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   Abstract — Magpie is a lightweight block cipher pro-
posed by Li et  al. in  Acta Electronica Sinica volumn 45,
issue  10.  It  adopts  an  substitution-permutation  network
(SPN) structure with a block size of 64 bits and the key
size of 96 bits, respectively. To achieve the consistency of
the  encryption  and  decryption,  which  is  both  hardware
and software friendly, 16 bits of the key are used as con-
trol  signals  to  select  S-boxes  and  another  16  bits  of  the
key are used to determine the order of the operations. As
the designers claimed, the security might be improved as
different keys generate different ciphers.  This paper ana-
lyzes  the  security  of Magpie,  studies  the  difference
propagation  of Magpie,  and  finally  finds  that  the  cipher
has a set of 280 weak keys which makes the full-round en-
cryption weak, and corrects the lower bound of the num-
ber of active S-boxes to 10 instead of 25 proposed by the
designers.  In  the  weak  key  model,  the  security  of  the
cipher is reduced by the claimed 280 to only 4×216.

   Key words — Block cipher, Differential cryptanalys-

is, Weak key, Active S-boxes, Magpie.

 I. Introduction
In recent years, the development of automotive sys-

tems,  smart  healthcare,  distributed  computation,  the
Internet of things (IoT), etc.  have greatly changed our
daily  life.  Those  areas  mentioned  above  usually  utilize
highly constrained devices to interconnect and commu-
nicate. While bringing convenience to the public, those
devices also  bring  challenges  to  data  security  and  per-
sonal privacy.  Although  the  conventional  cryptograph-

ic standards such as AES [1] are secure, they might be
no longer suitable to implement in resource-constrained
devices owing to the tradeoff made for desktop or serv-
er environment.

In  2013,  the  National  Institute  of  Standards  and
Technology (NIST)  initiated  a  lightweight  crypto-
graphy project  to  evaluate  the  performance  of  crypto-
graphic standards on constrained devices and to under-
stand the  necessity  of  dedicated  lightweight  crypto-
graphic  standards.  After  the  necessity  is  confirmed,
NIST  published  a  call  for  algorithms  to  be  considered
for  lightweight  cryptographic  standards.  After  three
rounds  of  evaluation  and  public  cryptanalysis,  NIST
published the final list containing 10 lightweight crypto-
graphy ciphers on March 19, 2021. During the project,
NIST also  published  two  formal  reports  [2],  [3]  on  the
lightweight cryptography,  in  which  the  design  require-
ments  and  the  tradeoff  between  security  and  resource
consumption are clarified. These reports act as signific-
ant guidelines for the development of lightweight cryp-
tography and standardized applications.

The design  of  lightweight  block  ciphers  is  an  im-
portant part of  the lightweight cryptography. In many
applications, a lightweight block cipher is used not only
to encrypt and decrypt data but also to construct oth-
er cryptography primitives, such as hash functions, au-
thenticated encryptions, pseudorandom functions and so
on.

Usually, there  are  two  ways  to  design  a  light-
weight block cipher. The first one is to simplify the con- 
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ventional  and  well-analyzed  block  ciphers  to  improve
their  efficiency.  For  instance,  DESL  [4]  is  a  simplified
version of DES [5], as the number of S-boxes in a single
round is reduced to one in DESL. The second way is to
design from scratch. For example, PRESENT [6] is one
of the  block  ciphers  optimized  for  constrained  hard-
ware environments. The S-box layer of PRESENT uses
gate  circuits  and  the  P-layer  uses  bit-permutation.
There  are  many  other  block  ciphers  that  utilize  the
same strategy such as GIFT [7], PRIDE [8], Robin [9],
Mysterion  [10]  and  etc.  To  increase  the  security,  some
designers  use  round  functions  which  are  controlled  by
specific bits of the key. For instance, the S-box layer of
PRINTCIPHER [11] is controlled by specific bits of the
master key.

Differential  cryptanalysis  is  one  of  the  important
methods of evaluating the security of a block cipher. At
CRYPTO  1990,  Biham  and  Shamir  formally  proposed
the  differential  cryptanalysis  [12] and  achieved  break-
through  results  against  DES  and  DES-like  block
ciphers.  The  idea  of  differential  cryptanalysis  was  also
called the T-method [13] within IBM, but due to tech-
nical  protection,  it  was  only  made  public  after  1990.
Differential  cryptanalysis  is  a  kind  of  chosen  plaintext
attack that utilizes the plaintext pairs with specific dif-
ferences to study the statistical properties of differences
of  the  corresponding  ciphertext  pairs,  based  on  which
the  keys  could  be  recovered.  With  the  development  of
the  differential  cryptanalysis,  there  are  many  variants
evolved from  differential  cryptanalysis,  such  as  im-
possible differential cryptanalysis [14], high-order differ-
ential  cryptanalysis  [15], truncated  differential  crypt-
analysis [16], boomerang attack [17], etc. The essence of
these methods is still to study the features of difference
propagation during encryption and decryption.

Magpie

Magpie

 is  an  substitution-permutation  network
(SPN) lightweight block cipher proposed by Li et al. in
Acta Electronica Sinica in 2017 [18]. It uses specific bits
of the  master  key  to  control  the  selection  and  the  se-
quence of the components, which makes the decryption
process identical to encryption, provided only the round
keys are adjusted. Therefore, the designers claimed that
the  cipher  could  be  implemented  with  a  smaller  area
and a high throughput compared with PRESENT. The
security  against  differential  cryptanalysis  and  linear
cryptanalysis  is  guaranteed  by  wide  trail  strategy  [19]
as the designers claim that the number of the active S-
boxes of 4-round  is lower bounded by 25, which
provides  sufficient  security  margin.  However,  as  will
shown in this paper, the designers neglected the impact
of different round functions on the characteristics of dif-
ference propagation.

MagpieIn  this  paper,  we  analyze  the  security  of 

280 Magpie

Magpie
280 4× 216

Magpie

against  the  differential  cryptanalysis  in  the  weak  key
setting. Depending on the feature that the round func-
tions are different, we find that for certain control sig-
nals which are  called  weak keys  in  this  paper,  the  lin-
ear operations of two consecutive rounds might be can-
celed. Furthermore, there are  weak keys in .
In this case, any input difference cannot achieve full dif-
fusion  for  full-round , thus  the  security  is  re-
duced from  to , which can be conquered eas-
ily by a PC in minutes. We also prove that the minim-
um  number  of  active  S-boxes  of  4-round  is  10
instead of 25.

Magpie
Magpie

Magpie

Magpie

The arrangement  of  this  paper  is  as  follows:  Sec-
tion II briefly introduces the  cipher. Section III
analyzes  the  difference  propagation  of .  Section
IV proves the property of  in the weak key mod-
el and the minimum number of the active S-boxes of 4-
round  is lower bounded by 10.  Section V sum-
marizes the main work of this paper.

 II. Preliminaries
 1. Notation
F2 — Finite field with two elements;
F2n 2n — Finite field with  elements;
⊕ — Exclusive-or;
P/P [i] i — Plaintext / the -th bit of plaintext;
C/C[i] i — Ciphertext / the -th bit of ciphertext;
K/K[i] i — The key / the -th bit of key;
E0 — Round function controlled by 0;
E1 — Round function controlled by 1;
EK[i] K[i] — Round encryption controlled by ;
K[i] K[i] — The negation of ;

fn(x) f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

(x). —

 2. Basic definitions
E n

(P, P ∗) ∈ Fn×2
2

P ⊕ P ∗ = α ∈ Fn
2

(Ci, C
∗
i ) i

(P, P ∗) C ⊕ C∗ = β ∈ Fn
2

(α, β) r

E r = 1

(α, β)

For a block cipher  whose block size is  bits, de-
note  a  pair  of  plaintext  by ,  the  input
difference is defined as . Similarly, de-
note by  the outputs of the -round correspond-
ing to ,  then  is  defined as  the
output  difference.  is  called  an -round differen-
tial  of  the  block  cipher .  When ,  differential

 reveals the characteristics of the round function.
r

Ω = (β0, β1, . . . , βr)

β0 j

βj(1 ≤ j ≤ r)

The  differential  characteristic  of  an -round  block
cipher  is  denoted  as ,  which  means
the  input  difference  is ,  and  the  corresponding -th
round difference is .

(P, P ∗)

P ⊕ P ∗ = (P ⊕K)⊕ (P ∗ ⊕K)

Note that for a given pair , XORing a round
key or constant does not change the value of difference
since .

 3. Round function components of Magpie
MagpieThe round functions of  are similar to those
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Magpie

F24

of the  AES.  However,  in  order  to  optimize  the  hard-
ware implementation,  operates  on 4-bit  nibbles
rather than 8-bit bytes in AES. Thus, the state can be
represented  as  a  4×4  matrix  over . Some  unneces-
sary details are omitted in the description of the cipher,
and we refer to [18] for details.

SubCells

S

 applies 16  4×4 S-boxes  to  16  correspond-
ing nibbles. Each of the 16 S-boxes can be either the S-
box  of  PRESENT  or  its  inverse,  depending  on  some
specific  bits  of  the  key.  Since  the  S-box  is  bijective,  a
non-zero input difference of  the S-box always produces
a non-zero output difference. This operation will simply
be denoted as  in the following.

ShiftRows

RS

RS−1

RS RS−1

 rotates  the  first  row  to  the  left  by  3
nibbles, the second row by 2 nibbles, the third row is by
1  nibble,  and  keeps  the  fourth  row  (see Fig.1 ).  In  the
following, this operation will be denoted by  and the
inverse will be denoted by . When the control bit
is 1,  is used. Otherwise, we use .
 

RS
−1

RS

 
Fig. 1. ShiftRows

 
MixColumns

4× 4 M
F24 M−1 MC

MC−1

MC MC−1

 mixes the state column by column. It
multiplies each column by either a  matrix  over

 or  its  inverse .  we  simply  use  to  denote
this operation and  the inverse (see Fig.2). When
the control  signal is  1/0, /  is performed, re-
spectively.
 

( )M or M
−1 ×

 
Fig. 2. MixColumns

 

AddConstants RC[i]

RC

 adds  a  round  constant  to  the
most  significant  nibble  and  the  least  significant  nibble
of the state. In the following, this operation will be de-
noted as .

AddRoundKeys adds  the  round  keys  to  the  state,

AKwhich is denoted by  in the following.
 4. Description of Magpie
Magpie

Magpie
K[0 . . . 63]

K[64 . . . 79]

SubCells
K[80 . . . 95]

E0 E1

Magpie

 has  32 rounds with a  block size  of  64 bits
and a key size of 96 bits. The 96-bit key of  is di-
vided into 3 different parts.  are updated and
XORed  with  the  state  in  each  round;  are
the  control  bits  selecting  the  S-boxes  in ;

 determine the round functions. Specifically,
there  are  2  different  round  functions  and   in

 defined as following:
 

E1(x) ≜ AK ◦MC ◦RS ◦ S ◦AC(x)

E0(x) ≜ AC ◦ S ◦RS−1 ◦MC−1 ◦AK(x)

K[i+ 80] = 0 2i (2i+ 1)

E0 K[i+ 80] = 1 2i

(2i+ 1) E1

When , both the -th and -th
rounds are . When , both the -th and

-th rounds are .
MagpieAccordingly,  the  encryption  of  can be  de-

noted as
 

EK[95]◦EK[95] ◦ · · · ◦ EK[81]◦EK[81]◦EK[80]◦EK[80](x)

Obviously, for a same round key and constant, we
always have
 

E1 ◦ E0(x) = E0 ◦ E1(x) = x

Therefore, the decryption can be computed as
 

E
K[80]

◦ E
K[80]

◦ · · · ◦ E
K[94]

◦ E
K[94]

◦ E
K[95]

◦ E
K[95]

(x)

MagpieThe  encryption  of  can  be  described  as  in
Algorithm 1.

MagpieAlgorithm 1　Encryption of 

Input: P (plaintext), K (key).
Output: C (ciphertext).

State = P ;　

AK(State,K[0 . . . 63]);　

i = 0　　for  to 31 do
K[80 + i/2] == 1　　　if  then
E1(State,K);　　　　

S(K[0 . . . 63]);　　　　

　　　end if
K[80 + i/2] == 0　　　if  then
S(K[0 . . . 63]);　　　　

E0(State,K);　　　　

　　　end if
　　end for

(State,K[0 . . . 63]);　AK
= State.　C

SubCells
It should be noticed that only 64 bits of the secret

key  will  be  updated  by  during  encryption  or
decryption, so the 32-bit control signal does not change
in the process of encryption, which means the selection
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and the sequence of components do not change after the
secret key is determined.

 III. Difference Propagation in Magpie

Magpie
In this section, we are going to show some proper-

ties of the round function of .
SubCells ShiftRows
x ∈ F4×4

24

Property 1　  and  are commut-
ative, e.g., for any , we always have:
 

RS ◦ S(x) = S ◦RS(x)

SubCells
ShiftRows

This property is easy to check as the  and
 only operate over nibbles and there is no in-

terplay between different nibbles.

T =




δ0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣ δ0∈F24


x ∈ F4×4

24 f2(x) = E0 ◦ E1(x)

x ∈ F4×4
24 δ ∈ T

Property 2　Let  .

For any , let . Then, for any
 and , we have

 

f2(x)⊕ f2(x⊕ δ) ∈ T

E0 ◦ E1

Proof　We prove this property by tracing the dif-
ference propagation through .

δ0
E1

Firstly,  for  any  non-zero  difference , the  differ-
ence propagation through  is as follows:
  

δ0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 AC−−→


δ0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 S−→

  
δ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 RS−−→


0 δ1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 MC−−→

  
0 δ2 0 0
0 δ3 0 0
0 δ4 0 0
0 δ5 0 0

 AK−−→


0 δ2 0 0
0 δ3 0 0
0 δ4 0 0
0 δ5 0 0


δ1

δ0

where  is a non-zero value corresponding to the input
difference , and
 

M


δ1
0
0
0

 =


δ2
δ3
δ4
δ5

 , M−1


δ2
δ3
δ4
δ4

 =


δ1
0
0
0



E0

Therefore,  we  have  the  following  difference
propagation through :
  

0 δ2 0 0
0 δ3 0 0
0 δ4 0 0
0 δ5 0 0

 AK−−→


0 δ2 0 0
0 δ3 0 0
0 δ4 0 0
0 δ5 0 0

 MC−1

−−−−→

 


0 δ1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 RS−1

−−−−→


δ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 S−1

−−→

  
δ6 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 AK−−→


δ6 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


δ6

δ1

where  is a non-zero value corresponding to the input
difference .

f2(x)⊕ f2(x⊕ δ)

T

Thus, the output difference  is also
an element in , which ends the proof.

T
E0 ◦ E1(x)

S∗(x)

S∗(x)

Similarly,  we  can  construct  some  other ’s  such
that  Property  2  holds.  In  other  words,  is
equivalent  to  another  substitution  nibble  by
nibble.  Notice  that  although the  value  might  be
key-dependent, it  keeps  the  nibbles  with  non-zero  in-
put difference.

Property 3　Let
 

T0 =




δ0 0 0 0
0 0 0 δ1
0 0 δ2 0
0 δ3 0 0


∣∣∣∣∣∣∣∣ δ0, δ1, δ2, δ3 ∈ F24


f4(x)=E0 ◦ E0 ◦ E1 ◦ E1(x) x∈F4×4

24

x ∈ F4×4
24 δ ∈ T0

and ,  where .  Then,
for any , , we have
 

f4(x)⊕ f4(x⊕ δ) ∈ T0

E0 ◦ (E0 ◦ E1) ◦ E1

Proof　We prove this property by tracing the dif-
ference propagation through :

E1

E1

Firstly, according to the definition of , the differ-
ence propagation through  is as following:
  

δ0 0 0 0
0 0 0 δ1
0 0 δ2 0
0 δ3 0 0

 AC−−→


δ0 0 0 0
0 0 0 δ1
0 0 δ2 0
0 δ3 0 0

 S−→

  
δ′0 0 0 0
0 0 0 δ′1
0 0 δ′2 0
0 δ′3 0 0

 RS−−→


0 δ′0 0 0
0 δ′1 0 0
0 δ′2 0 0
0 δ′3 0 0

 MC−−→

  
0 δ4 0 0
0 δ5 0 0
0 δ6 0 0
0 δ7 0 0

 AK−−→


0 δ4 0 0
0 δ5 0 0
0 δ6 0 0
0 δ7 0 0


δ′i

δi

where  is the corresponding output difference of the S-
box whose input difference is .

E0 ◦ E1

Then,  following  Property  2,  since  it  keeps  the
nibbles  with  non-zero  input  difference,  the  difference
propagation through  is 
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0 δ4 0 0
0 δ5 0 0
0 δ6 0 0
0 δ7 0 0

 E0◦E1−−−−→


0 δ8 0 0
0 δ9 0 0
0 δ10 0 0
0 δ11 0 0


δ8, δ9, δ10, δ11 ∈ F24where .

E0

E0

Finally,  according  to  the  definition  of , the  dif-
ferential propagation through  is
  

0 δ8 0 0
0 δ9 0 0
0 δ10 0 0
0 δ11 0 0

 AK−−→


0 δ8 0 0
0 δ9 0 0
0 δ10 0 0
0 δ11 0 0

 MC−1

−−−−→

  
0 δ′8 0 0
0 δ′9 0 0
0 δ′10 0 0
0 δ′11 0 0

 RS−1

−−−−→


δ′8 0 0 0
0 0 0 δ′9
0 0 δ′10 0
0 δ′11 0 0

 S−1

−−→

  
δ12 0 0 0
0 0 0 δ13
0 0 δ14 0
0 δ15 0 0

 AK−−→


δ12 0 0 0
0 0 0 δ13
0 0 δ14 0
0 δ15 0 0


δ12, δ13, δ14, δ15 ∈ F24where  and this ends the proof.

T0

Moreover,  in  a  similar  manner  with  the  proof  of
Property  3,  there  are  3  more  different  sets  that  have
the same property with set . Specifically, they are
 

T1 =




0 δ0 0 0
δ1 0 0 0
0 0 0 δ2
0 0 δ3 0


∣∣∣∣∣∣∣∣ δ0, δ1, δ2, δ3 ∈ F24


 

T2 =




0 0 δ0 0
0 δ1 0 0
δ2 0 0 0
0 0 0 δ3


∣∣∣∣∣∣∣∣ δ0, δ1, δ2, δ3 ∈ F24


 

T3 =




0 0 0 δ0
0 0 δ1 0
0 δ2 0 0
δ3 0 0 0


∣∣∣∣∣∣∣∣ δ0, δ1, δ2, δ3 ∈ F24


 IV. Security Analysis of Magpie

In this section, according to the properties given in
Section  III,  we  find  a  set  of  weak  keys  which  enables
the attacker  to  retrieve  the  plaintext  from  the  corres-
ponding  ciphertext  by  the  dictionary  attack.  We  also
re-evaluate the minimum number of active S-boxes and
correct the lower bound from 25 to 10.

 1. The weak keys of Magpie

Magpie
Since  the  encryption  and  decryption  process  of

 and the selection of primitives are related to the
control  signals  in  specific  bits  of  the  key,  the  security
analysis must be the key-dependent model.

(1010101010101010)

Magpie f32(x) x ∈ F4×4
24 δ ∈ Ti (i =

0, 1, 2, 3)

Theorem  1　 Let  the  16-bit  control  signal  be
 and  the  corresponding  32-round

 be . Then for any  and 
, we have

 

f32(x)⊕ f32(x⊕ δ) ∈ Ti

(101010101010

1010) f32(x)=E0 ◦ E0 ◦ E1 ◦ E1 · · ·E0 ◦ E0 ◦ E1 ◦ E1(x)

≜ (E0 ◦ E0 ◦ E1 ◦ E1)
8(x)

Proof　While  the  control  signal  is 
, 

.
i = 0 Ti

T0

Without generality,  let  for  set .  According
to Property 3, for any input difference belongs to , we
have
  

δ0 0 0 0
0 0 0 δ1
0 0 δ2 0
0 δ3 0 0

 E0◦E0◦E1◦E1−−−−−−−−−→


δ4 0 0 0
0 0 0 δ5
0 0 δ6 0
0 δ7 0 0


δk ∈ F24 0 ≤ k ≤ 7where  for .

For the same reason, we have
  

δ4 0 0 0
0 0 0 δ5
0 0 δ6 0
0 δ7 0 0

 E0◦E0◦E1◦E1−−−−−−−−−→


δ8 0 0 0
0 0 0 δ9
0 0 δ10 0
0 δ11 0 0


δk ∈ F24 0 ≤ k ≤ 11where  for , that is

 

(E0 ◦E0 ◦E1 ◦E1)
2(x)⊕ (E0 ◦E0 ◦E1 ◦E1)

2(x⊕ δ) ∈ T0

tTherefore, for any positive integer , we can deduce
 

(E0 ◦E0 ◦E1 ◦E1)
t(x)⊕ (E0 ◦E0 ◦E1 ◦E1)

t(x⊕ δ) ∈ T0

t

Magpie 4t

Magpie

Since  can be any positive integer,  the character-
istic of  difference  propagation  can  be  not  only  pre-
served  for  32-round ,  but  for  any -round

 with specific control signals.

(1010101010101010)

280

Magpie

216

Magpie

If  the  control  signal  part  of  a  96-bit  key  is
,  the  key  is  called  weak  key  and

there  are  weak  keys  in  total.  By  Theorem  1,  if  a
weak  key  is  chosen,  4  nibbles  of  input  difference  can
only  be  diffused  to  the  same  4  nibbles  after  32-round
encryption of , which is vulnerable to brute force
attacks.  The  attackers  should  only  construct  4  tables
with a size of  to store all pairs of plaintext and the
corresponding ciphertext, and there is no need to recov-
er the  master  key  as  the  dictionary  attack  can  com-
pletely crack . The rationale of this weak key at-
tack is presented in Theorem 2.

K
Magpie

f32(x) ≜ (E0 ◦ E0 ◦ E1 ◦ E1)
8(x).

P

f32(P ) =
⊕3

i=0 f32(Pi) f32(Pi) ∈ Ti

Theorem 2　If a weak key  is chosen, the cor-
responding  32-round  can  be  denoted  as

 Then for  any  plain-
text , the corresponding ciphertext can be divided in-
to  4  parts,  i.e.  and  

Cryptanalysis of Full-Round Magpie Block Cipher 221



0 ≤ i ≤ 3 P Pifor , where  and  are denoted as follows:
 

P =


p0,0 p0,1 p0,2 p0,3
p1,0 p1,1 p1,2 p1,3
p2,0 p2,1 p2,2 p2,3
p3,0 p3,1 p3,2 p3,3


 

P0 =


p0,0 0 0 0
0 0 0 p1,3
0 0 p2,2 0
0 p3,1 0 0


 

P1 =


0 p0,1 0 0

p1,0 0 0 0
0 0 0 p2,3
0 0 p3,2 0


 

P2 =


0 0 p0,2 0
0 p1,1 0 0

p2,0 0 0 0
0 0 0 p3,3


 

P3 =


0 0 0 p0,3
0 0 p1,2 0
0 p2,1 0 0

p3,0 0 0 0


PProof　Let the corresponding ciphertext of  be

 

C =


c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3


Ci ∈ Ti i0, i1, i2, i3 ∈ F4

2

T
P C

and the  corresponding .  For  all ,
we  can  pre-compute  a  table  containing  all  possible
plaintext  and corresponding ciphertext .

Ci

Pi Pj j ̸= i

T 4 T0, T1,
T2, T3 Ti (Pi, Ci)

According  to  Theorem  1,  is uniquely  determ-
ined by  and is independent of  where . Thus,
the  table  can  be  divided  into  sub-tables  

, where  contains the pairs .
P = P0 ⊕ P1 ⊕ P2 ⊕ P3

C0, C1, C2 C3

T0, T1, T2 T3 P

C = C0 ⊕ C1 ⊕ C2 ⊕ C3 f32(P ) =
⊕3

i=0 f32(Pi)

Then, for any plaintext , we
find  the  corresponding  ciphertext  and   in

 and , respectively. Then, the ciphertext of 
is , i.e. .

216 4

216
The  attack  needs  pre-computations  and 

tables, each of which is with the size .
 2. The  minimum  number  of  active  S-boxes

in 4-round Magpie

Magpie

AddRoundKey AddConstants

M M−1

The  designers  shown  in  [18]  that  any  4-round
 has  at  least  25  active  S-boxes.  However,  the

proof only concerns about properties of one round func-
tion and neglects the interplay between different round
functions  under  different  control  signals.  Since

 and  don’t change the differ-
ence, they are omitted in the expression of round func-
tions  for  simplicity.  Due  to  the  fact  and   are

(α0, α1, α2, α3)
T

M · (α0, α1, α2, α3)
T = (α4, α5, α6, α7)

T
MDS matrices, for any non-zero vector ,
let , we have
 

min (# { i|αi ̸= 0}) = 5

According  to  the  properties  in  Section  III,  we  can
deduce:

Magpie
Theorem  3　 For  any  non-zero  input  difference,

the  number  of  active  S-boxes  in  4-round  is
lower bounded by 10.

Magpie

E0 ◦ E0(x) E1 ◦ E1(x) Magpie
E0

E1 E0 ◦ E1 ◦ E0(x)

E1 ◦ E0 ◦ E1(x)

Magpie

Proof　 According  to  the  description  of ,
one  signal  control  two  consecutive  rounds,  so  there
must  be  two  identical  consecutive  rounds,  i.e.

 or   in  4-round .  Besides,
there  must  be  no  three  consecutive  rounds  where 
and  are alternated, i.e. there is no  or

.  Therefore,  the  expression  of  4-round
 has 10 different cases in total. Specifically, they

are:
 

E0 ◦ E0 ◦ E0 ◦ E0(x) (1)
 

E1 ◦ E1 ◦ E1 ◦ E1(x) (2)
 

E1 ◦ E0 ◦ E0 ◦ E0(x) (3)
 

E1 ◦ E1 ◦ E0 ◦ E0(x) (4)
 

E1 ◦ E1 ◦ E1 ◦ E0(x) (5)
 

E0 ◦ E1 ◦ E1 ◦ E1(x) (6)
 

E0 ◦ E0 ◦ E1 ◦ E1(x) (7)
 

E0 ◦ E0 ◦ E0 ◦ E1(x) (8)
 

E0 ◦ E1 ◦ E1 ◦ E0(x) (9)
 

E1 ◦ E0 ◦ E0 ◦ E1(x) (10)

Magpie

Case (1) and (2) are the same as the case proved in
[18],  so there are at least 25 active S-boxes in case (1)
and (2). Before studying the other 8 cases, we first eval-
uate 2-round .

E0 ◦ E1(x),  according to Property 2, when there is
only 1 nibble of input difference is non-zero, the output
difference  must  have  only  1  non-zero  nibble  as  linear
operations cancel each other. So there are at least 2 act-
ive S-boxes.

E1 ◦ E0(x) MC ◦RS ◦ S ◦ S◦
RS−1 ◦MC−1(x)

MC

 can  be  expanded  to 
. When there are 4 non-zero nibbles in

the  input  difference  and  they  are  placed  in  the  same
column, according to the property of , there are at
least  4  non-zero  nibbles  in  output  difference  and  the
pattern  is  as  same  as  the  input  difference.  Under  this

222 Chinese Journal of Electronics 2023



circumstance,  the  propagation  of  difference  is  depicted
in Fig.3, there are at least 2 active S-boxes.
 

MC
−1

RS
−1 S S RS MC

 
E1 ◦ E0(x)Fig. 3. Difference propagation of .

 

E0 ◦ E0(x) S ◦RS−1 ◦MC−1◦
S ◦RS−1 ◦MC−1(x)

MC

 can be expanded to 
.  When  there  are  4  non-zero

nibbles  in  the  input  difference  and  they  are  placed  in
the  same  column,  according  to  the  property  of ,
there are  at  least  4  non-zero  nibbles  in  output  differ-
ence and they are  placed in  different  columns and dif-
ferent  rows.  Under  this  circumstance,  the  propagation
of  difference  is  depicted  in Fig.4 ,  there  are  at  least  5
active S-boxes.
 

MC
−1

MC
−1

RS
−1

RS
−1S S

 
E0 ◦ E0(x)Fig. 4. Difference propagation of .

 

E1 ◦ E1(x) MC ◦RS ◦ S ◦MC◦
RS ◦ S(x)

RS MC

 can be expanded to 
. When there are 4 non-zero nibbles in the in-

put difference and they are placed in the same column
after ,  according  to  the  property  of ,  there  are
at least 4 non-zero nibbles in output difference and they
are placed  in  the  same  column.  Under  this  circum-
stance, the propagation of difference is depicted in Fig.5,
there are at least 5 active S-boxes. And it can be veri-
fied easily that if there is only 1 nibble of input differ-
ence is non-zero, the number of active S-boxes is also 4,
but there are 16 non-zero nibbles in output difference.
 

MC MCRS RSS S

 
E1 ◦ E1(x)Fig. 5. Difference propagation of .

 

Magpie
According  to  the  above  analysis  about  2-round

, the input difference should meet specific condi-
tions to make the number of active S-boxes minimized.

In cases (3) and (5), the first 2 rounds and the last
2 rounds can not satisfy the conditions make the num-
ber  of  2-round  active  S-boxes  minimized  at  the  same
time. It  can be verified easily that the minimum num-
ber of active S-boxes for cases (3) and (5) is 25.

5 + 5 = 10

In cases (4) and (7), the first 2 rounds and the last
2 rounds can exactly make the number of 2-round act-
ive S-boxes minimized at the same time. So the minim-
um number of active S-boxes is .

E0 ◦ E1(x)

In  cases  (6),  (8),  (9),  and  (10),  the  situations  are
simplified as the  keeps the nibbles with non-
zero difference. It can be verified easily that when there
is 1 nibble of input difference is non-zero, the minimum
number of active S-boxes in cases (6), (8) and (10) is 10.
In case (9), when there are 4 non-zero nibbles in the in-

put  difference  and  non-zero  nibbles  are  placed  in  the
same column, the number of active S-boxes is at least 10.

Magpie

4t

10t

In summary, the number of the active S-boxes in 4-
round  is  lower  bounded  by  10.  Moreover,  case
(7)  can  be  expanded  to  the  weak  keys  in  Theorem  1,
and  the  minimum  number  of  active  S-boxes  for 
rounds is . For example, let the input difference be
  

δ0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



E0 ◦ E0 ◦ E1 ◦ E1(x)

In case (4), when the number of the active S-boxes
reaches the  minimum  number,  the  corresponding  out-
put difference of  must be
  

δ′0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



10t 4t

And every 4-round encryption is controlled by the
same signals according to the weak keys in Theorem 1,
so the minimal number of active S-boxes is  for -
round encryption under the weak keys.

 V. Conclusions

Magpie MC

RS E0 ◦ E1(x)

E0 ◦ E1(x)

SubCells
E0 ◦ E0◦

E1 ◦ E1(x)

4

In this paper, we analyzed the security of the full-
round  block  cipher.  Firstly,  we  find  the 
and  in  can be canceled, which makes the
2-round encryption  is actually equivalent to
a . Therefore, it can be deduced that under spe-
cific  control  signals,  the  4-round  encryption 

 is not sufficiently diffused and the pattern of
input difference can be iterated for every  rounds.

E0 ◦ E0◦
E1 ◦ E1(x)

Magpie
280

2−16

4

4× 216

280

Magpie

Then,  due  to  the  insufficient  diffusion  of 
, we find a special 16-bit control signal which

makes the full-round  weak. Thus, the number of
corresponding  weak  keys  is  and  the  density  in  the
whole  key  space  is  only .  Once  the  weak  keys  are
selected,  the  cipher  can  be  divided  into  independent
sub-ciphers, which is quite vulnerable to brute force at-
tacks.  The  security  is  reduced  to  from  the
claimed  as the attackers. Moreover, according to the
difference propagation,  we re-evaluate the lower bound
of  the  number  of  active  S-boxes  in  4-round encryption
and prove that there are at least 10 active S-boxes in 4-
round  which  is  much  less  than  25  as  provided
by the designers.

In summary,  when designing a block cipher,  using
part  of  the  secret  key  as  control  signals  to  change  the
round functions might bring a greater challenge to the
cryptanalyst,  and  the  security  analysis  requires  more
detailed confirmation by the designer.
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