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   Abstract — Malware detection has been a hot spot in
cyberspace security  and  academic  research.  We  investig-
ate the  correlation  between  the  opcode  features  of  mali-
cious  samples  and  perform  feature  extraction,  selection
and fusion  by  filtering  redundant  features,  thus  alleviat-
ing the  dimensional  disaster  problem  and  achieving  effi-
cient identification  of  malware  families  for  proper  classi-
fication.  Malware  authors  use  obfuscation  technology  to
generate a  large  number  of  malware  variants,  which  im-
poses a heavy analysis burden on security researchers and
consumes  a  lot  of  resources  in  both  time  and  space.  To
this  end,  we  propose  the  MalFSM  framework.  Through
the  feature  selection  method,  we  reduce  the  735  opcode
features contained in the Kaggle dataset to 16, and then
fuse on metadata features (count of file lines and file size)
for a total of 18 features, and find that the machine learn-
ing classification  is  efficient  and  high  accuracy.  We  ana-
lyzed the correlation between the opcode features of mali-
cious  samples  and  interpreted  the  selected  features.  Our
comprehensive experiments  show  that  the  highest  classi-
fication  accuracy  of  MalFSM can reach up to  98.6% and
the classification  time  is  only  7.76  s  on  the  Kaggle  mal-
ware dataset of Microsoft.

   Key words — Malware classification, Machine learn-

ing, Feature selection, Feature correlation.

 I. Introduction
In  the  era  of  network  space,  malware  is  designed

specifically by malware coders to damage computers or
access them illegally,  which  has  grown rapidly.  An In-
ternet  security  threat  report  from  McAfee  Labs  [1]
shows that 419 malwares per minute were discovered in
the second quarter of 2020, an increase of nearly 12 per-
cent from the first quarter. As computers and networks
become  more  and  more  indispensable  to  daily  life,  the

threat of malware is growing. For example, Trickbot, a
banking  Trojan  discovered  in  September  2016,  still
topped the global threat index by Checkpoint in Octo-
ber 2021 [2].  With the widespread use of  smartphones,
not only desktops and laptops but even mobile phones
and devices connected to the Internet of things can be
attacked  by  malware.  Attackers  can  make  a  fortune,
and are  hard  to  track.  Therefore,  the  analysis  and de-
tection of malware have become a difficult task for anti-
malware researchers.

Therefore, this paper proposes a lightweight frame-
work  of  feature  subset  selection  method  for  malware
family  classification  (MalFSM).  The  implementation
process of MalFSM is as follows: First of all, opcode se-
quences  are  extracted  from  the  disassembled  codes  of
malicious datasets. Take the frequency of opcode as the
eigenvalue  to  construct  a  simple  feature  vector.  Then
the feature selection algorithm is utilized to extract the
top-n opcode  features.  After  fusion  of  selected  feature
subset and the metadata features, generated character-
istic matrix of the original sample for automatic classi-
fication. Constructing  a  lightweight  feature  set  can  ef-
fectively  reduce  the  classification  time  and  space  of  a
large number of sample sets.

We  evaluate  the  MalFSM  on  the  Kaggle  dataset
provided  by  the  2015  Microsoft  Malware  Classification
Challenge with  satisfactory  results.  In  addition,  com-
pared  with  other  studies,  the  classification  time  is
shortened  obviously  and  the  space  occupancy  rate  is
significantly reduced.  To  sum  up,  our  main  contribu-
tions to this paper are as follows:

1) We propose a malware feature extraction, selec-
tion, and fusion framework named MalFSM. This meth-
od can  help  analysts  filter  out  the  most  relevant  fea- 
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tures  without  the  need  for  high-performance  hardware
resources, and provides reference and interpretation for
malicious code  researchers  to  choose  opcode  in  the  fu-
ture. Due to the large scale and quantity of features in
the complete  dataset,  feature  subsets  are  selected  ac-
cording to  the  feature  selection  methods,  and  a  light-
weight feature matrix is constructed. The experimental
results  show  that  the  lightweight  eigenmatrix  can  not
only  reduce  the  time  and  space  complexity,  and  reach
the  spatio-temporal  equilibrium,  but  also  achieve  high
classification accuracy.

2) Based on this,  the superiority of the method in
terms  of  time  and  space  overhead  is  experimentally
verified.  The  classification  accuracy  can  reach  98.6%.
Compared with relevant studies,  the classification time
is reduced by 69%, and the space occupation is reduced
by 93.1%. MalFSM can provide accuracy similar to that
of  the  first  prize  in  the  competition,  while  effectively
simplifying the feature space, and is superior to the pre-
vious  algorithm  in  terms  of  efficiency.  When  using  a
smaller training set for classification, our accuracy rate
is around 94%, with good generalization ability.

3) The extracted opcode features are visualized and
transformed  into  grayscale  images.  The  Transformer
model  and  VGG-16  model  are  used  for  classification.
Compared with  the  machine  learning  classification  al-
gorithm,  the  classification  effect  is  slightly  inferior  but
has excessive time overhead.

The remainder of this paper is organized as follows:
Section II  introduces  the  necessary  background  know-
ledge and  summary  of  related  work.  Section  III  de-
scribes the overall implementation of the MalFSM. The
experimental  details  are presented in Section IV. Then
evaluate  it  in  Section V.  Finally,  Section VI concludes
the paper and points out the topics to be studied in the
future.

 II. Background and Related Work
Detecting  and  classifying  malware  is  a  constant

battle  for  researchers  in  cyberspace  security.  In  recent
years,  malware  analysis  and  detection  techniques  have
developed  continuously.  In  order  to  better  understand
its  development,  we first  briefly introduce the research
background and related work.

 1. Background
1) Analysis method of malware
Malicious  code,  also  known  as  malware,  plays  a

major  role  in  most  computer  breaches.  Any  software
that causes damage to a user, computer, or network in
some  way  can  be  considered  malicious  code,  including
viruses,  ransomware,  trojans,  worms,  etc.  As  malware
researchers, we need to understand how to identify ma-
licious  code  and  analyze  it.  Malicious  code  analysis  is

the  art  of  dissecting  malicious  code.  It  can  be  divided
into static  analysis,  dynamic  analysis,  and hybrid ana-
lysis  according to  whether  malicious  programs actually
run.

Static  analysis  techniques  examine  executables
without malicious code running. Based on static analys-
is, we can extract important features directly from bin-
ary files, including DLL, API, Opcode, strings, bytes n-
gram, and so on. By applying machine learning or deep
learning technology  to  static  features,  the  static  meth-
od  can  detect  and  classify  malicious  software  quickly
and accurately. But it is largely ineffective against com-
plex malicious code and might miss some important be-
havior [3].

In  contrast  to  static  analysis,  dynamic  analysis
techniques involve  running  malicious  code  and  ob-
serving behavior on the system [4]. Before running mali-
cious programs, ensure that a secure environment is es-
tablished  to  prevent  risks  to  the  system  and  network.
Typical dynamic  analysis  tools  include  Cuckoo  Sand-
box, CWSandbox, and Joe Sandbox. In cyber security,
the sandbox is the tool used to handle untrusted files or
applications  in  an  isolated  environment.  For  instance,
Hu et al. [5] used the Cuckoo Sandbox to process mal-
ware samples. In addition to the sandbox virtual envir-
onment, you can also use the debugger to check the be-
havior and effects of a malicious program when it runs.

Static  analysis  and  dynamic  analysis  have  their
own  advantages  and  disadvantages.  Static  analysis
saves  the  actual  running  time  of  malicious  code,  and
some ransomware  can  detect  sandbox  virtual  environ-
ment so  that  dynamic  analysis  can  not  be  used.  Dy-
namic analysis is more effective at obfuscating malware,
but it  consumes  a  lot  of  time  and  resources.  In  sum-
mary, using dynamic and static hybrid analysis techno-
logy can better analyze and detect malicious code. Han
et al. [6] first attempted to study the difference and re-
lationship between static and dynamic API sequences of
malicious code. They proposed the MalDAE framework,
which fuses the dynamic and static API sequence asso-
ciations  of  malicious  programs  into  a  hybrid  sequence
based on  semantic  mapping  to  construct  a  hybrid  fea-
ture vector space. On the basis of achieving high accur-
acy and  classification  rate,  comprehensible  interpreta-
tion is provided.

2) Methods of feature selection
According  to  the  form  of  feature  selection  [7],

methods  can  be  divided  into  three  categories:  Filter,
Wrapper, and Embedded [8]. Common models for each
of these three methods are listed below:

a) Filter
i) Pearson correlation coefficient
Pearson  correlation  coefficient  is  used  to  measure
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the degree of correlation between two variables, and its
value  is  between −1 and 1 [9]. In  general,  the  correla-
tion strength of variables can be judged by the follow-
ing range of correlation coefficients:

• 0.8–1.0, very strong correlation;
• 0.6–0.8, strong correlation;
• 0.4–0.6, moderate correlation;
• 0.2–0.4, weak correlation;
• 0.0–0.2, very weak correlation or no correlation.
ii) Chi-square
Chi-square selection  is  a  supervised  feature  selec-

tion method commonly used in statistics. It determines
the  correlation  between  the  feature  and  the  real  label
by chi-square  test  and  then  determines  whether  to  se-
lect it [10].

χ2

We can  use  the  Chi-square  test  to  test  the  inde-
pendence of features and dependent variables. If the in-
dependence is high, it means that there is little relation-
ship between the two, and features can be discarded. If
the  independence  is  small  and  the  correlation  between
the two is high, it indicates that the feature will have a
relatively  large  impact  on  the  corresponding  variable
and should be selected. When the Chi-square test is ap-
plied to feature selection in practice, it is not necessary
to know the degree of freedom and chi-square distribu-
tion,  but  only  to  sort  according  to  the  calculated .
The  larger  the  value,  the  better.  Pick  the  largest  pile,
and you’re done with the Chi-square test for feature ex-
traction.  For  classification  problems,  filtering  methods
generally assume that features independent of labels are
irrelevant features,  while  the  Chi-square  test  can  pre-
cisely test independence, so it is suitable for feature se-
lection. If the result is that a feature is independent of
the label, the feature can be removed.

iii) Mutual information
Mutual information  is  a  useful  information  meas-

ure  in  information  theory.  It  can  be  regarded  as  the
amount of  information contained in  a  random variable
about another  random variable,  or  the  uncertainty  re-
duced by a random variable due to the fact that anoth-
er random variable is known [11].

iv) Variance threshold
Variance  threshold:  First  calculate  the  variance  of

each feature, and then select features whose variance is
greater  than  the  threshold  based  on  the  threshold.  To
eliminate  the  features  with  variance  of  0  first,  we  will
only use variance filtering with threshold of 0 or small
threshold  to  eliminate  some  obviously  unused  features
first,  and  then  we  will  choose  better  feature  selection
methods  to  continue  to  reduce  the  number  of  featu-
res [12].

v) F-test (ANOVA)
F-test, the most common alias is called joint hypo-

thesis test.  Used  to  test  the  mean  difference  signific-
ance between two and more samples [13].

b) Wrapper
Recursive  feature  elimination  (RFE):  The  main

idea of RFE is to build the model over and over again,
pick out  the  best  (or  worst)  features  (based  on  coeffi-
cients), put those features aside, and repeat the process
for the rest of the features until all the features are iter-
ated. The order that is eliminated in this process is the
ordering of features.

The  stability  of  RFE  depends  largely  on  which
model is  used  at  the  bottom  of  the  iteration.  For  ex-
ample, RFE adopts linear regression (LR),  and the re-
gression  without  regularization  is  unstable,  so  RFE  is
unstable. If  lasso/ridge  is  used  and  the  regularized  re-
gression is stable, then RFE is stable [14].

c) Embedded
Embedded is a method to let the algorithm decide

which features to use, that is, feature selection is integ-
rated with the training process of the learner. They are
completed  in  the  same  optimization  process,  in  other
words,  feature  selection  is  automatically  carried  out  in
the training process of the learner. First, some machine
learning algorithms (e.g. RF, LR) are used for training
to  obtain  the  weight  coefficients  of  each  feature  [15].
Features  are  selected  from  large  to  small  according  to
the weight coefficients, which often represent some con-
tribution  or  importance  of  features  to  the  model.  The
process  is  similar  to  Filter,  except that  the coefficients
are trained.

L1 L2 L1 L2

i) Feature selection method based on penalty term:
 norm,  norm,  norm and  norm may also be

used simultaneously.
ii)  Feature  ordering  based  on  machine  learning

model: decision tree, random forest, etc.
Table 1 summarizes the feature selection methods.
 2. Related work
As the  research  direction  of  this  paper  is  the  fea-

ture subset selection technology of malware family clas-
sification, this  part  simply  summarizes  the  work  re-
lated to malware classification and feature selection (as
shown in Table 2).

Modern  malware  is  designed  to  have  mutational
characteristics, namely polymorphism, and metamorph-
osis,  which leads  to  tremendous growth in  the  number
of variants in the malware sample. Classifying malware
samples by their behavior is critical to the computer se-
curity community because they receive a large number
of malwares  each  day,  and  the  feature  extraction  pro-
cess is often based on the malicious portion of the mal-
ware  family.  Ahmadi et  al.  [16] proposed  a  new  tech-
nique  to  extract  PE  structural  features  to  accurately
classify malware. Based on feature extraction, the most
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effective combination of feature categories is output by
feature  fusion  algorithm  to  achieve  a  compromise
between accuracy and the number of features. However,
this paper did not simplify the features and collect the
core common features of each family sample.

Ni et  al.  [17] proposed a malware classification al-
gorithm  MCSC  (malware  classification  using  SimHash
and CNN) utilizing static  analysis,  which converts  dis-
assembled malware into grayscale images based on Sim-
Hash. Then the convolutional neural network is used for

family  classification.  In  this  paper,  a  malware  feature
extraction  algorithm  combining  opcode  sequence  and
LSH is proposed, and the feature is converted into fin-
gerprint images using visualization technology. In addi-
tion, multi-hash, major block selection, and bilinear in-
terpolation are adopted to improve the classification al-
gorithm.  However,  the  proposed  method  needs  further
improvement in terms of performance and robustness.

For  large-scale  malware  datasets,  Han et  al.  [18]
proposed  a  parallel  classification  framework  based  on

   
Table 1. Feature selection method

Feature selection
method

Filter

Pearson correlation coefficient Only linear correlations can be captured
Chi-square Dedicated to classification algorithms, capture correlation

Mutual information
classification Can capture any correlation

F-test (ANOVA) Only linear correlation can be captured, requiring data to follow normal
distribution

Variance threshold The variance threshold can be entered to return a new eigenmatrix whose
variance is greater than the threshold

Wrapper Recursive feature elimination Iterate over all the features and build the model repeatedly to select the best
features

Embedded
Feature selection method

based on penalty Select features based on penalty terms

Feature order based on ML The features are sorted according to machine learning models
 

   
Table 2. Summary of the existing malware detection techniques

Author Analysis
method Dataset Features Time consuming Merits Demerits Accuracy

M. Ahmadi
et al. [16]

Static &
Machine
learning

Microsoft
Malware
Challenge
dataset

Hex dump-based
features, features
extracted from

disassembled files

Feature extraction
time is 5656 s

Providing a trade-
off between

accuracy and the
number of features

Complex feature
extraction and
classification;

Time consuming;
No robustness

testing

99.77%

S. Ni
et al. [17]

Static &
Machine
learning

Microsoft
Malware
Challenge
dataset

Opcode

Identifying a
malware sample
takes 1.41 s in

average. Feature
extraction time is

NaN

Proposing a novel
algorithm to extract

features; High
accuracy

Lack of high-
performance
computing

99.26%

W. Han
et al. [18]

Static &
Machine
learning

Microsoft
Malware
Challenge
dataset

Top-N opcode list

Feature extraction
and generating
opcode feature
vector time is

3563.42 s

Proposed a parallel
process framework

Less characteristic
variety 98.53%

A. Darem
et al.[19]

Static & Deep
learning

Microsoft
Malware
Challenge
dataset

Opcode, segment,
asm pixed count

and other features

Training and
detection time of
model is 1038 s

High accuracy;
Integrates an
ensemble deep

learning, feature
engineering, image
transformation and

processing
techniques

The feature
extraction process
will take a large

scale of time

99.12%

I. Almomani
et al. [20]

Static &
Machine
learning

6190 benign
apps & 5500
malware apps

Permissions
The fastest

execution time of
model is 0.1 s

Demonstrate the
usefulness of feature

selection

Solely on a single
feature About 85%

G. Sun
et al. [21]

Static & Deep
learning

Microsoft
Malware
Challenge
dataset

Opcode NaN
High accuracy;

Excellent
generalization

Less characteristic
variety 99.5%
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multi-core  collaboration  and  active  recommendation.
The  framework  can  run  on  PC  without  high-perform-
ance  hardware  resources.  In  addition,  this  method  can
reduce  processing  time  and  improve  efficiency  while
achieving high classification accuracy. However, the fea-
ture types considered in this paper are relatively single,
so multidimensional feature analysis can be further ad-
opted.

In order to deal with the major threat brought by
malware,  Darem et  al.  [19]  proposed  a  semi-supervised
approach integrating deep learning, feature engineering,
image  transformation,  and  processing  techniques  for
fuzzy malware detection. This method extracts features
from  assembler  files  to  form  images.  Then,  integrated
deep learning is fine-tuned to achieve efficient learning.
However,  the  transformed  images  in  this  study  are
grayscale images,  so  whether  this  method  can  be  ap-
plied to color images is worth studying.

Due  to  the  rapid  growth  of  Android  malware  and
the impact of high-quality features on machine learning
performance,  Jemal  Abawajy et  al.  [20] regarded  fea-
ture selection as a quadratic programming problem and
studied the effect of feature selection on malware detec-
tion under intelligent IoT platform. In this paper, filter-
based feature  selection  analysis  is  carried  out  for  An-
droid  malware.  The  usefulness  of  feature  selection  is
proved by empirical evaluation of the prediction accur-
acy of  feature  selection  techniques  using  several  learn-
ing algorithms that do not perform feature subset selec-
tion internally. However, this study is only based on the
functions of a single component of the Android system
(namely permissions), and it also needs to analyze per-
missions combination and API features.

Sun et al. [21] proposed a new malicious code visu-
alization  method,  RMVC,  combining  RNN  and  CNN

technology.  The  paper  considers  not  only  the  original
information of  malware,  but  also  the  ability  to  asso-
ciate the raw code with temporal characteristics. Then,
minhash is adopted to generate feature images from the
fusion  of  the  original  code  and  the  RNN  prediction
code.  Finally,  CNN  is  trained  to  classify  images  with
excellent generalization ability. However, the paper does
not consider large datasets and dynamic analysis.

 III. Overview
 1. Motivation
High-quality features are vital for malware classific-

ation,  this  is  because  the  original  feature  set  extracted
from malicious samples is very large. For example, Le et
al. [22] extracted 10,000 features from the Kaggle data-
set, and Hu et al. [23] extracted 2000 features from the
Kaggle  dataset,  Ahmadi et  al.  [16] extracted  1804  fea-
tures  from  the  Kaggle  data  set.  In  general,  some  of
these  features  are  key  to  the  classification  of  malware
families,  while  others  are  not.  In  addition,  too  many
features  can  lead  to  model  complexity  and  dimension
disaster  problems.  Moreover,  these  features  tend  to  be
highly dimensional and redundant, and may not be re-
lated to the malware family classification. Furthermore,
a large number of redundant features are of little value
to the  performance  of  learning  machine  learning  al-
gorithms and cost time and CPU. Therefore, these un-
wanted features should be removed from the feature set
used to train machine learning models.

 2. Overall framework
MalFSM mainly  consists  of  four  modules,  namely,

data preprocessing  (including  feature  extraction),  fea-
ture  selection,  feature  fusion  and  classification,  as
shown in the Fig.1.

 

① Preprocessing

(Feature extraction)

Dataset

(Malware

samples)

.asm &

.bytes

Chi-square,

mutual

information...

Feature

selection

② ③ Feature

fusion

Training

set

Testing

set

Class 1,..., Class n

④
Classifiers

Random forest,

decision tree,

XGBoost...

 
Fig. 1. The framework of MalFSM.

 
1) Preprocessing
The function of this module is to extract static fea-

tures from malicious samples. In this paper, we extract
the  metadata  features  (namely  the  size  of  the  file  and
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the  count  of  lines  in  the  file)  and  the  opcode  features
(the number of  opcode occurrences  is  taken as  the  op-
code feature).

2) Feature selection
The  function  of  this  module  is  to  purify  feature

vectors by removing redundant opcode features.
3) Feature fusion
Opcode features and metadata features are fused to

form a feature matrix.
4) Classification
Based  on  the  above  generated  feature  matrix,  we

use four different classification models to verify the clas-
sification effect of MalFSM through cross-validation.

 IV. Implementation
 1. Preprocessing
The data source for this article is the Kaggle mal-

ware classification dataset released by Microsoft, includ-
ing “.asm” and “.bytes” samples. The Kaggle dataset is
the  disassembled  files  that  can  extract  the  required
metadata features and opcode features directly from the
sample assembler. Save the statistical results in a CSV
file.

 2. Feature selection
The classification  results  of  different  feature  selec-

tion algorithms  are  compared.  Feature  subsets  are  ob-
tained by sorting different algorithms, and then the fea-
ture  selection  algorithm  with  the  highest  classification
accuracy is selected to select the optimal feature subset.
The final feature subset is the optimal feature set after
removing redundant features.

 3. Feature fusion

m× n

S = {s1, s2, . . . , sm}
F = {OP1, OP2, OPn−2, file_size, line_count}

fik k

i Li Sizei line_count file_size
i

The method of feature fusion is to combine the se-
lected features  into  a  feature  vector,  and then run the
classifier  for  family  classification.  We  use  a  di-
mensional  binary  vector  to  represent  sample  features.
Given  a  sample  set , and  the  fea-
ture  set 
(OP is  the  opcode),  we  create  a  feature  vector  as  (1),
where  refers to the frequency of opcode  in sample
;  and   refer  to  the  and   
respectively in sample .
 

vik =

{
fik
Li, Sizei

(1)

Table 3 shows the eigenvectors of a sample.
  

Table 3. Feature vectors for malwares

Samples OP1 OP2 ... OPn−2 file_size line_count

1s 11f 12f ...
1,n−2f 1Size 1L

2s 21f 22f ...
2,n−2f 2Size 2L

...
...

...
. . .

...
...

...
ms m1f m2f ...

m,n−2f mSize mL
 
 

 4. Malware family classification
Based  on  the  feature  matrix  generated  by  the

above feature fusion, we use four different classification
models to verify the classification effect of MalFSM, in-
cluding random  forest  (RF),  decision  tree  (DT),  XG-
Boost (XGB), and deep forest (DF), through cross-val-
idation method. They have been widely used in inform-
ation security,  data  mining  and  natural  language  pro-
cessing. More details on classification techniques will be
provided in the evaluation section.

 V. Evaluation
 1. Experimental setup
We implemented our models in python. The exper-

Intel® CoreTM
imental environment  is  configured  as  follows:  1)  Len-
ovo ThinkStation,   i7-6700U CPU @3.40
GHz × 24.0  GB RAM, 2)  64  bit  Windows  10,  and 3)
Pycharm 2020.

1) Data
The experimental data in this paper are from the 2015

Kaggle  Microsoft  Malware  Classification  Challenge,
which aims to classify nine malware families. Since the
labels of the test dataset could not be obtained, we dir-
ectly  cross-validated  the  training  dataset.  The  dataset
contains  nine  malware  families,  namely  Ramnit  (R),
Lollipop (L), Kelihos ver3 (K3), Vundo (V), Simda (S),
Tracur  (T),  Kelihos_ver1  (K1),  Obfuscator.ACY  (O),
Gatak (G). Table 4 and Fig.2 illustrate the data distri-
bution of this dataset.

  
Table 4. Kaggle dataset

Family name 1(R) 2(L) 3(K3) 4(V ) 5(S) 6(T ) 7(K1) 8(O) 9(G) Total

Num 1541 2478 2942 475 42 751 398 1228 1013 10868
 
 

2) Malware classification models
In order  to  evaluate  the  effectiveness  of  the  selec-

ted feature subset,  we adopted four classification mod-
els to conduct experiments in the malware family classi-
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fication stage:
• Random forest is a classifier containing multiple

decision  tree,  and its  output  categories  are  determined
by the  mode number  of  the  categories  output  by indi-
vidual  trees.  RF  is  essentially  a  branch  of  machine
learning – ensemble learning [24].

• Decision tree is a predictive model. It represents
a mapping between object attributes and values [25].

•  Extreme  gradient  boosting  (XGBoost,  short  as
XGB) is  a  kind of  promotion tree  model,  which  integ-
rates many tree models together to form a strong classi-
fier.  The  tree  model  used  is  the  CART regression  tree
model [26].

•  Deep  forest  is  a  deep  learning  model  based  on
DT.  It  has  better  performance  than  other  ensemble
learning methods based on DT [27].

 2. Experimental results and discussion

In this section, we conduct a comprehensive evalu-
ation  of  MalFSM  through  detailed  experiments.  First,
we extract opcode frequency, the size of the file and the
count of lines in the file of each malicious sample from
the original sample set. Secondly, various feature selec-
tion algorithms are applied to the extracted feature set,
and  the  classification  effect  and  model  generalization
ability are verified.  After that,  the correlation between
features  is  visually  analyzed  to  explain  the  reasons  for
selecting a given subset of features. We also use a mal-
ware feature  image  generation  method.  After  the  ex-
tracted features  are  transformed into grayscale  images,
VGG16, and  transformer  models  are  adopted  to  com-
pare  the  classification  effects.  Finally,  we  compared
MalFSM with similar studies.

1)  The  comparison  of  the  experimental  results
based on different features

Through  the  analysis  of  Microsoft  Kaggle  dataset,
we found that there were 735 opcodes in the sample of
the  training  set.  We  also  found  that  the  data  set  of
malware  classification  published  by  Datawhale  &
iFLYTEK  2021A.I.  Developer  Contest  had  the  same
nine malware families as the Kaggle dataset and extrac-
ted  66  opcodes  (“fword” and  “je”  did  not  exist  in  the
Microsoft  dataset)  and  2  metadata  features  [28].  To
identify  the  impact  of  these  features  on  classification
performance, we used RF, DT, XGBoost, and DF. The
experimental results are shown in Table 5.

  
Table 5. The comparison of the experimental results based on different features

Feature
Classifier

RF DT XGBoost DF
Performance

metrics A P R F1 A P R F1 A P R F1 A P R F1

735OPC 97.65%97.09%95.62%96.16%96.55%92.71%92.87%92.65%97.50%96.72%95.46%95.91%97.85%95.64%95.84%95.62%
File_size+Line

_count 93.20%89.27%84.76%86.13%91.55%85.49%82.76%83.77%92.10%88.19%82.95%84.63%91.00%90.13%80.34%81.65%

735OPC+File_size
+Line_count 98.70%98.46%97.13%97.71%97.55%94.36%93.98%94.15%98.35%97.97%96.69%97.25%98.60%98.29%96.96%97.56%

64OPC+File_size
+Line_count 98.48%98.13%96.92%97.45%96.55%92.01%94.88%93.19%98.01%97.17%95.72%96.35%98.50%98.42%96.98%97.62%

Note: A, P, R, and F1 stand for Accuracy, Precision, Recall, and F1-score, respectively.
 
 

As  can  be  seen  from Table 5 ,  the  feature  vector
that  combines  Opcode and metadata features  has  high
classification accuracy, and the similar effect of extract-
ing  all  Opcode  features  can  be  achieved  by  extracting
less than 1/10 opcode features. The accuracy comparis-
on  of  different  features  in  each  classifier  is  shown  in
Fig.3.  The  experimental  results  in  this  section  show
that it  is  not  necessary to select  all  Opcode as  feature
vectors for  malicious  family  classification.  Due  to  re-
dundancy in all opcode feature sets, only a few key op-
codes can  be  selected  to  achieve  the  desired  classifica-

 

The distribution of Kaggle dataset across malware families
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Fig. 2. The  distribution  of  Kaggle  dataset  across  malware

families.    
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tion effect.
2)  The  comparison  of  the  experimental  results

based on different feature selection methods
In  order  to  select  the  optimal  feature  subset,  we

use  six  different  types  of  feature  selection  methods  to
conduct  experiments.  Finally,  18  features  with  the

highest ranking were screened out and the classification
accuracy  reached  98.6%.  The  experimental  results  are
shown in Table 6. Feature sets are [“retn”; “cmp”; “jz”;
“call”; “jnz”; “mov”; “test”; “jmp”; “and”; “or”; “sub”;
“pusha”; “lea”;  “jl”;  “dec”;  “shr”;  “line_count_asm”;
“size_asm”].

  
Table 6. The comparison of the experimental results based on different feature selection methods

Feature
Classifier

RF DT XGBoost DF
Performance

metrics A P R F1 A P R F1 A P R F1 A P R F1

ANOVA 98.35%98.11%96.77%97.36%96.70%91.15%93.52%92.12%97.50%97.23%92.73%94.29%98.45%98.30%96.74%97.45%
Chi-square 98.05%97.79%96.27%96.96%97.45%93.97%94.28%94.11%97.35%97.06%92.34%94.03%98.00%93.42%96.17%94.53%

Pearson correlation
coefficient 97.10%96.45%95.09%95.59%95.05%90.74%91.17%90.71%96.60%96.01%94.29%94.95%97.25%96.65%95.21%95.75%

Mutual information 98.25%98.08%96.76%97.34%96.85%96.35%93.74%94.77%97.80%97.78%93.01%94.73%98.25%98.10%96.68%97.32%
Random forest 98.50%98.30%96.97%97.57%97.30%95.67%95.53%95.58%97.90%95.97%94.74%95.29%98.60%98.40%97.04%97.65%

Logistic regression
(L2) 97.40%97.03%95.30%96.08%95.90%92.91%93.52%93.14%97.00%94.64%91.63%92.87%97.70%95.74%95.69%95.66%

Note: A, P, R, and F1 stand for Accuracy, Precision, Recall, and F1-score, respectively.
 
 

As  can  be  seen  from Table 6 ,  classification  effects
of  different  feature  selection  methods  are  similar.  We
first select  6  feature  subsets  using  each  feature  selec-
tion  algorithm,  and  then  take  their  union.  Finally,  we
select these 18 features using the random forest feature
selection  algorithm  with  the  best  classification  effect.
The accuracy comparison of these 18 features under dif-
ferent  classifiers  is  shown  in Fig.4 .  The  experimental
results in this section show that the feature selection al-
gorithm  is  effective  in  family  classification.  Moreover,
the number  of  extracted  features  can  be  further  re-
duced to 1/50. On this basis, we test the generalization
ability of the model, and find that the model’s general-
ization ability is also good after reducing the number of
features  [29]–[32].  When  fewer  samples  were  trained
(the ratio of  the sample size of  the training dataset  to
the validation dataset was 1:30), approximately 94% ac-
curacy was achieved. The confusion matrix is shown in
Fig.5.  In  addition,  we  applied  these  18  features  to
Datawhale  &  iFLYTEK  2021A.I.  Developer  Contest
dataset for experiments, and the accuracy reached 99.88%

(confusion matrix is shown in Fig.6), which further veri-
fied  the  generalization  ability  of  the  selected  feature
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subset [33].
3) The correlation analysis of the different features
Correlation  measure  between  features  based  on

Pearson correlation  coefficient:  In  this  section,  we  in-

vestigate  the  degree  of  correlation  between  variables
and  analyze  the  correlation  between  18  features.  The
correlation  matrix  of  these  18  features  is  shown  in
Table 7.

  
Table 7. The correlation matrix of different features

retn cmp jz call jnz mov test jmp and or sub pusha lea jl dec shr line_count_asm size_asm
retn 1.00 0.89 0.93 0.94 0.93 0.71 0.94 0.84 0.55 0.53 0.78 0.00 0.89 0.72 0.65 0.37 0.04 0.08
cmp 0.89 1.00 0.96 0.92 0.97 0.75 0.90 0.90 0.62 0.58 0.82 0.02 0.88 0.81 0.68 0.36 0.03 0.06
jz 0.93 0.96 1.00 0.95 0.96 0.72 0.96 0.87 0.57 0.55 0.79 0.00 0.89 0.81 0.69 0.36 0.02 0.05

call 0.94 0.92 0.95 1.00 0.93 0.73 0.92 0.90 0.55 0.50 0.77 0.00 0.95 0.77 0.64 0.32 0.02 0.05
jnz 0.93 0.97 0.96 0.93 1.00 0.74 0.95 0.88 0.57 0.56 0.81 0.00 0.88 0.77 0.69 0.38 0.02 0.05
mov 0.71 0.75 0.72 0.73 0.74 1.00 0.71 0.73 0.53 0.47 0.72 0.00 0.72 0.59 0.53 0.37 0.01 0.03
test 0.94 0.90 0.96 0.92 0.95 0.71 1.00 0.82 0.55 0.54 0.79 0.04 0.86 0.79 0.70 0.42 0.04 0.07
jmp 0.84 0.90 0.87 0.90 0.88 0.73 0.82 1.00 0.63 0.61 0.80 0.00 0.89 0.68 0.62 0.32 0.03 0.06
and 0.55 0.62 0.57 0.55 0.57 0.53 0.55 0.63 1.00 0.90 0.66 0.37 0.58 0.49 0.56 0.48 0.04 0.07
or 0.53 0.58 0.55 0.50 0.56 0.47 0.54 0.61 0.90 1.00 0.64 0.41 0.50 0.39 0.55 0.52 0.05 0.07
sub 0.78 0.82 0.79 0.77 0.81 0.72 0.79 0.80 0.66 0.64 1.00 0.12 0.79 0.64 0.67 0.55 0.05 0.09

pusha 0.00 0.02 0.00 0.00 0.00 0.00 0.04 0.00 0.37 0.41 0.12 1.00 0.00 0.00 0.38 0.61 -0.01 -0.01
lea 0.89 0.88 0.89 0.95 0.88 0.72 0.86 0.89 0.58 0.50 0.79 0.00 1.00 0.72 0.62 0.37 0.02 0.06
jl 0.72 0.81 0.81 0.77 0.77 0.59 0.79 0.68 0.49 0.39 0.64 0.00 0.72 1.00 0.60 0.29 0.03 0.06

dec 0.65 0.68 0.69 0.64 0.69 0.53 0.70 0.62 0.56 0.55 0.67 0.38 0.62 0.60 1.00 0.66 0.03 0.06
shr 0.37 0.36 0.36 0.32 0.38 0.37 0.42 0.32 0.48 0.52 0.55 0.61 0.37 0.29 0.66 1.00 0.02 0.03

line_count_asm 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.03 0.04 0.05 0.05 -0.01 0.02 0.03 0.03 0.02 1.00 0.99
size_asm 0.08 0.06 0.05 0.05 0.05 0.03 0.07 0.06 0.07 0.07 0.09 -0.01 0.06 0.06 0.06 0.03 0.99 1.00

 
 

As  shown  in Table 7 ,  the  meaning  of  correlation
coefficient is as follows:

• When the correlation coefficient is 0, there is no
relationship between the two variables.

• When the correlation coefficient is between 0.00
and 1.00, the two variables are positively correlated.

• When the correlation coefficient is between −1.00
and 0.00, the two variables are negatively correlated.

We may safely draw the conclusion, Pearson correl-
ation coefficient can effectively measure the correlation
of features.

Visualization of feature correlation: In this section,
we visualize feature correlation based on Pearson correl-
ation  coefficient.  First,  we  select  the  feature  subset
composed of 18 features. Secondly, we measure the cor-
relation  between  features.  Visualization  results  using
the  heat  map  and  scatter  plot  are  shown  below. Fig.7
shows  the  correlation  heat  map  between  features.  The
square graph at the intersection represents the correla-
tion between two features in horizontal and vertical co-
ordinates. The darker the color, the higher the correla-
tion. Fig.8  shows  the  scatter  diagram  of  correlation
between features. A single subgraph in the graph is rep-
resented as the correlation between two features in hori-
zontal and vertical coordinates. The graph shows an up-
ward slope, indicating a positive correlation, that is, as
one variable  increases,  the  other  increases  proportion-
ally. A slope of 1 is a perfect positive correlation. And
vice versa. A slope equal to 0 means that there is no re-

lationship  between  the  two  variables,  and  the  data
points are scattered throughout the graph.
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Fig. 7. The heat map of feature correlation.

 

4)  The  comparison  of  the  experimental  results
based on the deep learning models

In this section, we use the deep learning modesl to
conduct a family classification experiment on malicious
samples. First,  the  sample  feature  vectors  formed  ac-
cording  to  the  66  features  extracted  in  Section  V.2.1)
are  transformed  into  gray  scale  images.  For  example,
Fig. 9 is  the  grayscale  representation  of  the  malicious
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sample “0AnoOZDNbPXIr2MRBSCJ.asm.”  After  that,
the popular  VGG16 and transformer  models  are  adop-
ted  for  image  classification.  The  experimental  results

are  shown  in Table 8 .  As  shown  in Table 8 ,  it  can  be
concluded that  the  common  deep  learning  model  con-
sumes a lot of time in the process of model training and
detection, and its accuracy is lower than directly using
ML  classifiers  to  classify  feature  vectors  of  malwares.
Possible reasons are as follows:

a) some important features will be lost when mali-
cious samples are transformed into grayscale images;

b) image  classification  on  memory  and  computa-
tional cost is high, long time consuming [34]. The key of

 

10000

0

20000

0

20000

0
20000

0
20000

0

20000

0

2500

0
5000

0
10000

0

2.5

0

1

0

10000

0

10000

0

500

0

25000

0

10000

0

10000

0

100000

0

1
0
0
0
0 00

2
0
0
0
0 0

2
5
0
0
0 0

2
0
0
0
0 0

2
0
0
0
0 0

2
5
0
0
0 0

2
5
0
0 0

5
0
0
0 0

1
0
0
0
0 0

2
.5 0 1

1
0
0
0
0 0

1
0
0
0
0 0

5
0
0 0

2
5
0
0
0 0

1
0
0
0
0 0

1
0
0
0
0 0

1
0
0
0
0
0 0

retn cmp jz call jnz mov test jmp and or sub pusha lea jl dec shr line_count
_asm

size_
asm

re
tn

cm
p

jz
ca

ll
jn

z
m

o
v

te
st

jm
p

an
d

o
r

su
b

p
u
sh

a
le

a
jl

d
ec

sh
r

li
n
e_

co
u
n
t

_
as

m
si

ze
_

as
m

 
Fig. 8. The scatter plot of feature correlation.

 

 

 
Fig. 9. Grayscale image of “0AnoOZDNbPXIr2MRBSCJ.asm”.

 

   
Table 8. The experimental results based on the deep learning models

Classifier
Metrics

Validation_loss Validation_accuracy Train_accuracy Consuming time
VGG16 0.1345 96.15% 87.31% 1990.65 s

Transformer 0.1023 97.57% 97.64% 342.95 s
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deep learning lies in the ability of learning features and
huge models [35]. Compared with deep neural network,
deep forest  has  fewer  hyperparameters  and higher  per-
formance.

Figs. 10 and  11  show  the  training  and  validation
accuracy graph of VGG16 and transformer respectively.
It  is  worth  mentioning  that  although  the  transformer
model has  a  higher  epochs  than  VGG16,  it  still  con-
sumes  less  time  than  VGG16,  probably  because  the

transformer model can be calculated in parallel [36], [37].
5) Comparison with similar studies
In this section, we compared MalFSM with similar

studies from the aspects of accuracy, features, time cost
and  occupied  space.  As  the  dataset  we  used  was  the
Kaggle  dataset,  we  selected  similar  studies  using  the
same dataset  for  comparison,  and  the  comparison  res-
ults are shown in Table 9.

  
Table 9. Comparison with similar methods

MalFSM Extract all opcode and
metadata features

M. Ahmadi et al.
[16]

A. Darem et al.
[19]

E. Raff et al.
[38]

Q. Le et al.
[22]

Dataset The Kaggle malware dataset from the Microsoft Malware Classification Challenge

Num of features 18 737 1804 4358+Malware
images – 10,000

Classification accuracy
(%) 98.60 98.80 99.77 99.12 97.80 98.20

Feature extraction
time (s) 5907.27 5889.16 183477 1023

(training time)
32087.4

(training time)
6372

(training time)
Model classification

time (s) 7.76 24.9 – 15 804.65 214.32

Occupied space (KB) 1,043 15,120 – – – –
 
 

Compared  with  similar  studies,  MalFSM  has  the
following  advantages:  1)  MalFSM  achieves  an  optimal
compromise between feature space and classification ac-
curacy. The length of the feature vector constructed by
MalFSM is 18, and the classification accuracy is 98.6%.
On the one hand, although the classification accuracy is
slightly lower than similar studies, it can fully meet the
requirements. On the other hand, the feature vectors re-
quired by MalFSM are the most concise in other simil-
ar studies, so it can provide promising classification res-
ults  under  the  condition  of  reducing  the  complexity  of
feature  engineering.  2)  MalFSM  can  effectively  reduce
the  time  and  space  occupation  of  model  classification.
Compared with extracting all opcode and Metadata fea-
tures, the time is similar, the efficiency of classification
is improved  by  69%,  and  the  space  occupation  is  re-

duced by  93.1%;  MalFSM  required  the  shortest  pro-
cessing time compared to similar studies.  3) The hard-
ware platform required  by  MalFSM has  moderate  per-
formance  and  good  universality.  4)  By  extracting  and
mining the  opcode  and  metadata  information  of  mal-
wares, MalFSM provides the analysis of the correlation
between the opcode features of malwares, which can be
extended to  the  homologous  malware  family  classifica-
tion.

 VI. Conclusions and Future Work
Detection and  classification  of  malware  is  a  com-

plex process that requires selecting a subset of discrim-
inatory features from a dataset. In this paper, we filter
out relevant feature subset by comparing a series of fea-
ture selection algorithms to remove redundant features.
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Fig. 10. Training and validation accuracy graph of VGG16.
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Fig. 11. Training and  validation  accuracy  graph  of  Trans-

former.    
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In  addition,  the  correlation  between  opcode  features  is
analyzed to explain the selection of feature subset. For
this  purpose,  we  propose  the  MalFSM  framework,
which features the identification of correlations between
features, the ranking of selected features subset, and the
prediction  of  the  performance  of  the  selected  features
subset on different classifiers. In industrial applications,
the  trade-off  between  complexity  and  performance  can
be a key issue. Using a purified subset of features saves
time in feature extraction and malware family classifica-
tion, and  it  is  necessary  to  collect  core  common  fea-
tures of malware samples.

The results  show  that  the  framework  can  con-
struct a lightweight feature matrix according to the se-
lected opcodes  as  well  as  file_size  and  line_count  fea-
tures.  Experimental  results  show  that  the  lightweight
eigenmatrix  can  not  only  reduce  the  time  and  space
complexity, but  also  achieve  the  spatio-temporal  equi-
librium,  and  the  classification  effect  is  not  bad.  The
main contribution of this paper is to analyze the correl-
ation among opcode features,  which provides a reason-
able  explanation  for  researchers  to  select  a  subset  of
features. Compared with the extraction process of com-
plete opcode features,  the time consumption and space
occupation  of  model  classification  are  reduced  and  the
analysis efficiency is significantly improved.

In the future,  we will  focus on the following three
directions [39]: 1) Research on dynamic analysis and hy-
brid analysis of malware; 2) Extracting various features
of  malware  for  multi-dimensional  analysis;  3)  Research
on adversarial  attack  and  robustness  analysis  of  mali-
cious codes [40], [41].
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