in Table 3. In
each group, only one parameter changes and the other
remains unchanged. All experiments were repeated 20
times and the average value was used as the result. In
addition, we compare the proposed algorithm with
baseline algorithms FCFS, Min-Min and Max-min. The
number of iterations is set to 1000.

The impact of the number of task requests on re-
sponse time. We set the experimental parameters ac-
cording to setting 1 in Table 3, and analyze the impact
of different task requests per unit time on the response
time of five scheduling algorithms. The results are
shown in Table 4. From the table, we can see that with
the increase of the number of task requests, the re-
sponse times of the five scheduling algorithms are in-
creasing. This is because when other parameters are
fixed, with the increase of task requests, more tasks are
assigned to the edge server, which increases the load of
the edge server. As a result, the waiting time of the
task increases and the response time increases.

Table 4. The impact of different number of task requests on response time (ms)

Method 60 70 80 90 100

LBA-EC 26.29 30.14 34.98 38.22 43.16

FCFS 42.38 43.31 47.11 54.98 58

Min-Min 41.97 43.42 49.58 58.95 63.75

Max-Min 46.21 46.14 50.97 60.28 64.71

The impact of the number of edge servers on re-
sponse time. We set the experimental parameters ac-
cording to setting 2 in Table 3 , and analyze the influ-
ence of a different number of edge servers on the re-
sponse time of five scheduling algorithms. The results
are shown in Table 5.

As can be seen from Table 5 , with the increase of
edge servers, the response time is decreasing. This is be-
cause, with other parameters unchanged, the increase of
edge servers can make more servers process task re-
quests, shorten the waiting time of tasks, and further
reduce the response time of tasks.

Table 5. The impact of different number of edge servers on response time (ms)

Method 5 6 7 58 9

LBA-EC 26.29 19.49 17.62 14.90 14.94

FCFS 42.38 41.16 37.26 33.96 25.19

Min-Min 41.97 44.13 39.25 43.79 25.97

Max-Min 46.21 45.13 40.30 35.91 26.57

2) Efficiency evaluation
In this part, we conduct two groups of experi-

ments to test the scalability of our proposed algorithm.
Similarly, we analyze the effect of the number of task
requests and the number of edge servers on the effi-
ciency of the algorithm.

Figs.3 and 4 show the change of execution time of
our algorithm with the number of task requests and the
number of edge servers, respectively. Among them, blue
represents LBA-EC algorithm and red represents FCFS
algorithm. As can be seen from Fig.3, as the number of
task requests increases, the execution time of our al-
gorithm also increases. This is because as the number of

task requests increases, the time for particles to find the
optimal solution becomes longer. However, compared
with FCFS algorithm, the execution time of LBA-EC
will be longer. There are two main reasons for this. The
first is that the algorithm proposed in this paper adds
load balancing operations between the proxy and the
edge server before the load balancing between the con-
tainers. Then the particle swarm algorithm needs to go
through multiple iterations to converge to the minim-
um and complete the scheduling between tasks and vir-
tual machines. As can be seen from Fig.4, with the in-
crease of the number of edge servers, the execution time
of LBA-EC increases slightly. This is because the in-

Table 3. Parameter setting

Setting 1 2
Number of task requests 60–100 60
Number of edge servers 5 5–9

322 Chinese Journal of Electronics 2023

crease of edge servers makes the algorithm schedule for
more edge servers in the scheduling process. Since the
number of edge servers can not affect the iteration of
the algorithm, the execution time of the algorithm will
not increase sharply.

0
60 70

Number of task requests

80 90 100

200

400

600

800

1000

A
lg

o
ri

th
m

 e
x
ec

u
ti

o
n
 t

im
e

(m
s)

1200

1400

Our algorithm
FCFS1600

Fig. 3. The impact of task request number on algorithm ex-

ecution time.

0
5 6

Number of edge servers

7 8 9

100

200

300

400

500

A
lg

o
ri

th
m

 e
x
ec

u
ti

o
n
 t

im
e

(m
s)

600 Our algorithm
FCFS

Fig. 4. The impact of edge server number on algorithm exe-

cution time.

 VI. Conclusions and Future Work
In this paper, we propose a load balancing al-

gorithm based on weighted bipartite graph for edge
computing (LBA-EC). The algorithm is divided into
two phases: load balancing between edge nodes and
load balancing between containers. In the first phase,
the tasks are matched to different edge servers. In the
second phase, the tasks are optimally allocated to differ-
ent containers in the edge server according to the two
indicators of energy consumption and completion time.
It makes full use of network edge resources, reduces
user delay, and improves user service experience. We
conducted experiments on the algorithm and analyzed
the impact of task response time and algorithm execu-
tion time under different number of task requests and
edge servers. The experimental result show that our al-
gorithm can effectively map all tasks to available re-
sources with a shorter completion time.

Compared with other baseline load balancing al-
gorithms, our proposed load balancing algorithm for
edge computing has improved the response time.
However, because the algorithm increases the load bal-
ancing operation between tasks and edge servers before
the load balancing between containers, the algorithm ef-
ficiency is lower than other algorithms. In the follow-up
study, we can further consider improving the efficiency
of the algorithm.

References
 H. Wang, J. Gong, Y. Zhuang, et al. “Task scheduling for
edge computing with health emergency and human behavi-
or consideration in smart homes,” in Proceedings of 2017
IEEE International Conference on Big Data, Boston, MA,
USA, pp.1213–1222, 2017.

[1]

 W. Shi and S. Dustdar, “The promise of edge computing,”
Computer, vol.49, no.5, pp.78–81, 2016.

[2]

 C. M. Fernández, M. D. Rodríguez, and B. R. Muo, “An
edge computing architecture in the Internet of things,” in
Proceedings of 2018 IEEE 21st International Symposium
on Real-Time Distributed Computing, Singapore, pp.99–
102, 2018.

[3]

 G. Li, Y. Yao, J. Wu, et al., “A new load balancing strategy
by task allocation in edge computing based on intermediary
nodes,” EURASIP Journal on Wireless Communications
and Networking, vol.2020, no.1, pp.1–10, 2020.

[4]

 W. Liu, Y. C. Huang, W. Du, et al., “Resource-constrained
serial task offload strategy in mobile edge computing,”
Journal of Software, vol.31, no.6, pp.1889–1908, 2020.

[5]

 H. Lu, C. Gu, F. Luo, et al., “Optimization of lightweight
task offloading strategy for mobile edge computing based on
deep reinforcement learning,” Future Generation Computer
Systems, vol.102, pp.847–861, 2020.

[6]

 H. Wu, S. Deng, W. Li, et al. “Request dispatching for min-
imizing service response time in edge cloud systems,” in
Proceedings of 2018 27th International Conference on
Computer Communication and Networks, Hangzhou, China,
pp.1–9, 2018.

[7]

 K. Kaur, T. Dhand, N. Kumar, et al., “Container-as-a-ser-
vice at the edge: Trade-off between energy efficiency and
service availability at fog nano data centers,” IEEE Wire-
less Communications, vol.24, no.3, pp.48–56, 2017.

[8]

 H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between
genetic search and local search in memetic algorithms for
multiobjective permutation flowshop scheduling,” IEEE
Transactions on Evolutionary Computation, vol.7, no.2,
pp.204–223, 2003.

[9]

 M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optim-
ization,” IEEE Computational Intelligence Magazine , vol.1,
no.4, pp.28–39, 2006.

[10]

 M. Dai, D. Tang, A. Giret, et al., “Energy-efficient schedul-
ing for a flexible flow shop using an improved genetic-simu-
lated annealing algorithm,” Robotics and Computer-Integ-
rated Manufacturing, vol.29, no.5, pp.418–429, 2013.

[11]

 Z. H. Zhan, X. F. Liu, Y. J. Gong, et al., “Cloud comput-
ing resource scheduling and a survey of its evolutionary ap-
proaches,” ACM Computing Surveys (CSUR), vol.47, no.4,

[12]

LBA-EC: Load Balancing Algorithm Based on Weighted Bipartite Graph for Edge Computing 323

pp.1–33, 2015.
 L. Yang, J. Cao, G. Liang, et al., “Cost aware service place-
ment and load dispatching in mobile cloud systems,” IEEE
Transactions on Computers, vol.65, no.5, pp.1440–1452,
2015.

[13]

 L. Guo, S. Zhao, S. Shen, et al., “Task scheduling optimiza-
tion in cloud computing based on heuristic algorithm,”
Journal of Networks, vol.7, no.3, article no.547, 2012.

[14]

 J. Wan, B. Chen, S. Wang, et al., “Fog computing for en-
ergy-aware load balancing and scheduling in smart factory,”
IEEE Transactions on Industrial Informatics, vol.14, no.10,
pp.4548–4556, 2018.

[15]

 D. Zeng, L. Gu, S. Guo, et al., “Joint optimization of task
scheduling and image placement in fog computing suppor-
ted software-defined embedded system,” IEEE Transac-
tions on Computers, vol.65, no.12, pp.3702–3712, 2016.

[16]

 V. B. Souza, X. Masip-Bruin, E. Marín-Tordera, et al., “To-
wards distributed service allocation in fog-to-cloud (f2c)
scenarios,” in Proceedings of 2016 IEEE Global Communic-
ations Conference, Washington, DC, USA, pp.1–6, 2016.

[17]

 S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, et al., “Sus-
tainable service allocation using a metaheuristic technique
in a fog server for industrial applications,” IEEE Transac-
tions on Industrial Informatics, vol.14, no.10, pp.4497–4506,
2018.

[18]

 J. Liu, Y. Mao, J. Zhang, et al., “Delay-optimal computa-
tion task scheduling for mobile-edge computing systems,” in
Proceedings of 2016 IEEE International Symposium on In-
formation Theory, Barcelona, Spain, pp.1451–1455, 2016.

[19]

 X. Li, J. Wan, H. N. Dai, et al., “A hybrid computing solu-
tion and resource scheduling strategy for edge computing in
smart manufacturing,” IEEE Transactions on Industrial In-
formatics, vol.15, no.7, pp.4225–4234, 2019.

[20]

 C. Li, J. Tang, H. Tang, et al., “Collaborative cache alloca-
tion and task scheduling for data-intensive applications in
edge computing environment,” Future Generation Com-
puter Systems, vol.95, pp.249–264, 2019.

[21]

 T. Wang, X. Wei, Y. Liang, et al., “Dynamic tasks schedul-
ing based on weighted bi-graph in mobile cloud computing,”
Sustainable Computing: Informatics and Systems, vol.19,
pp.214–222, 2018.

[22]

 S. L. Zhang, C. Liu, Y. B. Han, et al., “DANCE: A service
adaptation method for cloud-end dynamic integration,”
Chinese Journal of Computers, vol.43, no.3, pp.423–439,
2020. (in Chinese)

[23]

 C. Pahl, “ Containerization and the paas cloud,” IEEE
Cloud Computing, vol.2, no.3, pp.24–31, 2015.

[24]

 D. Bernstein, “Containers and cloud: From LXC to Docker
to kubernetes,” IEEE Cloud Computing , vol.1, no.3, pp.81–
84, 2014.

[25]

SHAO Sisi was born in 1997.
She is a Ph.D. candidate at the School of
Internet of Things, Nanjing University of
Posts and Telecommunications. Her main
research interests include cloud comput-
ing, edge computing task scheduling and
security. (Email: 361571409@qq.com)

LIU Shangdong was born in
1979. He received Ph.D. degree in South-
east University. He is a Lecturer at the
School of Computer, Nanjing University
of Posts and Telecommunications. His
main research interests include network
behavior analysis, big data, and AI.
(Email: lsd@njupt.edu.cn)

LI Kui was born in 1988. He is a
Ph.D. candidate at the School of Inter-
net of Things, Nanjing University of
Posts and Telecommunications. His re-
search interests include high perform-
ance computing, big data theory and
technology. (Email: 825315689@qq.com)

YOU Shuai was born in 1995.
He is a Ph.D. candidate at the School of
Internet of Things, Nanjing University of
Posts and Telecommunications. His re-
search interests include machine learing,
CV, and edge computing.
(Email:1065858439@qq.com)

QIU Huajie was born in 1997.
He is an M.S. candidate at the School of
Computer, Nanjing University of Posts
and Telecommunications. His research in-
terests include cloud computing, cloud
task scheduling, and reinforcement learn-
ing. (Email: 1029930034@qq.com)

YAO Xiaoliang was born in
1999. He is an M.S. candidate at the
School of Computer, Nanjing University
of Posts and Telecommunications. His
main research interests include AI.
(Email: 1392803263@qq.com)

JI Yimu (corresponding author)
was born in 1978. He is a Professor at the
School of Computer, Nanjing University
of Posts and Telecommunications. His
main research interests include the secur-
ity and applications in cloud computing,
bigdata, IoT, and AI.
(Email: jiym@njupt.edu.cn)

324 Chinese Journal of Electronics 2023

