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   Abstract — For more effective image sampling, com-
pressive  sensing  (CS)  imaging  methods  based  on  image
saliency have been proposed in recent years. Those meth-
ods  assign  higher  measurement  rates  to  salient  regions,
but lower measurement rate to non-salient regions to im-
prove  the  performance  of  CS  imaging.  However,  those
methods  are  block-based,  which  are  difficult  to  apply  to
actual  CS  sampling,  as  each  photodiode  should  strictly
correspond to a block of the scene. In our work, we pro-
pose  a  non-uniform  CS  imaging  method  based  on  image
saliency, which assigns higher measurement density to sa-
lient  regions  and  lower  density  to  non-salient  regions,
where measurement density is the number of pixels meas-
ured in a unit size.  As the dimension of the signal is  re-
duced, the  quality  of  reconstructed  image  will  be  im-
proved theoretically,  which  is  confirmed  by  our  experi-
ments. Since the scene is sampled as a whole, our method
can be easily applied to actual CS sampling. To verify the
feasibility  of  our  approach,  we  design  and  implement  a
hardware sampling system, which can apply our non-uni-
form sampling  method  to  obtain  measurements  and  re-
construct  the images.  To our best  knowledge,  this  is  the
first CS  hardware  sampling  system  based  on  image  sali-
ency.

   Key words — Compressive  sensing, Non-uniform,

Measurement density, Image saliency.

 I. Introduction
Compressive  sensing  (CS)  is  a  signal  compression

theory that can sample and reconstruct a signal at sub-
Nyquist sampling rate. The definition of CS was intro-
duced by Candes et al. in [1] and [2]. CS can be simply
defined as
 

y = Φx (1)

x ∈ Rn y ∈ Rm

Φ ∈ Rm×n

x y m ≪ n

m/n

x

where  is the signal to be compressed,  is
the compressed  data,  which  is  usually  called  measure-
ments.  is the  measurement  matrix.  The  re-
construction of  CS is  to recover  by .  Since ,
the  problem  is  underdetermined,  and  the  rate  of 
can be called measurement rate (MR) or sampling rate.
Usually, higher  MRs  correspond  to  better  reconstruc-
tion  results.  It  is  obviously  that  more  measurements
will get better reconstruction. However, if we reduce the
dimension of signal , we can also get better reconstruc-
tion.

In CS imaging, one of the main challenges is to re-
construct higher  quality  images  with  fewer  measure-
ments.  To  this  end,  we  need  more  efficient  sampling
methods and  better  reconstruction  algorithms.  Re-
searches  show that  human perception  of  image  quality
is largely  influenced  by  visual  attention,  and  that  hu-
man vision would pay more attention to salient regions
of an image, but less attention to the rest of the image
[3].  In  recent  years,  many  researchers  use  the  saliency
information  for  more  effective  CS  sampling.  Those
methods divide the image into blocks and assign differ-
ent sampling times for different blocks according to the
saliency  of  each  block,  which  means  applying  a  higher
measurement  rate  to  a  more  salient  block and a  lower
measurement rate to a less salient block. However, due
to  the  non-uniform  sampling  times  for  different  image
block,  those  methods  are  difficult  to  apply  in  a  real
sampling hardware. As it is mentioned in [4], they need
block-wise  mega-pixel  sensor  (BMPS)  to  do  the
sampling  process.  The  sensor  is  actually  an  array  of
photodiodes,  which  needs  strict  calibration  for  each
photodiode  corresponding  to  a  block  of  the  scene. 
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However, the rays of a scene block are easily disturbed
by the rays of adjacent blocks. Therefore, each photodi-
ode  cannot  accurately  capture  the  rays  of  each  image
block.  Another  way  of  implementation  is  to  sample  a
block  of  image  by  covering  other  image  blocks.  The
sampling  time  of  this  way  will  significantly  increase,
and the sampling process will be much more complicated.

In  our  work,  we  propose  a  non-uniform  sampling
method based on image saliency. Different from the pre-
vious non-uniform sampling in MRs, the method imple-
ments  non-uniform  sampling  by  assigning  different
measurement density in different salient regions, where
measurement  density  is  the  number  of  pixels  to  be
measured in a unit size. As we analyzed before, a high-
er  MR  correspond  to  a  better  reconstruction.  The
block-based  CS  sampling  methods  improve  the  image
quality  by  increasing  the  numbers  of  measurements  in
salient regions, while our method achieves this by redu-
cing the dimensions of less salient regions. As sampling
times for different regions are the same, our method can
be  easily  applied  into  the  existing  compressive  sensing
imaging  devices.  To  validate  our  approach,  we  design
and  implement  a  hardware  prototype  system  that  can
apply non-uniform sampling method to obtain measure-
ments and  reconstruct  images.  In  order  to  do  recon-
struction with our measurements, we improve the tradi-
tional  reconstruction  algorithms.  Experiments  show
that the improved algorithms can significantly improve
the reconstructed image quality.

 II. Related Work
In  this  section,  we  will  introduce  the  block-based

CS sampling method in detail. Then, we will briefly in-
troduce the reconstruction algorithm in order to under-
stand our improved reconstruction algorithm. And also
several sampling hardware system will be introduced to
help understand our sampling system.

 1. Block based CS sampling

x Φ

16× 16

Traditional CS sampling is done as (1). The image
 is  sampled  by  measurement  matrix  uniformly.  In

recent years, many researchers use the saliency informa-
tion for  more effective  CS sampling.  Yu et  al. first in-
troduced image saliency into CS sampling in [4]. It pro-
posed a block-based CS sampling scheme that assigned
higher  MRs to  salient  image  blocks  and lower  MRs to
non-salient  image  blocks.  The  size  of  block  is 
pixels, and the image is  divided uniformly.  This  meth-
od reconstructed better results in the salient blocks for
the higher MRs and the quality of whole image was im-
proved.  In  order  to  better  estimate  the  compressibility
of  the  image  block,  Zhang et  al. proposed  a  standard
deviation  based  method  to  do  the  estimation  from CS
measurements [5]. The method firstly got the compress-

ibility  of  image  blocks  by  a  uniform  MRs  sampling.
Then, based on the estimation, the method performed a
non-uniform MRs block-based CS sampling. Finally, the
method combined twice-sampling data to get better re-
construction  results.  For  the  block  evaluation  method,
Li et al. proposed an evaluation method based on spa-
tial entropy in [6]. For the block division method, Zhou
et al. proposed a non-uniform division method based on
k-means  clustering  instead  of  uniform  division.  And
there are also some block based applications [7], [8]. In
any case, those methods are all block based, which are
difficult to apply to actual sampling.

 2. Reconstruction algorithm
For CS  reconstruction,  traditional  algorithms  as-

sume  the  signal  is  sparse  in  some  transform  domain.
Based on this,  the problem can be solved by some op-
timization  algorithms,  such  as  gradient  projection  for
sparse  reconstruction  (GPSR)  [9],  iterative  shrinkage
thresholding [10],  total  variation [11],  greedy [12],  low-
rank [13], etc. In recent years, several algorithms based
on image structure features have been proposed, such as
TVAL3 [14] and DAMP [15]. They assume that natur-
al  image  signal  is  structure-sparsity.  Inspired  by  deep
neural  network (DNN), Metzler et al. extend the work
of DAMP and propose an algorithm LDAMP [16] com-
bining traditional algorithm and DNN algorithm.

y = Φx

y x

x

Regardless  of  the  assumptions,  the  reconstruction
algorithm needs to  iterate  continuously under  the con-
straints  of . In the iteration process,  the trans-
formation between  and  will be carried out continu-
ously, and then the image  will be constrained accord-
ing to different sparse assumptions mentioned above in
each iteration. By iterating over and over again, we can
finally get the reconstructed image.

 3. Sampling in reality
All along,  how  to  apply  CS  to  practice  is  an  im-

portant research  direction.  In  the  CS  sampling  hard-
ware, the light of the scene is modulated by the way of
(1) and then sampled by a photodiode. The main diffi-
culty is  to  find  a  method  of  light  modulation.  Refer-
ence [17] proposed a single-pixel camera (SPC) for CS,
which  applied  digital  micromirror  device  (DMD)  to
modulate  the  light  of  scene.  While  Huang et  al. pro-
posed  a  lensless  CS  imaging  device  in  [18], which  ap-
plied  liquid  crystal  display  (LCD)  for  the  modulation.
Zhang et  al. uses a  projector  to  project  the  measure-
ment matrix into the scene, and then collects the light
of the scene [19]. Although the light of the scene is lim-
ited by projector, the method is capable of capturing a
scene without a direct view of it.

 III. Non-uniform CS Imaging
In this section, we begin with introducing the non-

uniform  sampling  method  we  proposed  in  detail,  and
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then describe  the  improvement  in  reconstruction  al-
gorithm for our non-uniform measurements.

 1. Non-uniform sampling

L L

1

Our  non-uniform  sampling  process  is  shown  in
Fig.1. Firstly, we get the saliency map of the image by
saliency detection algorithms and quantify the saliency
of  the pixels  to  levels  with level  as the most sali-
ent  regions  and  level  as  the  least  salient  regions.  In
order to reduce the dimension of image, we assign high-
er  measurement  density  to  more  salient  regions  and
lower measurement density to less salient regions. This
is  achieved  by  assigning  smaller  sampling  units  to  the
more salient regions and bigger sampling unit to less sa-
lient regions.

wl hl l

wl hl

A sampling unit  is  a  square  of  pixels  in  which we
only sample  one pixel.  Formally,  we assume the width
and height of sampling unit are  and  for level . In
theory,  and  can  be  any positive  integer.  For  the
higher levels can be divided exactly, we set them to sat-

isfy the following geometric progression.
 

wl = pL−l, hl = qL−l, l ∈ 1, . . . , L (2)

p q

p = q

w1

h1

w2 h2

1

2 L

where  and  are the common ratio.  In our work,  we
assume . In  actual  division,  the  quantified  sali-
ency map cannot exactly conform the edge of sampling
unit.  In  that  case,  we  assign  the  sampling  units  that
contain  higher  level  pixels  to  higher  level  sampling
units. For  our  division,  we  first  divide  the  whole  sali-
ency map into sampling unit by the first level of  and

.  Then  we  divide  the  sampling  units  containing  the
second  level  pixels  by  and  .  The  third  level
sampling  units  are  generated  by  divide  all  lower  level
sampling units contain third level pixels, i.e. level  and
level  sampling units. Repeat this process until level ,
we will get the non-uniform division in Fig.1. A simple
example of this division can be found in Fig.2 and the
process of this non-uniform division can be found in Al-
gorithm 1.

 

Image (x) Saliency map Non-uniform division Measurement mask

Extract

Vector (z) Measurements (y)

y=Φz

 

z

y = Φz

Fig. 1. A simple schematic of non-uniform sampling. Firstly, we get the saliency map from the image by some saliency detection
algorithms such as GMR [20].  Then we get the non-uniform division,  the each sampling unit  of  which corresponds to a
measurement point. After allocate the measurement point, we get measurement mask. The pixels to be measured are com-
bined to a vector , which are extracted from the image by measurement mask. Finally, the measurements are generated
by .

 
2
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2
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Fig. 2. The process of non-uniform division. We assume the
white region  of  the  saliency  map  has  a  higher  sali-
ency level. Firstly, we divide the whole saliency map
into sampling unit by the first level, which is and

 in the figure,  and the result  is  shown in the left
figure. Then we divide the sampling unit containing
the second level pixels, which also contains the edge-
pixels,  and  the  division  is  shown  in  middle  figure.
The final division is shown in right figure.

 

x

z

For  each  sampling  unit,  the  sampled  pixel  called
measurement point, and the measurement point can be
any pixel in the unit or the average value of all pixels.
In our work, we place the measurement point in the up-
per left corner of the unit. After all of those processes,
we will get the measurement mask in Fig.1, which is a
mask for the sampling pixels of the image. The pixels of
the image  are extracted by the measurement mask to
get the pixels , which are no longer a two-dimensional

z

y = Φz

image  but  a  vector.  Finally,  the  vector  is  measured
by  to get the measurements, which are our non-
uniform measurements.

Algorithm 1　The non-uniform division method

wl hl S0

L

Input:  and : the size of sampling unit for each level; :
saliency map with  level.

SLOutput: : non-uniform division of saliency map.
l← 1Initialize: ;

l {1, 2, . . . , L}for  in ;
wl ← pL−l　 ;
hl ← qL−l　 ;

≥ l Sl−1 wl × hl　Divide the pixels  level  in  by ;
Sl ← l　  update pixels of level ;

i {l − 1, l − 2, . . . , 1}　for  in ;
i l　　 Devide level  sampling units contain pixels of level ;

Sl ← l　　  update pixels of level ;
　end for
end for

 2. Algorithm improvement
For our previous sampling, we assume the sampled
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x zpixels of image  are , and the measurements are gen-
erated as follows:
 

y = Φz, z = E(x,m) (3)

E(·)
x m

x y

z

z x

E(·) z

where  denotes the process of  extracting the pixels
of  by the measurement mask . The problem is how
to reconstruct  by . The most intuitive way is recon-
structing  by  traditional  reconstruction  algorithms,
and then up-sampling  to  by the inverse process of

. However, we know that  is a pixel vector, which
no longer has the structural information of the two-di-
mensional image. Some recent researches show that us-
ing the structural information of image can achieve bet-
ter reconstruction results in the optimization [14],  [15].
To this end, we propose an improved algorithm that al-
lows traditional  reconstruction  algorithms  to  recon-
struct images using non-uniform measurements.

y = Φx

x = ΦTy

z

x z

z x

The  iterative-based  CS  reconstruction  algorithm
needs  to  continuously  transform  between  image  and
measurements to  obtain  the  reconstructed  image.  Usu-
ally we define the transformation of image to measure-
ments as  forward  transformation  and  the  transforma-
tion of  measurements  to  image  as  inverse  transforma-
tion. The  forward  transformation  in  traditional  CS  re-
construction  algorithm is  realized  by ,  and  the
inverse  transformation  is  realized  by . Differ-
ent  from  the  method  of  directly  reconstructing ,  we
add  the  transformation  of  to   before  the  forward
transformation of  each  iteration,  and  add  transforma-
tion of  to  after  the inverse transformation of  each
iteration.  A simple  schematic  of  this  improvement  can
be  found  in Fig.3 ,  where  the  iterative  optimization
refers to  the  other  constraints  proposed by reconstruc-
tion algorithms,  such as  TV-normal  or  denoiser.  These
iterative  optimizations  can  further  improve  the  image
quality, but their inputs are assumed to be two-dimen-
sional  images.  As  our  improvement  of  the  algorithm
satisfies this assumption, this improvement enables the
reconstruction algorithm  to  utilize  non-uniform  meas-
urements  to  optimize  two-dimensional  images  without
changing the algorithm flow.

 IV. Experimental Results
We have done plenty of  experiments to verify our

method,  including  the  use  of  non-uniform  sampling  to
reconstruct images on variety of algorithms and the im-
pact of improved algorithm on image quality.

 1. Reconstruction results
In order to verify our method, we compare the re-

construction  results  of  uniform  sampling  and  non-uni-
form sampling by the same reconstruction algorithms at
the  same  MRs.  Since  our  method  does  not  depend  on
any reconstruction algorithms, we choose several state-

256× 256

p = q = 4

MR = 0.2

of-the-art CS reconstruction algorithms, e.g., TVAL3 [14],
DAMP [15], and LDAMP [16]. Since the salient regions
of the image are usually used for image recognition [21],
we  choose  the  image  recognition  algorithm to  evaluate
the quality of the reconstructed images as the work [22].
In our work, we use ResNet [23] to calculate the recog-
nition  accuracy.  We choose  ImageNet  2015  [24]  as  our
test set, and the image size is  pixels. The sali-
ency map  is  generated  by  a  saliency  detection  al-
gorithm GMR [20]. The saliency map is quantified into
two levels: salient region and non-salient region. We ap-
ply  for  (2).  We  sample  and  reconstruct  the
images using our method at different MRs. The results
are  shown  in Table 1 , and  the  best  results  are  high-
lighted. Some visual images are shown in Fig.4. We also
compare the PSNR and SSIM for salient regions of the
images,  and the results can be found in Fig.5 .  We can
find that our method can achieve better results in both
traditional algorithms and DNN based algorithms. Our
method  can  get  better  details  in  the  salient  regions  of
images.  Since  the  reconstruction  quality  of  LDAMP
at   is too low, the accuracy of it has no sense,
and the same is true for the PSNR and SSIM in Fig.5.

Even  if  other  saliency  based  compressive  sensing
methods  cannot  be  implemented  on  the  hardware,  we
also compared  the  reconstruction  results  of  other  sali-
ency based compressive sensing method, such as SBCS
[4].  The  results  can  be  found  in Table 2 .  We  can  find
that our method can achieve better reconstruction qual-
ity.

 2. Algorithm improvement
In our work, we described our improvement in CS
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Fig. 3. A  simple  schematic  of  reconstruction  algorithm  for
non-uniform measurements.  Usually  the  reconstruc-
tion  algorithm  consists  of  forward  transformation,
inverse  transformation  and  iterative  optimization.
We  add  the  transformation  of  the  image  to  the
sampled pixels  in the forward transformation and
the sampled pixels  to the image  in the inverse
transformation,  allowing  traditional  reconstruction
algorithms to reconstruct the images using non-uni-
form measurements.
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x z
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reconstruction algorithm. We add the transformation of
 to  before the forward transformation of each itera-

tion, and add transformation of  to  after the inverse
transformation of each iteration. This improvement can
significantly improve  the  quality  of  reconstructed  im-
ages. We perform our non-uniform sampling on the sali-

ency  detection  data  set  ECSSD [25], which  has  an  ac-
curate saliency  map  set.  After  obtaining  the  measure-
ments, we reconstruct the image by original reconstruc-
tion  algorithms  and  improved  algorithms  respectively.
The  reconstructed  results  are  shown  in Table 3  and
Fig.6. As the DNN based algorithm LDAMP cannot re-
construct  one  dimensional  signal,  we  do  not  show  the
results of  LDAMP. We can find that the improved al-
gorithms are able to achieve better PSNR and SSIM at
various MRs.  At  the  same  time,  the  improved  al-
gorithms  can  achieve  better  reconstruction  quality  in
non-salient regions. This will make the image more hol-
istic.

 V. Hardware Sampling
To verify  the  feasibility  of  our  method,  we  design

and  implement  a  real  hardware  CS  imaging  system.
Due to the need of simultaneously acquire the saliency
map and sample the scene, we use the digital micromir-
ror device (DMD) as our spatial light modulator, which

   
Table 1. Image recognition accuracy by ResNet [23] (The best performance in each cell is highlighted. We can find

that our non-uniform sampling method can achieve better result, especially in higher MRs.)

TVAL3 DAMP LDAMP
MRs U NU U NU U NU

Top-1
0.2 0.14 0.26 0.14 0.29 0.04 0.01
0.5 0.32 0.38 0.28 0.42 0.35 0.40
0.8 0.50 0.56 0.54 0.62 0.56 0.58

Top-5
0.2 0.29 0.48 0.33 0.47 0.07 0.02
0.5 0.55 0.60 0.51 0.63 0.52 0.59
0.8 0.79 0.81 0.75 0.83 0.74 0.76

Note: “U” means uniform sampling and “NU” indicates non-uniform sampling; “MRs” means the measurement rates; “Top-N” is the ac-
curacy that one of the first N answers given by the image recognition algorithm is correct.

 

 

TVAL3 DAMP LDAMP

U

NU

 

MR = 0.8

Fig. 4. Images  reconstructed  by  TVAL3,  DAMP  and
LDAMP in . It is obvious that our meth-
od has better details in salient region.
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Fig. 5. The PSNR and SSIM for salient regions. Our non-uniform sampling method can get better image quality in salient regions.

 

   
Table 2. Reconstructed results (PSNR) of SBCS [4] and ours

MRs TVAL3 DAMP
SBCS Ours SBCS Ours

0.2 20.41 21.29 13.82 21.07
0.5 22.07 23.65 18.49 24.22
0.8 23.19 25.09 21.23 25.73
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has  bidirectional  reflection  characteristics.  One  of  the
reflected  light  is  captured  by  a  low  resolution  CMOS
( ) for obtaining a saliency map of the scene. The
other reflected light is collected by a photodiode for ob-
taining  CS  measurements.  The  resolution  of  DMD  is

 pixels  and we only use  pixels  of
the central region. In actual acquisition, the low-resolu-
tion CMOS first obtains a low-resolution image to gen-
erate  a  saliency  map  of  the  current  scene.  Since  the
scene cannot be extracted to a vector as  in hardware,
we need to transform the measurement matrix to mat-
rix  patterns.  The  generation  of  matrix  patterns  is
shown in Fig.7. We rearrange the elements of measure-
ment matrix by the position of  measurement points  in
measurement mask to get the patterns. In our work, we
apply  Hadamard  matrix  as  our  measurement  matrix.
The  matrix  patterns  are  displayed  on  the  DMD,  and
the  measurements  are  acquired  by  a  photodiode.  The
optical path diagram and hardware system are shown in
Fig.8. The rays of scene are imaged by lens in the plane
of DMD. Then the rays reflected by DMD are sampled

by CMOS and photodiode with two lenses.  The recon-
structed  results  are  shown  in Fig.9 .  Our  method  has
clearer details in the image salient regions.
 

CMOS

Scene

Lens

Photodiode
DMD

(a) (b) 
Fig. 8. The optical  path of  our CS sampling system. (a) is

the optical path and (b) is the hardware implement-
ation.  The  light  of  scene  is  imaged  on  the  DMD
through lens, and the DMD can reflect light in both
directions of ±12 degrees. Thus CMOS and photodi-
ode  can  receive  image  of  the  same  viewing  angle,
CMOS image is used to generate saliency map, and
photodiode is used to acquire CS measurements.

 
(a) (b) (c)

 
Fig. 9. Hardware  sampling  reconstruction  results.  The  MR

for this scene is 0.5. (a) is the scene, (b) is the recon-
structed  result  by  uniform sampling,  and  (c)  is  the
reconstructed  result  by  non-uniform  sampling.  The
image of non-uniform sampling is clearer in the sali-
ent region.

 

 VI. Conclusions and Future Work

x

In conclusion, reducing measurements and improv-
ing the quality of image reconstructed have always been
challenges  for  CS  imaging.  In  our  work,  we  propose  a
non-uniform sampling method. The method utilizes the
saliency map  of  the  image  to  set  higher  density  meas-
urement points in more salient regions and lower dens-
ity measurement points in less salient regions to reduce
the dimension of signal . For these non-uniform meas-
urements, we design an improved method of CS recon-
struction  algorithms.  This  method  adds  a  process  of

   
Table 3. Reconstructed results of the original and improved algorithms (The algorithms with * denote the improved

algorithms. Since LDAMP cannot reconstruct one dimension image, we do not show it. We can find that the im-
proved algorithms can significantly improve the quality of reconstructed images, especially in higher MRs)

MRs TVAL3 TVAL3* DAMP DAMP*

0.2
PSNR 21.01 21.29 20.81 21.07
SSIM 0.4676 0.4922 0.4672 0.5071

0.5
PSNR 23.57 23.65 23.00 24.22
SSIM 0.5765 0.5847 0.5569 0.6141

0.8
PSNR 24.91 25.09 24.42 25.73
SSIM 0.6354 0.6424 0.6157 0.6703

 

 

(a) (b) (c)

 

MR = 0.8

Fig. 6. The results of improved reconstruction algorithm in
.  (a)  The  original  image;  (b)  The  image

reconstructed  by  original  algorithm;  (c)  The  image
reconstructed  by  improved  algorithm.  Since  the
global  optimization  of  the  two-dimensional  image,
the improved algorithm also get better quality in the
non-salient regions of the image.

 

 

Measurement mask Measurement matrix Matrix patterns 
Fig. 7. The generation of  matrix patterns.  The elements of

measurement matrix are rearranged by the position
of  measurement  point  in  measurement  mask  to  get
the matrix patterns.
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non-uniform sampling in the process of forward and in-
verse transformation,  respectively,  so  that  the  al-
gorithms can  optimize  the  two-dimensional  image.  Fi-
nally,  in  order  to  verify  the  feasibility  of  our  method,
we design  and  implement  a  hardware  system.  The  ex-
periments show that the non-uniform sampling method
can effectively  improve  the  quality  of  image  and  in-
crease the  recognition  accuracy.  The  optimized  al-
gorithm can  achieve  better  quality  in  non-salient  re-
gions.  Our method can be applied into a CS hardware
sampling  system  and  get  a  better  result.  To  our  best
knowledge, this  is  the  first  CS hardware  sampling sys-
tem based on image saliency. In the future, we will fo-
cus  on  how to  get  the  saliency  evaluation  without  the
low  resolution  CMOS,  which  will  make  the  sampling
hardware and the light path more simple.
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