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   Abstract — Samples  collected  from  most  industrial
processes have two challenges: one is contaminated by the
non-Gaussian noise, and the other is gradually obsolesced.
This feature can obviously reduce the accuracy and gener-
alization  of  models.  To  handle  these  challenges,  a  novel
method, named  the  robust  online  extreme  learning  ma-
chine (RO-ELM), is proposed in this paper, in which the
least mean -power criterion is employed as the cost func-
tion which is to boost the robustness of the ELM, and the
forgetting mechanism is introduced to discard the obsoles-
cence samples. To investigate the performance of the RO-
ELM,  experiments  on  artificial  and  real-world  datasets
with the non-Gaussian noise are performed, and the data-
sets are  from  regression  or  classification  problems.  Res-
ults  show  that  the  RO-ELM  is  more  robust  than  the
ELM, the online sequential ELM (OS-ELM) and the OS-
ELM with forgetting mechanism (FOS-ELM). The accur-
acy and generalization of the RO-ELM models are better
than those of other models for online learning.
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 I. Introduction
In most  industrial  processes,  samples  are  inevit-

ably contaminated by the non-Gaussian noise, and their
validity  gradually  reduces  as  time passes.  Models  built
on  such  samples  are  always  with  poor  accuracies  and
generalizations. Various robust learning algorithms have
been proposed by many scholars to handle the Gaussi-
an  noise.  However,  robust  algorithms  that  focus  on
dealing with the non-Gaussian noise are relatively few-
er, especially  for  online  leaning  in  which  the  applica-
tion of obsolescence samples can further decline the ac-

curacy  and  generalization.  Therefore,  a  robust  online
learning  algorithm  which  can  well  address  the  non-
Gaussian  noise  and  the  obsolescence  samples  is  keenly
sought.

Data-driven models  have  been  developed  and  im-
plemented  in  many  fields  for  the  past  decades.  They
gain  in  popularity  with  the  increasing  availability  of
samples and  feasibility  of  computational  power.  Artifi-
cial  neural  networks  (ANNs)  are  a  class  of  the  most
popular  learning  algorithms  to  establish  data-driven
models, which can approximate any nonlinear  continu-
ous  functions.  It  is  worth  mentioning  that  in  recent
years, deep  learning  has  made  great  success  in  the  re-
gression  and  classification  problems  [1]–[5].  However,
ANNs (including  deep  learning)  employ  iterative  tech-
nique to repeatedly adjust all the parameters of a mod-
el,  slowing  learning  speed  and  reducing  computational
scalability, etc.  Fortunately,  the  extreme  learning  ma-
chine (ELM) developed from an ANN was proposed by
Huang et al. [6]. Compared with traditional ANNs and
deep  learning  networks,  the  ELM  randomly  generates
parameters  of  the  hidden  layer,  and  then  the  output
weights of the ELM are decided by a pseudo-inverse op-
eration. Its outstanding advantage is that the paramet-
ers of  the  hidden  layer  are  randomly  assigned  to  re-
place  the  iteratively  tuning,  improving  the  learning
speed and simplifying  the  computing.  Due to  this  out-
standing  advantage,  the  ELM  is  widely  concerned  in
theory  and  applications.  Various  improved  versions  of
the  ELM  were  proposed  [7],  [8]. Aforementioned  al-
gorithms belong to offline learning which is based on a
certain number of static samples. However, in many ap-
plications  samples  arrive  in  the  order  of  time,  such  as 
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the forecasting of renewable energy generation [9]. If an
offline learning  algorithm  is  directly  applied  to  estab-
lish a  predictive  model,  whenever  the  new samples  ar-
rive,  the  algorithm will  employ  the  entire  samples  (in-
cluding the old and the new samples) to reconstruct the
predictive model.  Therefore,  the  old  samples  are  re-
peatedly  learned,  so  that  the  learning  speed  decreases,
which is time-consuming.

To cope with this issue, the online sequential ELM
(OS-ELM) was proposed by Liang et al. [10], which can
learn samples chunk by chunk and the new samples in-
stead  of  the  entire  samples  are  learned.  However,  the
OS-ELM ignores the validity period of samples. Exceed-
ing  the  validity  period,  samples  will  become  invalid.
Applying  invalid  samples,  online  models  always  export
inaccuracy  results.  To  handle  this  issue,  the  OS-ELM
with  forgetting  mechanism  (FOS-ELM)  was  proposed
by Zhao et al. [11], where the forgetting mechanism can
discard obsolescence samples and enhance the accuracy
of  the  predictive  model.  Zou et  al.  [12]  proposed  the
memory  degradation  based  OS-ELM  (MDOS-ELM)
which  adjusts  the  weights  of  the  old  and  new samples
by  a  self-adaptive  memory  factor,  and discards  invalid
samples. Generally, FOS-ELM models built on samples
without noise  or  only  with the  Gaussian noise  can ob-
tain  satisfactory  precisions.  Nevertheless,  built  from
samples  contaminated  by  the  non-Gaussian  noise,  the
FOS-ELM models are always not accurate enough.

Aiming  at  handling  the  non-Gaussian  noise  and
discarding obsolescence  samples  simultaneously,  a  nov-
el  method,  named  the  robust  online  extreme  learning
machine  (RO-ELM),  is  proposed  in  this  paper.  In  the
RO-ELM, on one hand, the least mean p-power (LMP)
criterion [13] is employed as the cost function to boost
the robustness of the ELM, which outperforms the least
mean square (LMS) criterion, especially under the non-
Gaussian  noise  environments  [14].  On  the  other  hand,
the forgetting mechanism is applied to timely eliminate
invalid  samples.  To  investigate  the  performance  of  the
proposed  RO-ELM,  both  the  artificial  and  real-world
datasets  from  regression  or  classification  problems  are
used. It is expected that the proposed RO-ELM is more
robust on the samples with the non-Gaussian noise. The
accuracy and generalization of the RO-ELM models are
also expected to be better than those of  the ELM, the
OS-ELM and the FOS-ELM models for online learning.

The remainder of this paper is organized as follows.
In Section II, related works are introduced, such as the
OS-ELM, the LMP criterion and types of noise. In sec-
tion  III,  the  RO-ELM  algorithm  is  proposed,  and  the
universal  approximation  of  the  RO-ELM  is  given.  In
section IV,  experiments  to verify  the robustness  of  the
proposed RO-ELM  and  the  accuracy  and  generaliza-

tion of the RO-ELM models for online learning are per-
formed  on  datasets  from  regression  and  classification
problems. In Section V, the conclusion of  this  paper is
summarized.

 II. Related Works
 1. The OS-ELM algorithm

N S ={
(xi, ti) |xi ∈ Rn×1, ti ∈ R1, i = 1, 2, . . . , N

}
x =

[x1, x2, . . . , xn] t

n

L

The  training  set  containing  samples  is 
,  where 

 is the input vector,  is the output vari-
able and  is the dimension of the input variables. An
ELM model with  hidden nodes can be expressed as,
 

fL (x) =

N∑
i=1

βiG (ai, bi,x) (1)

βi i

G (·)

a b G (·)

where  is the output weight of the -th hidden node.
 is the activation function of the hidden node, and

it can be “‘RBF”, “Sigmoid”, “Sine”, or “hradlim” etc.
 and   are  the  parameters  of , which  are  ran-

domly assigned and not adjusted to any optimization.
β = [β1, β1, . . . , βL]

T ∈ RL×1The  output  weight  is
obtained via the least-mean method. The cost function
that is based on the LMS criterion is as follows,
 

minJMSE =
1

N

∑N

i=1
(fL (xi)− ti)

2

=
1

N
∥Hβ − T ∥2 (2)

T = [t1, t2, . . . , tN ]
T ∈ RN×1 Hwhere ,  and  is the  out-

put matrix of the hidden layer, and
 

H =

 G (a1, b1,x1) · · · G (aL, bL,x1)
...

. . .
...

G (a1, b1,xN ) · · · G (aL, bL,xN )

 (3)

H ∈ RN×L

β̂ = H†T β̂ β

H† =
(
HTH

)−1
HT H† ∈ RL×N

where . A Moore-Penrose  generalized  in-
verse  operation  yields  the  solution  of  (2).  Namely,

,  where  denotes  the  estimated  value  of ,
and , and .

As an online version of the ELM, the OS-ELM only
learns newly arrived sample chunk (with fixed or vary-
ing sizes) by the recursive way.

 2. The LMP criterion
The  cost  function  based  on  the  LMP  criterion  is

defined,
 

minJLMP =
1

N

N∑
i=1

|ei|p =
1

N
∥Hβ − T ∥p (4)

ei = fL (xi)− ti
i p

where  denotes  the  prediction  error  of
the -th sample. When =2, the LMP criterion degener-
ates to the LMS criterion. Some researchers pointed out
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that  the  LMP  might  produce  a  more  precise  solution
than  the  LMS  on  samples  contaminated  by  the  non-
Gaussian noise [15].

JLMP (β) = ∥Hβ − T ∥p

RL p ≥ 1

Theorem  1  is  a  convex
function on defined  and .

β1 β2 0 < λ < 1Proof  For each  and , set ,
 

∥H (λβ1 + (1− λ)β2)− T ∥p

= ∥H (λβ1 + (1− λ)β2)− (1− λ+ λ)T ∥p

= ∥λ (Hβ1 − T ) + (1− λ) (Hβ2 − T )∥p

≤ λ(Hβ1 − T ]
p
+ (1− λ) ∥(Hβ2 − T )∥p

Thus,
 

JLMP (λβ1 + (1− λ)β2)

≤ λJLMP (β1) + (1− λ) JLMP (β2) (5)

The proof is completed.

p > 2

p < 2

The  LMP  criterion  has  the  following  proprieties:
1)  It  is  applied as  the cost  function which is  a  convex
function, and no local minima. 2) Algorithms based on
the  LMP  criterion  with  perform better  conver-
gence  performance  for  the  systems  with  non-Gaussian
light-tailed  distributions  [16].  3)  Algorithms  based  on
the  LMP  criterion  with  perform better  robust-
ness for the systems with the non-Gaussian heavy-tailed
distributions [13].

 3. The non-Gaussian noise
Here, two  kinds  of  the  non-Gaussian  noise  are  in-

troduced.  They  are  the  symmetric  alpha-stable  (SαS)
noise  and the  symmetry alpha-stable  Gaussian  (SαSG)
noise which is the mixture of the independent SαS and
the  Gaussian  noise.  The  SαS distribution  can  better
simulate  the  noise  with  heavy-tailed  distributions  in
real  world  [17].  The  SαS noise  is  more  universal  and
more realistic meaning than the Gaussian noise. Gener-
ally, the SαS distribution depicted by its characteristic
function [18] is as follows,
 

ϕ (t) = exp (jµt− γ|t|α)

µ γ

α (0 < α ≤ 2)

α

α = 2

where  is the location parameter.  is the dispersion of
the  distribution  and  is  similar  to  the  variance  of  the
Gaussian distribution.  is the characterist-
ic exponent and determines the thickness of the tail in
the distribution. As  decreases, the tail of the SαS dis-
tribution  gradually  becomes  thick,  vice  versa.  When

,  the  SαS distribution degenerates  to  the  Gaussi-
an distribution.

The  SαSG noise  appears  in  a  variety  of  practical
situations  [19].  The  SαSG distribution  depicted  by  its
characteristic function is
 

ϕ (t) = exp (−γSαS|t|α − γG|t|α)

γSαS γG
γSαS > 0

γG = σ2
G/2 σ2

G

α = 2

where  and   are  the  dispersions  of  the  SαS and
the  Gaussian  distribution,  respectively.  and

.  is the variance of the Gaussian distribu-
tion.  When ,  the  SαSG becomes  the  sum  of  the
two independent Gaussian distribution.

 III. The RO-ELM Algorithm
Aiming  at  enhancing  the  robustness  of  the  ELM,

the  LMP criterion  is  applied  as  the  cost  function,  and
simultaneously the forgetting mechanism is employed to
timely discard invalid samples to improve the accuracy
and generalization of online learning, and the RO-ELM
is proposed here.

 1. The recursive equation of the RO-ELM
According  to  the  description  in  Section  II.2,  the

cost function based on the LMP criterion in the ELM is
 

min JLMP =
1

N

N∑
i=1

|ei|p =
1

N
∥Giβ − ti∥p (6)

Gi=[G (a1, b1,xi) , G (a2, b2,xi) , . . . , G (aL, bL,

xi)] β JLMP

β

where 
. The optimal solution  for minimizing  can be

obtained  by  differentiating  (6)  with  respect  to  and
setting the derivatives to zero. The derivatives are
 

∂JLMP

∂β
=

1

N

∑N

i=1

∂|ei|p

∂β

=
1

N

∑N

i=1
p|ei|p−2

ei ·
∂ei
∂β

(7)

|ei| = |Giβ − ti|
∂ |ei|
∂β

= GT
iInserting  and  into (7),

we have
 

∂JLMP

∂β
=

1

N

N∑
i=1

p|ei|p−2 |Giβ − ti|GT
i (8)

∂JLMP

∂β
= 0When , (8) can be transformed into

  ∑N

i=1
|ei|p−2

GT
i Giβ =

∑N

i=1
|ei|p−2

GT
i ti (9)

S0 =
{(

x
(0)
i , t

(0)
i

)
|x(0)

i

∈ Rn×1, t
(0)
i ∈ R1, i = 1, 2, . . . , N0

}The  initial  sample  chunk 

 arrives, and then
 ∑N0

i=1

∣∣∣e(0)i

∣∣∣p−2

G
(0)T
i G

(0)
i β(0) =

∑N0

i=1

∣∣∣e(0)i

∣∣∣p−2

G
(0)T
i t

(0)
i

(10)∣∣e(0)∣∣ = ∣∣fÑ (x(0)
)
− t(0)

∣∣where .
Setting
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P0 =
∑N0

i=1

∣∣∣e(0)∣∣∣p−2

G
(0)T
i G

(0)
i

=(F0H0)
T
F0H0 = MT

0 M0 (11)

and
 

R0 =

N0∑
i=1

∣∣∣e(0)∣∣∣p−2

G
(0)T
i t

(0)
i = E0H

T
0T0 (12)

H0 =
[
G

(0)
1 G

(0)
2

· · · G
(0)
N0

]T
F0 E0

∣∣∣e(0)Ni

∣∣∣ p2−1 ∣∣∣e(0)Ni

∣∣∣p−2

where .  and  
are  diagonal  matrices,  and  the  diagonal  element  is

 and , respectively.
we rewrite (10) as follows,

 

P0β
(0) = R0 (13)

The optimal solution
 

β(0) = P−1
0 R0 (14)

S1 =
{(

x
(1)
i ,

t
(1)
i

)
|x(1)

i ∈ Rn×1, t
(1)
i ∈ R1, i = 1, 2, . . . , N1

}When  the  first  new  sample  chunk 

 arrives,
according to formula (9) the following equation can be
obtained
  ∑N0

i=1

∣∣∣e(0)i

∣∣∣p−2

G
(0)T
i G

(0)
i β(0)

+
∑N1

i=1

∣∣∣e(1)i

∣∣∣p−2

G
(1)T
i G

(1)
i β(1)

=
∑N0

i=1

∣∣∣e(0)i

∣∣∣p−2

G
(0)T
i t

(0)
i +

∑N1

i=1

∣∣∣e(1)i

∣∣∣p−2

G
(1)T
i t

(1)
i

(15)

Setting
 

P1 =

N0∑
i=1

∣∣∣e(0)i

∣∣∣p−2

G
(0)T
i G

(0)
i +

N1∑
i=1

∣∣∣e(1)i

∣∣∣p−2

G
(1)T
i G

(1)
i

=P0 +MT
1 M1

(16)

and
 

R1 =
∑N0

i=1

∣∣∣e(0)i

∣∣∣p−2

G
(0)T
i t

(0)
i +

∑N1

i=1

∣∣∣e(1)i

∣∣∣p−2

G
(1)T
i t

(1)
i

=R0 +E1H
T
1T1

(17)

H1=
[
G

(1)
1 G

(1)
2 . . .G

(1)
N1

]T
T1=

[
t
(1)
1 t

(1)
2 . . . t

(1)
N1

]T
F1 E1∣∣∣e(1)Ni

∣∣∣ p2−1 ∣∣∣e(1)Ni

∣∣∣p−2

where , .
 and  are diagonal matrices, and the diagonal ele-

ment is  and .
We transform (15) into

 

P1β
(1) = R1 (18)

β(1)The optimal solution  is

 

β(1) = P−1
1 R1 (19)

Substitute  the  equations  (17)  and  (13)  into  (19),
and then
 

β(1) = P−1
1 R1 = β(0)+P−1

1 E1H
T
1

(
T1 −H1β

(0)
)
(20)

P−1
1  is derived from the wood-bury (20),

 

P−1
1 =

(
P0 +MT

1 M1

)−1

=P−1
0 − P−1

0 MT
1

(
I +M1P

−1
0 MT

1

)−1
M1P

−1
0

(21)

u (u > 1)

The RO-ELM learns samples chunk by chunk with
fixed or varying sizes. It assumes that any new sample
chunk arrives in each unit time, and the validity period
of  any  sample  chunk  is  unit  time.  When
samples exceed the validity period, they become invalid.

Sk

k Sk=
{(

x
(k)
i , t

(k)
i

)
|x(k)

i ∈Rn×1,

t
(k)
i ∈ R1, i = 1, 2, . . . , Nk

}
k < u

Sk =
∪k

i=0 Si Pk

The current valid sample set is denoted as , and
the -th  sample  chunk 

 arrives. If ,  no samples
are  invalid.  At  the  moment .  can  be
analogized as follows,
 

Pk = Pk−1 +HT
k EkHk (22)

P−1
kBased on the wood-bury formula,  is expressed,

 

P−1
k = P−1

k−1 −P−1
k−1H

T
k

(
E−1

k +HkP
−1
k−1H

T
k

)−1
HkP

−1
k−1

(23)

β(k)Then,  is updated into
 

β(k) = β(k−1) + P−1
k EkH

T
k

(
Tk −Hkβ

(k−1)
)

(24)

Tk=
[
t
(k)
1 t

(k)
2 . . . t

(k)
Nk

]T
Ek∣∣∣e(k)Ni

∣∣∣p−2

where ,  and  is diagon-

al matrix, and the diagonal element is .
k ≥ u (k − u)

Sk =
∪k

i=k−u+1 Si(
Sk = Sk−1 + Sk − Sk−u

)
Pk

If ,  the -th sample chunk becomes in-
valid and discarded. At the moment ,

.  can be analogized
 

Pk =Pk−1 +HT
k EkHk −HT

k−uEk−uHk−u

=Pk−1 +

[
−Mk−u

Mk

]T [
Mk−u

Mk

]
(25)

Mk = FkHk Mk−u = Fk−uHk−u Fk Fk−u∣∣∣e(k)Ni

∣∣∣ p2−1 ∣∣∣e(k−u)
Ni

∣∣∣ p2−1

where , ,  and  
are  diagonal  matrices,  and  the  diagonal  element  is

 and .
P−1

kBased on the wood-bury formula,  is expressed
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P−1
k =

(
Pk−1 +

[
−Mk−u

Mk

]T [
Mk−u

Mk

])−1

=P−1
k−1−P−1

k−1

[
−Mk−u

Mk

]T(
I+

[
Mk−u

Mk

]
P−1

k−1

[
−Mk−u

Mk

]T)[
Mk−u

Mk

]
P−1

k−1

(26)

Then, the following relation can be analogized
 

β(k) = P−1
k Rk (27)

Rk = Rk−1 +EkH
T
k Tk −Ek−uH

T
k−uTk−uwhere .

β(k)

And  then  the  equation  for  sequentially  updating
 can be obtained

 

β(k) =P−1
k

(
Rk−1 +EkH

T
k Tk −Ek−uH

T
k−uTk−u

)
=P−1

k

(
Pk−1β

(k−1)+EkH
T
k Tk−Ek−uH

T
k−uTk−u

)
=β(k−1) + P−1

k

[
−Ek−uHk−u

EkHk

]T
×
([

Tk−u

Tk

]
−
[

Hk−u

Hk

]
β(k−1)

)
(28)

β(k) β(k−1)

By  equations  (26)  and  (28),  the  recursive  relation
between  and   is  obtained  without  repeated
learning.  And the  obsolescence  samples  are  also  timely
discarded.

 2. The  universal  approximation  of  the  RO-
ELM

Pk

∑Nk

i=1

∣∣∣t(k)i −Gk
i β
∣∣∣p=0

Gi = [G (a1, b1,xi) G (a2, b2,xi) . . . G (aL,

bL,xi)]

In fact, the RO-ELM is a single-hidden layer feed-
forward  neural-network  (SLFN).  So  according  to  the
Theorem  2.1  of  Huang et  al’s  work  [6],  in  a  standard
SFLN,  is  invertible  and ,
where 

.
P0 = MT

0 M0 P0

rank (P0) = L

From  (11), ,  and  is  an  invertible
matrix. That is, . From (16),
 

P1 = MT
0 M0 +MT

1 M1 = KT
1 K1

N0 +N1

rank
(
KT

1 K1

)
= min (L,N0 +N1) = L

rank
(
KT

1 K1

)
=

rank
(
K1K

T
1

)
= rank (K1) rank (K1) = L

And  there  are  distinct  samples,
 can  be  proved.

According to the lemma in [20], existing 
, thus .

k<u Pk=MT
0 M0+· · ·+MT

k Mk = KT
kKk∑k

i=1 Ni rank (Kk) =

min
(
L,
∑k

i=1 Ni

)
= L

When , ,
and  there  are  distinct  samples. 

 can be proved.

k ≥ u Pk =

 Mk−u+1

...
Mk


T  Mk−u+1

...
Mk

 =

KT
kKk

∑k
i=k−u+1 Ni

rank
(
KT

kKk

)
= min

(
L,
∑k

i=k−u+1 Ni

)
L ≤∑k

i=k−u+1 Ni rank (Kk) = L Pk

When , 

, and  there  are  distinct  samples.

.  And  if 
,  and   is  an  invertible

L >
∑k

i=k−u+1 Ni rank (Kk) =
∑k

i=k−u+1 Ni

Pk

matrix. If  , 
and  is a singular matrix.

∣∣e(0)∣∣
The proposed RO-ELM consists of two phases, the

initialize  learning  and  the  online  sequential  learning
phases.  However,  in  the  initialize  learning  phase,  the
model has not been built, so  can not be obtained,
and  this  phase  is  replaced  by  the  primary  ELM.  The
proposed RO-ELM algorithm is shown in Algorithm 1.

Algorithm 1　The RO-ELM algorithm

k (k = 0, 1, 2, . . .)

k

k

 denotes  the  index  of  a  sample  chunk.
For  the  initial  sample  chunk, =0;  and  for  the  first  sample
chunk, =1, and so on.
Step 1　Initialize learning

S0 L

G (·)
u

 is  the  initial  sample  chunk.  is  the  number  of  the
hidden  nodes  of  the  RO-ELM  model.  is  the  activation
function  of  the  hidden  nodes.  is  the  validity  period  of
samples.

a b1: Parameters  and   of the  hidden  layer  are  randomly  as-
signed.

H02: The hidden layer output matrix  is calculated.
β(0) = P0H

T
0 T03: The initial output weight  is estimated.

Step 2　Online sequential learning
k (k = 1, 2, · · · ) Sk

Nk

The -th  sample  chunk  arrives,  where
 is the number of samples.

Hk4: The output matrix  of the hidden layer is obtained.
β(k)

k < u β(k)

k ≥ u β(k)

5: The  output  weight  of  the  hidden  layer  is  computed.
When  according  to  (24),  is  computed.  When

, according to (28),  is calculated.
k k + 16: When a new sample chunk arrives,  is  replaced by 

and then turn to Step b). Otherwise, the learning is ended.

p

p

u = +∞

Remark　When  =2,  the  proposed  RO-ELM
changes into the FOS-ELM. When =2 and the timeli-
ness  of  samples  are  not  considered  (i.e., ),  the
proposed RO-ELM degenerates to the OS-ELM. There-
fore, both the OS-ELM and the FOS-ELM are the spe-
cial cases of our RO-ELM.

Although the  proposed  ROS-ELM with  an  appro-
priate period of validity can obtain better performance
for  online  learning,  the  theoretic  analysis  to  determine
the exact period of validity is not very clear. This ques-
tion will be discussed in future works. In specific imple-
mentation, we recommend setting a candidate set first,
and then selecting it  according to  the  prediction effect
of the model.

 IV. Experiments
To  investigate  how  well  the  proposed  RO-ELM
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works on handling the non-Gaussian noise and discard-
ing  obsolescence  samples  simultaneously,  the  empirical
study was performed on the artificial and the real-world
datasets from regression or classification problems. The
RO-ELM  was  compared  with  the  ELM,  the  OS-ELM
and the FOS-ELM on the robustness, the accuracy and
the generalization for online learning. In all the runs the
following procedures were used.

R2

For any  real-world  dataset,  samples  were  ran-
domly divided into the training set (80%) and the test-
ing set (20%). Additionally, training samples were ran-
domly split  into an initial  sample chunk and some on-
line-updating  sample  chunks.  For  regression  problems,
the root mean square error (RMSE) and the coefficient
of determination  were used as the evaluative criter-
ia. For classification problems, the correct rate was em-
ployed  as  the  measure  criteria.  The  RO-ELM  and  its
comparers  adopt the “Sigmoid” function as  the activa-
tion function. Any experiment was repeated executed 100
times,  and  the  statistical  results  were  shown.  For  any
real-world dataset, samples were randomly divided into
the training set (80%) and the testing set (20%). Addi-
tionally,  training  samples  were  randomly  split  into  an
initial  sample  chunk  and  some  online-updating  sample
chunks. For regression problems, the root mean square
error  (RMSE)  and  the  coefficient  of  determination  R2

were  used  as  the  evaluative  criteria.  For  classification
problems, the  correct  rate  was  employed  as  the  meas-
ure criteria. The RO-ELM and its comparers adopt the
“Sigmoid” function as the activation function. Any ex-
periment  was  repeated  executed  100  times,  and  the
statistical results were shown.

 1. The experiments for regression problems
For regression problems, an artificial and two real-

world datasets from the UCI machine learning reposit-
ory*1 were employed.

1) On the artificial dataset
The clear  samples  were  generated  from  the  func-

tion of “Friedman#2” which is
 

y = x2
1 +

√
x2 · x3 − 1

(x2 · x4)
2

x1 ∈ (0, 99) x2 ∈ (4π, 564π − 1) x3 ∈ (0, 1)
x4 ∈ (1, 11)
where , ,  and

.  2000  training  samples  and  500  testing
samples  were  randomly  generated.  These  training
samples were  divided  into  an  initial  sample  chunk  in-
cluding  200  samples  and  18  online  updating-sample
chunks, each of which contained 100 samples.

The random Gaussian noise with mean=0 and vari-
ance=0.4 was generated.  The SαS and the SαSG noise

α

γSαS

were randomly created. For the SαS noise, exponent =
1.2  and  dispersion =0.02.  The  SαSG noise  is  the
sum  of  the  Gaussian  noise  and  the  SαS noise.  These
four  kinds  of  noise  were  added  into  the  clear  samples,
respectively.

The ELM or the OS-ELM only considered the op-
timal  number  of  the  hidden  nodes,  and  their  learning
processes were performed with different numbers of the
hidden  nodes  from the  range  [2,100]  with  step=2.  The
testing  RMSE  of  the  ELM  and  the  OS-ELM  models
with different numbers of the hidden nodes on the arti-
ficial  datasets  with three  kinds  of  noise  were  shown in
Fig.1. It seems that the ELM and the OS-ELM models
have the  similar  performance.  This  is  most  likely  be-
cause the data contains high noise, and OS-ELM is not
robust  enough to  perform much better  than  ELM.  On
any noise  dataset,  the  lowest  testing  RMSE  was  ob-
tained when the number of the hidden nodes was 20 for
both the ELM and the OS-ELM models.
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Fig. 1. The  testing  RMSE  of  the  ELM  and  the  OS-ELM

models  with  different  numbers  of  the  hidden  nodes
on the artificial datasets with three kinds of noise.
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For the  RO-ELM  model,  the  number  of  the  hid-
den nodes  was  also  set  as  20.  Additionally,  it  was  im-
portant  to  select  both  the  value  of  and  the  validity
period  of  the samples.  If  is  too large or too small,
the generalization  of  the  RO-ELM  model  will  be  de-
clined.  Different  from  the  range  [1,19]  was  selected
with step=1. The value of  was chosen from the range
(1,2]  with  step=0.2  on  the  Gaussian,  the  SαS and  the
SαSG datasets.  Then,  the  best  and   were  selected
according to the testing RMSE of the RO-ELM model.

u

p

R2

p

The  testing  RMSE  of  the  RO-ELM  models  with
different validity  periods  of  the  samples  on  the  artifi-
cial datasets with the SαSG noise were shown in Fig.2.
On any noise dataset, the lowest testing RMSE was ob-
tained  when  was  5.  On  the  other  hand,  the  testing
RMSE of the RO-ELM models with different values of
 were  also  shown  in Fig.2 .  Furthermore,  the  detailed

RMSE  and  the  Coefficient  of  determination  of  the
RO-ELM models with different values of  on the four
noise  artificial  datasets  were  given  in Table 1 .  On  the
Gaussian,  the  SαS and  the  SαSG  datasets,  the  testing
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p

R2

p

RMSE of the RO-ELM model with =1.6 was the least,
and the training and testing  of the RO-ELM model
with =1.6 was the highest.
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Fig. 2. The testing RMSE of the RO-ELM models with dif-
ferent  values  of  and  different  validity  periods  of
samples  on  the  artificial  datasets  with  the
SαSG noise.

 
  

R2 p

Table 1. The RMSE and the coefficient of determina-
tion  of the RO-ELM models with different values of 

on the four noise artificial datasets

Noise type pValue of 
Training set Testing set

RMSE R2 RMSE R2

Gaussian

1.2 0.2474 0.7342 0.0261 0.9423
1.4 0.2535 0.7333 0.0251 0.9521
1.6 0.2364 0.7354 0.0164 0.9937
1.8 0.2445 0.7422 0.0213 0.9733
2.0 0.2634 0.7334 0.0259 0.9745

SαS

1.2 0.7328 0.5844 0.0602 0.9502
1.4 0.7378 0.5645 0.0503 0.9522
1.6 0.7242 0.5767 0.0205 0.9864
1.8 0.7569 0.5645 0.3451 0.9623
2.0 0.8035 0.7367 0.0423 0.9604

SαSG

1.2 0.7028 0.7849 0.0567 0.9532
1.4 0.7887 0.7543 0.0671 0.9487
1.6 0.8032 0.7763 0.0383 0.9613
1.8 0.7969 0.5695 0.0425 0.9552
2.0 0.8105 0.5346 0.0424 0.9513

 
 

R2

R2

R2

R2

The RMSE and the Coefficient of determination 
of the ELM, the OS-ELM, the FOS-ELM and the RO-
ELM models  on  the  four  noisy  artificial  datasets  were
summarized in Table 2. On the Gaussian noise dataset,
the training RMSE and  of the four kinds of models
were quite similar.  The testing RMSE of the RO-ELM
model was less than that of the ELM, the OS-ELM and
the  RO-ELM models.  The  testing  of  the  RO-ELM
model  was higher  than that  of  other  three models.  On
the  SαS noise  dataset,  the  training  RMSE of  the  RO-
ELM model  was  the  least,  and  the  training  of  the

R2

R2

R2

R2

four  kinds  of  models  were  quite  similar.  The  testing
RMSE  of  the  RO-ELM  model  was  the  least,  and  the
testing  of  it  model  was  the  highest.  On  the
SαSG noise datasets, the training RMSE and  of the
four  kinds  of  models  were  quite  similar.  The  testing
RMSE  of  the  RO-ELM  model  was  the  least,  and  the
testing  of the four kinds of models were quite simil-
ar.  The  testing  RMSE of  the  RO-ELM model  was  the
least,  and  the  testing  of  it  was  the  highest.  In  a
word, on the four noisy artificial datasets, the perform-
ances of the RO-ELM models were better than those of
the other three models.
  

R2

Table 2. The RMSE and the Coefficient of determina-
tion  of the ELM, the OS-ELM, the FOS-ELM and

the RO-ELM models on the four noisy artificial datasets

Noise type Algorithms
Training set Testing set

RMSE R2 RMSE R2

Gaussian

ELM 0.2474 0.7342 0.0247 0.9701
OS-ELM 0.2345 0.7334 0.0239 0.9710

pFOS-ELM ( =2) 0.2634 0.7334 0.0259 0.9745
pRO-ELM ( =1.6) 0.2464 0.7354 0.0164 0.9937

SαS

ELM 0.7822 0.5842 0.0338 0.9689
OS-ELM 0.7562 0.5713 0.0359 0.9691

pFOS-ELM ( =2) 0.8035 0.7367 0.0423 0.9604
pRO-ELM ( =1.6) 0.7242 0.5767 0.0205 0.9864

SαSG

ELM 0.8023 0.7365 0.0412 0.9595
OS-ELM 0.7922 0.7677 0.0423 0.9581

pFOS-ELM ( =2) 0.8105 0.5346 0.0424 0.9513
pRO-ELM ( =1.6) 0.8032 0.7763 0.0383 0.9613

 
 

2) On the real-word regression datasets
Three real-world regression datasets  with the non-

Gaussian  noise  were  employed  in  this  experiment,  and
the essential information of the real-world datasets was
displayed in Table 3, where R denotes Regression and C
denotes Classification.

For  the  Pendigits  dataset,  there  was  an  initial
sample chunk including 2000 samples and 68 online-up-
dating sample chunks. For the Letter dataset, there was
an initial sample chunk including 2000 samples and 140
online-updating  sample  chunks.  For  the  California
Housing dataset,  there was an initial  sample chunk in-
cluding 1000  samples  and  64  online-updating  sample
chunks.  Each  of  these  online-updating  sample  chunks
contained 100 samples.

u

R2

p

p

For the  RO-ELM models,  the  number  of  the  hid-
den nodes was set as 50 and the validity period  of the
samples were  5.  The  RMSE and the  Coefficient  of  de-
termination  of  the  RO-ELM  models  with  different
values  of  on  the  real-word  regression  datasets  were
displayed in Table 4. The results of the testing samples
were  more  concerned,  comparing  with  those  of  the
training samples. On the Pendigits and California Hous-
ing  datasets,  with =1.4  the  RO-ELM model  obtained
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R2

p

the least testing RMSE and the highest testing . On
the Letter dataset, with =1.6 the RO-ELM model ob- R2

tained  the  least  testing  RMSE and  the  second  highest
testing .

  
R2 pTable 4. The RMSE and the coefficient of determination  of the RO-ELM models with different values of  on the

real-word regression datasets

Dataset pValue of Training set Testing set
RMSE R2 RMSE R2

Pendigits

1.2 0.0985 0.7487 0.0865 0.8423
1.4 0.0818 0.7043 0.0461 0.9021
1.6 0.1085 0.5976 0.0564 0.8937
1.8 0.1108 0.6272 0.0513 0.8951
2.0 0.0985 0.6116 0.0719 0.8753

Letter

1.2 0.1123 0.5844 0.0546 0.7150
1.4 0.0941 0.6645 0.0582 0.9522
1.6 0.0781 0.7976 0.0486 0.8864
1.8 0.0947 0.6405 0.0537 0.8629
2.0 0.0841 0.5067 0.0777 0.7604

California Housing

1.2 0.1368 0.6006 0.0697 0.7226
1.4 0.1067 0.6678 0.0645 0.9687
1.6 0.0805 0.8060 0.0676 0.9094
1.8 0.1002 0.6515 0.0589 0.8621
2.0 0.0950 0.5225 0.0864 0.7739

 
 

R2

R2

R2

The RMSE and the Coefficient of determination 
of the ELM, the OS-ELM, the FOS-ELM and RO-ELM
models on the real-word regression datasets were shown
Table 5. On the Pendigits dataset, the RO-ELM model
obtained the second least training and the least testing
RMSE, the highest training and testing . On the Let-
ter and California Housing datasets, the RO-ELM mod-
el  obtained  the  least  training  and  testing  RMSE  and
the highest training and testing .

 2. The experiments  for  classification  prob-
lems

Six real-world classification datasets with the non-
Gaussian  noise  were  employed  in  this  experiment,  and
the  essential  information  of  these  real-world  datasets
was also presented in Table 3.

For  any  of  the  Magic04,  Twonorn  and  Mushroom
datasets, there was an initial sample chunk including 1000
samples  and  several  online  updating  sample  chunks
each  of  which  included  200  samples.  On  the  Magic04
dataset,  the  number  of  the  hidden  nodes  of  any  ELM

model was 30, and the validity periods of samples was 10.
On  the  Twonorn  dataset,  the  number  of  the  hidden
nodes of any ELM model was 50, and the validity peri-
ods of  samples was 15.  On the Mushroom dataset,  the
number of the hidden nodes of any ELM model was 100,
and the validity periods of samples was 15.

p

p

p

The correct classification rates (%) of the RO-ELM
models with different values of  on the binary classific-
ation  datasets  were  displayed  in Table 6 . For  the  Ma-
gic04 dataset,  the RO-ELM model with =1.6 had the
highest correct classification rates for training and test-
ing samples. For the Twonron and Mushroom datasets,
the RO-ELM model with =1.8 had the highest correct
classification rates for training and testing samples.

The correct classification rates (%) of the ELM, the
OS-ELM,  the  FOS-ELM  and  the  RO-ELM  models  on
the  binary  classification  datasets  were  shown Table 7.
On any of the three datasets, the RO-ELM model had
the  highest  correct  classification  rates  for  the  training
and testing samples. 

   
Table 3. The essential information of the real-world datasets

Dataset Task type Category Dimensions of input features No. of samples
Training Testing

Pendigits R – 16 8794 2098
Letter R – 16 16000 4000

California Housing R – 8 12640 8000
Magic04 C 2 10 15216 3804
Twonorn C 2 20 5920 1480

Mushroom C 2 21 7311 813
Image segmentation C 7 19 1500 810

Vehiche C 4 18 630 216
Satellite image C 6 26 4435 2000
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R2Table 5. The RMSE and the coefficient of determination  of the ELM, the OS-ELM, the FOS-ELM and the
RO-ELM models on the real-word regression datasets

Dataset Algorithm Training set Testing set
RMSE R2 RMSE R2

Pendigits

ELM 0.1045 0.6091 0.1085 0.8701
OS-ELM 0.0834 0.6074 0.0806 0.8710

pFOS-ELM ( =2) 0.0984 0.6169 0.0776 0.8805
pRO-ELM ( =1.4) 0.0941 0.6645 0.0582 0.9522

Letter

ELM 0.1191 0.5821 0.1132 0.6589
OS-ELM 0.0993 0.5721 0.0912 0.8691

pFOS-ELM ( =2) 0.0875 0.7455 0.0794 0.8674
pRO-ELM ( =1.6) 0.0781 0.7976 0.0486 0.8864

California Housing

ELM 0.1634 0.6012 0.1143 0.6627
OS-ELM 0.1113 0.5913 0.0933 0.8785

pFOS-ELM ( =2) 0.0894 0.7508 0.09869 0.6312
pRO-ELM ( =1.4) 0.0805 0.8060 0.0676 0.9094

  
p

Table 6. The correct classification rates (%) of the RO-ELM models with different
values of  on the binary classification datasets

pDataset Magic04 Twonron Mushroom
Training Testing Training Testing Training Testing

1.2 82.33 85.43 81.54 82.47 82.54 82.41
1.4 92.72 93.27 82.64 84.74 83.64 84.34
1.6 93.12 94.21 88.62 89.26 88.42 88.16
1.8 82.34 85.33 93.13 93.53 92.11 93.43
2.0 88.57 89.65 88.04 88.34 88.04 88.35

  
Table 7. The correct classification rates (%) of the ELM, the OS-ELM, the FOS-ELM and the RO-ELM models on

the binary classification datasets

Datasets Algorithm Training Testing

Magic04

ELM 81.45 87.34
OS-ELM 82.34 88.54
FOS-ELM 88.65 89.46

RO-ELM (p=1.6) 93.12 94.21

Twonron

ELM 84.04 85.36
OS-ELM 86.04 87.44
FOS-ELM 88.61 89.31

RO-ELM (p=1.8) 93.13 93.53

Mushroom

ELM 84.44 81.36
OS-ELM 86.34 83.44
FOS-ELM 87.61 89.31

RO-ELM (p=1.8) 92.11 93.43
 
 

 V. Conclusions
The main innovation of  this  paper  is  that  a novel

method, named the robust online extreme learning ma-
chine (RO-ELM), is proposed to handle the non-Gaussi-
an noise and discarding obsolescence samples simultan-
eously. The RO-ELM inherits the ELM’s advantages on
fast learning speed and simple architecture, and has the
similar  computational  complexity  as  the  OS-ELM and
the FOS-ELM. In the RO-ELM, the cost function based
on the LMP criterion provides a mechanism to tolerate
the  non-Gaussian  noise,  and  the  forgetting  mechanism
is applied  to  discard  the  obsolescence  samples.  Experi-
ments on the artificial and real-world datasets from re-

gression  and  classification  problems  were  carried  out.
The results  showed  that  the  RO-ELM  were  more  ro-
bust than the ELM, the OS-ELM and the FOS-ELM on
the artificial samples with the Gaussian, the non-Gaus-
sian, the SαS and the SαSG noise, respectively. On the
real-world  datasets  with  the  non-Gaussian  noise,  the
online  models  estimated  by  the  RO-ELM  outperform
those  estimated  by  the  other  three  algorithms  on  the
accuracy and generalization.
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