
MalFSM: Feature Subset Selection Method for
Malware Family Classification

KONG Zixiao1, XUE Jingfeng1, WANG Yong1, ZHANG Qian1, HAN Weijie2, and ZHU Yufen2

(1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
(2. School of Space Information, Space Engineering University, Beijing 101416, China)

 Abstract — Malware detection has been a hot spot in
cyberspace security and academic research. We investig-
ate the correlation between the opcode features of mali-
cious samples and perform feature extraction, selection
and fusion by filtering redundant features, thus alleviat-
ing the dimensional disaster problem and achieving effi-
cient identification of malware families for proper classi-
fication. Malware authors use obfuscation technology to
generate a large number of malware variants, which im-
poses a heavy analysis burden on security researchers and
consumes a lot of resources in both time and space. To
this end, we propose the MalFSM framework. Through
the feature selection method, we reduce the 735 opcode
features contained in the Kaggle dataset to 16, and then
fuse on metadata features (count of file lines and file size)
for a total of 18 features, and find that the machine learn-
ing classification is efficient and high accuracy. We ana-
lyzed the correlation between the opcode features of mali-
cious samples and interpreted the selected features. Our
comprehensive experiments show that the highest classi-
fication accuracy of MalFSM can reach up to 98.6% and
the classification time is only 7.76 s on the Kaggle mal-
ware dataset of Microsoft.

 Key words — Malware classification, Machine learn-

ing, Feature selection, Feature correlation.

 I. Introduction
In the era of network space, malware is designed

specifically by malware coders to damage computers or
access them illegally, which has grown rapidly. An In-
ternet security threat report from McAfee Labs [1]
shows that 419 malwares per minute were discovered in
the second quarter of 2020, an increase of nearly 12 per-
cent from the first quarter. As computers and networks
become more and more indispensable to daily life, the

threat of malware is growing. For example, Trickbot, a
banking Trojan discovered in September 2016, still
topped the global threat index by Checkpoint in Octo-
ber 2021 [2]. With the widespread use of smartphones,
not only desktops and laptops but even mobile phones
and devices connected to the Internet of things can be
attacked by malware. Attackers can make a fortune,
and are hard to track. Therefore, the analysis and de-
tection of malware have become a difficult task for anti-
malware researchers.

Therefore, this paper proposes a lightweight frame-
work of feature subset selection method for malware
family classification (MalFSM). The implementation
process of MalFSM is as follows: First of all, opcode se-
quences are extracted from the disassembled codes of
malicious datasets. Take the frequency of opcode as the
eigenvalue to construct a simple feature vector. Then
the feature selection algorithm is utilized to extract the
top-n opcode features. After fusion of selected feature
subset and the metadata features, generated character-
istic matrix of the original sample for automatic classi-
fication. Constructing a lightweight feature set can ef-
fectively reduce the classification time and space of a
large number of sample sets.

We evaluate the MalFSM on the Kaggle dataset
provided by the 2015 Microsoft Malware Classification
Challenge with satisfactory results. In addition, com-
pared with other studies, the classification time is
shortened obviously and the space occupancy rate is
significantly reduced. To sum up, our main contribu-
tions to this paper are as follows:

1) We propose a malware feature extraction, selec-
tion, and fusion framework named MalFSM. This meth-
od can help analysts filter out the most relevant fea-

Manuscript Received Mar. 9, 2022; Accepted May 13, 2022. This work was supported by the National Natural Science Foundation
of China (62172042), Major Scientific and Technological Innovation Projects of Shandong Province (2020CXGC010116), and the
National Key Research & Development Program of China (2020YFB1712104).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2022.00.038

Chinese Journal of Electronics
Vol.32, No.1, Jan. 2023

tures without the need for high-performance hardware
resources, and provides reference and interpretation for
malicious code researchers to choose opcode in the fu-
ture. Due to the large scale and quantity of features in
the complete dataset, feature subsets are selected ac-
cording to the feature selection methods, and a light-
weight feature matrix is constructed. The experimental
results show that the lightweight eigenmatrix can not
only reduce the time and space complexity, and reach
the spatio-temporal equilibrium, but also achieve high
classification accuracy.

2) Based on this, the superiority of the method in
terms of time and space overhead is experimentally
verified. The classification accuracy can reach 98.6%.
Compared with relevant studies, the classification time
is reduced by 69%, and the space occupation is reduced
by 93.1%. MalFSM can provide accuracy similar to that
of the first prize in the competition, while effectively
simplifying the feature space, and is superior to the pre-
vious algorithm in terms of efficiency. When using a
smaller training set for classification, our accuracy rate
is around 94%, with good generalization ability.

3) The extracted opcode features are visualized and
transformed into grayscale images. The Transformer
model and VGG-16 model are used for classification.
Compared with the machine learning classification al-
gorithm, the classification effect is slightly inferior but
has excessive time overhead.

The remainder of this paper is organized as follows:
Section II introduces the necessary background know-
ledge and summary of related work. Section III de-
scribes the overall implementation of the MalFSM. The
experimental details are presented in Section IV. Then
evaluate it in Section V. Finally, Section VI concludes
the paper and points out the topics to be studied in the
future.

 II. Background and Related Work
Detecting and classifying malware is a constant

battle for researchers in cyberspace security. In recent
years, malware analysis and detection techniques have
developed continuously. In order to better understand
its development, we first briefly introduce the research
background and related work.

 1. Background
1) Analysis method of malware
Malicious code, also known as malware, plays a

major role in most computer breaches. Any software
that causes damage to a user, computer, or network in
some way can be considered malicious code, including
viruses, ransomware, trojans, worms, etc. As malware
researchers, we need to understand how to identify ma-
licious code and analyze it. Malicious code analysis is

the art of dissecting malicious code. It can be divided
into static analysis, dynamic analysis, and hybrid ana-
lysis according to whether malicious programs actually
run.

Static analysis techniques examine executables
without malicious code running. Based on static analys-
is, we can extract important features directly from bin-
ary files, including DLL, API, Opcode, strings, bytes n-
gram, and so on. By applying machine learning or deep
learning technology to static features, the static meth-
od can detect and classify malicious software quickly
and accurately. But it is largely ineffective against com-
plex malicious code and might miss some important be-
havior [3].

In contrast to static analysis, dynamic analysis
techniques involve running malicious code and ob-
serving behavior on the system [4]. Before running mali-
cious programs, ensure that a secure environment is es-
tablished to prevent risks to the system and network.
Typical dynamic analysis tools include Cuckoo Sand-
box, CWSandbox, and Joe Sandbox. In cyber security,
the sandbox is the tool used to handle untrusted files or
applications in an isolated environment. For instance,
Hu et al. [5] used the Cuckoo Sandbox to process mal-
ware samples. In addition to the sandbox virtual envir-
onment, you can also use the debugger to check the be-
havior and effects of a malicious program when it runs.

Static analysis and dynamic analysis have their
own advantages and disadvantages. Static analysis
saves the actual running time of malicious code, and
some ransomware can detect sandbox virtual environ-
ment so that dynamic analysis can not be used. Dy-
namic analysis is more effective at obfuscating malware,
but it consumes a lot of time and resources. In sum-
mary, using dynamic and static hybrid analysis techno-
logy can better analyze and detect malicious code. Han
et al. [6] first attempted to study the difference and re-
lationship between static and dynamic API sequences of
malicious code. They proposed the MalDAE framework,
which fuses the dynamic and static API sequence asso-
ciations of malicious programs into a hybrid sequence
based on semantic mapping to construct a hybrid fea-
ture vector space. On the basis of achieving high accur-
acy and classification rate, comprehensible interpreta-
tion is provided.

2) Methods of feature selection
According to the form of feature selection [7],

methods can be divided into three categories: Filter,
Wrapper, and Embedded [8]. Common models for each
of these three methods are listed below:

a) Filter
i) Pearson correlation coefficient
Pearson correlation coefficient is used to measure

MalFSM: Feature Subset Selection Method for Malware Family Classification 27

the degree of correlation between two variables, and its
value is between −1 and 1 [9]. In general, the correla-
tion strength of variables can be judged by the follow-
ing range of correlation coefficients:

• 0.8–1.0, very strong correlation;
• 0.6–0.8, strong correlation;
• 0.4–0.6, moderate correlation;
• 0.2–0.4, weak correlation;
• 0.0–0.2, very weak correlation or no correlation.
ii) Chi-square
Chi-square selection is a supervised feature selec-

tion method commonly used in statistics. It determines
the correlation between the feature and the real label
by chi-square test and then determines whether to se-
lect it [10].

χ2

We can use the Chi-square test to test the inde-
pendence of features and dependent variables. If the in-
dependence is high, it means that there is little relation-
ship between the two, and features can be discarded. If
the independence is small and the correlation between
the two is high, it indicates that the feature will have a
relatively large impact on the corresponding variable
and should be selected. When the Chi-square test is ap-
plied to feature selection in practice, it is not necessary
to know the degree of freedom and chi-square distribu-
tion, but only to sort according to the calculated .
The larger the value, the better. Pick the largest pile,
and you’re done with the Chi-square test for feature ex-
traction. For classification problems, filtering methods
generally assume that features independent of labels are
irrelevant features, while the Chi-square test can pre-
cisely test independence, so it is suitable for feature se-
lection. If the result is that a feature is independent of
the label, the feature can be removed.

iii) Mutual information
Mutual information is a useful information meas-

ure in information theory. It can be regarded as the
amount of information contained in a random variable
about another random variable, or the uncertainty re-
duced by a random variable due to the fact that anoth-
er random variable is known [11].

iv) Variance threshold
Variance threshold: First calculate the variance of

each feature, and then select features whose variance is
greater than the threshold based on the threshold. To
eliminate the features with variance of 0 first, we will
only use variance filtering with threshold of 0 or small
threshold to eliminate some obviously unused features
first, and then we will choose better feature selection
methods to continue to reduce the number of featu-
res [12].

v) F-test (ANOVA)
F-test, the most common alias is called joint hypo-

thesis test. Used to test the mean difference signific-
ance between two and more samples [13].

b) Wrapper
Recursive feature elimination (RFE): The main

idea of RFE is to build the model over and over again,
pick out the best (or worst) features (based on coeffi-
cients), put those features aside, and repeat the process
for the rest of the features until all the features are iter-
ated. The order that is eliminated in this process is the
ordering of features.

The stability of RFE depends largely on which
model is used at the bottom of the iteration. For ex-
ample, RFE adopts linear regression (LR), and the re-
gression without regularization is unstable, so RFE is
unstable. If lasso/ridge is used and the regularized re-
gression is stable, then RFE is stable [14].

c) Embedded
Embedded is a method to let the algorithm decide

which features to use, that is, feature selection is integ-
rated with the training process of the learner. They are
completed in the same optimization process, in other
words, feature selection is automatically carried out in
the training process of the learner. First, some machine
learning algorithms (e.g. RF, LR) are used for training
to obtain the weight coefficients of each feature [15].
Features are selected from large to small according to
the weight coefficients, which often represent some con-
tribution or importance of features to the model. The
process is similar to Filter, except that the coefficients
are trained.

L1 L2 L1 L2

i) Feature selection method based on penalty term:
 norm, norm, norm and norm may also be

used simultaneously.
ii) Feature ordering based on machine learning

model: decision tree, random forest, etc.
Table 1 summarizes the feature selection methods.
 2. Related work
As the research direction of this paper is the fea-

ture subset selection technology of malware family clas-
sification, this part simply summarizes the work re-
lated to malware classification and feature selection (as
shown in Table 2).

Modern malware is designed to have mutational
characteristics, namely polymorphism, and metamorph-
osis, which leads to tremendous growth in the number
of variants in the malware sample. Classifying malware
samples by their behavior is critical to the computer se-
curity community because they receive a large number
of malwares each day, and the feature extraction pro-
cess is often based on the malicious portion of the mal-
ware family. Ahmadi et al. [16] proposed a new tech-
nique to extract PE structural features to accurately
classify malware. Based on feature extraction, the most

28 Chinese Journal of Electronics 2023

effective combination of feature categories is output by
feature fusion algorithm to achieve a compromise
between accuracy and the number of features. However,
this paper did not simplify the features and collect the
core common features of each family sample.

Ni et al. [17] proposed a malware classification al-
gorithm MCSC (malware classification using SimHash
and CNN) utilizing static analysis, which converts dis-
assembled malware into grayscale images based on Sim-
Hash. Then the convolutional neural network is used for

family classification. In this paper, a malware feature
extraction algorithm combining opcode sequence and
LSH is proposed, and the feature is converted into fin-
gerprint images using visualization technology. In addi-
tion, multi-hash, major block selection, and bilinear in-
terpolation are adopted to improve the classification al-
gorithm. However, the proposed method needs further
improvement in terms of performance and robustness.

For large-scale malware datasets, Han et al. [18]
proposed a parallel classification framework based on

Table 1. Feature selection method

Feature selection
method

Filter

Pearson correlation coefficient Only linear correlations can be captured
Chi-square Dedicated to classification algorithms, capture correlation

Mutual information
classification Can capture any correlation

F-test (ANOVA) Only linear correlation can be captured, requiring data to follow normal
distribution

Variance threshold The variance threshold can be entered to return a new eigenmatrix whose
variance is greater than the threshold

Wrapper Recursive feature elimination Iterate over all the features and build the model repeatedly to select the best
features

Embedded
Feature selection method

based on penalty Select features based on penalty terms

Feature order based on ML The features are sorted according to machine learning models

Table 2. Summary of the existing malware detection techniques

Author Analysis
method Dataset Features Time consuming Merits Demerits Accuracy

M. Ahmadi
et al. [16]

Static &
Machine
learning

Microsoft
Malware
Challenge
dataset

Hex dump-based
features, features
extracted from

disassembled files

Feature extraction
time is 5656 s

Providing a trade-
off between

accuracy and the
number of features

Complex feature
extraction and
classification;

Time consuming;
No robustness

testing

99.77%

S. Ni
et al. [17]

Static &
Machine
learning

Microsoft
Malware
Challenge
dataset

Opcode

Identifying a
malware sample
takes 1.41 s in

average. Feature
extraction time is

NaN

Proposing a novel
algorithm to extract

features; High
accuracy

Lack of high-
performance
computing

99.26%

W. Han
et al. [18]

Static &
Machine
learning

Microsoft
Malware
Challenge
dataset

Top-N opcode list

Feature extraction
and generating
opcode feature
vector time is

3563.42 s

Proposed a parallel
process framework

Less characteristic
variety 98.53%

A. Darem
et al.[19]

Static & Deep
learning

Microsoft
Malware
Challenge
dataset

Opcode, segment,
asm pixed count

and other features

Training and
detection time of
model is 1038 s

High accuracy;
Integrates an
ensemble deep

learning, feature
engineering, image
transformation and

processing
techniques

The feature
extraction process
will take a large

scale of time

99.12%

I. Almomani
et al. [20]

Static &
Machine
learning

6190 benign
apps & 5500
malware apps

Permissions
The fastest

execution time of
model is 0.1 s

Demonstrate the
usefulness of feature

selection

Solely on a single
feature About 85%

G. Sun
et al. [21]

Static & Deep
learning

Microsoft
Malware
Challenge
dataset

Opcode NaN
High accuracy;

Excellent
generalization

Less characteristic
variety 99.5%

MalFSM: Feature Subset Selection Method for Malware Family Classification 29

multi-core collaboration and active recommendation.
The framework can run on PC without high-perform-
ance hardware resources. In addition, this method can
reduce processing time and improve efficiency while
achieving high classification accuracy. However, the fea-
ture types considered in this paper are relatively single,
so multidimensional feature analysis can be further ad-
opted.

In order to deal with the major threat brought by
malware, Darem et al. [19] proposed a semi-supervised
approach integrating deep learning, feature engineering,
image transformation, and processing techniques for
fuzzy malware detection. This method extracts features
from assembler files to form images. Then, integrated
deep learning is fine-tuned to achieve efficient learning.
However, the transformed images in this study are
grayscale images, so whether this method can be ap-
plied to color images is worth studying.

Due to the rapid growth of Android malware and
the impact of high-quality features on machine learning
performance, Jemal Abawajy et al. [20] regarded fea-
ture selection as a quadratic programming problem and
studied the effect of feature selection on malware detec-
tion under intelligent IoT platform. In this paper, filter-
based feature selection analysis is carried out for An-
droid malware. The usefulness of feature selection is
proved by empirical evaluation of the prediction accur-
acy of feature selection techniques using several learn-
ing algorithms that do not perform feature subset selec-
tion internally. However, this study is only based on the
functions of a single component of the Android system
(namely permissions), and it also needs to analyze per-
missions combination and API features.

Sun et al. [21] proposed a new malicious code visu-
alization method, RMVC, combining RNN and CNN

technology. The paper considers not only the original
information of malware, but also the ability to asso-
ciate the raw code with temporal characteristics. Then,
minhash is adopted to generate feature images from the
fusion of the original code and the RNN prediction
code. Finally, CNN is trained to classify images with
excellent generalization ability. However, the paper does
not consider large datasets and dynamic analysis.

 III. Overview
 1. Motivation
High-quality features are vital for malware classific-

ation, this is because the original feature set extracted
from malicious samples is very large. For example, Le et
al. [22] extracted 10,000 features from the Kaggle data-
set, and Hu et al. [23] extracted 2000 features from the
Kaggle dataset, Ahmadi et al. [16] extracted 1804 fea-
tures from the Kaggle data set. In general, some of
these features are key to the classification of malware
families, while others are not. In addition, too many
features can lead to model complexity and dimension
disaster problems. Moreover, these features tend to be
highly dimensional and redundant, and may not be re-
lated to the malware family classification. Furthermore,
a large number of redundant features are of little value
to the performance of learning machine learning al-
gorithms and cost time and CPU. Therefore, these un-
wanted features should be removed from the feature set
used to train machine learning models.

 2. Overall framework
MalFSM mainly consists of four modules, namely,

data preprocessing (including feature extraction), fea-
ture selection, feature fusion and classification, as
shown in the Fig.1.

① Preprocessing

(Feature extraction)

Dataset

(Malware

samples)

.asm &

.bytes

Chi-square,

mutual

information...

Feature

selection

② ③ Feature

fusion

Training

set

Testing

set

Class 1,..., Class n

④
Classifiers

Random forest,

decision tree,

XGBoost...

Fig. 1. The framework of MalFSM.

1) Preprocessing
The function of this module is to extract static fea-

tures from malicious samples. In this paper, we extract
the metadata features (namely the size of the file and

30 Chinese Journal of Electronics 2023

the count of lines in the file) and the opcode features
(the number of opcode occurrences is taken as the op-
code feature).

2) Feature selection
The function of this module is to purify feature

vectors by removing redundant opcode features.
3) Feature fusion
Opcode features and metadata features are fused to

form a feature matrix.
4) Classification
Based on the above generated feature matrix, we

use four different classification models to verify the clas-
sification effect of MalFSM through cross-validation.

 IV. Implementation
 1. Preprocessing
The data source for this article is the Kaggle mal-

ware classification dataset released by Microsoft, includ-
ing “.asm” and “.bytes” samples. The Kaggle dataset is
the disassembled files that can extract the required
metadata features and opcode features directly from the
sample assembler. Save the statistical results in a CSV
file.

 2. Feature selection
The classification results of different feature selec-

tion algorithms are compared. Feature subsets are ob-
tained by sorting different algorithms, and then the fea-
ture selection algorithm with the highest classification
accuracy is selected to select the optimal feature subset.
The final feature subset is the optimal feature set after
removing redundant features.

 3. Feature fusion

m× n

S = {s1, s2, . . . , sm}
F = {OP1, OP2, OPn−2, file_size, line_count}

fik k

i Li Sizei line_count file_size
i

The method of feature fusion is to combine the se-
lected features into a feature vector, and then run the
classifier for family classification. We use a di-
mensional binary vector to represent sample features.
Given a sample set , and the fea-
ture set
(OP is the opcode), we create a feature vector as (1),
where refers to the frequency of opcode in sample
; and refer to the and
respectively in sample .

vik =

{
fik
Li, Sizei

(1)

Table 3 shows the eigenvectors of a sample.

Table 3. Feature vectors for malwares

Samples OP1 OP2 ... OPn−2 file_size line_count

1s 11f 12f ...
1,n−2f 1Size 1L

2s 21f 22f ...
2,n−2f 2Size 2L

...
...

...
. . .

...
...

...
ms m1f m2f ...

m,n−2f mSize mL

 4. Malware family classification
Based on the feature matrix generated by the

above feature fusion, we use four different classification
models to verify the classification effect of MalFSM, in-
cluding random forest (RF), decision tree (DT), XG-
Boost (XGB), and deep forest (DF), through cross-val-
idation method. They have been widely used in inform-
ation security, data mining and natural language pro-
cessing. More details on classification techniques will be
provided in the evaluation section.

 V. Evaluation
 1. Experimental setup
We implemented our models in python. The exper-

Intel® CoreTM
imental environment is configured as follows: 1) Len-
ovo ThinkStation, i7-6700U CPU @3.40
GHz × 24.0 GB RAM, 2) 64 bit Windows 10, and 3)
Pycharm 2020.

1) Data
The experimental data in this paper are from the 2015

Kaggle Microsoft Malware Classification Challenge,
which aims to classify nine malware families. Since the
labels of the test dataset could not be obtained, we dir-
ectly cross-validated the training dataset. The dataset
contains nine malware families, namely Ramnit (R),
Lollipop (L), Kelihos ver3 (K3), Vundo (V), Simda (S),
Tracur (T), Kelihos_ver1 (K1), Obfuscator.ACY (O),
Gatak (G). Table 4 and Fig.2 illustrate the data distri-
bution of this dataset.

Table 4. Kaggle dataset

Family name 1(R) 2(L) 3(K3) 4(V) 5(S) 6(T) 7(K1) 8(O) 9(G) Total

Num 1541 2478 2942 475 42 751 398 1228 1013 10868

2) Malware classification models
In order to evaluate the effectiveness of the selec-

ted feature subset, we adopted four classification mod-
els to conduct experiments in the malware family classi-

MalFSM: Feature Subset Selection Method for Malware Family Classification 31

fication stage:
• Random forest is a classifier containing multiple

decision tree, and its output categories are determined
by the mode number of the categories output by indi-
vidual trees. RF is essentially a branch of machine
learning – ensemble learning [24].

• Decision tree is a predictive model. It represents
a mapping between object attributes and values [25].

• Extreme gradient boosting (XGBoost, short as
XGB) is a kind of promotion tree model, which integ-
rates many tree models together to form a strong classi-
fier. The tree model used is the CART regression tree
model [26].

• Deep forest is a deep learning model based on
DT. It has better performance than other ensemble
learning methods based on DT [27].

 2. Experimental results and discussion

In this section, we conduct a comprehensive evalu-
ation of MalFSM through detailed experiments. First,
we extract opcode frequency, the size of the file and the
count of lines in the file of each malicious sample from
the original sample set. Secondly, various feature selec-
tion algorithms are applied to the extracted feature set,
and the classification effect and model generalization
ability are verified. After that, the correlation between
features is visually analyzed to explain the reasons for
selecting a given subset of features. We also use a mal-
ware feature image generation method. After the ex-
tracted features are transformed into grayscale images,
VGG16, and transformer models are adopted to com-
pare the classification effects. Finally, we compared
MalFSM with similar studies.

1) The comparison of the experimental results
based on different features

Through the analysis of Microsoft Kaggle dataset,
we found that there were 735 opcodes in the sample of
the training set. We also found that the data set of
malware classification published by Datawhale &
iFLYTEK 2021A.I. Developer Contest had the same
nine malware families as the Kaggle dataset and extrac-
ted 66 opcodes (“fword” and “je” did not exist in the
Microsoft dataset) and 2 metadata features [28]. To
identify the impact of these features on classification
performance, we used RF, DT, XGBoost, and DF. The
experimental results are shown in Table 5.

Table 5. The comparison of the experimental results based on different features

Feature
Classifier

RF DT XGBoost DF
Performance

metrics A P R F1 A P R F1 A P R F1 A P R F1

735OPC 97.65%97.09%95.62%96.16%96.55%92.71%92.87%92.65%97.50%96.72%95.46%95.91%97.85%95.64%95.84%95.62%
File_size+Line

_count 93.20%89.27%84.76%86.13%91.55%85.49%82.76%83.77%92.10%88.19%82.95%84.63%91.00%90.13%80.34%81.65%

735OPC+File_size
+Line_count 98.70%98.46%97.13%97.71%97.55%94.36%93.98%94.15%98.35%97.97%96.69%97.25%98.60%98.29%96.96%97.56%

64OPC+File_size
+Line_count 98.48%98.13%96.92%97.45%96.55%92.01%94.88%93.19%98.01%97.17%95.72%96.35%98.50%98.42%96.98%97.62%

Note: A, P, R, and F1 stand for Accuracy, Precision, Recall, and F1-score, respectively.

As can be seen from Table 5 , the feature vector
that combines Opcode and metadata features has high
classification accuracy, and the similar effect of extract-
ing all Opcode features can be achieved by extracting
less than 1/10 opcode features. The accuracy comparis-
on of different features in each classifier is shown in
Fig.3. The experimental results in this section show
that it is not necessary to select all Opcode as feature
vectors for malicious family classification. Due to re-
dundancy in all opcode feature sets, only a few key op-
codes can be selected to achieve the desired classifica-

The distribution of Kaggle dataset across malware families

0
500

1000
1500
2000
2500
3000
3500

1
(R

am
ni

t)

2
(L

ol
lip

op
)

3
(K

el
ih

os
_v

er
3)

4
(V

un
do

)

5
(S

im
da

)

6
(T

ra
cu

r)

7
(K

el
ih

os
_v

er
1)

8
(O

bf
us

ca
to

r.
A

C
Y

)

9
(G

at
ak

)

Number of each family

Fig. 2. The distribution of Kaggle dataset across malware

families.

86%

88%

90%

92%

94%

96%

98%

100%

66OPC+File_size+Line_count

A

RF

A

DT

A

XGBoost

A

DF

735OPC

735OPC+File_size+Line_count

File_size+Line_count
Fig. 3. The comparison of accuracy based on different fea-

tures in different classifiers.

32 Chinese Journal of Electronics 2023

tion effect.
2) The comparison of the experimental results

based on different feature selection methods
In order to select the optimal feature subset, we

use six different types of feature selection methods to
conduct experiments. Finally, 18 features with the

highest ranking were screened out and the classification
accuracy reached 98.6%. The experimental results are
shown in Table 6. Feature sets are [“retn”; “cmp”; “jz”;
“call”; “jnz”; “mov”; “test”; “jmp”; “and”; “or”; “sub”;
“pusha”; “lea”; “jl”; “dec”; “shr”; “line_count_asm”;
“size_asm”].

Table 6. The comparison of the experimental results based on different feature selection methods

Feature
Classifier

RF DT XGBoost DF
Performance

metrics A P R F1 A P R F1 A P R F1 A P R F1

ANOVA 98.35%98.11%96.77%97.36%96.70%91.15%93.52%92.12%97.50%97.23%92.73%94.29%98.45%98.30%96.74%97.45%
Chi-square 98.05%97.79%96.27%96.96%97.45%93.97%94.28%94.11%97.35%97.06%92.34%94.03%98.00%93.42%96.17%94.53%

Pearson correlation
coefficient 97.10%96.45%95.09%95.59%95.05%90.74%91.17%90.71%96.60%96.01%94.29%94.95%97.25%96.65%95.21%95.75%

Mutual information 98.25%98.08%96.76%97.34%96.85%96.35%93.74%94.77%97.80%97.78%93.01%94.73%98.25%98.10%96.68%97.32%
Random forest 98.50%98.30%96.97%97.57%97.30%95.67%95.53%95.58%97.90%95.97%94.74%95.29%98.60%98.40%97.04%97.65%

Logistic regression
(L2) 97.40%97.03%95.30%96.08%95.90%92.91%93.52%93.14%97.00%94.64%91.63%92.87%97.70%95.74%95.69%95.66%

Note: A, P, R, and F1 stand for Accuracy, Precision, Recall, and F1-score, respectively.

As can be seen from Table 6 , classification effects
of different feature selection methods are similar. We
first select 6 feature subsets using each feature selec-
tion algorithm, and then take their union. Finally, we
select these 18 features using the random forest feature
selection algorithm with the best classification effect.
The accuracy comparison of these 18 features under dif-
ferent classifiers is shown in Fig.4 . The experimental
results in this section show that the feature selection al-
gorithm is effective in family classification. Moreover,
the number of extracted features can be further re-
duced to 1/50. On this basis, we test the generalization
ability of the model, and find that the model’s general-
ization ability is also good after reducing the number of
features [29]–[32]. When fewer samples were trained
(the ratio of the sample size of the training dataset to
the validation dataset was 1:30), approximately 94% ac-
curacy was achieved. The confusion matrix is shown in
Fig.5. In addition, we applied these 18 features to
Datawhale & iFLYTEK 2021A.I. Developer Contest
dataset for experiments, and the accuracy reached 99.88%

(confusion matrix is shown in Fig.6), which further veri-
fied the generalization ability of the selected feature

93%

94%

95%

96%

97%

98%

99%

ANOVA

A

RF

A

DT

A

XGBoost

A

DF

Mutual information

Chi-square

Random forest

Pearson correlation coefficient

LogisticRegression (L2)
Fig. 4. The comparison of accuracy based on different fea-

ture selection methods in different classifiers.

1 2 3 4 5 6

Predicted label

T
ru

e
la

b
el

7 8 9

13 17 0 0 0 2 0 7 884

128 21 2 5 0 50 0 886 2

4 0 0 1 0 15 321 0 1

7 29 0 7 0 606 0 0 11

2 14 1 5 0 9 0 11 0

0 34 10 308 0 13 0 23 0

0 0 3692 0 0 6 0 0 0

72 2093 2 0 0 8 0 1 0

1295

9

8

7

6

5

4

3

2

1 12 22 3 0 25 6 14 0

0

500

1000

1500

2000

2500

Fig. 5. Confusion matrix (train dataset: test dataset=1:30).

1 2 3 4 5 6

Predicted label

T
ru

e
la

b
el

7 8 9

0

0

0

0

0

0

0

2

81

0

1

0

0

0

0

0

104

0

0

0

0

0

0

0

167

0

0

0

0

0

0

0

1318

0

0

0

0

0

0

0

1155

0

0

0

0

0

1

0

1479

0

0

0

0

2

0

0

1513

0

0

0

0

0

0

0

2223

0

0

0

0

0

0

6

1948

0

0

0

0

0

0

0

0

9

8

7

6

5

4

3

2

1

0

500

250

750

1500

1000

1250

1750

2000

Fig. 6. Confusion matrix (Datawhale & iFLYTEK 2021A.I.

Developer Contest datase).

MalFSM: Feature Subset Selection Method for Malware Family Classification 33

subset [33].
3) The correlation analysis of the different features
Correlation measure between features based on

Pearson correlation coefficient: In this section, we in-

vestigate the degree of correlation between variables
and analyze the correlation between 18 features. The
correlation matrix of these 18 features is shown in
Table 7.

Table 7. The correlation matrix of different features

retn cmp jz call jnz mov test jmp and or sub pusha lea jl dec shr line_count_asm size_asm
retn 1.00 0.89 0.93 0.94 0.93 0.71 0.94 0.84 0.55 0.53 0.78 0.00 0.89 0.72 0.65 0.37 0.04 0.08
cmp 0.89 1.00 0.96 0.92 0.97 0.75 0.90 0.90 0.62 0.58 0.82 0.02 0.88 0.81 0.68 0.36 0.03 0.06
jz 0.93 0.96 1.00 0.95 0.96 0.72 0.96 0.87 0.57 0.55 0.79 0.00 0.89 0.81 0.69 0.36 0.02 0.05

call 0.94 0.92 0.95 1.00 0.93 0.73 0.92 0.90 0.55 0.50 0.77 0.00 0.95 0.77 0.64 0.32 0.02 0.05
jnz 0.93 0.97 0.96 0.93 1.00 0.74 0.95 0.88 0.57 0.56 0.81 0.00 0.88 0.77 0.69 0.38 0.02 0.05
mov 0.71 0.75 0.72 0.73 0.74 1.00 0.71 0.73 0.53 0.47 0.72 0.00 0.72 0.59 0.53 0.37 0.01 0.03
test 0.94 0.90 0.96 0.92 0.95 0.71 1.00 0.82 0.55 0.54 0.79 0.04 0.86 0.79 0.70 0.42 0.04 0.07
jmp 0.84 0.90 0.87 0.90 0.88 0.73 0.82 1.00 0.63 0.61 0.80 0.00 0.89 0.68 0.62 0.32 0.03 0.06
and 0.55 0.62 0.57 0.55 0.57 0.53 0.55 0.63 1.00 0.90 0.66 0.37 0.58 0.49 0.56 0.48 0.04 0.07
or 0.53 0.58 0.55 0.50 0.56 0.47 0.54 0.61 0.90 1.00 0.64 0.41 0.50 0.39 0.55 0.52 0.05 0.07
sub 0.78 0.82 0.79 0.77 0.81 0.72 0.79 0.80 0.66 0.64 1.00 0.12 0.79 0.64 0.67 0.55 0.05 0.09

pusha 0.00 0.02 0.00 0.00 0.00 0.00 0.04 0.00 0.37 0.41 0.12 1.00 0.00 0.00 0.38 0.61 -0.01 -0.01
lea 0.89 0.88 0.89 0.95 0.88 0.72 0.86 0.89 0.58 0.50 0.79 0.00 1.00 0.72 0.62 0.37 0.02 0.06
jl 0.72 0.81 0.81 0.77 0.77 0.59 0.79 0.68 0.49 0.39 0.64 0.00 0.72 1.00 0.60 0.29 0.03 0.06

dec 0.65 0.68 0.69 0.64 0.69 0.53 0.70 0.62 0.56 0.55 0.67 0.38 0.62 0.60 1.00 0.66 0.03 0.06
shr 0.37 0.36 0.36 0.32 0.38 0.37 0.42 0.32 0.48 0.52 0.55 0.61 0.37 0.29 0.66 1.00 0.02 0.03

line_count_asm 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.03 0.04 0.05 0.05 -0.01 0.02 0.03 0.03 0.02 1.00 0.99
size_asm 0.08 0.06 0.05 0.05 0.05 0.03 0.07 0.06 0.07 0.07 0.09 -0.01 0.06 0.06 0.06 0.03 0.99 1.00

As shown in Table 7 , the meaning of correlation
coefficient is as follows:

• When the correlation coefficient is 0, there is no
relationship between the two variables.

• When the correlation coefficient is between 0.00
and 1.00, the two variables are positively correlated.

• When the correlation coefficient is between −1.00
and 0.00, the two variables are negatively correlated.

We may safely draw the conclusion, Pearson correl-
ation coefficient can effectively measure the correlation
of features.

Visualization of feature correlation: In this section,
we visualize feature correlation based on Pearson correl-
ation coefficient. First, we select the feature subset
composed of 18 features. Secondly, we measure the cor-
relation between features. Visualization results using
the heat map and scatter plot are shown below. Fig.7
shows the correlation heat map between features. The
square graph at the intersection represents the correla-
tion between two features in horizontal and vertical co-
ordinates. The darker the color, the higher the correla-
tion. Fig.8 shows the scatter diagram of correlation
between features. A single subgraph in the graph is rep-
resented as the correlation between two features in hori-
zontal and vertical coordinates. The graph shows an up-
ward slope, indicating a positive correlation, that is, as
one variable increases, the other increases proportion-
ally. A slope of 1 is a perfect positive correlation. And
vice versa. A slope equal to 0 means that there is no re-

lationship between the two variables, and the data
points are scattered throughout the graph.

retn
cmp

jz
call
jnz

mov
test
jmp
and

or
sub

pusha
lea

jl
dec
shr

line_count_asm
size_asm

re
tn

cm
p jz

ca
ll

jn
z

m
o
v

te
st

jm
p

an
d o
r

su
b

p
u
sh

a
le

a jl
d
ec sh

r
li

n
e_

co
u
n
t_

as
m

si
ze

_
as

m

0

0.2

0.4

0.6

0.8

1.0

Fig. 7. The heat map of feature correlation.

4) The comparison of the experimental results
based on the deep learning models

In this section, we use the deep learning modesl to
conduct a family classification experiment on malicious
samples. First, the sample feature vectors formed ac-
cording to the 66 features extracted in Section V.2.1)
are transformed into gray scale images. For example,
Fig. 9 is the grayscale representation of the malicious

34 Chinese Journal of Electronics 2023

sample “0AnoOZDNbPXIr2MRBSCJ.asm.” After that,
the popular VGG16 and transformer models are adop-
ted for image classification. The experimental results

are shown in Table 8 . As shown in Table 8 , it can be
concluded that the common deep learning model con-
sumes a lot of time in the process of model training and
detection, and its accuracy is lower than directly using
ML classifiers to classify feature vectors of malwares.
Possible reasons are as follows:

a) some important features will be lost when mali-
cious samples are transformed into grayscale images;

b) image classification on memory and computa-
tional cost is high, long time consuming [34]. The key of

10000

0

20000

0

20000

0
20000

0
20000

0

20000

0

2500

0
5000

0
10000

0

2.5

0

1

0

10000

0

10000

0

500

0

25000

0

10000

0

10000

0

100000

0

1
0
0
0
0 00

2
0
0
0
0 0

2
5
0
0
0 0

2
0
0
0
0 0

2
0
0
0
0 0

2
5
0
0
0 0

2
5
0
0 0

5
0
0
0 0

1
0
0
0
0 0

2
.5 0 1

1
0
0
0
0 0

1
0
0
0
0 0

5
0
0 0

2
5
0
0
0 0

1
0
0
0
0 0

1
0
0
0
0 0

1
0
0
0
0
0 0

retn cmp jz call jnz mov test jmp and or sub pusha lea jl dec shr line_count
_asm

size_
asm

re
tn

cm
p

jz
ca

ll
jn

z
m

o
v

te
st

jm
p

an
d

o
r

su
b

p
u
sh

a
le

a
jl

d
ec

sh
r

li
n
e_

co
u
n
t

_
as

m
si

ze
_

as
m

Fig. 8. The scatter plot of feature correlation.

Fig. 9. Grayscale image of “0AnoOZDNbPXIr2MRBSCJ.asm”.

Table 8. The experimental results based on the deep learning models

Classifier
Metrics

Validation_loss Validation_accuracy Train_accuracy Consuming time
VGG16 0.1345 96.15% 87.31% 1990.65 s

Transformer 0.1023 97.57% 97.64% 342.95 s

MalFSM: Feature Subset Selection Method for Malware Family Classification 35

deep learning lies in the ability of learning features and
huge models [35]. Compared with deep neural network,
deep forest has fewer hyperparameters and higher per-
formance.

Figs. 10 and 11 show the training and validation
accuracy graph of VGG16 and transformer respectively.
It is worth mentioning that although the transformer
model has a higher epochs than VGG16, it still con-
sumes less time than VGG16, probably because the

transformer model can be calculated in parallel [36], [37].
5) Comparison with similar studies
In this section, we compared MalFSM with similar

studies from the aspects of accuracy, features, time cost
and occupied space. As the dataset we used was the
Kaggle dataset, we selected similar studies using the
same dataset for comparison, and the comparison res-
ults are shown in Table 9.

Table 9. Comparison with similar methods

MalFSM Extract all opcode and
metadata features

M. Ahmadi et al.
[16]

A. Darem et al.
[19]

E. Raff et al.
[38]

Q. Le et al.
[22]

Dataset The Kaggle malware dataset from the Microsoft Malware Classification Challenge

Num of features 18 737 1804 4358+Malware
images – 10,000

Classification accuracy
(%) 98.60 98.80 99.77 99.12 97.80 98.20

Feature extraction
time (s) 5907.27 5889.16 183477 1023

(training time)
32087.4

(training time)
6372

(training time)
Model classification

time (s) 7.76 24.9 – 15 804.65 214.32

Occupied space (KB) 1,043 15,120 – – – –

Compared with similar studies, MalFSM has the
following advantages: 1) MalFSM achieves an optimal
compromise between feature space and classification ac-
curacy. The length of the feature vector constructed by
MalFSM is 18, and the classification accuracy is 98.6%.
On the one hand, although the classification accuracy is
slightly lower than similar studies, it can fully meet the
requirements. On the other hand, the feature vectors re-
quired by MalFSM are the most concise in other simil-
ar studies, so it can provide promising classification res-
ults under the condition of reducing the complexity of
feature engineering. 2) MalFSM can effectively reduce
the time and space occupation of model classification.
Compared with extracting all opcode and Metadata fea-
tures, the time is similar, the efficiency of classification
is improved by 69%, and the space occupation is re-

duced by 93.1%; MalFSM required the shortest pro-
cessing time compared to similar studies. 3) The hard-
ware platform required by MalFSM has moderate per-
formance and good universality. 4) By extracting and
mining the opcode and metadata information of mal-
wares, MalFSM provides the analysis of the correlation
between the opcode features of malwares, which can be
extended to the homologous malware family classifica-
tion.

 VI. Conclusions and Future Work
Detection and classification of malware is a com-

plex process that requires selecting a subset of discrim-
inatory features from a dataset. In this paper, we filter
out relevant feature subset by comparing a series of fea-
ture selection algorithms to remove redundant features.

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

0.8

0.9

0 2 4 6

Epochs

8 10 12 14

Train_accuracy
Validation_accuracy

Fig. 10. Training and validation accuracy graph of VGG16.

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

0.9

0 10 20 30

Epochs

40 50

Train_accuracy
Validation_accuracy

Fig. 11. Training and validation accuracy graph of Trans-

former.

36 Chinese Journal of Electronics 2023

In addition, the correlation between opcode features is
analyzed to explain the selection of feature subset. For
this purpose, we propose the MalFSM framework,
which features the identification of correlations between
features, the ranking of selected features subset, and the
prediction of the performance of the selected features
subset on different classifiers. In industrial applications,
the trade-off between complexity and performance can
be a key issue. Using a purified subset of features saves
time in feature extraction and malware family classifica-
tion, and it is necessary to collect core common fea-
tures of malware samples.

The results show that the framework can con-
struct a lightweight feature matrix according to the se-
lected opcodes as well as file_size and line_count fea-
tures. Experimental results show that the lightweight
eigenmatrix can not only reduce the time and space
complexity, but also achieve the spatio-temporal equi-
librium, and the classification effect is not bad. The
main contribution of this paper is to analyze the correl-
ation among opcode features, which provides a reason-
able explanation for researchers to select a subset of
features. Compared with the extraction process of com-
plete opcode features, the time consumption and space
occupation of model classification are reduced and the
analysis efficiency is significantly improved.

In the future, we will focus on the following three
directions [39]: 1) Research on dynamic analysis and hy-
brid analysis of malware; 2) Extracting various features
of malware for multi-dimensional analysis; 3) Research
on adversarial attack and robustness analysis of mali-
cious codes [40], [41].

References
 Christiaan Beek, Sandeep Chandana, Taylor Dunton, et al.,
“McAfee Labs threat report: November 2020,” available at:
https://www.mcafee.com/enterprise/zh-cn/assets/reports/
rp-quarterly-threats-nov-2020.pdf, 2020-11-20.

[1]

 W. He, “The October 2021 malware heinous list,” available
at: https://www.easemob.com/news/7467, 2021-11-23.

[2]

 H. Zhou, W. Zhang, F. Wei, and Y. Chen, “Analysis of An-
droid malware family characteristic based on isomorphism
of sensitive API call graph,” in Proceedings of 2017 IEEE
Second International Conference on Data Science in Cy-
berspace (DSC), Shenzhen, China, pp.319–327, 2017.

[3]

 S. Cesare, Y. Xiang, and W. Zhou, “Control flow-based mal-
ware variant detection,” IEEE Trans. Dependable and Se-
cure Comput, vol.11, no.4, pp.307–317, 2014.

[4]

 W. Hu and Y. Tan, “Black-box attacks against RNN based
malware detection algorithms,” in Proceedings of the Work-
shops of the 32nd AAAI Conference on Artificial Intelli-
gence, New Orleans, Louisiana, USA, pp.245–251, 2018.

[5]

 W. Han, J. Xue, Y. Wang, et al., “MalDAE: Detecting and
explaining malware based on correlation and fusion of stat-
ic and dynamic characteristics,” Computers & Security,
vol.83, pp.208–233, 2019.

[6]

 C. Wu and W. Li, “Enhancing intrusion detection with fea-[7]

ture selection and neural network,” International Journal of
Intelligent Systems, vol.36, no.7, pp.3087–3105, 2021.
 Kemal Polat and Salih Güneş, “ A new feature selection
method on classification of medical datasets: Kernel F-score
feature selection,” Expert Systems with Applications, vol.36,
no.7, pp.10367–10373, 2009.

[8]

 J. Benesty, J. Chen, and Y. Huang, “On the importance of
the Pearson correlation coefficient in noise reduction,” IEEE
Transactions on Audio, Speech, and Language Processing,
vol.16, no.4, pp.757–765, 2008.

[9]

 X. Zheng, Y. Wang, L. Jia, et al., “Network intrusion detec-
tion model based on Chi-square test and stacking
approach,” in Proceedings of 2020 7th International Con-
ference on Information Science and Control Engineering
(ICISCE), Changsha, China, pp.894–899, 2020.

[10]

 S. Tan, X. Zhang, Q. Li, and A. Chen, “ Information push
model-building based on maximum mutual information coef-
ficient,” Journal of Jilin University Engineering and Tech-
nology Edition, vol.48, no.2, pp.558–563, 2018. (in Chinese)

[11]

 M. Cuturi and A. D'Aspremont, “ Mean reversion with a
variance threshold,” in Proceedings of the 30th Internation-
al Conference on Machine Learning, Atlanta, GA, USA,
pp.III-271–III-279, 2013.

[12]

 Moutaz Alazab, “ Automated malware detection in mobile
app stores based on robust feature generation,” Electronics,
vol.9, no.3, article no.435, 2020.

[13]

 K. Yan and D. Zhang, “ Feature selection and analysis on
correlated gas sensor data with recursive feature elimina-
tion,” Sensors and Actuators B: Chemical , vol.212, pp.353–
363, 2015.

[14]

 P. Zhang, “A novel feature selection method based on glob-
al sensitivity analysis with application in machine learning-
based prediction model,” Applied Soft Computing , vol.85,
article no.105859, 2019.

[15]

 M. Ahmadi, D. Ulyanov, S. Semenov, et al., “Novel feature
extraction, selection and fusion for effective malware family
classification,” in Proceedings of the Sixth ACM Confer-
ence on Data and Application Security and Privacy, New
Orleans, LA, USA, pp.183–194, 2016.

[16]

 S. Ni, Q. Qian, and R. Zhang, “Malware identification us-
ing visualization images and deep learning,” Computers &
Security, vol.77, pp.871–885, 2018.

[17]

 W. Han, J. Xue, Y. Wang, et al., “MalInsight: A systemat-
ic profiling based malware detection framework,” Journal of
Network and Computer Applications, vol.125, pp.236–250,
2019.

[18]

 A. Darem, J. Abawajy, A. Makkar, et al.., “Visualization
and deep-learning-based malware variant detection using
OpCode-level features,” Future Generation Computer Sys-
tems, vol.125, pp.314–323, 2021.

[19]

 I. Almomani, A. AlKhayer, and M. Ahmed, “ An efficient
machine learning-based approach for Android v.11 ransom-
ware detection,” in Proceedings of 2021 1st International
Conference on Artificial Intelligence and Data Analytics
(CAIDA), Riyadh, Saudi Arabia, pp.240–244, 2021.

[20]

 G. Sun and Q. Qian, “Deep learning and visualization for
identifying malware families,” IEEE Transactions on De-
pendable and Secure Computing, vol.18, no.1, pp.283–295,
2021.

[21]

 Q. Le, O. Boydell, B. Mac Namee, et al., “Deep learning at
the shallow end: Malware classification for non-domain ex-
perts,” Digital Investigation, vol.26, pp.S118–S126, 2018.

[22]

 X. Hu, J. Jang, T. Wang, et al., “Scalable malware classific-
ation with multifaceted content features and threat intelli-
gence,” IBM Journal of Research and Development , vol.60,
no.4, pp.6:1–6:11, 2016.

[23]

 M. Masum, M.J. Hossain Faruk, H. Shahriar, et al.,
“Ransomware classification and detection with machine

[24]

MalFSM: Feature Subset Selection Method for Malware Family Classification 37

learning algorithms,” in Proceedings of 2022 IEEE 12th
Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, pp.0316–0322,
2022.
 S. Jain, T. Khandelwal, Y. Jain, et al., “Android malware
analysis using machine learning classifiers,” in Proceedings
of International Conference on Computational Intelligence
and Emerging Power System, Singapore, pp.171–179, 2022.

[25]

 J. Bao, “ Multi-features based arrhythmia diagnosis al-
gorithm using Xgboost,” in Proceedings of 2020 Interna-
tional Conference on Computing and Data Science (CDS),
Stanford, CA, United States, pp.454–457, 2020.

[26]

 Z. Zhou and J. Feng, “Deep forest,” National Science Re-
view, vol.6, no.1, pp.74–86, 2019.

[27]

 iFLYTEK, “Malware classification challenge,” available at:
https://challenge.xfyun.cn/topic/info?type=malware-classi-
fication, 2021-08-02.

[28]

 K. Xu, Y. Li, R. Deng, et al., “DroidEvolver: Self-evolving
Android malware detection system,” in Proceedings of
IEEE European Symposium on Security and Privacy
(EuroS & P), Stockholm, Sweden, pp.47–62, 2019.

[29]

 H. Cai, “ Assessing and improving malware detection sus-
tainability through App evolution studies,” ACM Trans.
Softw. Eng. Methodol, vol.29, no.2, pp.1–28, 2020.

[30]

 X. Fu and H. Cai, “On the deterioration of learning-based
malware detectors for Android,” in Proceedings of
IEEE/ACM 41st International Conference on Software En-
gineering: Companion Proceedings (ICSE-Companion),
Montreal, QC, Canada, pp.272–273, 2019.

[31]

 H. Cai and J. Jenkins, “Towards sustainable Android mal-
ware detection,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Pro-
ceeedings, Gothenburg, Sweden, pp.350–351, 2018.

[32]

 H. Cai, “ Embracing mobile App evolution via continuous
ecosystem mining and characterization,” in Proceedings of
the IEEE/ACM 7th International Conference on Mobile
Software Engineering and Systems, Seoul, Republic of
Korea, pp.31–35, 2020.

[33]

 T. Han, L. Zhang, and S. Jia, “Bin similarity based domain
adaptation for fine-grained image classification,” Interna-
tional Journal of Intelligent Systems, vol.37, no.3, pp.2319–
2334, 2021.

[34]

 M. R. Minar and J. Naher, “Recent advances in deep learn-
ing: An overview,” arXiv preprint, arXiv: 1807.08169, 2018.

[35]

 E. Rezende, G. Ruppert, T. Carvalho, et al., “Malicious
software classification using VGG16 deep neural network’s
bottleneck features,” in Information Technology - New
Generations, Advances in Intelligent Systems and Comput-
ing, vol.738, Springer, Cham, pp.51–59, 2018.

[36]

 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et
al., “An image is worth 16x16 words: Transformers for im-
age recognition at scale,” The Ninth International Confer-
ence on Learning Representations (ICLR 2021 Oral), Vir-
tual Event, article no.1909, 2021.

[37]

 E. Raff, R. Zak, R. Cox, et al., “An investigation of byte n-
gram features for malware classification,” J Comput Virol
Hack Tech, vol.14, no.1, pp.1–20, 2018.

[38]

 G. Suarez-Tangil and G. Stringhini, “ Eight years of rider
measurement in the Android malware ecosystem,” IEEE
Transactions on Dependable and Secure Computing, vol.19,
no.1, pp.107–118, 2022.

[39]

 A. Al-Dujaili, A. Huang, E. Hemberg, et al., “Adversarial
deep learning for robust detection of binary encoded mal-
ware,” in Proceedings of 2018 IEEE Security and Privacy
Workshops (SPW), San Francisco, CA, USA, pp.76–82,
2018.

[40]

 C. Agarwal, A.M. Nguyen, and D. Schonfeld, “Improving[41]

robustness to adversarial examples by encouraging discrim-
inative features,” in Proceedings of IEEE International
Conference on Image Processing (ICIP), Taipei, China,
pp.3801–3505, 2019.

KONG Zixiao was born in 1996.
She takes a successive postgraduate and
doctoral program at Beijing Institute of
Technology, majored in Cyberspace Se-
curity. Her research interests include cy-
ber security and machine learning. She
has a B.S. degree in software engineering.
(Email: 3120185534@bit.edu.cn)

XUE Jingfeng was born in 1975.
He is a Professor and Ph.D. Supervisor in
Beijing Institute of Technology. His main
research interests focus on network secur-
ity, data security, and software security.
(Email: xuejf@bit.edu.cn)

WANG Yong was born in 1975.
She is an Associate Professor of Beijing
Institute of Technology. Her main re-
search interests focus on cyber security
and machine learning.
(Email: wangyong@bit.edu.cn)

ZHANG Qian (corresponding
author) was born in Inner Mongolia,
China, in 1986. She graduated from the
School of Software, Beijing Institute of
Technology (BIT) in 2012. She is an As-
sistant Experimentalist of BIT now, and
her research interests include software se-
curity and software testing.
(Email: zhangqian16@bit.edu.cn)

HAN Weijie received the B.E.
and M.E. degrees from Space Engineer-
ing University in 2003 and 2006, respect-
ively, and received the Ph.D. degree from
BIT in 2020. He is currently a Lecturer
in Space Engineering University. His cur-
rent research interest includes malware
detection and APT detection.
(Email: bit_hwj2016@126.com)

ZHU Yufen received the B.E.
degree in 2006. She is currently an Engin-
eer in the Software Evaluation Center of
Beijing Institute of Technology. Her re-
search interests include malware analysis
and network anomalies detection.
(Email: visc_hwj@126.com)

38 Chinese Journal of Electronics 2023

