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   Abstract — The  pattern-matching  problem  with
wildcards  can  be  formulated  as  a  conjunction  where  an
accepting  string  is  same  as  the  pattern  for  all  non-wild-
cards. A scheme of conjunction obfuscation is a algorithm
that “encrypt”  the  pattern  to  prevent  some  adversary
from  forging  any  accepting  string.  Since  2013,  there  are
abundant works about conjunction obfuscation which dis-
cussed  with  weak/strong  functionality  preservation  and
distributed black-box security. These works are based on
generic  group  model,  learning  with  error  assumption,
learning  with  noise  assumption,  etc.  Our  work  proposes
the first conjunction obfuscation with strong functionality
preservation  and  distributed  black-box  security  from  a
standard  assumption.  Our  scheme  with  some  parameter
constraints  can  also  resist  some  related  attacks  such  as
the  information  set  decoding  attack  and  the  structured
error arrack.

   Key words — Obfuscation, Conjunction,  Random

linear code, General decoding problem, Virtual black-box

security.

 I. Introduction
Obfuscation has  long  been  a  question  of  great  in-

terest in a wide range of cryptography [1]–[3]. An obfus-
cator conceals  the  internal  structure  and  privacy  in-
formation of  a program while  holding its  functionality.
It is  a powerful  tool  which is  applied to functional  en-
cryption  [4],  multiparty  key  exchange  [5], deniable  en-
cryption [6] and so on.

Nevertheless, most published studies of  general  in-
distinguishability  obfuscation  scheme  are  limited  to
multilinear  maps  [7]–[9],  but  all  known  multilinear
maps are attacked [10]–[15]. Little knowing about mul-
tilinear maps leads to the difficulties in designing an in-
distinguishability  obfuscator  effectively  and  securely.
Gratifyingly, the obfuscation of the specific function, es-
pecially evasive  circuit  family,  has  sprouted  quantitat-

ive works in recent years.
An evasive  circuit  family  consists  of  those  func-

tions  which  have  sparse  accepting  inputs  [16].  Point
functions,  hyperplanes  and conjunctions are  all  evasive
functions. The obfuscation for evasive functions will res-
ist  the  adversary to  guess  the  accepting inputs.  In  the
early  stage,  much of  the  research  has  explored  how to
design  an  obfuscator  of  point  functions  with  a  one-bit
point or  a multi-bit  point [17],  [18],  an auxiliary input
or not [19], [20]. Until 2016, Bellare and Stepanovs [21]
first gave a brief overview of point-function obfuscation
with a formal framework and generic constructions. Be-
sides  the  obfuscations  for  point  functions,  Canetti,
Rothblum  and  Varia  used  the  generic  group  model
(GGM) to design an obfuscation of hyperplane member-
ship [22]. In 2017, Goyal et al. proposed a lockable ob-
fuscation under  the  learning  with  errors  (LWE)  as-
sumption [23] while Wichs and Zirdelis obfuscated com-
pute-and-compare programs  under  the  same  assump-
tion [24].

f(x1, . . . , xn) = ∧i∈Sℓi S

[n] ℓi xi ¬xi

pat ∈ {0, 1, ∗}n ∗
{i | i ∈

[n] and i ̸∈ S}

ℓi = xi i ∈ S

f(x1, . . . , x5) = ℓ1 ∧ ℓ2 ∧ ℓ4 = x1∧
¬x2 ∧ x4 S = {1, 2, 4} pat = 10 ∗ 1∗

x = 10110 x = 00110

x ∈ {0, 1}n

We focus on a specific evasive function – conjunc-
tions in this work [25]–[28]. A conjunction is denoted by
a Boolean function  where  is a
subset  of  and   is  either  or  .  From  another
point of view, it is an instance of pattern-matching with
wildcards.  A  pattern  with  wildcard  is  denoted  by  a
string .  The  character  is  a  wildcard
which  does  not  require  matching.  Let  the  set 

 be  the  position  indexes  of  wildcards.  It
implies that a pattern-matching with wildcards outputs
1 if and only if  for every . For example, a
Boolean  function 

 with   is  equal  to 
while  the  input  matches  it  and 
does not. It is easy to know that a conjunction outputs 0
on most of inputs  which is a evasive function. 
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The obfuscation  for  pattern-matching  with  wild-
cards  was  beginning  with  Brakerski  and  Rothblum’s
work  in  CRYPTO 2013  [25].  However,  this  work  does
not separate oneself from the multilinear map. In a fol-
low-up study, Brakerski et al. proposed a new construc-
tion under  entropic  ring  LWE [26].  In  2013,  Bishop et
al. (denoted by  BKM18)  proposed  one  ingenious  con-
struction  of  conjunction  obfuscation  using  GGM  [27].
They encode the output of a degree  polynomial
or  not  depending  on  each  pattern’s  character.  When
one input matches the pattern, it picks the correspond-
ing codes and reconstructs the polynomial by Lagrange
interpolation method.  This  work is  ingenious and eleg-
ant. Following this, Bartusek et al. (denoted by BLM19)
conducted an extensive study of this conjunction obfus-

cation’s  techniques  [28].  Concretely,  they  considered
how  to  embed  the  pattern  in  the  error  positions  of  a
noisy  Reed-Solomon  codeword  and  proposed  three
schemes,  one  over  exponential  size  alphabets  (denoted
by  BLM19-1),  one  from  the  decisional  exact  learning
parity with noise (DxLPN) problem (denoted by BLM19-
2)  and  one  satisfied  information-theoretic  security  (de-
noted  by  BLM19-3).  Recently,  Steven  and  Lukas  [29]
(denoted by SL19) proposed a reduction between an ob-
fuscator for  fuzzy matching for  Hamming distance and
conjunction obfuscations,  which  is  based  on  the  distri-
butional  modular  subset  product  problem  (SPP).  The
concrete comparison of these schemes are shown in Ta-
ble 1 where “FP” means functionality preservation.

  
Table 1. The complexity comparison between our constructions and related works

Standard model Assumption Alphabet FP Distribution
BKM18 × GGM Binary Strong m < 0.774n

BLM19-1 × GGM Exponential Strong m < n− ω(logn)

BLM19-2 ✓ DxLPN Binary Weak m = cn, c < 1

BLM19-3 ✓ – Binary Weak H∞(b | pat−1(∗)) ≥ n1−γ

SL19 ✓ SPP Binary Strong m < n/2

This work ✓ GD Binary Strong m = cn, c < 1

Note: The definitions of notations about distribution are the same as that in [28].
 
 

In  this  work,  we  will  solve  the  open  problem  in
[28]:  How  to  construct  an  obfuscator  for  conjunctions
with strong functionality preservation under the stand-
ard  assumption?  The  strong  functionality  preservation
requires the  obfuscated  program  is  simultaneous  cor-
rect  with  overwhelming probability  on all  inputs  while
the weak one only needs correctness for every input. It
means  that  the  weak  functionality  preservation  still
needs  the  negligible  mistake  for  every  input  does  not
hold  for  a  large  fraction  of  inputs.  When  it  comes  to
strong functionality preservation, it needs the following
equation:
 

Pr[Obf(1n, C)(x) = C(x)∀x ∈ {0, 1}n]
=

∑
x∈{0,1}n

| Pr[Obf(1n, C)(x) = C(x) |

= 1− negl(n)

Thus, the strong functionality preservation is  sim-
ultaneous correct  with overwhelming probability on all
inputs.

22n

The  BKM18  scheme  and  BLM19-1  scheme  can
achieve strong correctness by using the group with suf-
ficiently large size of . When it comes to code-based
construction,  the  BLM19-2  scheme  only  achieves  weak
functionality preservation. The reason is that the BLM19-
2  scheme  is  based  on  binary  code  and  depends  on  the
LPN assumption, which results in the invalidness of ex-

Fq q > 22n

panding  the  size  of  the  code  domain  for  BLM19-2.
Thus, we  will  try  to  construct  a  conjunction  obfusca-
tion based on the general decoding problem. When the
domain  is  expanded  to ,  the  obfuscator  can
reach strong functionality preservation.

[2n, n− k]

C Fq G← F(n−1)×2n
q

pat ∈ {0, 1, ∗}n
e ∈ F2n

q pati
e2i−1, e2i

pati = ∗ e2i−1, e2i
e2i−b = 0

e2i−(1−b) ← Fq pati = b x ∈
{0, 1}n e = (e2−x1

,

e4−x2
, . . . , e2n−xn

) c = mG+ e

cx = (c2−x1
, c4−x2

, . . . , c2n−xn
)

Our  scheme  begins  with  a  random lin-
ear code  over  with generator matrix .
The pattern  will be replaced with an er-
ror  vector  and  each  element  corresponds
to  two  elements .  For  every  wildcard  element

,  are set as zero elements. Otherwise,
we  set  zero  element  and  random  element

 for  .  Each  matching  input 
 corresponds to an all-zero subvector 

. Our obfuscator invokes 
to hide the error vector where it also hides the pattern.
Then the evaluation algorithm only needs to determine
whether  the  subcode  is
error-free.

1/q + negl(n)
q > 22n

The new evaluation algorithm guarantees the prob-
ability of  the obfuscated program outputs  1  on an un-
matching input is . Then we can select the
parameter  to achieve  strong  functionality  pre-
servation.

Our results 　 This  work  intends  to  explore  the
construction of conjunction obfuscations with simultan-
eous correctness under standard assumption. We choose
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the general  decoding  problem  as  our  security  assump-
tion. Our scheme is proven to satisfy strong functional-
ity preservation and distributional virtual black-box se-
curity. Given  some  parameter  constrains,  the  obfusca-
tion  can  resist  information  set  decoding  (ISD)  over 
and  the  structured  error  attack.  Beyond  that,  we  also
provide  some  optimized  schemes  to  reduce  the  size  of
the obfuscated  program,  the  complexity  of  the  evalu-
ation  algorithm  and  expand  the  functionality  which
outputs multi-bit.

Organization　 This  paper  was  organised  in  the
following way. After introducing the background of this
paper,  the  next  section  will  show  some  notations  and
formal security definitions used for this work. The third
section presents detailed construction and security ana-
lysis. It will then go on to the related attacks and para-
meter analysis.  On  Section  IV,  there  are  some  optim-
ized schemes and the conclusion is in the last part.

 II. Preliminaries
The following  is  a  brief  description  of  the  nota-

tions and security definitions used in this study, consist-
ing of  distributional  virtual  black-box  obfuscation,  lin-
ear codes and security assumption.

 1. Notations
{1, 2, . . . , n} [n]

u v i u

ui

u = (u1, . . . , un)

G (G)i i

G Fq q

negl(·)

The  set  is  denoted  by . The  bold-
face character will be used in this study to refer to vec-
tor,  such as , .  The -th element  of  one vector  is
defined  as .  That  is  to  say,  a  vector  is  denoted  by

. The capital letters are used to denote
the  matrix,  such  as .  And  refers  to  the -th
column of the matrix . Let  denote a finite field of 
elements. In this essay, the negligible function  is
(asymptotically) smaller than any inverse polynomial.

f(x1, . . . , xn) = ∧i∈Sli S ⊆ [n]

li xi ¬xi n

m | S |= n−m

pat ∈ {0, 1, ∗}n

Throughout this paper, a conjunction is a Boolean
function  for some , where
each literal  is either  or . Let  be the length of
a pattern with exactly  wildcards. Thus, .
A conjunction corresponds to a pattern 
one by one. We use a pattern as one input of the obfus-
cation algorithm instead of one conjunction.

 2. Distributional VBB obfuscation
This  work  considers  the  distributional  virtual

black-box (VBB) obfuscation. It can be traced back to
Brakerski  and  Rothblum’s  work  in  [25], which  is  de-
noted by average-case secure virtual black-box obfusca-
tion. Informally, obfuscation is a distributional VBB ob-
fuscation when the adversary will not be able to distin-
guish an obfuscation of a uniformly picked pattern from
an obfuscation of  a  function that  always outputs  0.  In
other  words,  the  adversary  can  not  guess  one  pattern-
matching input with overwhelming probability. We use
the definition in [28] as following.

Definition 1　(Distributional VBB obfuscation)
Cn

n n C = {Cn}n∈N

Obf Obf

C ∈ Cn
O = Obf(C)

C ∈ Cn Dn

n D = {Dn}n∈N
Dn Obf

D C

Let  is  a  set  of  Boolean  circuits  with  inputs  of
length .  For  all  length ,  is  a  family  of
circuits with polynomial size. We denote a probabilities
polynomial-time  (PPT)  algorithm  by .  takes
some  circuits  as  inputs  and  outputs  another
Boolean  circuit .  Assume  that  each  input
circuit  is samples following on a distribution 
for each . Let  be an ensemble of distri-
bution  families .  The  algorithm  is a  distribu-
tional  virtual  black-box  obfuscator  for  the  distribution
class  over the circuit family  if it has the following
properties:

1)  Functionality  preservation  (FP):  It  has  three
variants:

Obf• The algorithm  satisfies the weak FP if and
only if
 

Pr[O(x) = C(x)] = 1− negl(n)

n ∈ N C ∈ Cn x ∈ {0, 1}nfor every , , and .
Obf• The algorithm  satisfies the strong FP if and

only if
 

Pr[O(x) = C(x) ∀x ∈ {0, 1}n] = 1− negl(n)

n ∈ N C ∈ Cn
negl(n)

for  every , , there  exists  a  negligible  func-
tion  such that

O = Obf(C)

poly(|C|, n) n ∈ N C ∈ Cn
2)  Efficiency:  The  complexity  of  is

 for every  and .

n ∈ N D ∈ Dn

P : Cn → {0, 1} A

3)  Distributional  virtual  black-box:  For  every
,  every  distribution ,  and  every  predicate

, any PPT adversary  wins the follow-
ing game with negligible advantage:
 

| Pr
C←Dn

[A(Obf(C, 1n)) = P(C)]−

Pr
C←Dn

[SC(1|C|, 1n) = P(C)]|

Swhere  is a (non-uniform) polynomial size simulator.

22n

1/p

2n

Remark  1　 Some  early  conjunction  obfuscations
with  strong  functionality  preservation  are  under  the
stronger  assumption  [23],  [24],  [27],  [28].  The  BKM18
and  BLM19-1  achieve  it  by  broadening  the  generic
group  of  sufficiently  large  size .  For  each  input,  a
false  acceptance  will  be  accepted  with  probability .
The union bound over each of  inputs implies strong
functionality  preservation.  Our  scheme  uses  the  same
technique to  improve  the  correctness,  which  is  ex-
plained in Section III.2.

Considering  the  distributional  VBB  security,  we
use the similar proof technique of the second construc-
tion in [28]. Barak et al. proved that perfect-circuit hid-
ing security is equivalent to distributional virtual black-
box  security  [16],  i.e.  property  3)  in  Definition  1.  We
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can  prove  the  perfect  circuit-hiding  security  instead  of
the  distributional  virtual  black-box  security  depended
on this  property.  Let us recall  the definition of  perfect
circuit-hiding [16] as Definition 2.

C =
{Cn}n∈N

C ∈ Cn n

Obf C
A

negl(n)
P n ∈ N

z ∈ {0, 1}poly(n) A

Definition  2 (Perfect  circuit-hiding)　Let  
 be a collection of polynomial-size circuits such

that every  maps  input bits to a single output
bit. An obfuscator  for a circuit collection  is per-
fect  circuit-hiding  if  for  every  PPT  adversary  there
exists  a  negligible  function  such  that  for  every
balanced predicate ,  every  and every auxiliary
input  to :
 

Pr
C←Cn

[A(z,Obf(C)) = P(C)] ≤ 1

2
+ negl(n)

Obf

where  the  probability  is  also  over  the  randomness  of
.

 3. Linear codes
[n, k]q

Fk×n
q Fn

q

Roughly  speaking,  an  linear  code  maps  a
message in finite field  into a codeword . Here is
the formal definition [30].

n k

C Fq k

n Fn
q

[n, k]

C q = 2

q

Definition  3 (Error-correcting  code)　 For  any
length  and  dimension ,  let  a  (linear)  error-correct-
ing code  over a finite field  be a -dimensional vec-
tor  subspace  of  the -dimensional  vector  space .  A
code with these properties is called an  code. A bin-
ary code  implies that , otherwise it is denoted by
a -ary code.

C
G G k × n Fq

C

The  code  can  be  defined  by  a  generator  matrix
. Here  is a full rank  matrix over field , and

it  defines  the  linear  map  from  message  space  to  the
code space. Namely, the code  can be written as
 

C = C(G) = {xG | x ∈ Fk
q}

C H ∈ F(n−k)×k
q

GH⊤ = 0 H C
C

If  is the kernel of a matrix  where
, we call  a parity check matrix of . Then

the code  can be denoted as
 

C = C⊥(H) = Ker(H) = {y ∈ Fn
q |Hy = 0}

CThe vectors in  are called codewords.
wt(c)

c = (c1, c2, . . . , cn) ∈ Fn
q

wt(c) = |{i | ci ̸= 0, 1 ≤ i ≤ n}|
d(c1, c2)

c1, c2 d(c1, c2)

c c′ = c+ e

e {i|ei ̸= 0}
wt(e)

The  Hamming  weight  of  a  codeword
 is  defined  to  be  the  number  of

non-zero coordinates, i.e. .
We  use  to denote  the  distance  of  two  code-
words .  The  counts the  number  of  co-
ordinates  in  which  they  differ.  If  the  sender  sends  a
codeword  but  the  receiver  gets  a  word ,
then we call  the error vector. Let  be the set
of error positions and  be the number of errors of
the received word.

Security Assumption 　 There  are  many  hard

problems in  coding theory,  such as  syndrome decoding
problem,  code  equivelence  problem,  etc.  One  of  the
well-known  problems  is  general  decoding  problem.  A
formal definition of general  decoding problem is as fol-
lows:

ω

R (G,y⊤)∈F(n−k)×n×F(n−k)

GD(n, k, ω) m ∈ Fk

mG+ e = y⊤ wt(e) = ω

Definition 4 (General  decoding problem)　Let  
be a  norm over .  On input 
from  the  uniform  distribution,  the  general  decoding
problem  asks  to  find  such  that

 and .
This problem for binary codes and its dual version,

i.e. syndrome decoding problem, were proved to be NP-
complete in 1978 [31]. Then, it is proven to be NP-com-
plete for any finite fields in 1994 [32].

 III. Obfuscating Conjunctions
Having  defined  what  is  meant  by  distributional

VBB obfuscation  and the  security  assumption,  we  will
now move to show our construction of conjunction ob-
fuscation. In addition, it is necessary to analyse its cor-
rectness, time complexity and security. The rest of this
section will show our scheme satisfying the strong func-
tionality preservation and the distributional VBB secur-
ity.

 1. Construction
pat ∈ {0, 1, ∗}n m

[2n, n− k]

C Fq k

k = 1

For any pattern  with  wildcards,
our  conjunction  obfuscation  is  based  on  a 
random  linear  code  over  .  The  parameter  is  a
constant which only affects the complexity of our obfus-
cator. We set  as usually. There is a detail  about
how to pick these parameters securely in Section IV.

λ pat n

O
G c

G

m e2i−(1−b)
Fq pati = b i ∈ [n]

G x

e

c = mG+ e

Informally, our  obfuscator  takes  security  paramet-
er , a pattern  with length  as input, and it runs
Algorithm 1 to output an obfuscated program  which
consists of a generator matrix  and a codeword . The
Algorithm 1  sample  a  generator  matrix  and a  mes-
sage  randomly. And then, each error  is set
by a random element in  when  for all .
Given the random generator , the random message 
and  the  error  vector , it  is  easy  to  compute  a  code-
word .  Thus  the  obfuscated  program  is  a
random linear codeword which the pattern is hid in the
error vector.

x ∈ {0, 1}n
O

fpat(x) G

c x

i ∈ [n] G2i−xi

c2i−xi
c2i−xi

= mG2i−xi
+ e2i−xi

G[i][j] i j

G n

The  evaluation  takes  an  input  string 
and  the  obfuscated  program  as  inputs,  and  it  runs
Algorithm  2  to  return  the  output  of  the  conjunction

.  It  chooses  the  columns  of  matrix  and ele-
ments of codeword  corresponding to the input . For
every ,  we  picks  the  column  and the  ele-
ment  satisfies  .  Let

 denote  the  element located in -th row and -th
column of matrix . There are  linear equations 
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c2−x1
= m1G[1][2− x1] +m2G[2][2− x1]

+ · · ·+mn−1G[n− 1][2− x1]

c4−x2
= m1G[1][4− x2] +m2G[2][4− x2]

+ · · ·+mn−1G[n− 1][4− x2]

...
c2n−xn

= m1G[1][2n− xn] +m2G[2][2n− xn]

+ · · ·+mn−1G[n− 1][2n− xn]

m = (m1,m2, . . . ,mn−1)

m

n− 1

n− 1

m1 m2

m1 = m2

where only the message  is un-
known.  Because  the  message  can  be  resumed  by

 linear equations, we picks two subsets which con-
sists  of  linear equations  among  them.  The  al-
gorithm solves  these  two  linear  equations  to  get  mes-
sages  and  ,  and  it  outputs  1  if  there  exists

.

Obf (1n,pat ∈ {0, 1, ∗}n)Algorithm 1　  

n pat ∈ {0, 1, ∗}nInput: An integer ; The pattern .
OOutput: The obfuscated program .

[2n, n− k] C Fq

G← F(n−1)×2n
q

1: Sample a  random linear code  over  with gen-
erator 

m← Fn−1
q2: Sample a random message 

i ∈ [n]3: for each  do :
pati = ∗　　if  then

e2i−1 = e2i = 0　　　Set ;
　　else

e2i−b = 0 e2i−(1−b) ← Fq　　　Set  and .
c = (c1, c2, . . . , c2n)

c = mG+ e

4: Generate  a  codeword  from
.

O = (G, c)5: Return .

Eval(O,x ∈ {0, 1}n)Algorithm 2　

x ∈ {0, 1}n OInput: A string ; The obfuscated program .
0 1Output: A bit  or .

O = (G, c)1: Split the obfuscated program to .
k1, k2 ∈ [n] k1 ̸= k22: Randomly pick two constants  and .

cx,k n− 1

c2i−xi i ∈ [n] i ̸= k

3: Define  to  be  the -length vector  where  it  consists
of elements  for all  and .

Gx,k (n− 1)× (n− 1)

(G)2i−xi i ∈ (n− 1) i ̸= k

4: Define  to  be  the  matrix  where  it
consists of vectors  for all  and .

m1Gx,k1 = cx,k1 m2Gx,k2 = cx,k25: Solve  and .
m1 = m26: If there exists , Return 1.

7: Return 0 otherwise.

 2. Functionality preservation

(n× n) Fq

M(n, p; q) G n× n

Fq

Before considering the correctness of our construc-
tion, let  us recall  the probability of  the rank of  a ran-
dom matrix over a finite field. Cooper [33] considered a
space  of  random  matrix  over  which is  de-
noted  by .  Let  be  a  matrix  with
entries  in ,  which  are  independently  and  identically
distributed as 

Pr[G[i][j] = r] =

{
1− p, r = 0

p

q − 1
, r ∈ [q − 1]

p = (q − 1)/q l G

l

ql/qn

The  uniformly  random  matrix  implies  that
.  If  there  are  columns  of  the  matrix 

that are linearly independent, an extra random column
is  linearly  related  to  the  columns  with  probability

. Thus
 

Pr[G is non-singular] =
n∏

l=1

(1− q−l)

q > 2n n− 1 (n− 1)× 2n

G 1− negl(n)

Given ,  any  columns of  an 
matrix  is non-singular with probability .

c = mG+ e x ∈ {0, 1}n

pat ∈ {0, 1, ∗}n

e2i−xi = 0 i ∈ [n]

As described  above,  the  obfuscated  program  con-
sists  of  a  codeword .  If  is  a
matching  input  of  the  pattern ,  then

 for all . What’s more, we have
 

cx,k = mGx,k

k ∈ [n] k1, k2 ∈ [n]

m1=m2 cx,k1 =m1Gx,k cx,k2 =m2Gx,k

Gx,k1 Gx,k2

1

1− negl(n)

for  any .  Considering  any ,  there  must
be  where   and  
if  the  matrices  and   are  non-singular.  Thus,
the  evaluation  algorithm  outputs  with  probability

.

1 x

pat

m1 = m2

On the other hand, we move to discuss the evalu-
ation  algorithm outputs  when   does  not  match  the
pattern  (It is a false acceptance.). The existence of

 implies  that  there  is  a  solution  to  the  linear
equations
 

m1Gx = cx (1)

Gx (G)2i−xi cx

c2i−xi i ∈ [n]

m1Gx = cx cx

Gx

where  consists  of  the columns  and  con-
sists  of  the  elements  for  all .  As  we  know,
the equation  has a solution if and only if 
is a linear combination of the rows of . We have that
 

cx = mGx + ex (2)

O(G, c) ex

e2i−xi i ∈ [n]

from the obfuscated program . The vector  de-
notes the elements  for .  Combining (1) and
(2), it implies that
 

(m1 −m)Gx = ex (3)

ex Gx

(n− 1)× n

Gx n− 1 (n− 1)× n Gx(
In−1 g

)
In−1 (n− 1)×

(n− 1) g ∈ Fn
q∑n

i=1(ex)igi = 0 mod q ex

Gx

Now  we  only  need  to  consider  the  situation  that
the vector  is a linear combination of the rows of .
(The following analysis is based on the  mat-
rix  has  rank .)  The  matrix   is
row  reduced  to  where   is  a 

 identity  matrix  and .  Now
 means  that  is a  linear  com-

bination  of  the  rows  of .  The  generator  matrix  is

Code-Based Conjunction Obfuscation 241



g

generated  randomly  which  implies  the  distribution  of
vector  is a uniform distribution. Thus,
 

Pr

[
n∑

i=1

(ex)igi = 0 mod q | Gx is non-singular

]
= 1/q

1/q · (1− negl(n))
In other  words,  the  probability  of  a  false  accept-

ance is .

Gx n− 1

Gx n− 1

1− negl(n) Gx

1/q · (1− negl(n)) + negl(n)

Remark  2　 The  false  acceptance  only  consider
the situation that the matrix  has rank . First of
all,  the  matrix  has  rank  with  probability

. Even all the false inputs under a matrix 
with non-full rank is a false acceptance, the probability
of  a  false  acceptance  is  only .
It implies our scheme also satisfies the weak functional-
ity preservation.

q > 22n

2n

As noted in [27], we can boost this to strong func-
tionality preservation by setting . With the uni-
on  bound  over  each  of  inputs, our  obfuscated  pro-
gram is  simultaneous  correct  with  overwhelming  prob-
ability on all inputs.

 3. Efficiency
[2n, n− 1]

C G

Fq

e1−(1−b) pati = b

c c = mG+ e

O(n2)

Fq

For the obfuscating algorithm, we need a 
random linear code  with a generator matrix . These
can  be  pre-computed  and  we  overlook  them.  Next,  it
picks  some  random element  from  and  sets  them on

 when . Finally, the algorithm generates
a codeword  by . Therefore the time com-
plexity of the obfuscation is  in the number of op-
erations in .

(n− 1)× (n− 1)

Gx,k1 Gx,k2 (n− 1) cx,k1 cx,k2

O(n3) m1 = m2

O(n3)

Fq

For the  time  complexity  of  the  evaluation  al-
gorithm,  it  involves  two  matrixes

,  and  two -length  vectors , .
And  then,  it  needs  to  solve  linear  equations  in  time

 and  determine  or  not.  Thus,  The  time
complexity of the evaluation is  in the number of
operations in .

 4. Security analysis
The rest of this section will discuss its security. We

will  show  the  obfuscator  constructed  in  Section  III.1
satisfies distributional  virtual  black-box  security.  Re-
call from [16] that perfect circuit-hiding security is equi-
valent  to  distributional  virtual  black-box  security.
Hence, we are going to prove that our construction sat-
isfies perfect circuit-hiding security.

Theorem 1　Assuming the hardness of the gener-
al decoding problem
 

Pr [A(G,mG+ e) = m] ≤ negl(λ)

negl(λ)

fpat pat← Un,m

with some negligible function , the above obfusca-
tion satisfies the perfect circuit-hiding for Boolean func-
tions  where .

P : F2n
q → {0, 1}Proof　For any predicate  and any

Bpolynomial-time algorithm , we will prove that
 

| Pr[B(G,mG+ e,P(e)) = m] ≤ negl(λ)

relying on  the  hardness  of  the  general  decoding  prob-
lem.

m

A

(G,y) y = mG+ e

B

Suppose  an  adversary  can  recover  the  message 
with non-negligible  possibility,  we  can  built  an  ad-
versary  who  break  the  hardness  assumption  of  the
general  decoding  problem.  The  adversary  receives  the
challenge  where  ,  then  it  simulates
the view  as follows.

s ∈ {0, 1}• Randomly choose one bit ;
(G,y, s) B m1• Send the challenge  to  and receive ;
(G,y, 1− s) B

m2

• Send the challenge  to  and receive
;

m m1 m2

wt(y −mG) = n−m

• Choose one message  from  and  where
;

This implies that
 

Pr [A(G,mG+ e) = m]

= Pr [B(G,mG+ e, s) = m]

+Pr [B(G,mG+ e, 1− s) = m]

= Pr [B(G,mG+ e,P(e)) = m]

+Pr [B(G,mG+ e, 1− P(e)) = m]

= 2Pr [B(G,mG+ e,P(e)) = m]

This is a contraction.
The next step is a search-to-decision reduction. We

have that
 

| Pr[B(G,mG+ e,P(e)) = m] ≤ negl(λ)

(G,mG+ e,P(e)) (n− 1) r

⟨r,m⟩ mod 2
1
2
+ negl(λ)

By the Goldreich-Levin hardcore bit  theorem, giv-
en  and a random -bit vector ,
an efficient adversary cannot compute  with
probability greater than 

C
(G,mG+ e,P(e)) (G,y,P(e))

p

Suppose  an  adversary  can  distinguish
 and   with  non-negligible

advantage  such that
 

| Pr[M(G,mG+ e,P(e)) = 1]− Pr[M(G,y,P(e)) = 1] |

p(λ) N

N (G,y,P(e), r)
M

is  equal  to .  We  will  build  an  adversary  can
break  the  Goldreich-Levin  hardcore  bit  theorem.  The
adversary  receives  the  challenge ,  then
it similates the view  as follows.

Ḡ = G− r⊤ · s
s (n− 1)

• compute a new generation matrix 
where  is random -bit vector;

(Ḡ,y,P(e)) N• Send the challenge  to .
⟨r, s⟩ = 0 mod 2 (Ḡ,y) = (Ḡ,

mḠ+ e) ⟨r, s⟩ = 1 mod 2

(Ḡ,y) ≡ (Ḡ, Um) Um Ḡ

When  it  holds  that 
 and  when  we  have  that

 where   is  independent  of .  This
implies that 
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Pr[N (G,mG+ e,P(e), r) = ⟨r,m⟩]
= Pr[N (G,mG+ e,P(e), r) = 0 | ⟨r,m⟩ = 0 mod 2]

· Pr[⟨r,m⟩ = 0 mod 2]

+ Pr[N (G,mG+ e,P(e), r) = 1 | ⟨r,m⟩ = 1 mod 2]

· Pr[⟨r,m⟩ = 1 mod 2]

=
1

2
Pr[M(G,mG+ e,P(e), r) = 0]

+ 1− 1

2
Pr[M(G,y,P(e), r) = 0]

= 1− 1

2
(Pr[M(G,mG+ e,P(e), r) = 0]

− Pr[M(G,y,P(e), r) = 0])

Pr[M(G,mG+e,P(e), r)=0] ≥ Pr[M(G,

y,P(e), r) = 0] N
⟨r,m⟩

Whenever 
 or  not,  it  implies  that  the  adversary 

can guess  with non-negligible advantage.  This is
a contraction.

B′

P : {0, 1, ∗}n → {0, 1} P

pat← Un,n−m

Finally,  we  will  show  that  for  any  probabilistic
polynomial-time adversary  and any balanced predic-
ate  (that  is,  takes  the  values  0
and  1  with  probability  1/2  over  the  randomness  of

),
 

Pr
C←Cn

[B′(Obf(C)) = P(C)] ≤ 1

2
+ negl(n)

The above proof completes 

| Pr[B(O(pat),P(pat)) = 1]
−Pr[B(G,y,P(e)) = 1] |≤ negl(λ)

B′

P(pat)
B B′ (G,y)

B′(G,y) = P(pat) (G,y) = O(pat)
B B′

(G,y) B′(G,y)

P(pat) P B
B

(O(pat),P(pat)) (G,y,P(e))

Assumed that the algorithm  can guess the out-
put  of  with significant  advantages,  the  ad-
versary  invokes   on   and  outputs  1  if

 and  0  otherwise.  If ,
then  outputs  1  with the same advantages  as ’s.  If

 is  uniformly  random,  is  independent  of
.  The  balanced  predicate  implies   outputs  1

with probability exactly 1/2. Thus, the adversary  can
distinguish  from  with  non-
negligible probability.  This  a  contradiction,  which  im-
plies our scheme satisfies the perfect input-hiding secur-
ity.

 IV. Attack Resistance and Parameter
Analysis

The  following  is  a  brief  description  of  the  related
attacks and  parameter  analysis.  We  consider  the  in-
formation  set  decoding  attack  in  Section  IV.1  and  the
structured error attack in Section IV.2, which uses the
parameters  in Table 2 .  In  Section  IV.3,  we  conclude
these  parameter  constraints  and  provide  the  suggested
parameters under 80-bit and 128-bit security.

  
Table 2. The Parameters

Parameter Definition
λ Security parameter
n pat ∈ {0, 1, ∗}nThe length of a pattern 
m | {i | pati = ∗} |The number of wildcards 
Fq A finite field

k m ∈ Fn−k
qThe length of a message 

[nc, kc] [nc, kc] nc = 2n kc = n− kA linear  code where  and 

tc e ∈ F2n
q tc = n−mThe weight of a error  where 

 
 

 1. Information set decoding
Information set  decoding  is  one  of  the  most  fam-

ous decoding attacks towards code-based cryptography.

F2

F2 Fq

ISD  algorithm  was  introduced  by  Prange  [34]  at
first. Its idea is to find a set of coordinates of a garbled
vector which are error-free. The restriction of the code’s
generator matrix to these positions should be invertible.
Then, the message vector can be computed by multiply-
ing the received vector by the inverse of the submatrix.
The  Prange’s  algorithm  focused  on  the  finite  field .
Soon,  Peters  [35]  generalised  Prange’s  ISD  algorithm
over  to . What’s more, a lower bound for ISD al-
gorithm was showed by Niebuhr et al. [36].

nc C Fq kc
rc = nc − kc

tc

Let  be the length of  the code  over  ,  be
the dimension and  be the co-dimension. To
correct  errors, the lower bound for the expected cost

in the binary operation of the algorithm is
 

WFqISD(nc, kc, tc, q)

= min
p

{
1√
q−1

·
2lmin

((
nc

tc

)
(q−1)tc , qrc

)
λq

(
r−l
tc−p

)(
kc+l
p

)
(q−1)tc

·
√(

kc+l
p

)
(q−1)p

}

l = logq(Kqλq

√(
kc

p

)
(q−1)p−1 · ln(q)/2) λq =

1− exp(−1) ≈ 0.63.

where  and  

nc, kc tc
q q

Fq

Noticed that the function above is associated with
,  and  very  tightly,  but  does  not  affect  by  the

size  of  when   is  large  enough.  There  are  also  some
other works on ISD over an arbitrary finite field  in-
spired by [37], such as [38] and [39]. However, the time
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q

complexity of all these works grows fast with the grow-
ing of . Thus the work in [36] still remains the most ef-
ficient ISD attack against our work.

280

n = 50 m = 2

q=1125899906842679 [nc, kc]=[100, 49]

rc = nc − kc = 51 tc = 48

p = 1

Example  1　To  reach  security  level  and  the
pattern length  with  wildcards, we choose
parameters  and ,
then . Set . Take them into the
equation  above,  we  found  that  when  the  right
side of the equation gets the minimum value.
 

WFqISD(100, 49, 48, 1125899906842679)

=
1√
q − 1

·
2l
(
nc

tc

)
λq

(
rc−l
tc−1

)(
kc+l
1

) ·√(
kc+l
1

)
(q − 1)

=
1

1125899906842678
·
2l
(
100
48

)
λq

(
51−l
48

) (49 + l)

·
√(

49+l
l

)
1125899906842678

≈ 280.8205

l = logq(Kqλq

√(
k
p

)
(q−1)p−1 · ln(q)/2) ≈ 0.2568here .

 2. Structured error attack

d P (e1, e2, . . . , en) F2

e ∈ Fn
2 P (e1, e2, . . . , en)

[nc, kc] c c = mG

+e G = [g1 g2 . . . gnc
] gi ∈ Fk

2

P (c1−mg1, . . . , cnc
−mgnc

)=0∏
i∈S mi yS =

∏
i∈S mi

S ⊆ [nc]

N
N =

∑d
i=0

(
n
i

)
− 1

In  2011,  Arora  and  Ge  proposed  a  structed  error
attack  on LPN assumption  and LWE assumption  [40].
An structured  error  is  associated  with  a  non-zero  de-
gree-  polynomial  over . For any er-
ror , the polynomial  is 0. As we
known, an  – codeword  is encoded as 

 where   and  .  It  implies
.  After  linearization  by

replacing  the  monomial  by   for
all ,  it  can  be  viewed  as  a  linear  equation.  If
there  are  enough  codewords,  we  can  build  linear
equations under  variables.

i ∈ [n] e2i−1
e2i

Putting it to our scheme, our error vector also has
structured. For any , there must be a zero in 
or . Thus, the polynomial is built as
 

P (e2i−1, e2i) = e2i−1 · e2i = 0

which is equal to
 

P (c2i−1 −mg2i−1, c2i −mg2i)
= (c2i−1 −mg2i−1) · (c2i −mg2i)
= 0

m1,m2, . . . ,mn−k
G c(

n−k
2

)
yi,j = mi ·mj

i, j ∈ [n] N =
(
n−k
2

)
+ n− k

G c = (c1, c2, . . . , c2n−1, c2n)

n

n− k +
(
n−k
2

)
> n

It is a polynomial of degree 2 on 
given the generator matrix  and the codeword . The
linearization  adds  variables   where

. If there are  equations, the
message  will  be  computed  by  solving  linear  equations.
Luckily, our obfuscated program only outputs the gen-
erator  and  a  codeword 
which implies  linear equations. Thus, to resist this at-
tack, our parameters need to satisfy .

 3. Parameter analysis
As discussed above, our parameters need to satisfy

the following requirements.
m = cn 0 < c < 1•  where .
q > 2n

q > 22n
•   for  weak  functionality  preservation  and

 for strong functionality preservation.
Fq• For Information Set Decoding over ,

 

WFqISD(nc, kc, tc, q)

= min
p

{
1√
q−1

·
2lmin

((
nc

tc

)
(q−1)tc , qr

)
λq

(
r−l
tc−p

)(
kc+l
p

)
(q−1)tc

·
√(

kc+l
p

)
(q−1)p

}
≤ negl(λ)

l = logq
(
Kqλq

√(
kc

p

)
(q − 1)p−1 · ln(q)/2

)
λq = 1− exp(−1) ≈ 0.63

where  and
.

(n− k) +
(
n−k
2

)
> n• For structed error attack, .

q 2n

n−m

q q > 2n 1 > 22n

We give  our  suggested  parameters  in Table 3 .  To
reach the weak or strong functionality preservation, the
parameter  is  chosen  great  than .  It  is  so  big  that
the weight  of error shows little weak influence on
the size of  (it is  or ).

  
Table 3. The suggested parameters of our obfuscation

Parameters Weak FP Strong FP
λ 80 128 80 128
n 50 100 100 200 50 100 100 200

| q | 50 100 100 200 100 200 200 400
k 1 1 1 1 1 1 1 1
m 2 35 15 95 2 35 15 95

 
 

m k = 1

k m = 0.1n

m

n m

Besides, Fig.1 shows the increase of  the maximum
parameter  under  and the increase of the max-
imum  parameter  under  . Fig.1(a)  indicates
that  a  significant  increase  in  the  is recorded follow-
ing  the  addition  of .  The  parameter  can  reach

0.708n n = 250

k n

k

m n− k

 when , which shows the flexibility of the
number of wildcards. Fig.1(b) shows the increase in the
 following  the  addition  of .  It  is  easy  to  learn  that

the bigger  means the smaller scale of the linear equa-
tions used to resume the message . It only need 
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(n− k)linear equations to compute an -length message.
It means  the  faster  computation  in  evaluation  al-

m kgorithm. These parameters  and  can be set flexibil-
ity according to the actual requirements.
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n
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n
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The maximum m under k=1

80-bit security
128-bit security
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The maximum k under m=0.1n

80-bit security
128-bit security
196-bit security
256-bit security

(a) (b) 
m kFig. 1. The growth of parameters  and .

 

 V. Optimization
Some  optimizations  are  given  in  this  section.  We

will  consider  the  size  of  the  obfuscated  program,  the
complexity  of  each  evaluation  and  the  functionality
such as conjunctions with multi-bit output.

O Obf

We  generally  hold  that  every  obfuscated  program
,  obfuscated  by ,  is  stored  and  calculated  many

times.  The  smaller  size  of  the  obfuscated  program
means  the  smaller  storage  space  and  communication
size.  The  lower  complexity  means  smaller  computing
devices and faster response. Thus the size of the obfus-
cated  program  and  the  complexity  of  each  evaluation
are important characteristics of an obfuscator.

G ∈ F(n−k)×2n
q

c ∈ F2n
q

s ∈
{0, 1}ℓ1
H : {0, 1}ℓ1 → {0, 1}ℓ2

s

Fq

| O |=ℓ1+2n log q 2n(n−k+1) log q

Let us first consider the size of obfuscated program.
As  described  on  the  previous  chapter,  the  obfuscation
algorithm  outputs  a  generator  matrix 
and a codeword . The generator matrix is gener-
ated randomly  and  it  can  be  replaced  by  hash  func-
tions.  The  obfuscation  sample  a  random  seed 

 as  an  input  of  a  secure  hash  function
 as  Definition  4.  After  this,  the

obfuscated program only include the random seed  in-
stead  of  a  matrix  over .  The  size  of  the  obfuscated
program is , which is 
before.

Further, the size of the obfuscated program can be
reduced by using pseudorandom generation, pseudoran-
dom function,  or  random  oracle.  Different  crypto-
graphy primitives  have  different  effects  on  the  obfus-
cated  program’s  size.  The  actual  effect  will  depend  on
the specific construction scheme of cryptography primit-
ives.

H : {0, 1}ℓ1 → {0, 1}ℓ2
s← {0, 1}ℓ1 σ : {0, 1}ℓ2 → Fn

q

Gn,k,q,s ∈ Fk×n
q

Definition  5　 Given  a  secure  hash  function
 with  a  random  vector

 and  a  function ,  let
 be the matrix as follows:

 

Gn,k,q,s =


σ(H(s))
σ(H2(s))

...

σ(Hk(s))



m1 m2

cx = mGx

m (n− k)× (n− k)

Gx,k1
Gx,k2

(n− k) cx,k1

cx,k1
m

cx,k1
= mGx,k1

cx = mGx

H(m)

1
H(m1) = H(m)

Then moving on to consider the complexity of eval-
uation  algorithm.  The  most  time-consuming  part  is
solving  linear  equations.  Our  based  evaluation  needs
calculate two vectors  and  from two linear equa-
tions. In fact, this step is used to determine whether the
selected  codeword  or  not.  Without  giving
the  message ,  we  choose  two 
matrices ,  and  -length  vectors ,

 to resume . In order to simplify, we give up two
linear  equations  and  only  solve  the  first  one

. And then, it checks  or not.
Furthermore,  it  also  can  add  an  hash  value  to
the obfuscated program and the evaluation outputs  if
and only if .

fpat,msg(x)

msg ∈ {0, 1}r

x ∈ {0, 1}n pat ∈ {0, 1, ∗}n

n

r = poly(n)
PRG : {0, 1}n−k → {0, 1}r

m̃sg = PRG(m)⊕msg

In  addition,  our  obfuscation  can  be  extended  for
the multi-bit conjunctions  which outputs a
message  when  the  input  string

 matches  the  pattern .  The
length  of  the  message  is  a  polynomial  function  of ,
where . Given a secure pseudo-random gen-
erator ,  the  message  can  be
encrypted  by .  The  evaluation
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msg = PRG(m)⊕ m̃sg

mGx = cx

will decrypt it by  after it gets
.

 VI. Conclusions

1
1/qnegl(n)

Fq

This work have argued that how to realize the ob-
fuscation  for  conjunctions  under  random  linear  code
while  satisfying  the  strong  functionality  preservation.
We use a linear code with structured errors instead of a
syndrome to construct an obfuscator which decodes the
codeword by  solving  linear  equations.  The  new  evalu-
ation  outputs  on  a  false  input  with  probability  at
most . Thus, it can be boosted to strong func-
tionality preservation by larger field . We give a con-
crete analysis  that  our  obfuscation  can  resist  the  in-
formation set decoding attack and the structured error
attack. And  then  some  suggested  parameters  are  pro-
posed.  In  addition,  we  also  discuss  how  to  reduce  the
size  of  the  obfuscated  program  and  the  complexity  of
the  evaluation  algorithm.  Our  obfuscation  also  can  be
expanded for the conjunctions with multi-bit outputs.

Our work is a small step on the construction of ob-
fuscation for special functions under the standard mod-
el. It provides ideas on how to modify a code-based ob-
fuscation  to  achieve  strong  functionality  preservation.
Code-based  cryptography  is  an  important  member  of
post-quantum cryptography  and  code-based  obfusca-
tion also can resist the attacks and threats brought by
quantum computers.
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