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   Abstract — Compared with  cloud  computing  envir-
onment, edge computing has many choices of service pro-
viders  due  to  different  deployment  environments.  The
flexibility of edge computing makes the environment more
complex.  The  current  edge  computing  architecture  has
the problems  of  scattered  computing  resources  and  lim-
ited  resources  of  single  computing  node.  When  the  edge
node carries too many task requests, the makespan of the
task will  be  delayed.  We  propose  a  load  balancing  al-
gorithm based on weighted bipartite graph for edge com-
puting (LBA-EC),  which makes  full  use  of  network edge
resources,  reduces  user  delay,  and  improves  user  service
experience.  The algorithm is  divided into  two phases  for
task scheduling. In the first phase, the tasks are matched
to  different  edge  servers.  In  the  second  phase,  the  tasks
are optimally allocated to different containers in the edge
server to  execute  according  to  the  two  indicators  of  en-
ergy  consumption  and  completion  time.  The  simulations
and experimental results show that our algorithm can ef-
fectively map all tasks to available resources with a short-
er completion time.

   Key words — Edge  computing, Weighted  bipartite

graph, Load balancing.

 I. Introduction
With  the  continuous  development  of  the  Internet

of things, the number of terminal devices such as smart
phones  and  smart  glasses  continues  to  increase.  The

growth  rate  of  data  is  far  faster  than  that  of  network
bandwidth. Although  the  integration  of  intelligent  In-
ternet  of  things  and  cloud  computing  supports  many
applications,  it  is  inefficient to move all  tasks to cloud
computing  in  some  cases  [1].  For  example,  when  the
bandwidth is limited and the response time is strict, up-
loading data to the cloud for processing may lead to a
longer  response  time  and  occupy  a  large  portion  of
bandwidth.  In  this  case,  edge  computing  [2],  [3]  came
into  being.  Edge  computing  allows  data  processing  at
the  edge  of  the  network  and  computing  near  the  data
source  to  avoid  unnecessary  data  movement  [4]. Com-
pared with the traditional cloud computing mode, edge
computing  can  better  support  mobile  computing  and
Internet of things applications.

Edge computing not only has computing and stor-
age capacity but also has the advantages of high band-
width  and  low  latency  [5], which  can  significantly  im-
prove the real-time experience and satisfaction of users.
However,  the  resources  of  edge  computing  nodes  are
scattered,  and  the  computing  performance  is  limited.
Facing the applications that require high computing re-
sources (i.e., multimedia processing, social network and
natural  language  processing),  edge  computing  is  still
limited  by  resources  [6].  When  the  edge  server  carries
too many task requests, the response time of some tasks
will be delayed, even longer than that of calling tasks to 
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the  remote  cloud server.  It  can  be  seen  that  task  load
balancing  algorithm  and  computing  offload  strategy
play an  important  role  in  edge  computing,  which  de-
termines the computing efficiency and quality.

As  mentioned  above,  we  design  a  framework  of
task load balancing for edge computing, and propose a
task load  balancing  algorithm  based  on  weighted  bi-
partite graph (LBA-EC). The algorithm is divided into
two  phases:  load  balancing  between  edge  nodes  and
load  balancing  between  containers.  First,  the  task  is
mapped  to  different  edge  nodes.  Second,  the  tasks  are
optimally  allocated  to  different  containers  in  the  edge
server to execute according to the two indicators of en-
ergy  consumption  and completion  time.  The  algorithm
makes  full  use  of  network  edge  resources,  reduces  user
delay,  and improves  user  service  experience.  The  main
contributions of this work are as follows.

1) We design a load balancing framework for edge
computing,  which  is  composed  of  edge  device  layer,
edge layer and cloud layer. When an edge device sends
a task request,  it  can select a nearby edge data center
to process the task.

2) The phase of load balancing between edge nodes
is  responsible  for  matching  tasks  from  edge  devices  to
different  edge  data  centers.  In  this  phase,  combined
with  the  queuing  theory  model,  the  task  scheduling
problem  is  modeled  as  a  dynamic  weighted  bipartite
graph  maximum  perfect  matching  problem.  Then  the
task is matched to different edge data centers by find-
ing the maximum perfect  match of  the current  bipart-
ite graph.

3) The phase of load balancing between containers
is  responsible  for  allocating  the  tasks  in  the  edge  data
center  to  a  specific  container  for  execution.  In  this
phase, we describe quantitatively the makespan and the
energy  consumption  of  the  edge  nodes.  Then,  the
particle  swarm  optimization  algorithm  is  used  to  find
the optimal  value  of  the  objective  optimization  prob-
lem and decide which specific Docker container the task
is allocated to.

The rest of this paper is structured as follows. Sec-
tion II presents existing related works. Section III gives
the framework of task load balancing for edge comput-
ing. Section IV proposes a two-stage load balancing al-
gorithm based on bipartite graph. Section V verifies the
effectiveness of the algorithm through experiments. Sec-
tion VI summarizes the research work of this paper and
points out our future work.

 II. Related Work
Compared with  the  powerful  cloud  server,  the  re-

source  of  edge  server  is  limited.  When the  edge  server
carries  too  many  task  requests,  the  makespan  of  some

tasks  is  extended,  even  exceeding  the  response  time  of
calling services  on the remote cloud server  [7].  How to
effectively  solve  the  problem  of  task  load  balancing  in
edge  computing  environment  has  become  a  research
hotspot. By assigning tasks to different edge data cen-
ters  for  processing  through  task  scheduling,  the  edge
data center  and  cloud  computing  resources  can  be  ef-
fectively  utilized,  the  completion  time  of  applications
can be  reduced,  and  the  quality  of  computing  experi-
ence can be improved. The fundamental purpose of task
load  balancing  is  to  effectively  support  real-time  data.
It  is  necessary  to  schedule  various  tasks  optimally  to
meet  various  SLA  parameters,  such  as  response  time,
power  consumption,  delay,  and  cost  [8].  Many  studies
show  that  the  task  load  balancing  problem  belongs  to
NP-hard optimization  problem.  Many  heuristic  al-
gorithms are used to solve the multi-objective optimiza-
tion  problem,  such  as  particle  swarm  optimization
(PSO) [9], ant colony algorithm (ACO) [10], genetic al-
gorithm (GA), simulated annealing algorithm (SA) [11],
etc. For  the  task  assignment  problem in  edge  comput-
ing environment,  researchers provide different heuristic
and meta-heuristic algorithms. Among the heuristic al-
gorithms,  particle  swarm  optimization  is  the  most
widely  used.  Zhan et  al. [12 ]  describe  the  resource
scheduling problem and its solutions, using several nat-
ural heuristic evolutionary methods (i.e., ant colony al-
gorithm, genetic  algorithm,  particle  swarm  optimiza-
tion).  Kaur et  al. [8 ]  use  Docker  containers  instead  of
traditional  virtual  machines  (VMs)  to  manage  task
scheduling and load balancing in a virtualized environ-
ment, and propose a container-based edge service man-
agement  system,  which  reduced  bandwidth  utilization
and energy consumption. Yang et al. [13] develop differ-
ent service load optimization algorithms and service al-
location  algorithms for  different  service  providers.  Guo
et al. [14] propose a PSO-based task scheduling optimiz-
ation method to minimize the cost. Wan et al. [15] pro-
pose an energy aware task scheduling method based on
fog computing  to  solve  the  energy  consumption  prob-
lem  of  task  clusters  in  the  manufacturing  industry,
which can achieve load balancing in the multi-task and
multi-objective environments.

Effective load  balancing  is  one  of  the  most  com-
mon methods  to  reduce  service  delay  in  edge  comput-
ing, to avoid overload or waste of resources of any edge
server. In order to shorten the task completion time as
much as possible, Zeng et al. [16] comprehensively con-
sider  the  load  balance  between  edge  devices  and  edge
servers,  the placement of  task images,  and the balance
of  I/O interrupt  requests  between  storage  servers,  and
propose  a  solution  with  high  computational  efficiency.
Souza et  al. [17 ] propose  a  strategy  for  service  alloca-
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tion problem as  a  multidimensional  knapsack problem.
They  apply  their  model  to  the  integration  of  fog  and
cloud computing  to  optimize  latency,  load,  and energy
consumption. Mishra et al. [18] propose a service alloca-
tion  framework  based  on  meta-heuristics  to  adapt  to
the heterogeneity of resources in the fog computing en-
vironment by analyzing the equipment energy consump-
tion and the maximum task completion time. Liu et al.
[19] balance the load according to the queuing time, ex-
ecution time  and  transmission  time  of  tasks,  and  pro-
pose a one-dimensional search algorithm to find the op-
timal  task  scheduling  strategy.  Li et  al. [20 ]  propose  a
two-stage  algorithm  for  computing  resource  scheduling
in  edge  layer  based  on  task  delay  constraint  and
threshold strategy.

Some  researchers  have  solved  the  load  balancing
problem by modeling the relationship between comput-
ing nodes and tasks as a weighted bipartite graph. Li et
al. [21 ]  propose  a  task  scheduling  method  based  on
cache location for intensive data tasks in edge comput-
ing  environment.  First,  the  cache  is  placed,  and  then
the  data  location  is  used  as  the  weight  to  establish  a
weighted  bipartite  graph  to  solve  the  task  scheduling
problem.  Wang et  al. [22 ]  propose  a  dynamic  task
scheduling algorithm based on weighted bipartite graph
considering  the  dynamic  characteristics  of  tasks  and
computing  nodes,  which  transforms  the  scheduling
problem  into  the  maximum  weighted  bipartite  graph
matching  problem.  Zhang et  al. [23 ]  propose  a  service
adaptation  method  for  cloud  end  dynamic  integration.

In this  method,  the adaptation problem between cloud
services  and  end  services  is  modeled  as  a  bipartite
graph matching problem to ensure the minimum global
average  request  response  time  of  end  service  instances
in the adaptation process.

As mentioned above, many researchers have estab-
lished  different  objective  functions  to  reduce  various
SLA parameters of  services (i.e.,  response time, service
availability, delay and cost). Each method plays an im-
portant  role  in  a  specific  edge  computing  scene.  To
solve the problem of limited resources of edge comput-
ing nodes,  we  propose  a  two-phase  load  balancing  al-
gorithm  based  on  weighted  bipartite  graph,  which
makes  full  use  of  network  edge  resources,  reduces  the
makespan of users, and improves the user service exper-
ience.

 III. Load Balancing Framework for Edge
Computing

Our proposed  load  balancing  architecture  for  edge
computing consists  of  three  layers,  namely edge device
layer,  edge  layer  and  cloud  layer,  as  shown  in Fig.1.
The  edge  device  layer  (including  different  smart
devices) sends the tasks to the nearby edge data center.
The edge data center consists of edge servers. Inside the
edge  server  is  a  cluster  based  on  Docker  container.
Compared with the traditional virtual machine cluster,
Docker container has the characteristics of less resource
consumption,  fast  startup,  high  deployment  efficiency
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Fig. 1. Load balancing architecture for edge computing.
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and  good  scalability.  Container  can  better  ensure  the
reliability  and  effectiveness  of  the  flexible  supply  of
cluster  resources,  so  that  applications  can  run  almost
anywhere in the same way. After receiving the task re-
quest,  the  edge  data  center  selects  the  appropriate
Docker  container  for  processing  through  the  internal
scheduling algorithm, and finally returns the processing
result to the edge device. The cloud server can provide
all the services.

According  to  the  above  system  architecture,  we
have the following assumptions.

1)  The  edge  data  center  can  completely  cover  the
entire network service area of the edge device, so when
the edge device sends the task request, it can select the
nearby edge data center to process the task.

2)  For  any  two  edge  data  centers,  network  paths
are connecting them. For each edge data center, there is
a network path to connect it  with the cloud data cen-
ter.

3)  For  each  task  request,  if  the  resources  in  the
edge data center are insufficient to process the task, the
task will be sent to the cloud data for processing.

4)  When  the  Docker  in  the  edge  server  receives  a
task, it can only process one task at a time. If new tasks
enter  the container  at  this  moment,  they need to wait
for the previous task to complete. Cloud data center is
powerful,  so it  can perform multiple tasks at the same
time.

 IV. Load Balancing Algorithm Based on
Weighted Bipartite Graph

c m

n

The proposed load balancing algorithm is based on
the network architecture designed by Section III, which
is divided into two phases: load balancing between edge
nodes  and  load  balancing  between  containers.  Among
them, the load balancing between edge nodes is respons-
ible  for  matching  tasks  to  a  specific  edge  server.  The
load balancing between containers is responsible for al-
locating tasks to a specific container. Suppose there are
 edge  data  centers,  which  contain  edge  servers;  In

addition, there are  tasks waiting to be processed.

M/M/m/∞

sp Sim

First, the load balancing phase between edge nodes
is carried out. After the user publishes the task request,
the task will be matched to the appropriate edge server.
In  this  process,  the  task  matching  problem is  modeled
as a  dynamic  weighted  bipartite  graph  maximum per-
fect matching problem. Combined with the queuing the-
ory  of  multi-server  waiting  system  ( ),  the
tasks  in  the  queue  are  modeled.  The  average  waiting
time of the task is minimized, and the optimization al-
gorithm is used to speed up the convergence speed. The
weight between task and edge server is obtained by task
scheduling priority ( ),  task resource similarity ( )

Costand data transmission cost  ( ). The maximum per-
fect matching  algorithm,  i.e.,  Kuhn-Munkres  (KM)  al-
gorithm  in  a  bipartite  graph  is  optimized  to  minimize
the average response time and energy consumption.

Second, the load balancing phase between contain-
ers  is  performed  to  determine  which  Docker  container
the task will be assigned to process. In this process, we
will first  quantitatively  describe the makespan and en-
ergy consumption to keep a balance between them. The
problem is defined as a bi-objective minimization prob-
lem. Then, the feasible solution space of the problem is
determined  according  to  the  particle  swarm  algorithm
for fast  search.  At this  point,  the Docker container al-
location process is over. After getting the specific alloca-
tion result, the cluster schedules the task and allocates
the  task  to  a  specific  container  for  processing.  Finally,
the  cluster  returns  the  processed  result  to  the  edge
device.

 1. Load balancing between edge nodes

M/M/m/∞

G

M/M/m/∞

sp Sim Cost

In the phase of load balancing between edge nodes,
the  task  scheduling  problem  is  modeled  as  a  dynamic
weighted  bipartite  graph  maximum  perfect  matching
problem,  and  the  task  in  the  task  queue  is  modeled
with queuing  theory  model.  The  load  balancing  al-
gorithm between edge nodes is shown in Fig.2. This sec-
tion mainly describes the construction of task matching
model  based on dynamic weighted bipartite graph, the
construction  of  task  queue  based  on ,  the
calculation of weight between task and edge server, and
the  maximum  weight  perfect  matching  of  bipartite
graph. The task matching model based on the dynamic
weighted  bipartite  graph  is  dynamic  growth,  so  the
matching vertex in graph  is deleted after the task is
matched, which  means  that  the  vertex  is  not  con-
sidered in  the  next  matching.  The  virtual  node  is  ad-
ded  to  represent  the  adapted  proxy  vertex,  and  the
weight between task vertex and virtual  node is  0.  The
construction of  task  queue  based on  is  to
get the optimal task sorting queue into bipartite graph
modeling,  to  reduce  the  average  waiting  time of  tasks.
The weight between task and edge server is obtained by
( ), ( ) and ( ).

1)  Task  matching  model  based  on  dynamic
weighted bipartite graph

T = {tλ, |λ = 1,

2, . . . , n} P = {pγ , |γ = 1,

2, . . . ,m} n ≥ m

T

P G = ⟨V (G),

E(G)⟩ V (G) = T ∪ P E(G) ={eij , |eij = (tλ, pγ),

tλ ∈ T, pγ ∈ P}

We  assume  that  the  task  set  is 
 and  the  edge  server  set  is 
,  where .  We  model  the  matching

between tasks and edge servers as a dynamic weighted
bipartite graph  problem.  The  vertex  of  one  end  of  bi-
partite  graph is  task  set ,  and the  other  end is  edge
server  set ,  so  weighted  bipartite  graph 

, where , 
. To  get  the  best  match,  weight  is  ad-
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sp

Sim Cost

G

G

ded between the vertices of bipartite graph. The weight
of  each  vertex  is  determined  by  the  priority  value  of
task scheduling , the similarity between task and re-
source ,  and  the  cost  of  data  transmission .
The  specific  calculation  method  of  weight  is  shown  in
Section IV.1.3).  After  that,  we  use  the  maximum per-
fect  matching  algorithm  (KM)  to  get  the  maximum
matching. The number of edge servers can be predicted
in  advance.  However,  tasks  arrive  dynamically,  so  the
corresponding  weighted  bipartite  graph  grows dy-
namically. In order to get the maximum perfect match
of bipartite graph, we need to satisfy that the number
of servers in the graph is equal to the number of tasks.
After  the  task  gets  the  server  matching,  it  will  delete
the matching vertex in graph , which means that the
vertex will not be considered in the next matching, and
the  virtual  server  node  will  be  added  to  represent  the
adapted proxy vertex. The weight between task vertex
and virtual server node is 0.

M/M/m/∞2)  Task  queue  modeling  based  on 
queuing theory

λ

µ t

n Pn(t) P (t)

n

N(T )

[0, t) m d = n− |T |

dmax = n n

pn (n = 0, 1, 2, . . .)

n

For tasks,  its  generation  follows  a  negative  expo-
nential  distribution  with  mean  value , and  the  pro-
cessing time of each task follows a negative exponential
distribution with parameter . At time , the probabil-
ity  of  system  state  is  shown  by .  is  the
probability  that  the  system  state  is  in  steady  state.

 is the number of tasks arriving in the period time
. Suppose there are  edge servers,  rep-

resents the maximum number of tasks that can be held
in  the  task  set, .  is  the  average  number  of
tasks  matching  the  edge  server  in  the  task  set,  and

 is  the  distribution  of  the  stationary
state of  the queuing model.  For any state , the aver-
age number of times to enter the state in unit time and
the average number of times to leave the state in unit
time should be equal,  which is  called “birth and death
process.” Therefore,  according  to  the  birth  and  death

process, the steady state of the queue in any state is as
follows:
 

0 µ1p1 = λ0p0
1 λ0p0 + µ2p2 = (λ1 + µ1)p1

2 λ1p1 + µ3p3 = (λ2 + µ2)p2
...

n λn−1pn−1 + µn+1pn+1 = (λn + µn)pn (1)

It can  be  seen  from  the  above  steady-state  equa-
tion that
 

0 p1 =
λ0p0
µ1

1 p2 =
λ1λ0

µ1µ2
p0

2 p3 =
λ2λ1λ0

µ1µ2µ3
p0

...

n pn+1 =
λnλn−1 . . . λ0

µ1µ2 . . . µn+1
p0 (2)

Cn = λn−1λn−2...λ0

µ1µ2...µn
n = 1, 2, 3, . . . ,Let ,  then

 

pn = Cnp0, n = 1, 2, 3, . . . (3)

∑∞
n=0 pn = 1 [1 +

∑∞
n=1 Cn]p0 = 1

According to the requirement of probability distri-
bution: , so , then
 

p0 =
1

1 +
∑∞

n=1
Cn

(4)

m pn =

P {N = n} (n = 0, 1, 2, . . . , k)

For  server  nodes,  record  the  distribution 
 in stationary state,

 

λn = λ, n = 0, 1, 2, . . . ,m (5)

 

µn =

{
nµ, n = 0, 1, 2, . . . ,m
mµ, n = m,m+ 1, . . .

(6)
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Fig. 2. Load balancing algorithm between edge nodes.
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ρ = λ
µ ρm = ρ

m = λ
mµ ρm < 1Let , because , so when ,

from (3) and (4), we can see that
 

Cn =


(λ/µ)n

n!
, n = 1, 2, . . . ,m

(λ/µ)n

m!mn−m
, n ≥ m

(7)

It can be deduced that
 

pn =


ρn

n!
p0, n = 1, 2, . . . ,m

ρn

m!mn−m
p0, n ≥ m

(8)

where
 

p0 =

[
m−1∑
n=0

ρn

n!
+

ρn

m!(1− ρm)

]−1

(9)

n < mIn the stationary state, if , the new task can
directly  match  the  dynamic  bipartite  graph  and  the
proxy node without waiting, as shown in (10).
 

Pti = 1 (10)

n ≥ mOtherwise,  if ,  the  new  task  needs  to  wait
after entering the queuing system, as shown in (11).
 

Pti =

∞∑
n=s

pn =
ρm

m!(1− ρm)
p0 (11)

Lm

Lm Wm

Wq

Finally,  we  can  get  the  average  queue  length ,
average queue length , average processing time ,
and the average waiting time of the task , as shown
in (12)–(15).
 

Lm = Lq + ρ (12)
 

Lq =
p0ρ

mρm

m!(1− ρm)
2 =

Ptiρm
1− ρm

(13)

 

Wm =
Lm

λ
(14)

 

Wq =
Lq

λe
= Wm − 1

µ
(15)

Generally,  in  the  queuing  system,  the  task  is
queued according to the first come first served, but this
will cause the phenomenon of a long queue. To optim-
ize  the  average  waiting  time  and  reduce  the  length  of
the  task  queue,  we  use  PSO algorithm  to  manage  the
task queue. Firstly, the average waiting time of the task
is  calculated,  then the optimal  value  returned by PSO
is the correct order of the task in the queue. The PSO
algorithm is used to get the optimal queue sequence to
minimize task congestion. Therefore, our goal is to min-
imize the average waiting time, as shown in (16).

 

ObjectiveFunction = min{Wq} (16)

In the PSO algorithm, the fitness function used to
calculate each particle solution is as follows:
 

Fitness = min

{
1

n

n∑
i=1

WTti

}
(17)

WTti ti
n

where  is  the  average  waiting  time  of  the  task
and  is  the  number  of  tasks  in  the  queue.  When  the
PSO  algorithm  returns  the  optimal  value,  we  reorder
the task queue according to the value. When there is a
new  task  to  enter  the  queue,  it  will  first  determine
whether  the  dynamic  bipartite  graph  has  completed  a
maximum perfect match. If it is finished, the saturated
vertices in the bipartite graph will  be deleted,  and the
top task in the queue will be selected to insert into the
bipartite  graph.  Otherwise,  the  task  will  continue  to
wait  in  the  queue.  Therefore,  the  optimized  queue  can
maintain a  transient  stable  state  in  the  process  of  bi-
partite graph matching.

3) Weight calculation between task and edge server

sp Sim Cost

In the process of modeling the task matching prob-
lem as the dynamic weighted bipartite graph maximum
matching problem,  the  definition of  weight  is  very  im-
portant. It  determines  the  advantages  and  disadvant-
ages of  the task allocation algorithm and whether it  is
effective or not. Here, the weight between task and edge
server is calculated by , , and .

sp

sp

tpi i ith spi = tpi
tpi
tpi = {b1, b2, b3|b1 < b2 < b3}

Task  scheduling  priority  value ( )　Task
scheduling  priority  value  is  determined  by  the  task
priority value  (where  is the  task), so .

 is  defined  by  the  user  when  transferring  tasks,
.

Sim

tλ = [tcλ, tmλ] tcλ
tλ tmλ

tλ

pγ = [pcγ , tmγ ] pcγ
tmγ

Similarity between task and resource ( )　A
task is defined as a row vector , which 
represents the CPU requirement of the task  and 
represents  the memory requirement of  task . The re-
source  of  edge  server  is  defined  as  row  vector

,  which  represents  the  CPU of  edge
server  and  represents  the  memory  of  edge  server.
So the similarity between tasks and resources is as fol-
lows:
 

Sim(tλ, pγ) =
tλ · pγT

|tλ||pγ |
(18)

CostData transmission cost ( )　The data trans-
mission  cost  is  determined  by  the  network  bandwidth
and the distance between the task and the edge server,
so the data transmission cost is as follows:
 

Costλ,γ =
Lλ

Band
dis (19)
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Lλ Band
dis

where  represents  the  size  of  the  task,  repres-
ents the network bandwidth, and  represents the dis-
tance between the task and the edge server.

wλ,γSo the weight  is
 

wλ,γ = a1 ·
Sim(tλ, pγ)

Sim(tλ, pγ)
−a2 ·

spλ
spλ

− a3 ·
Costλ,γ
Costλ,γ

(20)

a1 a2 a3
Sim(tλ, pγ) sp Costλ,γ

where ,  and   are  the  weight  coefficients  of  the
three influence factors, and ,  and 
are defined as follows:
  

Sim(tλ, pγ)=

∑
λ
∑

γSim(tλ, pγ)

λ · γ

sp =

∑
λ
∑

γspλ

λ · γ

Costλ,γ=

∑
λ
∑

γCostλ,γ

λ · γ

(21)

4)  Maximum weight  perfect  matching  of  bipartite
graph

In our algorithm, we use KM algorithm [23] to get
the  maximum weight  perfect  match  of  bipartite  graph
and  get  the  best  allocation  method  after  getting  the
weight according to Section IV.1.3). The main steps of
the algorithm are as follows:

l

Gl M Gl

a) Select the initial feasible fixed-point label , de-
termine , and select a pair set  in .

T M

M G

u Gl

S = {u} Q = ∅

b)  If  all  the  vertices  in  are  paired  by ,  then
stop, and  is the most weighted perfect pair set of ;
Otherwise,  take  the  unpaired  vertex  of  ,  let

, .
NGl

(S) ⊃ Q NGl
(S)=Q

∂1 = minx∈S,y∈Q{l(x) + l(y)− w(xy)} l(v) = l(v)− ∂1, v ∈ S
l(v) + ∂1, v ∈ Q
l(v), otherwise

l = l̄ Gl = Gl̄ NGl
(S)

S Gl

c) If , go to step d); If , take
,  in  which 

, , ,  and  is  the

set of adjacent vertices of  in .

Algorithm 1　Load balancing between edge nodes

Ms Ns kInput:  is a server instance,  is a task instance,  is the
node queue that enters the task instance.

map (Ms, Ns) = {ms→ ns,ms ∈Ms, ns ∈ Ns}Output: ．

Begin
Q′ ← PSO (Q)   // Optimize queue sequence;
Q ̸= θif ( )

G (Ms ∪ k,E) Ms k　Establish  a  bipartite  diagram  for   and  
according to Section IV.1.1);

ωλ,γ　calculate  according to (20);
M ⊆ E (G)　initialize matching 

∃ ms ∈Ms　if (  is saturated and satisfies (10))
{WMW = M ; }　

　else

M Y ={y, y∈Ms} , T = Q　Get the unsaturated point of ,    ;
L Y　Initializing the feasible vertex label  in  according (11);

EL G　Obtain the equal subgraph  of ;
∂L −min {L (x) + L (y)− w (xy) |x ∈ X, y ∈ (K − T )} ;　

l̄ (v) =


l (v)− ∂L, v ∈ S
l (v) + ∂L, v ∈ T
l (v) , otherwise

　Modify  the  feasible  label  of  each  vertex  as

;

L = L′, EL = EL′ M ′ EL　Let , give a match  of  again;
P = (yk) M ′ EL　  is the augmented path of  in ;

　then
M∗=M ′ ⊕ P

M∗ EL

　  // Execute the Hungarian algorithm until the
 of  is found;

WMW = M∗;　

Ms = {ms = e.ms, e ∈WMW} ;　

k̄ = {k = e.k, e ∈WMW} ;　

Ns = {ns = k.sid, k ∈ k̄&e ∈ NS}　 ;
map (Ms, Ns) = {ms→ ns,ms ∈Ms, ns ∈ Ns}　

Ms = Ms −Ms + {m′
1,m

′
2,m

′
3, . . . ,m

′
c}　

k = k − k̄ + {k′
1, k

′
2, k

′
3, . . . , k

′
c} {k′

1, k
′
2, k

′
3, . . . , k

′
c} ∈ Q　 , 

Ns k |Ms| = |k|　//Update the  and  sets so that ;
map (Ms, Ns)　

End

O(n3)

G

Wq

O(Wqn
3) O(n3)

So  far,  the  maximum  weight  perfect  matching  of
bipartite graph is obtained, that is, the specific match-
ing scheme of task mapping to edge server is obtained.
Algorithm  1  implements  the  load  balancing  phase
between edge  nodes  of  the  algorithm.  The  time  com-
plexity  of  the  KM algorithm is .  When a  virtual
server  node  is  inserted  into , the  improved  KM  al-
gorithm is only called once, and the waiting time of the
key  node  is .  Therefore,  the  time  complexity  of  the
entire process is , which is .

 2. Load balancing between containers
Docker container has the characteristics of less re-

source consumption,  fast  startup  speed,  high  deploy-
ment efficiency and good scalability. It can also ensure
the reliability and effectiveness of the flexible supply of
cluster  resources,  so  that  applications  can  run  in  the
same way almost anywhere. Compared with virtual ma-
chine (VM), container is  a relatively lightweight virtu-
alization  instance  [24].  In  a  server,  there  can  be  many
containers to  manage  task  scheduling  and  load  balan-
cing in a virtualized environment. Therefore, in terms of
reducing the  bandwidth  utilization  and  energy  con-
sumption, their scheduling and migration are more suit-
able  than  traditional  VMs.  As  mentioned  above,  the
edge server we use is a cluster based on Docker contain-
er.

In  this  section,  we  will  discuss  the  load  balancing
phase between containers, which is mainly divided into
the modeling of  bi-objective minimization problem and
the  process  of  container  cluster  allocation.  The  bi-ob-
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jective minimization  problem is  modeled  by  quantitat-
ively describing the makespan and the energy consump-
tion to obtain the objective function.  In the process of
container  cluster  allocation  and  scheduling,  a  particle
swarm optimization algorithm is used to determine the
feasible  solution  space  of  the  above  modeling  problem.
The particle swarm algorithm performs a fast search to
obtain the approximate optimal value. Finally, the con-
tainer cluster  schedules  the  tasks  according to  the  res-
ults, assigns  the  tasks  to  a  specific  container  for  pro-
cessing,  and  returns  the  processed  results  to  the  edge
devices.

1) Modeling of bi-objective optimization problem

C = {cθ, |θ = 1, 2, . . . , s}

In  the  process  of  load  balancing  of  edge  nodes,
tasks are  matched  to  each  edge  server.  Then  the  al-
gorithm executes the task allocation process of the con-
tainer cluster  to  determine  which  specific  Docker  con-
tainer  to  assign  the  task  to  for  processing.  Suppose  a
container  set  is . In  this  pro-
cess, the  system  first  describes  the  problem  quantitat-
ively according  to  the  makespan  and  the  energy  con-
sumption,  and  defines  the  problem  as  a  bi-objective
minimization problem.

CTλ

The makespan  of  a  task  represents  the  time  re-
quired  in  the  whole  process  from  task  input  to  result
output, so the makespan is mainly determined by task
calculation time,  task  waiting  time  and  task  transmis-
sion  time.  The  calculation  time  of the  task  is  de-
termined  by  the  size  of  the  task  and  the  processing
speed, as shown in (22).
 

CTλ=
Lλ

Vλ
(22)

Lλ

Vλ

Waitλ
WTti

Delayλ

where  is the size of the task (in millions of instruc-
tions (MI)) and  is the processing speed of the task.
The  task  waiting  time  is  the  average  waiting
time  of  the  task  matching  phase  with  the  edge
server and the service delay  of the Docker con-
tainer allocation phase, as shown in the (23).
 

Waitλ = WTti +Delayλ (23)

Tλ

Lλ

Task  transmission  time  is  determined  by  task
size  and network bandwidth, as follows:
 

Tλ=
Lλ

Band
(24)

So the makespan is
 

Makespan = CTλ +Waitλ + Tλ (25)

Energy consumption  represents  the  energy  con-
sumed  by  the  edge  server.  The  edge  server  has  two
states: idle state and active state. It is assumed that the

%
cθ

βθ (Joules/MI) cθ
αθ (Joules/MI) βθ=10−8×

(MIPSθ)
2 αθ=0.6×βθ Joules/MI Lλ

Vλ

CTλ=
Lλ

Vλ

ETC

ETCλ,θ

energy consumption of an idle state is 60  of that of an
active  state.  When  container  is  active,  the  energy
consumed is ;  When container  is  idle,
the energy consumed is . Here, 

, . The task size is ,
and the data processing speed is , so the task calcula-
tion time is , and each task will correspond to
a calculation time,  so we put it  into the  matrix,
and the matrix elements are represented by . As
shown in (26).
 

ETCλ,θ= CTλ=
Lλ

Vλ
(26)

χλθ tλ
cθ χλθ=1 tλ

cθ χλθ=0 tλ
cθ cθ

Set  to  indicate  whether  task  is  executed in
container .  If ,  task  is executed in container

;  If ,  it  means  that  task  is  not  executed  in
container . So the total service time of  is
 

ETθ =

n∑
λ=1

χλθ × ETCλ,θ (27)

cθSo the energy consumption of container  is
 

E(cθ)=[ETθ×βθ+(Makespan−ETθ)]×MIPSθ (28)

The total energy consumption is
 

E =

s∑
θ=i

E(cθ) (29)

Therefore, the objective function of task allocation
optimization among containers is as follows:
 

Min : ΦLoad = λ1 ·Makespan+ λ2 · E (30)

λ1 λ2

Makespan E λ1=λ2=0.5

where  and   are  the  weight  coefficients  between
 and . Here, we set .

2) Container cluster allocation process
After the  objective  function  is  obtained,  the  feas-

ible solution space of the problem is determined accord-
ing to the PSO algorithm. The PSO algorithm will find
the  optimal  value  of  the  dual-objective  optimization
problem to complete the final task assignment. PSO al-
gorithm is simple to implement, high efficiency, and few
parameters.  Especially  the  algorithm  with  natural  real
number coding characteristics is more suitable for real-
time optimization  problems.  The  notations  and  defini-
tions are shown in Table 1.

According  to  the  basic  formula  of  PSO algorithm,
we can get the following results:
 

V k+1
i =ω(k)V k

i +c1r1(P
k
best.i −Xk

i )+c2r2(P
k
global,i−Xk

i )
(31)
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Xk+1
i = Xk

i + V k+1
i (32)

  
Table 1. Notations and definitions of particle swarm

optimization

Notartions Definitions
cθ Number of containers

m Number of particles
Xi The position of particle i
Vi The velocity of particle i

ω Inertia weightω ∈ [0, 1]

η Random number η ∈ [k, kmax]

c1, c2 Acceleration coefficient equal to 2

r1, r2 Pseudo random number r1, r2 ∈ [0, 1]

Pbest,i The best place in history for particle i
Pglobal,i The best position for all particles

 
 

ω

ω

ω

In  (31),  is an  important  parameter  in  PSO  al-
gorithm. It balances the global or local search ability of
particles. Setting a higher  will promote global search,
and  a  lower  will  promote  fast  read  local  search.
Therefore, to avoid premature convergence of particles,
we  use  the  exponential  decreasing  weight  formula  [25]
to improve  the  global  search  ability  and  search  accur-
acy of  particle  swarm optimization  algorithm.  The  ex-
ponential  decreasing  weight  formula  is  shown  in  (33).
When the maximum number of  iterations or minimum
load balancing  is  achieved,  the  optimal  particle  posi-
tion can be determined.
 

ω(k) = (ωmax − ωmin)exp
[
− k2

ηkmax

]
+ ωmin (33)

n θ

O(θ × n)

At this point, the Docker container allocation pro-
cess is finished. After getting the specific allocation res-
ult, the cluster schedules the task to a specific contain-
er for processing, and returns the processed result to the
edge device. The container cluster is responsible for op-
timally assigning tasks to different containers with min-
imum energy consumption and makespan. Algorithm 2
implements the load balancing phase between the con-
tainers of the algorithm. The input of the algorithm has
 task requests and  Docker containers. Therefore, the

time complexity of Algorithm 2 is .

Algorithm 2　Load balancing between containers

λ ξInput:  is  the  number  of  iterations,  is the  minimum bal-
ance difference, ETC matrix

Output:Allocation result of services to Dockers.
Begin
  initialization // initialized particle;

i← 1 m  for  to 
j ← 1 n   for  to 

X0
i,j = θΓi (mj)    

   end for
  end for

  do
i← 1 m  for  to  //update the position of particle;

   //achieve the previous best position of particle;
j ← 0 n   for  to 
ΦLoad    //  is calculated according to the public (30);
ΦLoad

(
Xj

i

)
≤ ΦLoad (Pbest,i)    if( )then

     // update the best position for particle;
Pbest,i = Xj

i      ;
    end if
  end for

ΦLoad (Pglobal) ≤ ΦLoad (Pbest,i)  if ( ) then
Pglobal = Pbest,i      //achieve the best neighbor particle

  end if
V k+1
i  

Xk+1
i = Xk

i + V k+1
i  

k ++  
  //the terminal condition

ΦLoad (Xbest) ≤ ξ or k ≥ λwhile ( )
end while

 V. Experimental and Performance
Evaluation

 1. Experimental environment
server1) Edge 

Each  edge  data  center  uses  four  edge  servers  to
build a container  cluster.  In this  cluster,  there  are  one
master node and three slave nodes. The specific config-
uration  information  of  each  server  node  is  shown  in
Table 2.
  

Table 2. Calculate node configuration information

CPU Intel E5-2680 @2.80 GHz
Memory 4GB
Disk 6300GB
OS CentOS 6.5

JVM version Java 1.8.0
Docker version Docker 1.5

 
 

2) Network environment
The edge  servers  in  the  edge  data  center  are  con-

nected  through  56  Gbps  high-speed  switch,  and  the
edge servers and external devices are connected through
the Gigabit Ethernet switch of TP-Link.

3) Dataset
Since  there  is  no  standard  experimental  platform

and  test  data  set,  we  generate  the  experimental  data
asynchronously. We assume that the number of incom-
ing task  requests  per  time  unit  is  fixed,  and the  num-
ber of available edge servers per request ranges from 2
to 8. Three positive integers are assigned to each task,
which  are  task  priority  value,  task  data  size  and  task
location.  Each  task  needs  three  kinds  of  CPU  or
memory resources,  and the  number  of  each resource  is
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(2, 5)randomly generated in . Each edge server has three
kinds  of  resources,  and the available  quantity  range of
each resource is 5–10. The processing speed of each edge
server  task  is  randomly  generated  from  1–5,  and  the
data  transmission  speed  between  each  edge  server  and
the cloud is 1.

 2. Experiment and analysis
1) Response time
We  analyze  the  effect  of  different  parameters  on

the task response time. We set two groups of paramet-
ers, which are the number of task requests per unit time
and the number of edge servers, as shown in Table 3. In
each group, only one parameter changes and the other
remains  unchanged.  All  experiments  were  repeated  20
times and the average value was used as the result. In
addition,  we  compare  the  proposed  algorithm  with
baseline algorithms FCFS, Min-Min and Max-min. The
number of iterations is set to 1000.

The impact  of  the  number  of  task  requests  on  re-
sponse time.  We  set  the  experimental  parameters  ac-
cording to setting 1 in Table 3, and analyze the impact
of different task requests per unit time on the response
time  of  five  scheduling  algorithms.  The  results  are
shown in Table 4. From the table, we can see that with
the increase  of  the  number  of  task  requests,  the  re-
sponse times  of  the  five  scheduling  algorithms  are  in-
creasing.  This  is  because  when  other  parameters  are
fixed, with the increase of task requests, more tasks are
assigned to the edge server, which increases the load of
the  edge  server.  As  a  result,  the  waiting  time  of  the
task increases and the response time increases.

  
Table 4. The impact of different number of task requests on response time (ms)

Method 60 70 80 90 100

LBA-EC 26.29 30.14 34.98 38.22 43.16

FCFS 42.38 43.31 47.11 54.98 58

Min-Min 41.97 43.42 49.58 58.95 63.75

Max-Min 46.21 46.14 50.97 60.28 64.71
 
 

The impact  of  the  number  of  edge  servers  on  re-
sponse time.  We  set  the  experimental  parameters  ac-
cording  to  setting  2  in Table 3 , and  analyze  the  influ-
ence of  a  different  number  of  edge  servers  on  the  re-
sponse  time  of  five  scheduling  algorithms.  The  results
are shown in Table 5.

As can be seen from Table 5 ,  with the increase  of
edge servers, the response time is decreasing. This is be-
cause, with other parameters unchanged, the increase of
edge servers  can  make  more  servers  process  task  re-
quests,  shorten  the  waiting  time  of  tasks,  and  further
reduce the response time of tasks.

  
Table 5. The impact of different number of edge servers on response time (ms)

Method 5 6 7 58 9

LBA-EC 26.29 19.49 17.62 14.90 14.94

FCFS 42.38 41.16 37.26 33.96 25.19

Min-Min 41.97 44.13 39.25 43.79 25.97

Max-Min 46.21 45.13 40.30 35.91 26.57
 
 

2) Efficiency evaluation
In this  part,  we  conduct  two  groups  of  experi-

ments to test the scalability of our proposed algorithm.
Similarly,  we  analyze  the  effect  of  the  number  of  task
requests and  the  number  of  edge  servers  on  the  effi-
ciency of the algorithm.

Figs.3 and 4 show the change of execution time of
our algorithm with the number of task requests and the
number of edge servers, respectively. Among them, blue
represents LBA-EC algorithm and red represents FCFS
algorithm. As can be seen from Fig.3, as the number of
task requests  increases,  the  execution  time  of  our  al-
gorithm also increases. This is because as the number of

task requests increases, the time for particles to find the
optimal  solution  becomes  longer.  However,  compared
with  FCFS  algorithm,  the  execution  time  of  LBA-EC
will be longer. There are two main reasons for this. The
first  is  that  the  algorithm proposed in  this  paper  adds
load  balancing  operations  between  the  proxy  and  the
edge server before the load balancing between the con-
tainers. Then the particle swarm algorithm needs to go
through multiple  iterations  to  converge  to  the  minim-
um and complete the scheduling between tasks and vir-
tual machines. As can be seen from Fig.4, with the in-
crease of the number of edge servers, the execution time
of LBA-EC  increases  slightly.  This  is  because  the  in-

   
Table 3. Parameter setting

Setting 1 2
Number of task requests 60–100 60
Number of edge servers 5 5–9
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crease of edge servers makes the algorithm schedule for
more  edge  servers  in  the  scheduling  process.  Since  the
number  of  edge  servers  can  not  affect  the  iteration  of
the algorithm, the execution time of the algorithm will
not increase sharply.
 

0
60 70

Number of task requests

80 90 100

200

400

600

800

1000

A
lg

o
ri

th
m

 e
x
ec

u
ti

o
n
 t

im
e 

(m
s)

1200

1400

Our algorithm
FCFS1600

 
Fig. 3. The impact of task request number on algorithm ex-

ecution time.
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Fig. 4. The impact of edge server number on algorithm exe-

cution time.
 

 VI. Conclusions and Future Work
In this  paper,  we  propose  a  load  balancing  al-

gorithm  based  on  weighted  bipartite  graph  for  edge
computing  (LBA-EC).  The  algorithm  is  divided  into
two  phases:  load  balancing  between  edge  nodes  and
load  balancing  between  containers.  In  the  first  phase,
the tasks are  matched to different edge servers.  In the
second phase, the tasks are optimally allocated to differ-
ent  containers  in  the  edge  server  according to  the  two
indicators of energy consumption and completion time.
It  makes  full  use  of  network  edge  resources,  reduces
user  delay,  and  improves  user  service  experience.  We
conducted  experiments  on  the  algorithm  and  analyzed
the impact of  task response time and algorithm execu-
tion  time  under  different  number  of  task  requests  and
edge servers. The experimental result show that our al-
gorithm can  effectively  map  all  tasks  to  available  re-
sources with a shorter completion time.

Compared with  other  baseline  load  balancing  al-
gorithms,  our  proposed  load  balancing  algorithm  for
edge  computing  has  improved  the  response  time.
However, because the algorithm increases the load bal-
ancing operation between tasks and edge servers before
the load balancing between containers, the algorithm ef-
ficiency is lower than other algorithms. In the follow-up
study, we can further consider improving the efficiency
of the algorithm.
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