
Developer Cooperation Relationship and
Attribute Similarity Based Community

Detection in Software Ecosystem
SHEN Xin1, DU Junwei2, GONG Dunwei1, and YAO Xiangjuan3

(1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China)
(2. School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China)

(3. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China)
 
   Abstract — A software ecosystem (SECO) can be de-
scribed  as  a  special  complex  network.  Previous  complex
networks in  an  SECO  have  limitations  in  accurately  re-
flecting  the  similarity  between  each  pair  of  nodes.  The
community structure is critical towards understanding the
network topology and function. Many scholars tend to ad-
opt evolutionary optimization methods for community de-
tection. The  information  adopted  in  previous  optimiza-
tion  models  for  community  detection  is  incomprehensive
and cannot  be  directly  applied  to  the  problem  of  com-
munity detection in  an SECO. Based on this,  a  complex
network in  SECOs is  first  built.  In  the  network,  the  co-
operation intensity  between  developers  is  accurately  cal-
culated, and the attribute contained by each developer is
considered. A  multi-objective  optimization  model  is  for-
mulated.  A  community  detection  algorithm  based  on
NSGA-II is  employed  to  solve  the  above  model.  Experi-
mental  results  demonstrate  that  the  proposed method of
calculating  the  developer  cooperation  intensity  and  our
model are advantageous.

   Key words — Software  ecosystem, Complex net-

work, Cooperation  intensity, Attribute  similarity, Com-

munity detection.

 I. Introduction
A software ecosystem (SECO) is a complex system

formed by the interaction of software products, services,
data, and  knowledge  among  stakeholders  such  as  soft-
ware companies,  developers,  and  technique  communit-
ies in a specific technique environment [1]. Since its in-
ception,  an  SECO  has  attracted  great  attention  from
academic and industrial communities.

As the  highest  level  of  current  software  engineer-
ing, an SECO usually has a high reliability and scalabil-
ity,  and evolves continuously with changes in demand.
In an SECO, various people are generally involved, and
they have complex relationships. Efficiently mining rela-
tionships  among  them  is  beneficial  to  understand  the
structure and  behavior  of  the  SECO,  thereby  promot-
ing the healthy and sustainable development of the sys-
tem.  Community  detection  in  complex  networks  has
been  a  hot  research  topic  in  recent  years  [2]–[7],  and
community  detection  in  an  SECO  can  help  us  master
its  behavior,  evolution  and  development,  which  is  of
great  theoretical  and  practical  significance.  In  view  of
this,  we  study  the  problem of  community  detection  in
an SECO.

In an SECO, the prerequisite for community detec-
tion is  to  build  a  complex network that  reflects  differ-
ent  entities  and  their  relationships.  Ref.[8]  built  five
kinds  of  complex  networks  based  on  relationships
between developers,  between  repositories,  between  de-
veloper and  repository,  and  between  user  and  reposit-
ory,  respectively.  Further,  Ref.[9] calculated  the  rela-
tionship intensity between developers. However, it is ex-
pected  to  further  improve  in  matching  common  sense
and containing  more  information.  In  addition,  interac-
tion behavior  between  developers  is  hoped  to  fully  ex-
plore.

Based on this, we present a novel method of calcu-
lating the developer cooperation intensity in an SECO.
The main idea of  our method is  shown as follows.  Ac-
cording to different categories  of  developer cooperation 

Manuscript  Received  Aug.  6,  2021;  Accepted  Apr.  12,  2022.  This  work  was  supported  by  the  National  Key  Research  and
Development Program of China (2018YFB1003802).

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2021.00.276

Chinese Journal of Electronics
Vol.32, No.1, Jan. 2023



relationships, the developer cooperation intensity based
on  the  network  topology  is  calculated.  The  developer
cooperation intensity based on the interaction behavior
is measured according to the number of commitments of
shared  repositories  and  the  times  of  cooperation
between developers.  The  network  topology  and the  in-
teraction behavior between developers are integrated to
obtain the developer cooperation intensity. It is easy to
know that  if  developers  contain the same attribute  to-
gether, they often have similar backgrounds. If these de-
velopers are  accurately  identified,  it  will  help them in-
teract  further.  Therefore,  we  integrate  the  attribute
contained  by  each  developer  into  the  SECO  network,
which makes  the  network  information  more  compre-
hensive.

Since  Ref.[10]  proposed  the  concept  of  community
detection in complex networks, previous community de-
tection approaches can be roughly divided into the fol-
lowing  three  categories.  The  first  category  is  network
segmentation.  The  representative  method  is  the
Kernighan-Lin  algorithm  [11].  With  respect  to  the
second  category,  it  is  hierarchical  clustering.  For  this
category,  it  is  mainly  divided  into  a  split  method  and
an aggregation  method.  The  former  performs  com-
munity detection from top to  bottom such as  the  Gir-
van-Newman algorithm [10], and the latter detects com-
munities from bottom to top, like the FastNewman al-
gorithm [12] and the Louvain algorithm [13]. Regarding
the third category, it is based on evolutionary optimiza-
tion. Representative  evolutionary  optimization  meth-
ods are genetic algorithm [14], particle swarm optimiza-
tion [15], etc. Compared to the first two categories, the
third one  is  relatively  simpler  and  has  better  perform-
ance  in  robustness.  However,  it  needs  an  optimization
model  for  community  detection.  At  present,  previous
optimization models  have  mainly  considered  the  struc-
ture  relationship  of  a  network  [14],  [16]–[18]. In  addi-
tion,  scholars  have  constructed  optimization  models
based on the network structure and attribute similarity
for  community  detection  [19],  [20]. However,  the  in-
formation adopted  in  these  models  is  not  comprehens-
ive  and  cannot  be  directly  applied  to  the  problem  of
community detection in an SECO.

In view of this, we are the first to establish an op-
timization model for community detection in an SECO.
This model  considers  not  only  the  developer  coopera-
tion intensity  in  a  community,  but  also  the  program-
ming language similarity between developers in a com-
munity.  Additionally,  when  calculating  the  developer
cooperation intensity in a community, the direct and in-
direct cooperation  intensities  as  well  as  interaction  be-
havior between developers are adopted to make the in-
formation used in the optimization model more compre-
hensive.  In this way, communities with close developer

cooperation  and  high  programming  language  similarity
can be obtained.

This paper  has  the  following  four-fold  contribu-
tions:

1) Presenting a novel method of calculating the de-
veloper cooperation  intensity  in  an  SECO.  This  meth-
od comprehensively  and  accurately  measures  the  de-
veloper cooperation intensity from two aspects, that is,
the network topology and interaction behavior.

2) Considering the attribute contained by each de-
veloper into the formed networks. The information con-
tained  in  these  network  is  more  comprehensive,  which
lays a foundation for community detection.

3) Formulating  an  optimization  model  for  com-
munity detection in the formed networks. The two ob-
jectives  in  the  optimization  model  are  constructed,  by
taking both the developer cooperation relationship and
the  attribute  similarity  into  consideration,  which  is
helpful to  obtain a community division with good per-
formance.

4) Experimentally investigating the effectiveness of
the proposed method and model.  Complex networks in
a  software  ecosystem  are  built  using  data  crawled  in
GitHub. The  results  show  that  the  community  struc-
ture  obtained  by  the  proposed  community  detection
method is the most significant when the network topo-
logy  and  interaction  behavior  between  developers  are
considered equally  important  in  calculating  the  de-
veloper cooperation  intensity,  and  the  proposed  meth-
od  of  calculating  the  developer  cooperation  intensity
performs  better  than  the  other  two  methods  in  most
cases.  Moreover,  our  model  is  beneficial  to  obtain  a
more  satisfactory  community  division  compared  to  the
other five models.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III gives an
overall  framework  of  constructing  the  SECO  network,
and presents a method of calculating the developer co-
operation intensity.  An  optimization  model  for  com-
munity detection in the SECO is formulated in Section
IV.  Section  V  is  an  evolutionary  optimization  method
to solve the formulated optimization model. Section VI
verifies  the  effectiveness  of  the  built  network  and  the
optimization  model  through  comparative  experiments.
Finally,  Section  VII  concludes  the  whole  paper,  and
points out the topics to be studied in the future.

 II. Related Work
This section reviews previous studies from the fol-

lowing two  aspects,  and  software  ecosystem,  com-
munity detection. Based on this, the motivation of this
paper is specified.

 1. Software ecosystem
Since  the  concept  of  an  SECO  is  proposed  [1],  it

40 Chinese Journal of Electronics 2023



has been  widely  concerned  by  the  academia  and  in-
dustry. SECO  is  deeply  integrated  with  emerging  in-
formation  technologies  such  as  open-source  software,
mobile  applications,  and  cloud  computing,  forming
open-source SECO, cloud computing SECO, mobile ap-
plication  SECO.  Further,  more  and  more  enterprises
have  begun  to  use  SECO platforms  to  build  software,
such as Apples’ IOS and Googles’ Android Smartphone
ecosystem [21].

For an SECO, its reliability and robustness has at-
tracted great attention from different participants, such
as software  developers,  software  users,  software  com-
panies,  etc.  Ref.[22] proposed  various  evaluation  indic-
ators  to  measure  the  performance  of  R  ecosystem.
Ref.[23] proposed  a  maturity  model  of  SECOs  gov-
ernance, so as to determine on whether to invest in an
ecosystem for stakeholders. In addition, Ref.[24] conduc-
ted an empirical study on cross-project-related errors in
the Python  SECO,  revealing  common  practices  of  de-
velopers  and  various  factors  for  repairing  cross-project
errors.

Essentially, an SECO is a complex network, where
the community  structure  is  an  essential  topology  fea-
ture.  So  far,  the  existing  complex  networks  have  been
built according  mainly  to  the  relationship  between  en-
tities,  ignoring  attributes  owned  by  these  entities.  In
addition,  strong  or  weak  relationships  between  entities
have not been fully utilized. Although some studies are
associated with the above relationships, the accuracy of
calculating the relationship intensity is expected to fur-
ther improve.

 2. Community detection
As mentioned  earlier,  previous  community  detec-

tion  methods  of  complex  networks  are  mainly  divided
into network segmentation,  hierarchical  clustering,  and
evolutionary optimization. Among them, the prerequis-
ite  of  network  segmentation  is  to  know the  number  of
communities and that of nodes contained in each com-
munity.  However,  for  an actual  complex network,  it  is
usually difficult  to  meet  this  prerequisite.  In  this  situ-
ation, it is a feasible way to adopt hierarchical cluster-
ing and evolutionary optimization to detect communit-
ies in a complex network.

For  hierarchical  clustering,  Ref.[25]  introduced  a
division-and-agglomeration  algorithm,  in  which  a  two-
stage strategy is employed to achieve community detec-
tion  in  social  networks.  For  similar  complex  networks,
Ref.[26] proposed  a  three-stage  algorithm  which  in-
cludes central node identification, label propagation and
community combination stages.

Previous  studies  mainly  take  the  structure  of  a
complex  network  when  formulating  the  optimization
model.  Ref.[16] took the modularity  density  as  the  ob-

k

jective to be optimized when formulating the optimiza-
tion model  for  community  detection.  In  the  optimiza-
tion model [14], multiple objectives are formed by min-
imizing  the  kernel -means  and  the  ratio  cut.  Ref.[17]
took the conductance, the normalized cut and the com-
munity score as the objectives of the optimization prob-
lem.  In  addition,  previous  studies  have  formulated  the
optimization  model  for  community  detection  based  on
the structure of a complex network and the node attrib-
ute similarity. Ref.[19] defined a function to reflect the
node attribute similarity, and formulated the optimiza-
tion  objectives  together  with  modularity  [27].  It  is
worth noting  that  most  optimization  models  for  com-
munity detection  take  the  network  structure  into  con-
sideration. In addition, some optimization models focus
on the  network  structure  and the  node  attribute,  they
are, however, mainly suitable for unweighted networks.

After establishing the optimization model of an op-
timization problem, it  is  critical  to design problem-ori-
ented  optimization  algorithms.  Ref.[28] proposed  a  co-
operative co-evolutionary  algorithm  for  module  identi-
fication, with its application to discover cancer diseases.
Ref.[19] presented  an  evolutionary  optimization  al-
gorithm for  community  detection  through  hybrid  rep-
resentation, improved  evolutionary  operators,  and  in-
tegrated  local  search.  This  algorithm  adopts  the  non-
dominated  sorting  genetic  algorithm  (NSGA-II)  as  a
framework [29], which is the most representative multi-
objective optimization algorithm.

To summarize,  previous  studies  have  some  short-
comings in building networks and detecting communit-
ies that comprehensively and accurately reflect  the de-
veloper cooperation relationship in an SECO. In view of
this, this paper builds a complex network based on the
developer cooperation relationship and attribute. Based
on this, a bi-objective optimization model is formulated
by  considering  the  developer  cooperation  relationship
and attribute  similarity.  Further,  NSGA-II  incorporat-
ing specific evolutionary operators is employed to solve
our model. As a result, various schemes for community
division are obtained.

 III. Constructed Software Ecosystem
Network

 1. Overall framework

G = (V,E,W,A)

|V | = n |E| = m V

E W

A

In this  paper,  an SECO network based on the co-
operation  relationship  and  programming  language  is
built.  This  network  is  denoted  as 
( , ), where  represents the set of nodes,

 represents the set of edges,  means the set of edge
weights,  and  refers  to  the  set  of  attributes.  The
meanings  of  a  node,  a  node  attribute,  an  edge  and  its
weight of the network are provided as follows.

Developer Cooperation Relationship and Attribute Similarity Based Community Detection in Software... 41



1) A  node  of  the  network  corresponds  to  a  de-
veloper.

2) A node attribute of the network refers to a pro-
gramming language  mastered  by  a  developer.  A  de-
veloper  generally  masters  one  or  more  programming
languages.

3)  An  edge  of  the  network  corresponds  to  a  joint
committing of two developers to a repository.

G = (V,

E,A)

4)  An  edge  weight  of  the  network  is  associated
with the cooperation intensity between developers, with
its  initial  value  of  1.  On  this  circumstance, 

 is held.
Next, the  method  of  calculating  the  developer  co-

operation intensity will be elaborated in detail.
 2. Method of calculating developer coopera-

tion intensity
If two or more developers commit the same reposit-

ory, behaviors between these developers are interactive.
Thus, the cooperation intensity between developers can
be reflected through the network topology and interac-
tion between developers.  In  view of  this,  we propose  a
method of calculating the developer cooperation intens-
ity based  on  the  network  topology  and  interaction  be-
havior in  this  section.  The  developer  cooperation  rela-
tionship is  first  classified  based  on  the  network  topo-
logy, and  the  developer  cooperation  intensity  is  calcu-
lated  according  to  different  categories.  Following  that,
the  developer  cooperation  intensity  is  calculated  based
on interaction  behavior,  which  contains  the  number  of
commitments of shared repositories and the times of co-
operation between  developers.  Finally,  the  network  to-
pology and interaction between developers are compre-
hensively considered to measure the developer coopera-
tion intensity.

1)  Network  topology  based  developer  cooperation
intensity

i) Classification  of  developer  cooperation  relation-
ships

vi vj

disij
disij

vi vj disij

vi vj
disij

For two nodes,  and , in the network, they have
either a  connection  with  an  edge  or  not,  and  the  dis-
tance  between  them  is  denoted  as .  If  the  two
nodes are connected,  will be equal to 1, and there
will exist a direct cooperation relationship between their
corresponding developers. If the two nodes have no con-
nection but there is  a path from  to ,  will  be
greater than 1 and be finite, and there will exist an in-
direct cooperation  relationship  between  their  corres-
ponding  developers.  If  there  is  no  path  from  to  ,

 will  be  infinity,  and  no  cooperation  relationship
will  exist  between  their  corresponding  developers.
Therefore, from  the  perspective  of  cooperation,  de-
velopers have the following three kinds of relationships,
that is, direct cooperation, indirect cooperation, and no
cooperation.

ii) Direct cooperation intensity between developers
di dj
di

dj

di α(di)

α(di)

di
di dj

di dj
S

′

1
(di, dj)

For  two  developers,  and  ,  who  have  a  direct
cooperation  relationship,  may have  direct  coopera-
tion with other developers, and the same is true for .
The number  of  developers  who  have  a  direct  coopera-
tion  relationship  with  is  denoted  as ,  which  is
equal  to  the  degree  of  the  corresponding  node  in  the
network. If  is large, many developers will directly
cooperate  with .  Accordingly,  the  direct  cooperation
intensity between  and  will be small. The direct co-
operation  intensity  between  and   is  denoted  as

, with its expression being as follows.
 

S
′

1
(di, dj) =

1

α(di) + α(dj)− 1
(1)

iii) Indirect  cooperation  intensity  between  de-
velopers

di dj

vi vj
disij

vi vj

di dj S
′

2
(di, dj)

For two developers,  and , who have an indir-
ect cooperation relationship, they correspond to the two
nodes,  and , in the network, respectively. It is clear
that  the  larger  the  value  of , the  longer  the  dis-
tance between  and ,  and the weaker their indirect
cooperation. The indirect cooperation intensity between

 and  is denoted as , with its expression be-
ing as follows.
 

S
′

2
(di, dj) =

e−disij

α(di) + α(dj)− 1
(2)

di
dj disij

e−disij < e−1 < e0 = 1

S
′

2
(di, dj) < S

′

1
(di, dj)

From (1) and (2), when  has an indirect coopera-
tion  relationship  with ,  will  be  greater  than  1.
On  this  circumstance,  one  has ,
and thus .

iv) No cooperation between developers
di dj

vi vj

If  the  developer, ,  has  no  cooperation  with ,
there  will  be  no  path from  to  .  In  this  case,  their
cooperation intensity is equal to 0.

di
dj

S
′
(di, dj)

In  summary,  the  cooperation  intensity  between 
and  based  on  the  network  topology  is  denoted  as

, which can be expressed as follows.
 

S
′
(di, dj) =


1

α(di) + α(dj)− 1
, disij = 1

e−disij

α(di) + α(dj)− 1
, disij > 1

(3)

2) Interaction  behavior  based  developer  coopera-
tion intensity

Among various developer interactions, different de-
velopers  sometimes  commit  the  same  repository  with
different number of commitments. The same repository
is  called  a  shared  repository.  For  two  developers,  the
number of commitments of their shared repositories can
reflect  their  cooperation  intensity.  In  addition,  the
times of developer cooperation have an influence on the

42 Chinese Journal of Electronics 2023



cooperation intensity between developers.
i)  Developer  cooperation  intensity  in  terms  of  the

number of commitments of shared repositories
For  a  shared  repository,  different  developers  have

different  number  of  commitments,  and  accordingly,
they have different contributions to the shared reposit-
ory.  In  view  of  this,  the  number  of  commitments  of
shared repositories  can  be  employed  to  reflect  a  de-
veloperś contribution  to  them.  Further,  the  coopera-
tion  intensity  between  developers  can  be  characterized
by their contributions to the shared repositories.

di dj
Pij

|Pij | s di dj
psij

di Ni(p
s
ij) dj

Nj(p
s
ij)

di dj
min

{
Ni(p

s
ij), Nj(p

s
ij)

}
Nmin(p

s
ij)

For  two  developers,  and  ,  the  set  of  their
shared  repositories  is  denoted  as ,  with  its  size  of

.  Taking th  shared  repository  of  and   as  an
example, denoted as , the number of commitments of

 to the repository is denoted as , and that of 
to the repository is denoted as . Then, the times
of  cooperation of  and  to the repository are  equal
to , denoted as .

psij
di dj

psij
N(psij)

Nmin(p
s
ij) N(psij)

di dj psij
Pij

di dj

For , in addition to being a shared repository of
 and ,  the repository can be a shared repository of

other  developers.  That  is,  it  can  be  jointly  committed
by other developers. The number of commitments of 
is  denoted  as .  Then,  the  larger  the  ratio  of

 to  ,  the  greater  the  joint  contributions
of  and  to  among all developers. For all shared
repositories in , the larger the above ratio, the great-
er  the sum of  joint contributions of  and  to them
among  all  developers.  If  the  two  developers  contribute
more to their shared repositories, their cooperation will
be stronger.

di dj

S
′′

1 (di, dj)

The  cooperation  intensity  between  and   in
terms of the number of commitments of their shared re-
positories  is  denoted  as , which  can  be  ex-
pressed as follows.
 

S
′′

1 (di, dj) =
1

|Pij |
∑

ps
ij∈Pij

Nmin(p
s
ij)

N(psij)
(4)

ii)  Developer cooperation intensity in terms of  the
times of cooperation between developers

D = {d1, d2, . . . , dn}
di dj psij

Nmin(p
s
ij)

∑
ps
ij∈Pij

Nmin(p
s
ij)∑

ps
ij∈Pij

Nmin(p
s
ij)

In an  SECO network,  the  set  of  developers  is  de-
noted  as .  For  the  two  developers,

 and ,  the times of  their  cooperation in  are de-
noted as . Further, the times of their coopera-
tion  to  all  shared  repositories  are  equal  to

,  and  the  larger  the  value  of

, the larger their cooperation intensity.

di
dj S

′′

2 (di, dj)

The developer cooperation intensity in terms of the
times of cooperation between the two developers  and

 is  denoted as ,  which can be calculated as
follows.

 

S
′′

2 (di, dj) =

∑
ps
ij∈Pij

Nmin(p
s
ij)

max
dk,dl∈D

∑
ps
kl∈Pkl

Nmin(p
s
kl)

(5)

di dj
S

′′
(di, dj)

To sum  up,  the  interaction  behavior  based  de-
veloper  cooperation  intensity  between  and   is de-
noted as , which has the following expression.
 

S
′′
(di, dj) =

1

|Pij |
∑

ps
ij∈Pij

Nmin(p
s
ij)

N(psij)

·

∑
ps
ij∈Pij

Nmin(p
s
ij)

max
dk,dl∈D

∑
ps
kl∈Pkl

Nmin(p
s
kl)

(6)

3)  Network  topology  and  interaction  behavior
based developer cooperation intensity

di dj S(di, dj)

The methods of calculating the developer coopera-
tion intensity based on the network topology and inter-
action  behavior  have  been  presented.  Given  the  fact
that the developer cooperation intensity has a close re-
lation  with  the  two  aspects,  the  developer  cooperation
intensity can be obtained by combining the above two
cooperation  intensities.  The  cooperation  intensity
between  and  is denoted as , which can be
expressed as follows.
 

S(di, dj) = τS
′
(di, dj) + (1− τ)S

′′
(di, dj) (7)

τ

S
′
(di, dj) > 0 S

′′
(di, dj) > 0

di dj

In  this  formula,  is  a  weighted  factor.  If
 and , the cooperation intens-

ity  between  and  will be  called  the  developer  dir-
ect interaction intensity,  which corresponds to an edge
weight of the network.

Seldom studies [9] are associated with comprehens-
ively  evaluating  the  developer  cooperation  intensity
based on the network topology and interaction behavi-
or.  However,  the developer cooperation intensity based
on the network topology is expected to further improve
in matching common sense. In addition, interaction be-
havior between developers is hoped to fully explore.

 IV. Constructed Optimization Model
The  community  detection  problem  studied  in  this

section can be described as  follows.  A number of  com-
munities in an SECO network are detected, so that de-
velopers corresponding to nodes in each community co-
operate closely, and there is a high attribute similarity
among them.

 1. Decision variable

V = {v1, v2, . . . , vn}
The  set  of  nodes  in  a  network  is  denoted  as

, the  number  of  communities  is  de-

Developer Cooperation Relationship and Attribute Similarity Based Community Detection in Software... 43



I
X = {X1, X2, . . . , XI} Xi, i = 1, 2, . . . , I

Xi ⊆ 2V Xi, Xj , i, j = 1, 2, . . . , I

Xi ∩Xj = ∅
I
∪
i=1

Xi = V

X

noted  as ,  and  a  division  in  a  network  is  denoted  as
.  For ,  one  has

.  For , they  should  sat-
isfy  that .  Additionally,  it  is  required  that

.  When formulating the optimization model,
the decision variable is chosen as .

 2. Objectives
1) Developer cooperation intensity in community

Xi

|Xi| |Xi| vik
vil Xi

dik dil
S

′

1(d
i
k, d

i
l)

τS
′

1(d
i
k, d

i
l) + (1− τ)S

′′
(dik, d

i
l)

DSi(d
i
k, d

i
l)

Xi
|Xi|∑
l=1

|Xi|∑
k=1,k>l

DSi(d
i
k, d

i
l) DSi

Xi ISi DSi + ISi
|Xi|∑
l=1

|Xi|∑
k=1,k>l

S(dik, d
i
l) |Xi|

DSi DSi + ISi

The number of nodes in community  is denoted
as . If  is larger than 1, we will take the nodes, 
and , in  into consideration. The direct cooperation
intensity between the developers  and  correspond-
ing to the two nodes is , and their direct inter-
action  intensity  is , de-
noted  as .  Therefore,  the  sum  of  the  direct
interaction  intensity  between  the  developers  in  is

,  denoted  as .  The  sum  of

the indirect cooperation intensity between developers in
 is  denoted  as ,  and  is  equal  to

.  If  is  equal  to  1,  there  will  be

only one developer in  the  community.  As a  result,  the
values of  and  are both equal to 0.

f1(X)

The developer  cooperation intensity  in  community
is denoted as , which can be expressed as follows.
 

f1(X) =

I∑
i=1,|Xi|≠1

DSi

DSi + ISi
·
(
2× (DSi + ISi)

|Xi|

)2

(8)

2)  Developer  programming  language  similarity  in
community

|Xi| vik vil
Xi

Sim(dik, d
i
l)

Sim(dik, d
i
l) = 1 Sim(dik, d

i
l) = 0

Xi

1
|Xi|·(|Xi|−1)

|Xi|∑
l=1

|Xi|∑
k=1,k>l

Sim(dik, d
i
l)

Simi Xi

Simi = 1

If  is larger than 1, we will take nodes  and 
in  into  consideration.  The  flag  reflecting  whether
their corresponding  developers  master  common  pro-
gramming language(s) is denoted as . If they
master  common  programming  language(s),  one  will
have ; otherwise,  will be
held. Then, for all nodes in , the developer program-
ming language  similarity  in  community  can  be  calcu-

lated by  ,  denoted  as

. If there is only one node in , the developer pro-
gramming  language  similarity  in  community  will  be
equal to 1, namely, .

f2(X)

For  all  communities,  their  programming  language
similarity is denoted as , which can be calculated
as follows.
 

f2(X) =

I∑
i=1

Simi (9)

In this  way,  the  optimization  model  for  com-
munity  detection  in  the  developer  cooperative  network
can be represented as follows.
  

max f(X) = (f1(X), f2(X))
s.t. X = {X1, X2, . . . , XI}

Xi ⊆ 2V

Xi ∩Xj = ∅, i, j = 1, 2, . . . , I

(10)

 V. Adopted Evolutionary Optimization
Algorithm

We adopt NSGA-II [29] as a multi-objective optim-
ization framework,  and incorporate  it  with  some exist-
ing evolutionary operators to form a community detec-
tion  algorithm,  denoted  as  NSGA-DNet. Fig.1  depicts
the overall framework of NSGA-DNet.
 

Start

Whether the algorithm meets
the termination conditions?

Start

 Set the values of parameters used in the 
 algorithm, and input G=(V, E, W, A)

Pre-process the initial population

Perform the one-way crossover and one-point mutation
operators, and obtain a temporary population Q (t)

Form the combined population, P (t)∪Q (t), and conduct
fast non-dominated sorting on it to obtain the population

in the next generation, P (t + 1)

Output the pareto-optimal set

End

Yes

No

Initialize the population P (t)

 
Fig. 1. Overall framework of NSGA-DNet.

 

In NSGA-DNet, the individual representation, pop-
ulation initialization, individual pre-processing, one-way
crossover and  one-point  mutation  operators  are  adop-
ted according to [16], [19], [30] in this paper.

 VI. Experiments

τ

The following three groups of experiments are con-
ducted in this section. The first one examines the influ-
ence of the weighted factor, , on community detection,

44 Chinese Journal of Electronics 2023



with  the  purpose  of  setting  its  appropriate  value.  The
second one compares the method of calculating the de-
veloper  cooperation  intensity  proposed  in  this  paper
with two existing methods, which attempts to evaluate
the performance  of  our  method.  The  third  one  com-
pares the optimization model for the community detec-
tion  established  in  this  paper  with  others  to  show  the
rationality of  our  model.  The  experimental  environ-
ment is Intel® CoreTM i3-6100M CPU @ 3.70 GHz, 4G
memory, and the programming language is Python.

 1. Data acquisition
In  order  to  verify  the  effectiveness  of  the  method

proposed  in  this  paper,  we  choose  GitHub,  a  popular
code  hosting  platform,  to  collect  data  for  experiments.
First, a number of popular programming languages ac-
cording to  their  ranks  in  GitHub  are  selected.  Follow-
ing that, repositories in each programming language are
ranked in terms of the number of star signs, and a num-
ber of  top  repositories  are  selected.  Next,  a  set  of  de-
velopers  is  formed  by  extracting  contributors  for  each
repository.  Finally,  a  number  of  commit  record  sets  of
developers  are  formed by collecting  all  commit  records
of each developer from January 2015 to March 2020. If
a  repository  contributed  by  a  developer  belongs  to  a
programming  language,  the  developer  will  master  the
programming  language.  All  programming  languages
mastered by  a  developer  constitute  his/her  program-

ming language set.  For a repository with a large num-
ber  of  developers,  only  200  developers  with  the  most
contributions  to  the  repository  are  reserved  so  as  to
have diverse data.

G1 G4

G4

G1

G4 G2

G3

G4

G4

Four developer  cooperation  relationship  and  pro-
gramming  language  based  SECO  networks  are  built,
with their characteristics being listed in Table 1. In the
table, NMVA represents the number of nodes, with the
corresponding developers  mastering  multiple  program-
ming languages. Developers who commit to repositories
belonging to different language are randomly chosen, so
as to involve multiple languages in  and . In addi-
tion,  expands a larger number of developers on the
basis  of . If  a  developer  does  not  have  a  direct  co-
operation relationship with all developers in a network,
his/her corresponding node will be deleted from the net-
work, so as to obtain a network without isolated nodes.
The entire period is divided into two segments, namely,
from January 2015 to January 2018 and from February
2018 to March 2020. Based on the two segments, the re-
cord set  for  each developer in  is  split  to obtain 
and . Compared  with  the  other  three  networks,  de-
velopers in  cooperate more closely,  and the charac-
teristic in community gathering is more significant. Ad-
ditionally, there  are  more  developers  who  master  mul-
tiple languages in .

  
Table 1. Networks under test and their characteristics

Name n m Average degree Clustering coefficient NMVA
G1 1218 11638 19 0.6738 9
G2 3066 35904 23 0.6625 89
G3 2554 19401 15 0.6336 76
G4 4248 67480 32 0.6844 114

 
 

 2. Evaluation indicators  and parameter set-
tings

Q

Q

EN

EN

Q

EN
Q EN

Qmean ENmean

According to [9] and [31], the weighted modularity,
, can reflect the significance of the community struc-

ture  in  the weighted network.  The larger  the  value,
the clearer the corresponding community structure. The
entropy, ,  is utilized to measure the node attribute
similarity in a community of a community division. The
smaller the  value, the more similar the correspond-
ing node attribute similarity in a community of a com-
munity division. According to pre-experiments and pre-
vious studies [9], [31] for community detection in a net-
work,  the  network  is  believed  to  have  a  community
structure  when  the  value  is  larger  than  or  equal  to
0.3, and the node attribute similarity in a community is
acceptable when the  value is smaller than or equal
to  0.5.  For  a  Pareto-optimal  set,  and   are em-
ployed  to  evaluate  each  solution  of  the  set,  and  their
mean values are recorded, denoted as  and ,

Qmean ENmean

Q EN

ANC

respectively.  When  comparing  different  Pareto-optimal
sets,  and  will be adopted, whereas if dif-
ferent  solutions  are  compared,  and   will be  dir-
ectly adopted. In addition, the average number of com-
munities is  counted  in  terms  of  the  number  of  com-
munities for  each  solution  in  the  Pareto-optimal,  de-
noted as .

α = 0.2

PS = 100 CR = 0.9

MF = 0.1

T = 100

Suggested by [16] and [32], the parameter values of
NSGA-DNet are set as follows: , the population
size, , the crossover rate, , the muta-
tion  factor, ,  and  the  maximum  number  of
generations, .

 3. Influence of  weighted  factor  on  com-
munity detection

τ

Qmean ENmean

τ

 is set to 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1, respect-
ively. Table 2  lists  the  and   values ob-
tained  by  NSGA-DNet  under  different  values  of ,
among which data in bold represent the best ones. 

Developer Cooperation Relationship and Attribute Similarity Based Community Detection in Software... 45



Qmean ENmean τTable 2.   and  obtained by NSGA-DNet under different values of 

Name Indicator τ = 0 τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9 τ = 1

G1
Qmean 0.4394 0.6492 0.648 0.6723 0.6711 0.6381 0.6579
ENmean 0.3595 0.3284 0.3403 0.3684 0.3716 0.3308 0.3403

G2
Qmean 0.2357 0.6107 0.6101 0.6339 0.6182 0.6231 0.6312
ENmean 0.4102 0.4469 0.4177 0.3942 0.4165 0.4496 0.4404

G3
Qmean 0.2694 0.6228 0.6476 0.6641 0.658 0.6531 0.6478
ENmean 0.3251 0.446 0.4267 0.4532 0.4248 0.4349 0.4398

G4
Qmean 0.2086 0.5777 0.586 0.5926 0.5885 0.5435 0.5917
ENmean 0.3472 0.3877 0.3789 0.361 0.3962 0.3654 0.4179

 
 

τ = 0.5 Qmean

G2 G3 G4 τ = 0 Qmean

ENmean

τ Qmean G1 G3 G2

G4

Table 2 shows that: 1) For all the networks, when
, the  value obtained by NSGA-DNet is the

largest;  2)  For ,  and  ,  when ,  the 
value obtained by NSGA-DNet is smaller than 0.3, and
all  values  is  smaller  than  0.5;  and  3)  For  the
same  values  of ,  the  values  of , ,  and

 gradually become smaller.

ENmean

We can  draw  the  following  conclusion.  The  com-
munity structure obtained by NSGA-DNet is  the most
significant  when  the  network  topology  and  interaction
behavior between developers are considered equally im-
portant in calculating the developer cooperation intens-
ity. When  only  interaction  behavior  between  de-
velopers is  utilized  to  measure  the  developer  coopera-
tion intensity, the corresponding community division is
generally  unsatisfactory.  As the network size  increases,
the significance  of  the  community  structure  will  de-
crease.  All  values are  acceptable,  and  de-
veloper programming languages in each community are

τ

τ

similar. According to the experimental results under dif-
ferent values of  for community detection, we will set
the weighted factor, , to 0.5 in the subsequent experi-
ments.

 4. Influence of developer cooperation intens-
ity on community detection

To  illustrate  the  influence  of  different  methods  of
calculating the developer cooperation intensity on com-
munity  detection,  the  proposed  method,  denoted  as
IDCI,  is  compared  with  two  existing  methods.  Since
IDCI improves the method in [9] (denoted as DCI), it is
necessary to compare IDCI and DCI. In addition, when
the  SECO  network  is  unweighted  [8], the  default  co-
operation  intensity  between  developers  is  equal  to  1,
and the  corresponding  method is  denoted  as  EDCI.  In
order  to  have  a  fair  comparison,  the  same  parameter
settings  are  adopted  in  NSGA-DNet  when  detecting
communities based  on  IDCI,  DCI,  and  EDCI,  respect-
ively. The experimental results are listed in Table 3.

  
Qmean ENmeanTable 3.   and  obtained by NSGA-DNet under three methods of

calculating the developer cooperation intensity

Name Indicator EDCI DCI IDCI

G1
Qmean 0.5406 0.705 0.6723
ENmean 0.3708 0.3581 0.3684

G2
Qmean 0.386 0.5744 0.6339
ENmean 0.4235 0.4092 0.3942

G3
Qmean 0.4519 0.6442 0.6641
ENmean 0.4399 0.4451 0.4532

G4
Qmean 0.3711 0.5814 0.5926
ENmean 0.3778 0.3814 0.361

 
 

G2 G3 G4 Qmean

Qmean G4

Qmean

G2 G4

Qmean

ENmean

From Table 3, we have the following observations:
1) For , , and , the  value based on IDCI
is  larger  than  those  based  on  its  counterparts,  and  no
matter which  method  of  calculating  the  developer  co-
operation  intensity  is  adopted,  the  values  of 
are  the  smallest;  2)  For  all  the  networks,  the 
value based on EDCI is the smallest; 3) For  and ,
the method of calculating the developer cooperation in-
tensity based on IDCI is the best in terms of  and

.
The following conclusions can be drawn. For medi-

um  and  large-scale  networks,  the  proposed  method  of
calculating  the  developer  cooperation  intensity  has  a
positive  influence  on  community  detection.  There  are
considerable differences of developer cooperation at dif-
ferent periods, which will lead to clear differences in dif-
ferent community  divisions.  If  there  are  more  de-
velopers  and  frequent  interactions  between  them,  the
significance of the community structure will decrease.

ANC

G1 G2 G3 ANC

Fig.2 shows a histogram of the  values based
on EDCI, DCI and IDCI. From Fig.2, we have the fol-
lowing observations: 1) For , , and , the 

46 Chinese Journal of Electronics 2023



G4

ANC

ANC G4

G1 G2 G3

values of different methods of calculating the developer
cooperation  intensity  are  very  close,  and  for ,  the

 values  of  DCI  and  IDCI  are  much  larger  than
that of EDCI; and 2) The  values of  based on
DCI and IDCI are larger than those of , , and .
For large-scale  networks,  the  developer  cooperation  in-
tensity significantly increases the number of communit-
ies,  due  to  increasing  the  difference  in  cooperation
between developers.

 5. Comparison of optimization models
The multi-objective  optimization  model  formu-

lated in this paper is compared with two single-object-
ive optimization models and five multi-objective optim-

ization models,  respectively,  with  the  goal  of  illustrat-
ing  the  superiority  of  our  multi-objective  optimization
model.

1) Comparison  with  two single-objective  optimiza-
tion models

Q

EN

We  compare  our  model  with  two  single-objective
optimization ones  to  show the  motivation  of  formulat-
ing  a  multi-objective  optimization  model.  The  two
single-objective optimization  models  optimize  the  de-
veloper  cooperation intensity  in  a  community (see  (8))
and the developer programming language similarity in a
community  (see  (9)),  respectively.  For  the  fairness  of
comparison,  GA-DNet  and  NSGA-DNet  are  used  to
solve  single-objective  and  multi-objective  optimization
models, respectively, and their parameters are the same,
with their  experimental  results  being listed in Table 4.
Due  to  multiple  solutions  obtained  in  each  run  by
NSGA-DNet, we choose two solutions in the Pareto-op-
timal set,  with one having a close  value to that ob-
tained by  GA-DNet  when  optimizing  (8)  in  the  com-
pared  single-objective  optimization  model  (columns  3
and  4  of Table 4 ).  The  other  solution  has  a  close 
value to that obtained by GA-DNet when optimizing (9)
in  the  compared  single-objective  optimization  model
(columns 5 and 6 of Table 4).

  
Q ENTable 4.   and  of multi- and single-objective optimization models

Name Indicator Formula (8) Formula (10) Formula (9) Formula (10)

G1
Q 0.6863 0.6894 0.5843 0.6512
EN 0.5274 0.4142 0.3163 0.3517

G2
Q 0.6266 0.6267 0.5181 0.6093
EN 0.5209 0.3801 0.3663 0.3641

G3
Q 0.6922 0.6777 0.5611 0.639
EN 0.5411 0.4745 0.3713 0.4129

G4
Q 0.5922 0.5991 0.5492 0.5764
EN 0.4653 0.3807 0.3768 0.3653

 
 

G1 G2 G4

Q EN

Q

EN

EN

Q

Table 4 tells  that,  1)  For , ,  and ,  the
multi-objective optimization  model  obtains  better  val-
ues  of  and   than the  single-objective  optimiza-
tion model  formulated with (8).  When the two models
have  close  values,  the  multi-objective  optimization
model has smaller  values than its counterpart; and
2)  For  all  networks,  the  multi-objective  optimization
has  the  values  of  not  completely  smaller  than the
single-objective optimization model formulated with (9).
However, its  values are larger than those of its coun-
terpart.

To sum up, the formulated multi-objective optimiz-
ation  model  can  not  only  provide  various  satisfactory
community division  schemes,  but  also  achieve  a  bal-
ance between objectives.

2) Comparison  with  five  multi-objective  optimiza-

tion models
Each  of  five  community  structure  functions  are

first combined  with  the  developer  programming  lan-
guage similarity  in  a  community  to  form  the  corres-
ponding multi-objective optimization models. Then, the
five  multi-objective  optimization  models  are  compared
with the proposed model.

Taking most previous optimization models are suit-
able for  unweighted  networks,  we  examine  the  com-
munity structure functions F1–F5 [14], [16], [17], [33] of
the  optimization  model  for  unweighted  networks,  and
extend  them  for  the  weighted  SECO  network,  with
their  functions  being  denoted  as  FW1–FW5. Table 5
lists their mathematical expressions.

kini
Xi kouti

In Table 5,   stands  for  the  number  of  edges  in
community ,  denotes  the  number  of  edges

 

G
1

G
2

G
3

Name

A
N
C

0

50

100

150

200

250

300

350

400

G
4

EDCI

DCI

IDCI

167161160

341
356357

373361373

229

420416

 
ANCFig. 2. Histogram of  based on EDCI, DCI, and IDCI.

 

Developer Cooperation Relationship and Attribute Similarity Based Community Detection in Software... 47



Xi ki(l)

vil Xi

DSi(l)

dil Xi

ODSi

Xi

Wt

between  and other communities,  represents the
number  of  edges  between  node  in   and  others  in
the  same  community,  refers  to  the  sum  of  the
direct interaction intensities between developer  in 
and  others  in  the  same  community,  means  the
sum of  the  direct  interaction  intensities  between  de-
velopers  in  and other communities,  and the sum of
the  direct  interaction  intensities  between  developers  in
the network is denoted as . Qmean ENmean

FW1–FW5 are  combined  with  the  developer  pro-
gramming language  similarity  in  a  community  to  form
five corresponding multi-objective optimization models,
denoted  as  FWA1–FWA5,  respectively.  For  the  five
multi-objective  optimization  models  and  our  model,
NSGA-DNet is  employed to detect  communities  in  the
built SECO networks, with the experimental results be-
ing listed in Table 6. In the table, data in bold repres-
ent the best  or .

  
Qmean ENmeanTable 6.   and  of six multi-objective optimization models

Name Indicator FWA1 FWA2 FWA3 FWA4 FWA5 Formula (10)

G1
Qmean 0.5692 0.6284 0.5294 0.6461 0.5556 0.6723
ENmean 0.3166 0.3306 0.3098 0.3745 0.3411 0.3684

G2
Qmean 0.5642 0.6151 0.5595 0.5982 0.5348 0.6339
ENmean 0.3957 0.4492 0.4034 0.3905 0.4127 0.3942

G3
Qmean 0.5441 0.6518 0.5688 0.6505 0.5483 0.6641
ENmean 0.3637 0.4289 0.4106 0.3904 0.382 0.4532

G4
Qmean 0.5595 0.5805 0.5048 0.5773 0.5292 0.5926
ENmean 0.4057 0.3987 0.3814 0.3705 0.3961 0.361

 
 

Qmean Qmean

ENmean G2

G4 Qmean ENmean

From Table 6 , 1)  For  all  the  networks,  the  pro-
posed model is better than its counterparts in terms of

;  2)  All  values  are  larger  than  0.3,  and  all
 values are smaller than 0.5; and 3) For  and

, our model is the best in terms of  and .
In summary, all models help to obtain the division

schemes with the community structure and similar node
attribute in  a  community.  However,  the  developer  co-
operation intensity in a community is  beneficial  to ob-
tain better community division.

 VII. Conclusions and Future Work
This paper  aims  at  solving  the  community  detec-

tion problem  of  real  SECO  networks,  which  is  benefi-
cial to reveal intricate relationships between individuals.
In view of this, we have built an SECO network by tak-
ing the developer cooperation relationship and program-
ming language  into  consideration.  Based  on  the  net-
work topology  and  interaction  behavior  between  de-
velopers, we have proposed an accurate method of cal-

culating  the  developer  cooperation  intensity,  laying  a
foundation for community detection. From the two per-
spectives  of  the  developer  cooperation  intensity  and
programming language similarity, we have formulated a
multi-objective optimization  model  for  community  de-
tection. Taking  NSGA-II  as  the  multi-objective  evolu-
tionary  optimization  framework,  we  have  provided  a
community detection algorithm, NSGA-DNet, by incor-
porating it with several existing evolutionary operators.
To evaluate the goodness of our work, four SECO net-
works have been built by crawling data in GitHub. The
results demonstrate the effectiveness of our method and
model for community detection in the SECO network.

It  can  be  seen  that  SECO  networks  built  in  this
paper are static, which has a difficulty in reflecting the
evolution of developer cooperation at different times. As
a result, the study on a dynamic SECO network is ex-
pected,  especially  the  problem of  community  detection
in the network. In addition, only one attribute is taken
into consideration when building SECO networks. If we
take  more  attributes  of  a  node  into  consideration,  the

   
Table 5. Mathematical expressions of F1–F5 and FW1–FW5

Term Mathematical expression Term Mathematical expression

F1 [17] f1 =
I∑

i=1

kout
i

2kin
i +kout

i
FW1 fw1 =

I∑
i=1

ODSi
2DSi+ODSi

F2 [14] f2 =
I∑

i=1
(
∑

l∈Xi

(
ki(l)
|Xi|

)
2
)× 2kin

i
|Xi| FW2 fw2 =

I∑
i=1

(
∑

l∈Xi

(
DSi(l)
|Xi|

)
2
)× 2DSi

|Xi|

F3 [33] f3 =
I∑

i=1

kout
i

|Xi| FW3 fw3 =
I∑

i=1

ODSi
|Xi|

F4 [16] f4 =
I∑

i=1

kin
i

|Xi|
−

I∑
i=1

kout
i

|Xi| FW4 fw4 =
I∑

i=1

DSi
|Xi|

−
I∑

i=1

ODSi
|Xi|

F5 [17] f5 =
I∑

i=1

kout
i

2kin
i

−
I∑

i=1

kout
i

2(m−kin
i )+kout

i
FW5 fw5 =

I∑
i=1

ODSi
2DSi

−
I∑

i=1

ODSi
2(Wt−DSi)+ODSi

 

48 Chinese Journal of Electronics 2023



built  SECO networks  will  be  more  complex with more
meaningful.  How  to  address  the  issue  resulted  from
more attributes of a node in SECO networks is another
topic to be further studied.

References
 O.  Franco-Bedoya,  D.  Ameller,  D.  Costal, et  al., “Open
source  software  ecosystems:  A  Systematic  mapping,” In-
formation and Software Technology,  vol.91,  pp.160–185,
2017.

[1]

 X. X. Zeng, W. Wang, C. Chen, et al., “A consensus com-
munity-based particle swarm optimization for dynamic com-
munity  detection,” IEEE Transactions on Cybernetics,
vol.50, no.6, pp.2502–2513, 2020.

[2]

 W. J. Luo, D. F. Zhang, H. Jiang, et al., “Local community
detection  with  the  dynamic  membership  function,” IEEE
Transactions on Fuzzy Systems, vol.26, no.5, pp.3136–3150,
2018.

[3]

 J. Y. Chen, L. H. Chen, Y. X. Chen, et al., “GA-based Q-
attack  on  community  detection,” IEEE Transactions on
Computational Social Systems,  vol.6,  no.3,  pp.491–503,
2019.

[4]

 J. Chen, R. Li, S. Zhao, et al., “A new clustering cover al-
gorithm based  on  graph  representation  for  community  de-
tection,” Acta  Electronica  Sinica,  vol.48,  no.9,  pp.1680–
1687, 2020. (in Chinese)

[5]

 F. F. Wang, B. H. Zhang, and S.  C. Chai, “Deep auto-en-
coded clustering algorithm for community detection in com-
plex  networks,” Chinese Journal of Electronics ,  vol.28,
no.3, pp.489–496, 2019.

[6]

 J. D. Fan, W. X. Xie, and Z. X. Liu, “A low complexity dis-
tributed  multitarget  detection  and  tracking  algorithm,”
Chinese  Journal  of  Electronics,  in  press,  DOI:  10.23919/
cje.2021.00.282, 2022.

[7]

 R. Bana and A. Arora, “Influence indexing of developers, re-
positories, technologies  and  programming  languages  on  so-
cial coding community GitHub,” in Proceedings of the 11th
International  Conference  on  Contemporary  Computing,
Noida, India, pp.1–6, 2018.

[8]

 T. T. Hou, X. J. Yao, and D. W. Gong, “Community detec-
tion  in  software  ecosystem  by  comprehensively  evaluating
developer cooperation intensity,” Information and Software
Technology, vol.130, article no.106451, 2021.

[9]

 M.  Girven  and  M.E.J.  Newman, “Community  structure  in
social  and  biological  networks,” Proceedings of the Nation-
al Academy of Sciences of the United States of America,
vol.99, no.12, pp.7821–7826, 2002.

[10]

 B. W. Kernighan and S. Lin, “An efficient heuristic proced-
ure for partitioning graphs,” Bell System Technical Journal,
vol.49, no.2, pp.291–307, 1970.

[11]

 M.  E.  J.  Newman, “ Fast algorithm  for  detecting  com-
munity  structure  in  networks,” Physical Review E ,  vol.69,
article no.066133, 2004.

[12]

 V. D. Blondel, J. L. Guillaume, R. Lambiotte, et al., “Fast
unfolding  of  communities  in  large  networks,” Journal of
Statistical Mechanics: Theory and Experiment,  vol.2008,
no.10, article no.P10008, 2008.

[13]

 C. Pizzuti, “GA-net: A genetic algorithm for community de-
tection in social networks,” in Proceedings of International
Conference  on  Parallel  Problem  Solving  from  Nature,
Dortmund, Rende, Italy, pp.1081–1090, 2008.

[14]

 L. L. Li, L. C. Jiao, J. Q. Zhao, et al., “Quantum-behaved
discrete  multi-objective  particle  swarm  optimization  for
complex  network  clustering,” Pattern Recognition ,  vol.63,
pp.1–14, 2017.

[15]

 M. G. Gong, B. Fu, L. C. Jiao, et al., “Memetic algorithm
for  community  detection  in  networks,” Physical Review E,

[16]

vol.84, article no.056101, 2011.
 F.  Folino  and  C.  Pizzuti, “ An  evolutionary  multiobjective
approach  for  community  discovery  in  dynamic  networks,”
IEEE Transactions on Knowledge and Data Engineering,
vol.26, no.8, pp.1838–1852, 2014.

[17]

 S. Tahmasebi, P. Moradi, S. Ghodsi, et al., “An ideal point
based many-objective  optimization  for  community  detec-
tion  of  complex  networks,” Information Sciences ,  vol.502,
pp.125–145, 2019.

[18]

 Z. T. Li,  J.  Liu,  and K. Wu, “A multi-objective evolution-
ary algorithm based on structural and attribute similarities
for  community  detection  in  attributed  networks,” IEEE
Transactions on Cybernetics,  vol.48,  no.7,  pp.1963–1976,
2018.

[19]

 A.  Reihanian,  M.  Feizai-Derakhshi,  and  H.  S.  Aghdasi,
“Community detection in social networks with node attrib-
utes based on multi-objective biogeography based optimiza-
tion,” Engineering Application of Artificial Intelligence,
vol.62, pp.51–67, 2017.

[20]

 A.  Idu,  T.  V.  D.  Zande,  and  S.  Jansen, “Multi-homing  in
the Apple ecosystem: Why and how developers target mul-
tiple  Apple  app  stores,” in  Proceedings  of  International
Conference on  Management  of  Emergent  Digital  Ecosys-
tems, San Francisco, USA, pp.122–128, 2011.

[21]

 K.  Plakidas,  D.  Schall,  and  U.  Zdun, “Evolution  of  the  R
software ecosystem: Metrics, relationships, and their impact
on  qualities,” Journal of Systems and Software ,  vol.132,
pp.119–146, 2017.

[22]

 S.  Jansen, “A focus  area  maturity  model  for  software  eco-
system  governance,” Information and Software Technology,
vol.118, article no.106219, 2020.

[23]

 W. Ma, L.  Chen,  X.  Y.  Zhang, et  al., “How do developers
fix cross-project  correlated bugs? A case  study on the Git-
Hub  scientific  Python  ecosystem,” in  Proceedings  of  the
39th 2017  IEEE/ACM  International  Conference  on  Soft-
ware  Engineering,  Buenos  Aires,  Argentina,  pp.382–392,
2017.

[24]

 Z.  Y.  Liu  and  Y.  H.  Ma, “ A divide  and  agglomerate  al-
gorithm  for  community  detection  in  social  networks,” In-
formation Sciences, vol.482, pp.321–333, 2019.

[25]

 X.  M.  You,  Y.  H.  Ma,  and  Z.  Y.  Liu, “ A three-stage  al-
gorithm on community detection in social networks,” Know-
ledge-Based Systems, vol.187, article no.104822, 2020.

[26]

 C.  Pizzuti, “ Evolutionary computation  for  community  de-
tection in networks: a review,” IEEE Transactions on Evol-
utionary Computation, vol.22, no.3, pp.464–483, 2018.

[27]

 S.  He,  G.  B.  Jia,  Z.  X.  Zhu, et  al., “Cooperative  co-evolu-
tionary module identification with application to cancer dis-
ease  module  discovery,” IEEE Transactions  on  Evolution-
ary Computation, vol.20, no.6, pp.874–891, 2016.

[28]

 K.  Deb,  A.  Pratap,  S.  Agarwal, et  al., “A  fast  and  elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transac-
tions on Evolutionary Computation, vol.6, no.2, pp.182–197,
2002.

[29]

 D. Jin, J. Liu, B. Yang, et al., “Genetic algorithm with loc-
al  Search  for  community  detection  in  large-scale  complex
networks,” Acta  Automatica  Sinica,  vol.37,  no.7,  pp.873–
882, 2011. (in Chinese)

[30]

 X. Huang, H. Cheng, and J. X. Yu, “Dense community de-
tection  in  multi-valued  attributed  networks,” Information
Sciences, vol.314, pp.77–99, 2015.

[31]

 X. Y Zhang, K. F. Zhou, H. B. Pan, et al., “A network re-
duction-based  multiobjective  evolutionary  algorithm  for
community  detection  in  large-scale  complex  networks,”
IEEE Transactions on Cybernetics,  vol.50,  no.2,  pp.703–
716, 2020.

[32]

 B. A Attea and H. S. Khoder, “A new multi-objective evolu-
tionary framework for community mining in dynamic social
networks,” Swarm and Evolutionary Computation ,  vol.31,

[33]

Developer Cooperation Relationship and Attribute Similarity Based Community Detection in Software... 49



pp.90–109, 2016.

SHEN Xin   received the M.S. de-
gree  from  Jiangsu  Normal  University  in
2019.  He  is  a  Ph.D.  candidate  of  the
School of Information and Control Engin-
eering,  China  University  of  Mining  and
Technology. His  research  interests  in-
clude mathematical  modelling  of  com-
plex  systems,  evolutionary  optimization,
and software ecosystem.

(Email: shenxinpassion@163.com)

DU Junwei   received  the  Ph.D.
degree  from  Tongji  University,  in  2009.
He is a Professor in the School of Inform-
ation  Science  and  Technology,  Qingdao
University  of  Science  and  Technology.
His main  research  interests  include  soft-
ware testing, natural language processing,
knowledge graph  and  knowledge  engin-
eering. (Email: djwqd@163.com)

GONG Dunwei   (corresponding
author)  received  the  Ph.D.  degree  from
China University of Mining and Techno-
logy  in  1999.  He  is  a  Professor  in  the
School of Information and Control Engin-
eering,  China  University  of  Mining  and
Technology. His  current  research  in-
terests  include  computation  intelligence
in  many-objective  optimization,  dynamic

and uncertain  optimization,  as  well  as  their  applications  in  soft-
ware  engineering,  scheduling,  path  planning,  big  data  processing
and analysis. (Email: dwgong@vip.163.com)

YAO Xiangjuan   received  the
Ph.D.  degree  from  China  University  of
Mining and Technology in 2011. She is a
Professor  in  the  School  of  Mathematics,
China University of Mining and Techno-
logy. Her main research interests include
intelligence  optimization  and  software
ecosystem. (Email:yaoxj@cumt.edu.cn)

50 Chinese Journal of Electronics 2023


