
Principled Design of Translation, Scale, and
Rotation Invariant Variation Operators for

Metaheuristics
TIAN Ye1, ZHANG Xingyi2, HE Cheng3, TAN Kay Chen4, and JIN Yaochu5

(1. Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical
Science and Information Technology, Anhui University, Hefei 230601, China)
(2. School of Artificial Intelligence, Anhui University, Hefei 230601, China)

(3. School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)
(4. Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR, China)

(5. Faculty of Technology, Bielefeld University, Bielefeld 33619, Germany)

 Abstract — A large number of metaheuristics have
been proposed and shown high performance in solving
complex optimization problems. While most variation op-
erators in existing metaheuristics are empirically designed,
new operators are automatically designed in this work,
which are expected to be search space independent and
thus exhibit robust performance on different problems.
This work first investigates the influence of translation in-
variance, scale invariance, and rotation invariance on the
search behavior and performance of some representative
operators. This work then deduces the generic form of
translation, scale, and rotation invariant operators, and
proposes a principled approach for the automated design
of operators, which searches for high-performance operat-
ors based on the deduced generic form. The experimental
results demonstrate that the operators generated by the
proposed approach outperform state-of-the-art ones on a
variety of problems with complex landscapes and up to 1000
decision variables.

 Key words — Metaheuristics, Evolutionary compu-

tation, Swarm intelligence, Variation operator, Trans-

formation invariance, Automated design.

 I. Introduction
Metaheuristics have shown effectiveness in solving

the complex optimization problems from various fields,
such as manufacturing [1], scheduling [2], bioinformat-
ics [3], and economics [4]. In contrast to mathematical

programming methods that require an explicit object-
ive function [5], metaheuristics provide a high-level
methodology solving problems in a black-box manner.
So far, there have been a variety of algorithms inspired
by the biological mechanisms in natural evolution, such
as genetic algorithms (GA) [6], differential evolution
(DE) [7], evolution strategies [8], and evolutionary pro-
gramming [9]. Moreover, many swarm intelligence based
algorithms have also been proposed, including particle
swarm optimization (PSO) [10], ant colony optimiza-
tion [11], artificial bee colony algorithms [12], among
many others.

Existing metaheuristics exhibit quite different
search behaviors and optimization performance, which
are mainly determined by the manually designed vari-
ation operators [13]–[15], i.e., the strategies for receiv-
ing the decision vectors of parents and generating the
decision vectors of offspring solutions. For example, the
GA was designed according to the evolution theory and
law of inheritance, which generates offspring by the
crossover between two parents and the mutation on a
single offspring solution. The crossover and mutation
operators provide a powerful exploration ability [16],
making GA good at handling multimodal landscapes [17].
The DE mutates each solution according to the
weighted difference between the other two solutions,
which holds a good performance on problems with com-

Manuscript Received Apr. 23, 2022; Accepted July 13, 2022. This work was supported in part by the National Key R&D Program
of China (2018AAA0100100), the National Natural Science Foundation of China (61876162, 61906001, 61903178, 62136008, U20A20306,
U21A20512), and an Alexander von Humboldt Professorship for Artificial Intelligence funded by the Federal Ministry of Education and
Research, Germany.

© 2023 Chinese Institute of Electronics. DOI:10.23919/cje.2022.00.100

Chinese Journal of Electronics
Vol.32, No.1, Jan. 2023

plicated variable linkages [18]. The covariance matrix
adaptation evolution strategy (CMA-ES) generates new
solutions by sampling a multivariate normal distribu-
tion model adaptively learned from the population,
showing high performance on many real-world applica-
tions [19]. Inspired by the choreography of bird flocking,
the PSO updates each particle according to its person-
al best particle and the global best particle, which has a
high speed of convergence [20].

x′ = x+ b x′ = ax

x′ = xM

Among the superiorities in existing variation oper-
ators, the independence of search space is crucial to the
robustness and generalization of metaheuristics, since
metaheuristics do not rely on specific characteristics of
problems. A search space independent operator holds
the same performance on a problem with arbitrary
search space transformations, including translation (i.e.,

), scaling (i.e.,), and rotation (i.e.,
). Existing studies have shed some light on the

sufficient conditions of achieving these invariance prop-
erties. For instance, CMA-ES is scale invariant since its
step-sizes are set proportionally to the distance to the
optimum found so far [21], and the mutation operator
of DE is rotation invariant since it is the weighted sum
of multiple parents [22]. Nevertheless, the mathematic-
al definitions of all the three properties have not been
given, and the sufficient and necessary condition of
achieving them is still unknown. Therefore, it is diffi-
cult to analyze whether an operator is translation, scale,
and rotation invariant theoretically, or to consider these
properties in designing new operators explicitly.

To address this issue, this work aims to deduce the
generic form (i.e., sufficient and necessary condition) of
translation, scale, and rotation invariant operators,
which can be used to judge the possession of invariance
properties and guide the design of new operators. Based
on the deduced generic form, this work proposes a prin-
cipled approach for designing new operators with invari-
ance properties. In contrast to the parameter tuning of
metaheuristics [23], [24], the off-line recommendation of
metaheuristics [25], [26], and the on-line combination of
metaheuristics [27], [28], the proposed approach is not
based on any existing metaheuristic but searches for
totally new operators. Moreover, the proposed ap-
proach does not utilize any existing optimizer or classi-
fier (e.g., F-Race for parameter tuning [29], artificial
neural network for metaheuristic recommendation [30],
and sum-of-ranks multiarmed bandit algorithm for me-
taheuristic combination [31]). By contrast, it is a self-
contained approach that can search for new operators
by itself. The main components of this work include the
following three aspects:

Theoretical analysis　To illustrate the import-
ance of translation invariance, scale invariance, and ro-

tation invariance, their effects on the search behavior
and performance of metaheuristics are investigated.
Then, the sufficient and necessary condition of achiev-
ing these properties is mathematically derived, which
reveals the generic form of search space independent op-
erators.

New approach　A principled approach to auto-
mated design of variation operators is proposed, termed
AutoV. Based on the deduced generic form of variation
operators, AutoV converts the search of high-perform-
ance operators into an optimization problem, in which
the decision variables are the parameters in the operat-
ors. This way, AutoV can solve optimization problems
without relying on any existing operators.

Experimental study　 The variation operator
found by AutoV is embedded in a simple evolutionary
framework and compared with eight classical or state-
of-the-art metaheuristics. The experimental results
show that the operator found by AutoV can obtain the
best results on various challenging benchmark prob-
lems; in particular, it outperforms the winner of the
CEC competition that contains multiple operators with
complex adaptation strategies. The results indicate that
AutoV has the potential to replace the laborious pro-
cess of manual design of new metaheuristics.

The rest of this paper is organized as follows. Sec-
tion II analyzes the effects of the three invariance prop-
erties, and Section III deduces their sufficient and ne-
cessary condition. Section IV presents the proposed
principled approach, and Section V gives the experi-
mental studies. Finally, Section VI concludes this pa-
per.

 II. Effects of Invariance Properties
This work focuses on the variation operators for

the following continuous optimization problem:

min f(x)

s.t. l ≤ x ≤ u (1)

x = (x1, x2, . . . , xD)

l = (l1, l2, . . . , lD)

u = (u1, u2, . . . , uD)

D

where is a decision vector denoting
a solution for the problem, denotes
the lower bound, denotes the up-
per bound, and is the number of decision variables.
To solve such problems in a black-box manner, a vari-
ety of variation operators have been proposed to gener-
ate solutions without using any specific information ex-
cept for the lower and upper bounds. This section first
introduces some representative variation operators, then
presents the definitions of translation invariance, scale
invariance, and rotation invariance and analyzes their
effects by examples and experimental studies.

 1. Variation operators
An operator generally receives the decision vectors

112 Chinese Journal of Electronics 2023

x1 x2

o1 o2

of one or more parents, then outputs the decision vec-
tors of one or more offspring solutions. For example, the
simulated binary crossover (SBX) operator [32] used in
GA uses two parents and to generate two off-
spring solutions and each time:
 {

o1d = 0.5 [(1 + β)x1d + (1− β)x2d]
o2d = 0.5 [(1− β)x1d + (1 + β)x2d]

(1 ≤ d ≤ D)

(2)

o1d d o1 β

x1 x2 x3 o

where denotes the -th variable of solution and
is a random number obeying a special distribution. The
mutation operator of DE/rand/1/bin [7] uses three par-
ents , , and to generate an offspring solution
each time:

od = x1d + F · (x2d − x3d), 1 ≤ d ≤ D (3)

F
x2 x3

β

F

where is a parameter controlling the amplification of
the difference between and . In contrast to the
random parameter in SBX that varies on each dimen-
sion, the parameter in DE is a predefined constant.
The operator of CMA-ES [8] generates offspring by
sampling a multi-variate normal distribution:

o = xm + σ · N (0,C) (4)

xm σ

C

σ 0.6(u− l)

where is the weighted sum of all solutions, is a
vector of iteratively updated step-sizes, and is a cov-
ariance matrix updated according to the current popu-
lation. In general, the initial can be set to
[33]. Similar to CMA-ES, the operator of fast evolution-
ary programming (FEP) [9] generates offspring by
sampling a single-variate normal distribution:

od = xd + ηd · N (0, 1), 1 ≤ d ≤ D (5)

η

x

where is a vector of self-adaptive standard deviations
related to each solution , whose elements can be ini-
tialized to 3 [9].

h(x1d, x2d, . . .)

d x1d, x2d, . . .

β C

It can be found that these operators generate off-
spring by using distinct formulas. Generally, an operat-
or can be regarded as a function per-
formed on each dimension , where con-
tains the decision variables of parents, the lower bound,
and the upper bound. Note that other parameters (e.g.,
 in SBX and in CMA-ES) are ignored for simpli-

city. In the following, we investigate how the invari-
ance properties influence the search behavior and per-
formance of operators.

 2. Effects of translation invariance
h(x1d, x2d,

. . .) T
h(T (x1d), T (x2d), . . .) = T (h(x1d, x2d, . . .))

According to [34], a variation operator
 is invariant to search space transformation

means that .
A translation of the search space can be regarded as an

T (x) = x+ baddition of each decision variable, i.e., ,
hence the translation invariance property can be
defined as follows:

h(x1d, x2d, . . .)

Definition 1 (Translation invariance)　 A vari-
ation operator is translation invariant if
and only if

h(x1d + b, x2d + b, . . .) = h(x1d, x2d, . . .) + b (6)

bholds for any real constant .
It is not difficult to find that all the operators of

SBX, DE, CMA-ES, and FEP are translation invariant.
In particular, the SBX operator described in (2) can be
rewritten as

hsbx(x1d, x2d) = x1d + 0.5(1± β)(x2d − x1d) (7)

hence

hsbx(x1d + b, x2d + b)

= x1d + b+ 0.5(1± β)(x2d + b− x1d − b)

= hsbx(x1d, x2d) + b (8)

and the operator is translation invariant. By contrast, if
the SBX operator is modified to

hsbx′(x1d, x2d) = 0.1x1d + 0.5(1± β)(x2d − x1d) (9)

then

hsbx′(x1d + b, x2d + b)

= 0.1x1d + 0.1b+ 0.5(1± β)(x2d + b− x1d − b)

̸= hsbx′(x1d, x2d) + b (10)

SBX′
and the operator becomes not translation invariant. Ob-
viously, the modified operator is likely to evolve
the population toward the origin.

SBX′

f(x1, x2) = x41 + x42

SBX′

SBX′

SBX′

(0, 0, . . . , 0)

(−6,−6, . . . ,−6)

x′ = x+ 6

To better illustrate this fact, Fig.1 depicts the con-
vergence profiles of SBX and based GAs on prob-
lem with and without translation,
where the random number seed is fixed and both the
population size and the number of generations are set
to 10. It can be found that the SBX based GA holds
the same search behavior and can always converge to
the global optimums of the three problems, whereas the

 based GA always converges to the origin. In
short, the SBX operator is translation invariant but

 is not. Furthermore, Table 1 lists the mean and
standard deviation of the minimum objective values ob-
tained by SBX and based GAs on six benchmark
problems [17], averaged over 30 runs. The six problems
have the same global optimum , while the
global optimum is changed to if the
problems are translated by . For the original

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 113

SBX′

SBX′

problems, the based GA significantly outper-
forms the SBX based GA since the former can quickly
converge to the origin. While for the translated prob-
lems, the performance of based GA deteriorates

considerably since it cannot converge to the translated
global optimum; by contrast, the performance of SBX
based GA keeps unchanged since the SBX operator is
translation invariant.

−10 10
−10

10
No translation

−10 10
−10

10
Translation: x′=x+3

−10 10
−10

10
Translation: x′=x+6

(a) SBX based GA (translation invariant)

−10 10
−10

10
Translation: x′=x+6

(b) SBX′ based GA

−10 10
−10

10
Translation: x′=x+3

−10 10
−10

10
No translation

SBX′Fig. 1. Convergence profiles of SBX and based GAs with fixed random number seed with and without translation.

 3. Effects of scale invariance

T (x) = ax

Similarly, a scaling of the search space can be re-
garded as a multiplication of each decision variable, i.e.,

, hence the scale invariance property can be
defined as follows:

h(x1d, x2d, . . .)

Definition 2 (Scale invariance)　A variation oper-
ator is scale invariant if and only if

h(ax1d, ax2d, . . .) = a · h(x1d, x2d, . . .) (11)

holds for any real constant a.

σ

It can be found that the operators of SBX, DE,
and CMA-ES are scale invariant but the operator of
FEP is not. Considering that the step-size is propor-
tionally related to the decision space, the operator of
CMA-ES described in (4) can be rewritten as

hcmaes(xmd, ld, ud) = xmd + (ud − ld) · N (0, σ′
d
2
c)
(12)

σ′
d (0, 1] c

C

where is a parameter within and is related to
the covariance matrix . Therefore,

114 Chinese Journal of Electronics 2023

hcmaes(axmd, ald, aud)

= axmd + (aud − ald) · N (0, σ′
d
2
c)

= a · hcmaes(xmd, ld, ud) (13)

which means that the operator is scale invariant. On
the other hand, the operator of FEP described in (5)
can be rewritten as

hfep(xd) = xd +N (0, η2d) (14)

hence

hfep(axd) = axd +N (0, η2d) ̸= a · hfep(xd) (15)

which means that the operator is not scale invariant.

f(x1, x2) = x41 + x42

Fig.2 plots the convergence profiles of CMA-ES
and FEP on with and without scal-
ing. It can be seen that the search behaviors of CMA-
ES are the same on the three problems with different
scales, whereas the search behaviors of FEP are quite
different. Moreover, Table 2 presents the mean and
standard deviation of the minimum objective values ob-
tained by CMA-ES and FEP on six benchmark prob-
lems. Obviously, CMA-ES is competitive to FEP on the
original problems, while CMA-ES dramatically outper-
forms FEP on the scaled problems. This is because the
operator of CMA-ES is scale invariant and thus exhib-
its the same performance on a problem with different
scales; by contrast, the operator of FEP is not scale in-
variant and thus is sensitive to the scales of problems.

 4. Effects of rotation invariance

T (x) = xM

A rotation of the search space can be regarded as a
matrix multiplication of each decision vector, i.e.,

, hence the rotation invariance property
can be defined as follows:

h(x1,x2, . . .)

Definition 3 (Rotation invariance)　A variation
operator is rotation invariant if and only
if

h(x1M ,x2M , . . .) = h(x1,x2, . . .)M (16)

Mholds for any orthogonal matrix .

x1,x2, . . .

x1d, x2d, . . .

Note that here the decision variables on all dimen-
sions rather than those on a single dimension

 should be considered. It can be deduced
that the mutation operator of DE is rotation invariant
while the operators of SBX, CMA-ES, and FEP are not.
In particular, the mutation operator of DE described in
(3) can be rewritten as

hde(x1,x2,x3) = x1 + F · (x2 − x3) (17)

hence

hde(x1M ,x2M ,x3M) = x1M + F · (x2M − x3M)

= hde(x1,x2,x3)M (18)

and the operator is rotation invariant. By contrast,
since the SBX operator described in (7) can be rewrit-
ten as

hsbx(x1,x2) = x1 + (x2 − x1)B (19)

where

B =


0.5(1± β1) 0 . . . 0

0 0.5(1± β2) . . . 0
.
0 0 0 0.5(1± βD)


(20)

Therefore,

hsbx(x1M ,x2M) = x1M + (x2 − x1)MB (21)

and

hsbx(x1,x2)M = x1M + (x2 − x1)BM (22)

hsbx(x1M ,x2M) = hsbx(x1,x2)MThat is, holds

SBX′Table 1. Minimum objective values obtained by SBX and based GAs on

six problems [17] with and without translation

x1, . . . , x30 ∈ [−10, 10]Original problem () SBX based GA (translation invariant) SBX′ based GA
Schwefel’s function 2.22 5.4310E+0 (2.13E+0) 1.0965E−49 (1.29E−49)
Schwefel’s function 2.21 4.5792E+0 (1.21E+0) 8.3896E−49 (1.23E−48)

Quaric function 1.6425E+3 (1.03E+3) 2.9477E−4 (2.66E−4)
Griewank function 4.7700E−1 (1.87E−1) 0.0000E+0 (0.00E+0)
Ackley’s function 3.3728E+0 (3.75E−1) 8.8818E−16 (0.00E+0)

Rastrigin’s function 4.2269E+1 (1.08E+1) 0.0000E+0 (0.00E+0)

x′ = x+ 6Translated problem () SBX based GA (translation invariant) SBX′ based GA
Schwefel’s function 2.22 5.2237E+0 (1.88E+0) 1.0083E+12 (2.18E+12)
Schwefel’s function 2.21 4.9401E+0 (1.24E+0) 5.0000E+0 (0.00E+0)

Quaric function 1.9875E+3 (1.62E+3) 2.3718E+5 (1.53E+4)
Griewank function 4.6346E−1 (1.17E−1) 1.1523E+0 (4.76E−3)
Ackley’s function 3.5154E+0 (7.18E−1) 1.2639E+1 (5.98E−4)

Rastrigin’s function 4.5695E+1 (1.01E+1) 7.4895E+2 (1.83E−1)

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 115

−100 100
−100

100
Scaling: x’=10x

(a) CMA-ES (scale invariant)

−50 50
−50

50
Scaling: x’=5x

−10 10
−10

10
No scaling

−100 100
−100

100
Scaling: x’=10x

(b) FEP

−10 10
−10

10
No scaling

−50 50
−50

50
Scaling: x’=5x

Fig. 2. Convergence profiles of CMA-ES and FEP with fixed random number seed with and without scaling.

Table 2. Minimum objective values obtained by CMA-ES and FEP on six problems [17] with and

without scaling

x1, . . . , x30 ∈ [−10, 10]Original problem () CMA-ES (scale invariant) FEP
Schwefel’s function 2.22 1.8226E+1 (3.38E+0) 1.6919E+1 (5.30E+0)
Schwefel’s function 2.21 1.0000E+1 (0.00E+0) 4.6087E+0 (2.29E−1)

Quaric function 2.5024E+1 (9.92E+0) 1.4005E+3 (1.69E+3)
Griewank function 3.2242E−1 (5.74E−2) 8.5491E−1 (1.18E−1)
Ackley’s function 2.7634E+0 (1.71E−1) 5.7111E+0 (5.97E−1)

Rastrigin’s function 2.1628E+2 (4.87E+0) 1.6904E+2 (2.52E+1)

x′ = 10xScaled problem () CMA-ES (scale invariant) FEP
Schwefel’s function 2.22 1.9390E+1 (2.70E+0) 4.6714E+10 (5.47E+10)
Schwefel’s function 2.21 1.3107E+0 (1.36E−1) 8.4873E+0 (5.56E−1)

Quaric function 2.6711E+1 (2.22E+1) 3.8536E+5 (2.35E+4)
Griewank function 2.8246E−1 (9.96E−2) 1.1561E+0 (8.63E−3)
Ackley’s function 3.0355E+0 (3.42E−1) 1.3471E+1 (5.21E−1)

Rastrigin’s function 2.1651E+2 (1.40E+1) 9.2797E+2 (3.64E+1)

116 Chinese Journal of Electronics 2023

MB = BM β1 = β2 = · · · = βDonly if , i.e., , which is
almost impossible since they are independent random
numbers. Hence, the SBX operator is not rotation in-
variant.

f(x1, x2) = x41+

x42

Fig.3 shows the convergence profiles of the muta-
tion based DE and SBX based GA on

 with and without rotation. As can be seen, the
search behavior of DE keeps unchanged on the two
problems, where the convergence profile is rotated to-
gether with the search space. On the contrary, the

search behavior of GA is unstable and the convergence
profiles are different on the two problems. As can be
further observed from Table 3 , the performance of DE
is similar to and much better than GA on six bench-
mark problems with and without rotation, respectively,
which is consistent with the facts that the mutation op-
erator of DE is rotation invariant while the SBX oper-
ator is not. In fact, the superiority of DE on problems
with complicated variable linkages [18] is mainly due to
its rotation invariance property.

−10 10
−10

10
No rotation

−10 10
−10

10
No rotation

−10 10
−10

10
Rotation: x’=xM

(b) SBX based GA
−10 10

−10

10
Rotation: x’=xM

(a) DE (rotation invariant)
MFig. 3. Convergence profiles of DE and SBX based GA with fixed random number seed with and without rotation, where is a

randomly generated orthogonal matrix.

Table 3. Minimum objective values obtained by DE and SBX based GA on six problems [17] with and

without rotation

x1, . . . , x30 ∈ [−10, 10]Original problem () DE (rotation invariant) SBX based GA
Schwefel’s function 2.22 1.9799E+1 (2.08E+0) 5.4310E+0 (2.13E+0)
Schwefel’s function 2.21 1.5589E+0 (1.87E−1) 4.5792E+0 (1.21E+0)

Quaric function 1.8303E+2 (9.67E+1) 1.6425E+3 (1.03E+3)
Griewank function 4.9032E−1 (1.01E−1) 4.7700E−1 (1.87E−1)
Ackley’s function 3.7861E+0 (2.96E−1) 3.3728E+0 (3.75E−1)

Rastrigin’s function 2.4783E+2 (2.34E+1) 4.2269E+1 (1.08E+1)

x′ = xMRotated problem () DE (rotation invariant) SBX based GA
Schwefel’s function 2.22 1.7401E+1 (3.38E+0) 2.8069E+1 (4.32E+0)
Schwefel’s function 2.21 1.5535E+0 (2.21E−1) 2.0725E+0 (4.82E−1)

Quaric function 1.2403E+2 (7.80E+1) 9.8479E+2 (1.24E+3)
Griewank function 4.6714E−1 (7.22E−2) 4.9478E−1 (1.20E−1)
Ackley’s function 3.8477E+0 (2.24E−1) 4.0805E+0 (5.49E−1)

Rastrigin’s function 2.4588E+2 (1.23E+1) 2.5095E+2 (1.12E+1)

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 117

 III. Sufficient and Necessary Condition
of Achieving Invariance Properties
It can be concluded from the above analysis that

the three invariance properties are critical to the ro-
bustness of operators, and we can judge whether an op-
erator possesses these properties according to their
definitions. However, it is still tricky to consider them
in the design of new operators explicitly. Therefore, this
section deduces the generic form of translation, scale,
and rotation invariant operators by three steps.

 1. Theoretical derivation
w = (w1, w2, . . .) = (x1d, x2d, . . .)Firstly, let , then

a translation invariant operator should satisfy

h(w + b) = h(w) + b (23)

h(w)

w0

To find the generic form of , it is first expan-
ded in a first order Taylor series at an arbitrary point :

h(w) = h(w0) + (w −w0)∇h(w′
0) (24)

∇ = (∂
∂w1

, ∂
∂w2

, . . .)T w′
0where and is an unknown

point. Based on (23), we have

h(w0) + (w + b−w0)∇h(w′
0)

= h(w0) + (w −w0)∇h(w′′
0) + b (25)

w′
0 w′′

0

w0 b

where and are unknown points determined by
. Since (25) holds for any , we only consider the

components including b

bI∇h(w′
0) = b (26)

Iwhere is a vector of ones. That is,

I∇h(w′
0) = 1 (27)

w′
0holds for any , which measn that

∂h

∂w1
+

∂h

∂w2
+ · · · = 1 (28)

h = h(w)

g(w, h) = 0

Obviously, (28) is a quasilinear first-order non-
homogeneous partial differential equation [35]. Let

 be the solution of (28) determined by a func-
tion , then the following homogeneous par-
tial differential equation can be obtained:

∂g

∂h
+

∂g

∂w1
+

∂g

∂w2
+ · · · = 0 (29)

and thus the following first integrals can be obtained:


h− w1 = c1
w1 − w2 = c2
w2 − w3 = c3

...

(30)

Therefore, the solution of (29) is

g = g(h− w1, w1 − w2, w2 − w3, . . .) (31)

g = 0 ψSince , there must exists a function such
that

h− w1 = ψ(w1 − w2, w2 − w3, . . .) (32)

which is equivalent to

h(w) = w1 + ψ(w2 − w1, w3 − w2, . . .) (33)

Moreover, it is obvious that (33) satisfies (23),
hence (33) is a sufficient and necessary condition of
(23), and the following theorem can be given:

h(x1d, x2d, . . .)

Theorem 1 (Translation invariant operator)　A
continuously differentiable variation operator

 is translation invariant if and only if it
has the following form:

h(x1d, x2d, . . .) = x1d + ψ(x2d − x1d, x3d − x2d, . . .)
(34)

ψwhere can be any continuously differentiable function.
Secondly, a scale invariant operator should satisfy

h(aw) = a · h(w) (35)

according to (33), a translation and scale invariant op-
erator should satisfy

aw1 + ψ(aw2 − aw1, aw3 − aw2, . . .)

= aw1 + a · ψ(w2 − w1, w3 − w2, . . .) (36)

v = (v1, v2, . . .) = (w2 − w1, w3 − w2, . . .)Let , we
have

ψ(av) = a · ψ(v) (37)

v0

and the first order Taylor series expansion at an arbit-
rary point is

ψ(v0) + (av − v0)∇ψ(v′
0)

= aψ(v0) + a(v − v0)∇ψ(v′′
0) (38)

v′
0 v′′

0 v0

a

a

where and are unknown points determined by .
Since (38) holds for any , we only consider the com-
ponents excluding in (38), that is,

ψ(v0) = v0∇ψ(v′
0) (39)

v0 v′
0must hold for any and , which means that

118 Chinese Journal of Electronics 2023

v1
∂ψ

∂v1
+ v2

∂ψ

∂v2
+ · · · = ψ (40)

g(v, ψ) = 0Let , the following homogeneous partial
differential equation can be obtained:

ψ
∂g

∂ψ
+ v1

∂g

∂v1
+ v2

∂g

∂v2
+ · · · = 0 (41)

and thus the following first integrals can be obtained:
 

lnψ − ln v1 = c1
ln v1 − ln v2 = c2
ln v2 − ln v3 = c3

...

(42)

Therefore, the solution of (41) is

g = g(lnψ − ln v1, ln v1 − ln v2, ln v2 − ln v3, . . .) (43)

g = 0 φSince , there must exists a function such
that

lnψ − ln v1 = φ(ln v1 − ln v2, ln v2 − ln v3, . . .) (44)

ψ(v)hence the generic form of can be determined:

lnψ(v) = ln v1 + φ

(
ln
v1
v2
, ln

v2
v3
, . . .

)
(45)

φ(u1, u2, . . .) = lnϕ(e
1
u1 , e

1
u2 , . . .)Let , then

ψ(v) = v1ϕ

(
v2
v1
,
v3
v2
, . . .

)
(46)

According to (33), we have

h(w) = w1 + (w2 −w1)ϕ

(
w3 − w2

w2 − w1
,
w4 − w3

w3 − w2
, . . .

)
(47)

Moreover, it is obvious that (47) satisfies both (23) and
(35), hence (47) is a sufficient and necessary condition
of (23) and (35), and the following theorem can be giv-
en:

h(x1d, x2d, . . .)

Theorem 2 (Translation and scale invariant oper-
ator)　A continuously differentiable variation operator
h is translation and scale invariant if
and only if it has the following form:

h(x1d, x2d, . . .)

= x1d + (x2d − x1d)ϕ

(
x3d − x2d
x2d − x1d

,
x4d − x3d
x3d − x2d

, . . .

)
(48)

ϕ can be any continuously differentiable function.
Thirdly, a rotation invariant operator should satis-

fy

h

(
D∑
i=1

midx1i,

D∑
i=1

midx2i, . . .

)
=

D∑
i=1

mid ·h(x1i, x2i, . . .)

(49)

mid ∈ M d = 1, . . . , D ϕ(w) = φ(w1,∏2
i=1 wi,

∏3
i=1 wi, . . .)

where and . Let
, then (47) is equivalent to

h(w) = w1+(w2−w1)φ

(
w3 − w2

w2 − w1
,
w4 − w3

w2 − w1
, . . .

)
(50)

According to (49), a translation, scale, and rota-
tion invariant operator should satisfy

D∑
i=1

midx1i +

(
D∑
i=1

midx2i −
D∑
i=1

midx1i

)

· φ


∑D

i=1
midx3i −

∑D

i=1
midx2i∑D

i=1
midx2i −

∑D

i=1
midx1i

, . . .


=

D∑
i=1

mid

[
x1i + (x2i − x1i)φ

(
x3i − x2i
x2i − x1i

, . . .

)]
(51)

which is equivalent to

D∑
i=1

mid(x2i − x1i) · φ


∑D

i=1
mid(x3i − x2i)∑D

i=1
mid(x2i − x1i)

, . . .


=

D∑
i=1

mid(x2i − x1i)φ

(
mid(x3i − x2i)

mid(x2i − x1i)
, . . .

)
(52)

ui = (ui1, ui2, . . .) = (mid(x2i − x1i),mid(x3i−
x2i), . . .)

Let
, we have

D∑
i=1

ui1·φ


∑D

i=1
ui2∑D

i=1
ui1

, . . .

 =

D∑
i=1

ui1φ

(
ui2
ui1

, . . .

)
(53)

u0 = (u01, u02, . . .)

and the first order Taylor series expansion at an arbit-
rary point is

D∑
i=1

ui1 ·

φ(u0) +


∑D

i=1
ui2∑D

i=1
ui1

− u01, . . .

∇φ(u′
0)


= u11 ·

[
φ(u0) +

(
u12
u11

− u01, . . .

)
∇φ(u′′

0)

]
+ u21 ·

[
φ(u0) +

(
u22
u21

− u01, . . .

)
∇φ(u′′′

0)

]
+ · · ·

(54)

which can be simplified as

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 119

(
D∑
i=1

ui2 − u01

D∑
i=1

ui1, . . .

)
∇φ(u′

0)

= (u12 − u01u11, . . .)∇φ(u′′
0)

+ (u22 − u01u21, . . .)∇φ(u′′′
0)

+ . . . (55)

u′
0,u

′′
0 , . . . u0

u12, u22, . . .

where are unknown points determined by .
Since (55) holds for any , we have

∇φ(u′
0) = ∇φ(u′′

0) = ∇φ(u′′′
0) = . . . = c (56)

φ(u)and the form of can only be

φ(u) = c0 + c1u1 + c2u2 + . . . (57)

c0, c1, c2, . . .where are constants. According to (50),

h(w) =w1 + c0(w2 − w1) + c1(w3 − w2)

+ c2(w4 − w3) + . . . (58)

Let
 

1− c0 = r1
c0 − c1 = r2
c1 − c2 = r3

...

(59)

we have

h(w) = r1w1 + r2w2 + r3w3 + . . . (60)

r1 + r2 + r3 + . . . = 1and . Moreover, it is obvious that
formula (60) satisfies (23), (35), and (49), hence (60) is
a sufficient and necessary condition of (23), (35), and (49),
and the following theorem can be given:

h(x1d, x2d, . . .)

Theorem 3 (Translation, scale, and rotation in-
variant operator)　 A continuously differentiable vari-
ation operator is translation, scale, and
rotation invariant if and only if it has the following
form:

h(x1d, x2d, . . .) = r1x1d + r2x2d + r3x3d + . . . (61)

r1, r2, r3, . . .

r1 + r2 + r3 + · · · = 1

where can be any real constants satisfying
.

 2. Remarks
According to the above theorem, the following

three corollaries can be given:
1) An operator satisfying (61) is scale invariant.

r1 + r2 + r3+

· · · = 1

2) An operator satisfying (61) with
 is scale and translation invariant.

r1, r2, r3, . . .3) An operator satisfying (61) with be-
ing constants is scale and rotation invariant.

The theoretical proofs of these corollaries are given
in the following.

Corollary 1　If a variation operator satisfying

h(x1d, x2d, . . .) = r1x1d + r2x2d + r3x3d + . . . (62)

then it is scale invariant.
Proof　Since

h(ax1d, ax2d, . . .) = ar1x1d + ar2x2d + ar3x3d + . . .

= ah(x1d, x2d, . . .)
(63)

the operator is scale invariant.
Corollary 2　If a variation operator satisfying

h(x1d, x2d, . . .) = r1x1d + r2x2d + r3x3d + . . . (64)

r1 + r2 + r3 + · · · = 1with , then it is scale and transla-
tion invariant.

Proof　Since

h(x1d + b, x2d + b, . . .)

= r1(x1d + b) + r2(x2d + b) + r3(x3d + b) + . . .

= r1x1d + r2x2d + r3x3d + . . .+ (r1 + r2 + r3 + . . .)b

= h(x1d, x2d, . . .) + b (65)

according to Corollary 1, the operator is scale and
translation invariant.

Corollary 3　If a variation operator satisfying

h(x1d, x2d, . . .) = r1x1d + r2x2d + r3x3d + . . . (66)

r1, r2, r3, . . . being constants, then it is scale and rota-
tion invariant.

r1, r2, r3, . . .Proof　Since are constants, we have

h(x1,x2, . . .) = r1x1 + r2x2 + r3x3 + . . . (67)

Therefore,

h(x1M ,x2M , . . .)

= r1(x1M) + r2(x2M) + r3(x3M) + · · ·
= (r1x1)M + (r2x2)M + (r3x3)M + · · ·
= h(x1,x2, . . .)M (68)

according to Corollary 1, the operator is scale and rota-
tion invariant.

β N (0, σ′
d
2
c)

Generally, most existing operators including those
in GA, DE, and CMA-ES meet the second corollary and
are scale and translation invariant. However, the oper-
ators in GA and CMA-ES are not rotation invariant
since the weights (i.e., in (2) and in (12))
vary on different dimensions. By contrast, the muta-

120 Chinese Journal of Electronics 2023

F

CR < 1

C

tion operator of DE is rotation invariant since the
weights (i.e., in (3)) keep unchanged on all dimen-
sions. Nevertheless, it should be noted that a rotation
invariant operator does not necessarily lead to a rota-
tion invariant metaheuristic, and vice versa. For ex-
ample, the mutation operator of DE is rotation variant,
but DE is not rotation invariant due to the crossover
operator with erator with erator with erator with

 [22]. The operator of CMA-ES is not rotation
invariant, but CMA-ES is approximately rotation in-
variant due to the rotation angle adaptive covariance
matrix [8]. In fact, a rotation invariant operator may
not obtain good performance since offspring solutions
can only be the linear combinations of parents.

r1, r2, r3, . . .

For the sake of robustness and generalization, it is
necessary to consider translation invariance, scale in-
variance, and rotation invariance in designing new oper-
ators, which can exhibit the same performance on the
same landscape with arbitrary search spaces. Neverthe-
less, many existing operators meet Corollary 2 but are
not strictly rotation invariant (i.e., the weights

 are not constant), aiming to balance
between rotation invariance and search performance. In
practice, rotation invariance is approximately achieved
by rotating offspring solutions according to a covari-
ance matrix [8], [36] or associating each weight with
multiple candidate constants [7].

 IV. Principled Approach for Designing
Operators

r1, r2, r3, . . .

The function of (61) reveals the generic form of
translation, scale, and rotation invariant operators,
while the optimal values of the weights are
not provided. Therefore, this section proposes a prin-
cipled approach for designing new operators, which
searches for high-performance operators by optimizing
the weights.

 1. Parameterization of variation operators
In order to introduce randomness, the proposed ap-

proach AutoV represents each weight by an independ-
ent normal distribution, and it optimizes the mean and
variance of each normal distribution instead of the
weight. Formally, the proposed AutoV searches for the
operators having the following form:

h(x1d, . . . , xtd) =

t∑
i=1

rixid

s.t.
t∑

i=1

ri = 1, ri ∼ N (µi, σ
2
i) (69)

µi ∈ [−1, 1] σi ∈ [0, 1]where and are the parameters to

ri
d = 1, . . . , D ri

be optimized. Note that the value of keeps un-
changed for , hence is still a constant for
generating each offspring solution.

r1
1− r2 − r3 − · · ·

In order to balance between rotation invariance
and search performance, the ensemble of multiple para-
meter sets is adopted in AutoV. Moreover, the first
weight can be omitted since it can be directly set to

. To summarize, an operator in AutoV
is determined by the following matrix
 

µ12, σ12, µ13, σ13, . . . , µ1t, σ1t, p1
µ22, σ22, µ23, σ23, . . . , µ2t, σ2t, p2

...
µk2, σk2, µk3, σk3, . . . , µkt, σkt, pk

 (70)

µji σji
ri j pj

j

where and denote the mean and variance of
weight in the -th parameter set, respectively, and
denotes the probability of selecting the -th parameter
set. When generating a decision variable of an offspring
solution, the roulette-wheel selection is first used to se-
lect a parameter set (i.e., one row of (70)) according to
their probabilities. Then, the decision variable is gener-
ated by sampling the given normal distribution.

In this way, the search of high-performance operat-
ors can be formulated as a continuous optimization
problem, whose decision vector contains all the ele-
ments in (70) and the objective is the performance of
the corresponding operator. Generally, it is easy to
measure the fitness by investigating the performance of
a metaheuristic equipped with the operator, but it is
difficult to optimize the decision vector since AutoV
does not require any prior knowledge, i.e., none of the
existing optimizers are used to evolve a population for
solving the problem. Thus, the proposed AutoV sug-
gests a novel evolutionary procedure, in which the pop-
ulation can be evolved by itself.

 2. Procedure of the principled approach

P P

P

P

P

The procedure of the proposed AutoV is detailed in
Fig.4 and Algorithm 1. Given a benchmark problem for
performance measurement, AutoV first randomly ini-
tializes a population and evaluates each solution in ,
where each solution denotes a parameter matrix defined
in (70). At each generation, AutoV selects a number of
parents from via binary tournament selection, then
uses the parents to generate an offspring population by
using the variation operator parameterized by the best
solution in . Afterwards, the offspring population is
combined with , and half the solutions with better fit-
ness survive for the next generation. AutoV repeats the
above steps until the termination criterion is fulfilled,
and returns the solution with the best fitness as the
found variation operator.

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 121

Algorithm 1　Procedure of AutoV

fInput: (a benchmark problem)
hOutput: (the best operator)

P ←1: Randomly initialize a population, where each solution
is a parameter matrix defined in (70);

x ∈ P2: for each do
x Evaluation(x, f)3: Evaluate the objective value of by ;

4: while termination criterion is not fulfilled do
P ′ ← P5: Select parents from via binary tournament se-
lection;
h← P6: The best solution in ;
O ← h

P ′
7: Use the operator to generate offspring based on

parents ;
o ∈ O8: for each do

o

Evaluation(o, f)

9: Evaluate the objective value of by
;

P ← P ∪O10: ;
P ← P11: Half the solutions in with better fitness;

h← P12: The best solution (i.e., operator) in ;
h13: return ;

Since the goal of AutoV is to create high-perform-
ance variation operators, it uses the best operator found
so far to evolve the population for finding a better oper-
ator, and the better operator can then evolve the popu-
lation for finding a much better operator, where none of
the existing metaheuristics are used. For the fitness
evaluation of each candidate operator, a simple meta-
heuristic is established by adopting the candidate oper-
ator. As presented in Algorithm 2, the best objective
value found by the established metaheuristic on the giv-
en benchmark problem is regarded as the fitness of the
candidate operator. Besides, we find that a candidate
operator may be over-optimized for the given bench-
mark problem, which means that it considers a perfect
solution for the given benchmark problem accidentally.
Still, it cannot evolve the population gradually. To
solve this issue, AutoV executes the established meta-

heuristic for multiple runs and uses the median value of
the found best objective values as the fitness.

Evaluation(p, f)Algorithm 2　

p fInput: (parameter matrix of an operator), (a benchmark
problem)

fit pOutput: (fitness of operator)
fit← ∅1: ;

run = 1 maxRun2: for to do
P ←

f

3: Randomly initialize a population, where each solu-
tion is a decision vector for ;

x ∈ P4: for each do
x f(x)5: Evaluate the objective of by ;

6: while termination criterion is not fulfilled do
P ′ ← P7: Select parents from via binary tournament
selection;
O ← p

P ′
8: Use the operator to generate offspring based

on parents ;
o ∈ O9: for each do

o f(o)10: Evaluate the objective of by ;
P ← P ∪O11: ;
P ← P12: Half the solutions in with better fitness;

x← P13: The best solution in ;
fit← fit ∪ {f(x)}14: ;

fit← fit15: Median value of ;
fit16: return ;

In the experiments, we consider the following five
different sets of parents as the input of (69) for generat-
ing one offspring solution:
 

h1 = h(x1d, x2d)
h2 = h(x1d, ld, ud)
h3 = h(x1d, x2d, ld, ud)
h4 = h(x1d, x2d, x3d)
h5 = h(x1d, x2d, x3d, ld, ud)

(71)

x1d, x2d, x3d
ld ud

d

where denote the decision variables of three
parents, denotes the lower bound, and denotes the
upper bound on the -th dimension.

√

√

√

√

√ √
√

√
√

√ √

√√

√
√

√
√

√

Main procedure (Six steps)
Step 1.1

Step 2.1
Evaluation of operator (Six steps)

Step 1.2 Step 1.3 Step 1.4 Step 1.5

Step 2.2 Step 2.3 Step 2.4 Step 2.5

Step 1.6

Step 2.6

Continue

Randomly generate
operators

Randomly generate
solutions

Evaluate each
operator

Evaluate each
solution on a problem

Mating

selection

Mating

selection

Evaluation Evaluation

Use to generate
new operators

Use to generate
new solutions

Evaluate each
new operator

Retain better
operators

Retain better
solutions

Evaluate each new
solution on a problem

Environmental

selection

Environmental

selection

The best
operator

Best objective
value as the

fitness value of
the operator

Fig. 4. Procedure of AutoV.

122 Chinese Journal of Electronics 2023

O(N)

O(N logN) N

O(NDk) D
k

O(NDk)

O(N2DkG×maxRun) N
maxRun

G

It can be found from Algorithm 2 that a metaheur-
istic with an operator found by AutoV holds a similar
procedure to general genetic algorithms, where the time
complexity of mating selection is and the time
complexity of environmental selection is (
is the population size). By contrast, the offspring gener-
ation becomes less efficient due to the use of multiple
parameter sets, whose time complexity is (is
the number of decision variables and is the number of
parameter sets). Therefore, the time complexity of one
generation of a metaheuristic with an operator found by
AutoV is . On the other hand, the time com-
plexity of one generation of AutoV itself is as high as

, since metaheuristics need to
be executed for times and each time contains

 generations. Nevertheless, the search of high-perform-
ance operators in AutoV is an off-line procedure that

does not affect the efficiency of solving problems in
practice.

 V. Experimental Studies
To verify the effectiveness of the proposed AutoV,

the performance of the operators found by AutoV is
first studied. Then, the best operator is compared with
eight metaheuristics, where GA [6], PSO [10], DE [7],
CMA-ES [8], and FEP [9] are classical metaheuristics,
CSO [37] is a competitive swarm optimizer for large-
scale optimization, and SHADE [38] and IMODE [39]
are hybrid metaheuristics based on multiple operators
with parameter adaptation. Based on the settings sug-
gested in the original literature of the compared meta-
heuristics, we finely tune their parameters for a relat-
ively good performance, where the detailed parameter
settings are listed in Table 4.

D u

l
Table 4. Parameter settings of the compared metaheuristics (is the number of decision variables, is the upper

bound, is the lower bound, and n=100 is the population size)

Metaheuristic Parameter setting

GA [6] (based on SBX [32] and polynomial mutation [40]) 1/D

Crossover probability: 1,
Mutation probability: ,

Distribution index: 20
PSO [10] Inertia weight: 0.4

DE [7] (DE/rand/1/bin) CR = 0.9 F = 0.5,

CMA-ES [8]

σ = 0.6(u− l)

wi = log(µ+ 0.5)− log(i) i ∈ [1, µ]

µ = 0.5n cσ = 0.15

dσ = 1.15 cc = 0.105

Initial ,
, ,

, ,
,

FEP [9] η = 3Initial
CSO [37] Social factor: 0.1

SHADE [38] (parameter adaptative DE) –

IMODE [39] (winner of CEC’2020) Minimum population size: 4
Ratio of archive size: 2.6

 1. Comparison between the operators found
by AutoV

k

maxRun

For each of the five functions given in (71), the
proposed AutoV optimizes it with a population size of 100
for 1000 generations. As for the fitness evaluation of
each candidate operator, the population size is set to 100,
the number of generations is set to 100, the number of
parameter sets is set to 10, and the number of runs

 is set to 9. Besides, the Rastrigin’s function [17]
is adopted as the benchmark problem for performance
measurement.

h1 h5

To compare the performance of the found operat-
ors with different functions – , they are embedded
in the simple metaheuristic presented in Algorithm 2
and tested on eight benchmark problems with 30 de-
cision variables. These benchmark problems have a
variety of unimodal, multimodal, or flat landscapes,
whose definitions can be found in [17]. For all the meta-

h3

h5
h5

h5

heuristics, the population size is set to 100 and the
number of generations is set to 100. Table 5 lists the
minimum objective values found by the five metaheur-
istics averaged over 30 runs, where the compared oper-
ators exhibit similar performance and the operator
has slightly better overall performance than the others.
It is worth noting that the operator does not obtain
the best overall performance, though the function
has more parents and is expected to perform better.
This is because the function contains more paramet-
ers to be optimized, which hinders AutoV from finding
high-performance operators.

k

h3 k = 1, 5, 10, 15, 20

k = 10

k

To study the influence of the number of parameter
sets , Fig.5 plots the performance of the metaheuristic
with operator and on the eight
benchmark problems, where leads to better over-
all performance than the other settings. On the one
hand, a small value of provides a few different search

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 123

k

behaviors, and thus leads to a low performance limit.
On the other hand, although a large value of provides
many different search behaviors, it leads to a large

k = 10

number of parameters that are difficult to be optimized.
As a consequence, is a proper setting for finding
high-performance operators.

k=1 k=5 k=10 k=15 k=20
10−2

100

Schwefel’s function 2.22

k=1 k=5 k=10 k=15 k=20

Schwefel’s function 2.21

2

4
6

k=1 k=5 k=10 k=15 k=20

Quaric function

0.02

0.03

k=1 k=5 k=10 k=15 k=20

Generalized griewank function

0

0.5

1.0

k=1 k=5 k=10 k=15 k=20

Generalized schwefel’s function

−10000
−8000

k=1 k=5 k=10 k=15 k=20

Ackley’s function

10−2

100

k=1 k=5 k=10 k=15 k=20

Rosenbrock’s function

1.0
1.5
2.0

×104

k=1 k=5 k=10 k=15 k=20

Rastrigin’s function

5

10

15

h3 kFig. 5. Minimum objective values obtained by the operator with function and different numbers of parameter sets found by

AutoV.

h3

Furthermore, the influence of the benchmark prob-
lem on fitness evaluation is studied. Table 6 lists the
performance of the metaheuristic with operator op-
timized on four benchmark problems, including the

Schwefel’s function 2.22 with a unimodal landscape, the
Schwefel’s function 2.21 with a flat landscape, and the
Ackley’s function and Rastrigin’s function with mul-
timodal landscapes. It can be found that the four meta-

h1 h5Table 5. Minimum objective values obtained by the operators with different functions – found by AutoV on

eight benchmark problems [17] (Best results are highlighted)

Problem h1 h2 h3 h4 h5

Schwefel’s function 2.22 9.07E−5 5.27E+0 2.07E−2 8.72E−3 1.02E−1
Schwefel’s function 2.21 1.65E+1 1.19E+1 1.66E+0 8.75E+0 1.67E+0

Quartic function 2.01E−2 1.32E−1 1.12E−2 9.02E−3 1.16E−2
Generalized Griewank function 1.99E−3 2.93E+0 2.81E−2 4.46E−1 2.66E−1

Generalized Schwefel’s function 2.26 −9.17E+3 −1.04E+4 −1.16E+4 −5.70E+3 −5.28E+3
Ackley’s function 5.47E−4 4.77E+0 1.79E−2 8.94E−1 2.05E−1

Rosenbrock’s function 1.20E+4 1.17E+5 9.09E+3 8.80E+3 3.82E+3
Rastrigin’s function 3.76E+1 3.96E+1 3.88E+0 9.99E+0 7.86E+0

h3Table 6. Minimum objective values obtained by the operator with function and different benchmark problems [17]

for fitness evaluation (Best results are highlighted)

Problem Optimized on Schwefel’s
function 2.22

Optimized on Schwefel’s
function 2.21

Optimized on Ackley’s
function

Optimized on Rastrigin’s
function

Schwefel’s function 2.22 2.46E−6 7.00E−2 4.91E−6 2.07E−2
Schwefel’s function 2.21 1.46E+1 1.36E+0 1.21E+1 1.66E+0

Quartic function 1.29E−2 1.23E−2 1.44E−2 1.12E−2
Generalized Griewank

function 6.89E−3 7.02E−2 1.48E−3 2.81E−2

Generalized Schwefel’s
function 2.26 −9.35E+3 −9.76E+3 −9.55E+3 −1.16E+4

Ackley’s function 1.00E−4 5.77E−2 5.71E−5 1.79E−2
Rosenbrock’s function 6.03E+3 3.89E+3 7.64E+3 9.09E+3
Rastrigin’s function 2.36E+1 1.59E+1 2.91E+1 3.88E+0

124 Chinese Journal of Electronics 2023

h3
k = 10

heuristics obtain the best performance on the bench-
mark problem for fitness evaluation, while they obtain
quite similar performance on the other problems. In the
following, the metaheuristic with operator and

 optimized on the Rastrigin’s function is used as
a representative of AutoV to be compared with exist-
ing metaheuristics on various problems.

 2. Comparison on small-scale benchmark
problems

h3

Then, the proposed AutoV (i.e., the metaheuristic
with operator) is compared with eight existing meta-
heuristics on 13 small-scale benchmark problems with 30
decision variables, where the definitions of these prob-
lems can be found in [9]. For all the compared meta-
heuristics, the population size is set to 100 and the

number of function evaluations is set to 10000. Table 7
shows the means and standard deviations of the minim-
um objective values found by the nine metaheuristics,
averaged over 30 runs. It can be found that the pro-
posed AutoV obtains the best overall performance,
which gains the best results on 9 out of 13 problems.
The Wilcoxon rank sum test [41] with a significance
level of 0.05 is adopted to perform statistical analysis,
where AutoV is significantly better than GA, PSO, DE,
CMA-ES, FEP, CSO, SHADE, IMODE on 11, 13, 13, 13,
13, 12, 11, and 10 problems, respectively. Furthermore,
Fig.6 depicts the convergence trajectories of the com-
pared metaheuristics on the Step Function and the Pen-
alized Function, where AutoV converges obviously
faster than the other metaheuristics.

Table 7. Minimum objective values obtained by nine metaheuristics on 13 small-scale benchmark problems with 30

decision variables. Best results are highlighted

Small-scale
problems [9]

GA [6] PSO [10] DE [7] CMA-ES [8] FEP [9] CSO [37] SHADE [38] IMODE [39] AutoV

f1
1.4973E+1−
(2.0053E+0)

3.5453E+3−
(1.2242E+3)

5.0032E+3−
(5.7205E+2)

1.2391E+2−
(2.6004E+1)

9.2809E+3−
(2.7503E+3)

1.2988E+3−
(5.0772E+2)

2.2958E+1−
(7.4054E+0)

2.9105E+0−
(9.0907E−1)

8.3702E−1
(5.333E−1)

f2
8.3310E−1−
(1.7114E−1)

3.2170E+1−
(6.6473E+0)

5.1595E+1−
(1.5480E+1)

8.6103E+0−
(3.3770E+0)

5.1291E+1−
(1.0920E+1)

1.5504E+1−
(3.1662E+0)

6.2312E+0−
(1.1158E+0)

3.2305E−1−
(1.0412E−1)

1.2081E−1
(2.556E−2)

f3
1.0621E+4

(2.6732E+3)
7.8076E+3

(2.9985E+3)
6.4156E+3

(1.1614E+3)
5.0816E+3

(1.2254E+3)
2.1959E+4

(3.5707E+3)
1.7542E+3≈
(5.5302E+2)

1.6461E+3≈
(5.3479E+2)

6.6967E+2+
(1.3529E+2)

2.0131E+3
(8.307E+2)

f4
2.3222E+1−
(3.6870E+0)

2.4005E+1−
(3.0366E+0)

3.4503E+1−
(4.1625E+0)

8.7765E+0−
(1.5806E+0)

5.3464E+1−
(9.3989E+0)

1.1521E+1−
(2.0034E+0)

9.1224E+0−
(1.4948E+0)

8.8346E+0−
(2.0574E+0)

6.4179E+0
(1.953E+0)

f5
1.2336E+3−
(6.8051E+2)

5.5668E+5−
(2.7471E+5)

1.6919E+6−
(1.0907E+6)

5.1996E+3−
(2.8736E+3)

5.8033E+6−
(2.9157E+6)

1.5258E+5−
(7.7532E+4)

7.2347E+2−
(3.3376E+2)

1.2120E+2≈
(6.9918E+1)

2.0580E+2
(1.981E+2)

f6
1.9375E+1−
(3.9978E+0)

3.4820E+3−
(1.1301E+3)

4.5314E+3−
(8.0852E+2)

1.3163E+2−
(3.2824E+1)

8.8923E+3−
(3.1734E+3)

1.0266E+3−
(4.3859E+2)

3.2250E+1−
(7.7965E+0)

3.6250E+0−
(2.1998E+0)

0.0000E+0
(0.000E+0)

f7
9.1447E−2−
(3.8031E−2)

8.2203E−1−
(2.2065E−1)

1.1222E+0−
(3.6673E−1)

8.2239E−2−
(2.6534E−2)

5.2040E+1−
(2.7550E+1)

5.4577E−2−
(2.1989E−2)

5.8113E−2−
(1.4618E−2)

8.4790E−2−
(2.7932E−2)

2.0943E−2
(8.192E−3)

f8
−1.4025E+4≈
(5.0347E+2)

−8.2308E+3
(1.2979E+3)

−1.1684E+4
(5.6921E+2)

−1.2799E+4
(2.8077E+2)

−1.0531E+4
(8.2223E+2)

−1.2285E+4
(4.2013E+2)

−1.4023E+4≈
(8.5233E+1)

−1.4575E+4+
(2.0746E+2)

−1.3852E+4
(6.717E+2)

f9
1.1504E+1+
(3.3186E+0)

1.5864E+2−
(1.7533E+1)

2.7333E+2−
(1.4085E+1)

2.2788E+2−
(2.3562E+1)

2.6914E+2−
(2.7653E+1)

1.0901E+2−
(1.7125E+1)

1.6771E+2−
(1.4089E+1)

2.3842E+1−
(5.6385E+0)

1.4546E+1
(2.163E+0)

f10
1.7023E+0−
(3.1651E−1)

1.2329E+1−
(1.3322E+0)

1.3329E+1−
(8.5004E−1)

4.0097E+0−
(5.6144E−1)

1.4671E+1−
(7.3884E−1)

7.6077E+0−
(1.1400E+0)

2.8370E+0−
(2.1827E−1)

1.2297E+0−
(3.8807E−1)

2.1621E−1
(5.119E−2)

f11
1.1563E+0−
(4.0584E−2)

2.8566E+1−
(3.2736E+0)

4.6051E+1−
(1.3901E+1)

2.1092E+0−
(2.8414E−1)

1.1710E+2−
(3.2432E+1)

1.0340E+1−
(3.2046E+0)

1.2644E+0−
(7.1606E−2)

1.0158E+0−
(3.6145E−2)

6.7928E−1
(1.999E−1)

f12
2.8786E+1−
(1.5748E+1)

1.0624E+3−
(1.3982E+3)

7.1756E+4−
(6.5424E+4)

4.0254E+1−
(5.5667E+0)

4.9839E+6−
(5.9492E+6)

1.3627E+2−
(3.5766E+1)

3.1790E+1−
(9.1497E+0)

7.2029E+1−
(2.4378E+1)

1.5847E+0
(1.976E+0)

f13
7.1895E+0−
(7.2480E+0)

4.3602E+5−
(5.1304E+5)

2.1898E+6−
(1.7255E+6)

1.0939E+1−
(2.7540E+0)

1.2093E+7−
(1.0145E+7)

2.1808E+3−
(5.2706E+3)

4.3094E+0−
(1.5238E+0)

4.3502E+0−
(2.3093E+0)

1.0075E−1
(4.216E−2)

+/− / ≈ 1/11/1 0/13/0 0/13/0 0/13/0 0/13/0 0/12/1 0/11/2 2/10/1 –
Note: “+,” “−,” and “≈” indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by

AutoV.

While the 13 benchmark problems are already
translated and scaled, they are further rotated by ran-
domly generated orthogonal matrices and challenge the
nine metaheuristics. As can be seen from the experi-
mental results listed in Table 8 , the superiority of the
proposed AutoV becomes more significant, where
AutoV outperforms the other metaheuristics on 11 out
of 13 problems. As a consequence, the superiority of
AutoV over some classical and state-of-the-art meta-
heuristics can be verified. Besides, it also implies that

AutoV is more effective than the approaches based on
the recommendation and combination of existing meta-
heuristics, whose performance can hardly go beyond the
best existing metaheuristic on each problem.

 3. Comparison on large-scale benchmark
problems

Lastly, the proposed AutoV and the eight existing
metaheuristics are compared on the 15 CEC’2013 large-
scale benchmark problems [42]. These benchmark prob-
lems contain approximately 1000 decision variables and

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 125

a variety of landscape functions, transformations, and
interactions between variables, posing stiff challenges to
general metaheuristics. For all the compared al-
gorithms, the population size is set to 100 and the num-
ber of function evaluations is set to 120000.

Table 9 presents the means and standard devi-
ations of the minimum objective values found by the
compared metaheuristics, averaged over 30 runs. It can
be observed from the statistical results that the pro-
posed AutoV also exhibits better overall performance

than the others on the large-scale benchmark problems,
achieving the best results on 9 out of 15 problems. It is
noteworthy that although SHADE and IMODE sug-
gest many complex search strategies for the combina-
tion of multiple operators and adaptation of paramet-
ers, they are still underperformed by AutoV that only
contains a simple operator designed automatically.
Therefore, the proposed AutoV offers bright prospects
to the design of metaheuristics, which can potentially
replace the laborious manual design process.

GA PSO DE CMA-ES FEP CSO SHADE IMODE AutoV

10 50 100

Number of generations

100

105

M
in

im
u
m

 o
b
je

ct
iv

e
v
al

u
e

Penalized function f13

10 50 100

Number of generations

0

100

102

104

M
in

im
u
m

 o
b
je

ct
iv

e
v
al

u
e

Step function f6

Fig. 6. Convergence trajectories of nine metaheuristics on two problems.

Table 8. Minimum objective values obtained by nine metaheuristics on 13 rotated small-scale benchmark problems

with 30 decision variables (Best results are highlighted)

Rotated
small-scale
problems [9]

GA [6] PSO [10] DE [7] CMA-ES [8] FEP [9] CSO [37] SHADE [38] IMODE [39] AutoV

f1
1.7644E+1−
(5.3457E+0)

3.1210E+3−
(8.2974E+2)

4.3448E+3−
(8.3965E+2)

1.2422E+2−
(2.9570E+1)

9.2516E+3−
(3.9378E+3)

1.2894E+3−
(6.7999E+2)

2.9700E+1−
(1.0900E+1)

2.0650E+0−
(1.0838E+0)

7.1625E−1
(5.403E−1)

f2
1.9315E+1−
(1.0234E+1)

3.7244E+1−
(1.8184E+1)

4.9671E+1−
(8.5749E+0)

1.3854E+1−
(6.8676E+0)

8.1606E+1−
(9.7066E+0)

1.4780E+1−
(3.0538E+0)

1.8746E+1−
(2.6580E+0)

1.5749E+0≈
(4.2566E−1)

1.5246E+0
(5.190E−1)

f3
9.9581E+3−
(2.6366E+3)

5.3590E+3−
(1.4792E+3)

5.3369E+3−
(1.3071E+3)

1.3929E+4−
(3.9351E+3)

2.2100E+4−
(5.0673E+3)

1.5239E+3≈
(9.7521E+2)

1.7530E+3≈
(4.7904E+2)

8.5084E+2+
(2.5578E+2)

2.1193E+3
(7.960E+2)

f4
1.4962E+1−
(5.9860E+0)

2.4756E+1−
(4.8244E+0)

3.6628E+1−
(4.7317E+0)

7.8044E+0−
(9.4482E−1)

4.6193E+1−
(2.4146E+0)

1.2863E+1−
(1.8236E+0)

8.1105E+0−
(8.4983E−1)

5.5831E+0−
(1.2362E+0)

3.2227E+0
(1.742E+0)

f5
2.8300E+4−
(4.8151E+4)

8.9721E+5−
(3.4766E+5)

1.7625E+6−
(7.4240E+5)

9.3046E+3−
(6.0657E+3)

5.2830E+6−
(2.3632E+6)

1.1350E+5−
(6.7006E+4)

2.8513E+3−
(3.4473E+3)

2.9329E+2≈
(1.6130E+2)

2.0175E+2
(1.540E+2)

f6
2.3375E+1−
(3.7009E+0)

3.6026E+3−
(6.8520E+2)

5.0828E+3−
(1.1280E+3)

1.1925E+2−
(2.9011E+1)

8.6534E+3−
(2.1819E+3)

1.2864E+3−
(5.8652E+2)

3.2250E+1−
(6.5629E+0)

1.3750E+1−
(7.1464E+0)

2.5000E+0
(2.204E+0)

f7
8.1742E−2−
(2.9263E−2)

8.6616E−1−
(4.3408E−1)

1.1051E+0−
(6.6114E−1)

7.1672E−2−
(3.4086E−2)

4.8419E+1−
(2.8474E+1)

1.1136E−1−
(5.2390E−2)

6.3319E−2−
(1.6838E−2)

4.9230E−2−
(2.2971E−2)

1.7558E−2
(5.800E−3)

f8
−7.6960E+3≈
(4.2092E+2)

−6.4301E+3−
(7.3448E+2)

−5.2233E+3−
(4.2305E+2)

−7.6329E+3≈
(5.6710E+2)

−7.4567E+3≈
(6.5244E+2)

−7.5311E+3≈
(2.9851E+2)

−5.5305E+3−
(2.9295E+2)

−7.1206E+3≈
(2.0444E+2)

−7.3751E+3
(2.951E+2)

f9
7.0727E+1−
(1.4655E+1)

1.4357E+2−
(1.9674E+1)

2.6278E+2−
(1.3668E+1)

2.2499E+2−
(2.5540E+1)

3.0943E+2−
(1.3695E+1)

1.0129E+2−
(1.1932E+1)

2.1434E+2−
(1.3079E+1)

8.0586E+1−
(1.7108E+1)

4.1289E+1
(1.364E+1)

f10
2.9250E+0−
(1.0910E−1)

1.1749E+1−
(5.8613E−1)

1.3413E+1−
(8.0644E−1)

4.3282E+0−
(4.3019E−1)

1.5657E+1−
(1.5809E+0)

7.3892E+0−
(9.1288E−1)

3.0076E+0−
(3.2128E−1)

2.3761E+0−
(5.8902E−1)

9.6926E−1
(6.627E−1)

f11
1.1551E+0−
(2.4035E−2)

2.9789E+1−
(8.3839E+0)

4.5249E+1−
(8.3656E+0)

1.9904E+0−
(2.2665E−1)

1.1321E+2−
(2.2152E+1)

1.2782E+1−
(4.1098E+0)

1.1978E+0−
(7.2707E−2)

9.4447E−1−
(7.3867E−2)

7.6236E−1
(1.343E−1)

f12
3.5756E+1−
(1.7714E+1)

1.5007E+3−
(1.6007E+3)

1.9844E+5−
(1.8928E+5)

3.7031E+1−
(6.1593E+0)

1.2756E+6−
(1.1497E+6)

1.3627E+2−
(6.7341E+1)

3.4071E+1−
(5.6141E+0)

7.2069E+1−
(1.6143E+1)

1.4346E+0
(1.133E+0)

f13
4.1967E+0−
(3.5806E+0)

6.7210E+5−
(4.4019E+5)

3.8989E+6−
(2.7548E+6)

1.0194E+1−
(3.2998E+0)

9.2196E+6−
(7.2385E+6)

7.5595E+3−
(2.0845E+4)

5.1567E+0−
(1.6990E+0)

6.4904E+0−
(1.5676E+0)

1.4557E−1
(6.230E−2)

+/− / ≈ 0/12/1 0/13/0 0/13/0 0/12/1 0/12/1 0/11/2 0/12/1 1/9/3 –
Note: “+,” “−,” and “≈” indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by

AutoV.

126 Chinese Journal of Electronics 2023

Table 9. Minimum objective values obtained by nine algorithms on the CEC’2013 large-scale benchmark problems
with about 1000 decision variables (Best results are highlighted)

CEC’2013
large-scale

problems [42]
GA [6] PSO [10] DE [7] CMA-ES [8] FEP [9] CSO [37] SHADE [38] IMODE [39] AutoV

f1
1.1824E+9−
(1.5088E+8)

1.7274E+11−
(8.2047E+9)

1.1820E+11−
(5.7453E+9)

1.3230E+10−
(5.9476E+8)

6.2225E+10−
(8.8355E+9)

1.6506E+11−
(6.4000E+9)

9.2604E+8−
(9.2525E+7)

1.5672E+10−
(1.8277E+9)

7.5437E+8
(3.599E+7)

f2
7.0854E+3+
(5.5474E+2)

4.8900E+4−
(1.6515E+3)

4.2656E+4−
(9.8044E+2)

1.1326E+4+
(2.6942E+2)

8.4194E+4
(5.6859E+2)

4.4704E+4
(7.5103E+2)

1.8598E+4
(1.1309E+3)

2.4830E+4
(6.9359E+2)

1.2736E+4
(3.996E+2)

f3
1.9790E+1−
(1.0792E−1)

2.1096E+1−
(3.6567E−2)

2.1011E+1−
(6.4041E−3)

2.1334E+1−
(2.0615E−2)

2.1457E+1−
(8.6678E−3)

2.0977E+1−
(1.9539E−2)

1.7116E+1−
(2.1804E−1)

2.0013E+1−
(1.6968E−2)

7.6972E+0
(2.709E−1)

f4
7.0214E+11−
(3.6361E+11)

3.8264E+12−
(1.0018E+12)

2.8759E+11−
(4.4452E+10)

1.8046E+12−
(2.2407E+11)

7.4290E+11−
(4.1395E+11)

2.0687E+12−
(5.9504E+11)

4.1680E+10+
(7.7120E+9)

3.5605E+11−
(3.1439E+10)

1.7434E+11
(3.356E+10)

f5
8.0929E+6−
(1.1105E+6)

3.3051E+7−
(3.3554E+6)

1.6648E+7−
(1.2160E+6)

1.1814E+7−
(3.5863E+5)

2.0252E+7−
(1.9684E+6)

2.7747E+7−
(2.3903E+6)

6.6297E+6−
(8.5226E+5)

1.0851E+7−
(6.3028E+5)

5.5157E+6
(7.817E+5)

f6
7.6705E+5−
(4.2587E+4)

1.0156E+6−
(6.2467E+3)

9.6778E+5−
(1.9218E+4)

1.0725E+6−
(1.4402E+3)

7.7643E+5−
(6.3779E+4)

9.9765E+5−
(5.1452E+3)

1.0802E+5−
(1.1582E+4)

2.7032E+5−
(4.2843E+4)

8.3894E+4
(9.288E+3)

f7
7.8310E+9−
(2.9908E+9)

4.9258E+13−
(2.3576E+13)

2.3870E+12−
(7.2173E+11)

1.1084E+10−
(9.4838E+9)

2.8185E+11−
(1.4497E+11)

2.2211E+13−
(8.4947E+12)

8.9123E+8≈
(1.9320E+8)

1.3523E+10−
(1.6130E+9)

8.4166E+8
(7.997E+7)

f8
2.9461E+16

(1.4136E+16)
1.6998E+17

(9.1594E+16)
1.2728E+13+
(1.9676E+12)

4.7204E+16−
(6.0409E+15)

6.1725E+15≈
(3.8102E+15)

3.2323E+16−
(3.0414E+16)

3.7727E+13+
(3.0187E+13)

5.4599E+15≈
(2.5604E+15)

4.4372E+15
(1.770E+15)

f9
7.5728E+8−
(1.2373E+8)

2.5298E+9−
(2.0469E+8)

1.2725E+9−
(6.3827E+7)

8.4502E+8−
(4.5495E+7)

1.6577E+9−
(1.3394E+8)

2.0244E+9−
(2.1854E+8)

5.8016E+8−
(1.1320E+8)

7.7668E+8−
(4.1594E+7)

4.4601E+8
(8.503E+7)

f10
4.4221E+7−
(1.3077E+7)

8.7041E+7−
(2.6524E+6)

2.1046E+6−
(6.4391E+5)

9.6156E+7−
(4.6215E+5)

1.7440E+7−
(3.3440E+6)

7.6458E+7−
(5.2418E+6)

1.2506E+6−
(1.4290E+4)

7.8125E+5≈
(2.8894E+5)

4.8728E+5
(4.870E+5)

f11
7.4972E+11−
(4.5447E+11)

3.0398E+15−
(1.4680E+15)

1.1061E+14−
(9.8496E+13)

4.0919E+11−
(1.0871E+11)

1.1334E+13−
(5.1094E+12)

8.9529E+14−
(3.6702E+14)

8.7764E+9+
(4.5005E+9)

4.4608E+11−
(1.6708E+11)

1.6943E+11
(1.144E+11)

f12
2.0599E+10−
(3.9186E+9)

1.9723E+12−
(8.1522E+10)

1.5925E+12−
(3.3820E+10)

1.3548E+10−
(1.3457E+10)

2.6665E+12−
(1.0994E+11)

1.6723E+12−
(2.5065E+10)

3.3481E+10−
(5.8270E+9)

6.4235E+11−
(1.9268E+10)

7.6900E+8
(2.144E+7)

f13
4.0277E+10−
(1.4024E+10)

1.9190E+15−
(8.0609E+14)

5.4725E+13−
(1.7016E+13)

8.3330E+10−
(1.4211E+10)

3.0193E+12−
(1.6034E+12)

1.0082E+15−
(6.2874E+14)

1.0448E+10+
(2.3651E+9)

6.6059E+10−
(9.5957E+9)

1.7051E+10
(4.590E+9)

f14
1.0031E+12−
(3.8285E+11)

4.5075E+15−
(3.3588E+15)

1.2185E+14−
(7.0856E+13)

9.6175E+11−
(4.0377E+11)

1.2889E+13−
(4.1028E+12)

1.1075E+15−
(4.3764E+14)

7.7424E+10+
(1.3029E+10)

7.2323E+11−
(8.4437E+10)

2.3734E+11
(7.915E+10)

f15
5.7586E+7−
(1.5169E+7)

1.8722E+15−
(2.4943E+14)

3.4395E+14−
(4.9325E+13)

9.9936E+8−
(1.1950E+9)

8.8170E+13−
(2.5655E+13)

8.7705E+14−
(1.2736E+14)

3.0449E+7≈
(4.6006E+6)

6.1844E+12−
(1.4191E+12)

2.7840E+7
(2.630E+6)

+/− / ≈ 1/14/0 0/15/0 1/14/0 1/14/0 0/14/1 0/15/0 5/8/2 0/13/2 –
Note: “+,” “−,” and “≈” indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by

AutoV.

 VI. Conclusions
To reduce the human expertise in designing meta-

heuristics, this paper has analyzed the importance of
translation, scale, and rotation invariance to the robust-
ness of operators, and deduced the generic form of
translation, scale, rotation invariant operators. Based
on the deduced generic form, this paper has proposed a
principled approach to search for high-performance op-
erators automatically. In contrast to the automated
design approaches based on existing metaheuristics, the
proposed approach does not rely on any existing tech-
niques, and can obtain competitive performance over
some state-of-the-art metaheuristics on complex and
large-scale optimization problems.

The experimental results have demonstrated the ef-
fectiveness and potential of the automated design of
variation operators, and further research on this topic is
highly desirable. Firstly, it is reasonable to search for
high-performance operators based on more complex
functions (e.g., include more parents and consider the
update of velocity), where more effective operators are

expected to be found. Secondly, since the proposed ap-
proach searches for operators according to their per-
formance on a benchmark problem, it is reasonable to
adopt more representative and practical problems to
find high-performance operators for general problems or
specific types of problems. Thirdly, it is interesting to
develop novel approaches for automatically designing
selection strategies for metaheuristics. Fourthly, since
deep reinforcement learning has been applied in meta-
heuristics to tune the parameters of operators [43], [44],
it can be adopted by the proposed approach to find
high-performance operators before and during the op-
timization of specific problems.

References
 M. R. Alam, K. S. Lee, M. Rahman, and Y. F. Zhang, “Pro-
cess planning optimization for the manufacture of injection
moulds using a genetic algorithm,” International Journal of
Computer Integrated Manufacturing, vol.16, no.3, pp.181–
191, 2003.

[1]

 J. Y. Potvin and S. Bengio, “The vehicle routing problem
with time windows part Ⅱ : Genetic search,” INFORMS

[2]

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 127

Journal on Computing, vol.8, no.2, pp.165–172, 1996.
 Y. Tian, X. Su, Y. Su, and X. Zhang, “EMODMI: A multi-
objective optimization based method to identify disease
modules,” IEEE Transactions on Emerging Topics in Com-
putational Intelligence, vol.5, no.4, pp.570–582, 2021.

[3]

 K. J. Oh, T. Y. Kim, and S. Min, “Using genetic algorithm
to support portfolio optimization for index fund manage-
ment,” Expert Systems with Applications , vol.28, pp.371–
379, 2005.

[4]

 H. Robbins and S. Monro, “ A stochastic approximation
method,” The Annals of Mathematical Statistics , vol.22,
no.3, pp.400–407, 1951.

[5]

 J. H. Holland, Adaptation in Natural and Artificial Sys-
tems, MIT Press, Cambridge, USA, 1992.

[6]

 R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol.11, no.4, pp.341–
359, 1997.

[7]

 N. Hansen and A. Ostermeier, “ Completely derandomized
self-adaptation in evolution strategies,” Evolutionary Com-
putation, vol.9, no.2, pp.159–195, 2001.

[8]

 X. Yao, Y. Liu, and G. Lin, “ Evolutionary programming
made faster,” IEEE Transactions on Evolutionary Compu-
tation, vol.3, no.2, pp.82–102, 1999.

[9]

 R. Eberhart and J. Kennedy, “ A new optimizer using
particle swarm theory,” in Proceedings of the 6th Interna-
tional Symposium on Micro Machine and Human Science,
Nagoya, Japan, pp.39–43, 1995.

[10]

 K. Socha and M. Dorigo, “Ant colony optimization for con-
tinuous domains,” European Journal of Operational Re-
search, vol.185, no.3, pp.1155–1173, 2008.

[11]

 D. Karaboga, “An idea based on honey bee swarm for nu-
merical optimization,” Technical Report, TR06, Erciyes
University, 2005.

[12]

 J. Galletly, “Evolutionary algorithms in theory and practice:
Evolution strategies, evolutionary programming, genetic al-
gorithms,” Kybernetes, vol.27, no.8, pp.979–980, 1998.

[13]

 T. Okabe, Y. Jin, and B. Sendhoff, “Theoretical comparis-
ons of search dynamics of genetic algorithms and evolution
strategies,” in Proceedings of the 2005 IEEE Congress on
Evolutionary Computation, Edinburgh, UK, pp. 382–389,
2005.

[14]

 S. Li, Y. Li, and Y. Lin, Intelligent Optimization Al-
gorithms and Emergent Computation, Tsinghua University
Press, Beijing, China, 2019.

[15]

 A. E. Eiben and C. A. Schippers, “On evolutionary explora-
tion and exploitation,” Fundamenta Informaticae , vol.35,
pp.1–16, 1998.

[16]

 Y. Su, N. Guo, Y. Tian, and X. Zhang, “A non-revisiting
genetic algorithm based on a novel binary space partition
tree,” Information Sciences, vol.512, pp.661–674, 2020.

[17]

 H. Li and Q. Zhang, “Multiobjective optimization problems
with complicated Pareto sets, MOEA/D and NSGA-Ⅱ,”
IEEE Transactions on Evolutionary Computation, vol.13,
no.2, pp.284–302, 2009.

[18]

 T. Rodemann, “ Industrial portfolio management for many-
objective optimization algorithms,” in Proceedings of the
2018 IEEE Congress on Evolutionary Computation, Rio de
Janeiro, Brazil, pp.1-8, 2018.

[19]

 C. A. Coello Coello and M. S. Lechuga, “MOPSO: A pro-
posal for multiple objective particle swarm optimization,” in
Proceedings of the 2002 IEEE Congress on Evolutionary
Computation, Honolulu, HI, USA, pp.1051–1056, 2002.

[20]

 M. Jebalia, A. Auger, and N. Hansen, “ Log-linear conver-
gence and divergence of the scale-invariant (1+1)-ES in
noisy environments,” Algorithmica, vol.59, no.3, pp.425–460,
2011.

[21]

 F. Caraffini and F. Neri, “A study on rotation invariance in
differential evolution,” Swarm and Evolutionary Computa-
tion, vol.50, article no.100436, 2019.

[22]

 G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Para-
meter control in evolutionary algorithms: Trends and chal-
lenges,” IEEE Transactions on Evolutionary Computation,
vol.19, no.2, pp.167–187, 2015.

[23]

 C. Huang, Y. Li, and X. Yao, “A survey of automatic para-
meter tuning methods for metaheuristics,” IEEE Transac-
tions on Evolutionary Computation, vol.24, no.2, pp.201–
216, 2020.

[24]

 P. Kerschke and H. Trautmann, “Automated algorithm se-
lection on continuous black-box problems by combining ex-
ploratory landscape analysis and machine learning,” Evolu-
tionary Computation, vol.27, no.1, pp.99–127, 2019.

[25]

 Y. Tian, S. Peng, X. Zhang, et al., “A recommender system
for metaheuristic algorithms for continuous optimization
based on deep recurrent neural networks,” IEEE Transac-
tions on Artificial Intelligence, vol.1, no.1, pp.5–18, 2020.

[26]

 K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adaptive oper-
ator selection with bandits for a multiobjective evolution-
ary algorithm based on decomposition,” IEEE Transac-
tions on Evolutionary Computation, vol.18, no.1, pp.114–
130, 2014.

[27]

 L. C. Bezerra, M. López-Ibánez, and T. Stützle, “Automat-
ic component-wise design of multiobjective evolutionary al-
gorithms,” IEEE Transactions on Evolutionary Computa-
tion, vol.20, no.3, pp.403–417, 2016.

[28]

 L. P. M. Birattari, T. Stützle, and K. Varrentrapp, “A ra-
cing algorithm for configuring metaheuristics,” in Proceed-
ings of the 2002 Conference on Genetic and Evolutionary
Computation, New York, NY, USA, pp. 11–18, 2002.

[29]

 F. Rosenblatt, “The perceptron: a probabilistic model for in-
formation storage and organization in the brain,” Psycholo-
gical Review, vol.65, no.6, pp.386–408, 1958.

[30]

 A. Fialho, M. Schoenauer, and M. Sebag, “Toward compar-
ison-based adaptive operator selection,” in Proceedings of
the 2010 Conference on Genetic and Evolutionary Compu-
tation, Portland, USA, pp.767–774, 2002.

[31]

 K. Deb and R. B. Agrawal, “Simulated binary crossover for
continuous search space,” Complex Systems, vol.9, no.4,
pp.115–148, 1995.

[32]

 C. Igel, N. Hansen, and S. Roth, “Covariance matrix adapt-
ation for multi-objective optimization,” Evolutionary Com-
putation, vol.15, no.1, pp.1–28, 2007.

[33]

 N. Hansen, R. Ros, N. Mauny, et al., “ Impacts of invari-
ance in search: When CMA-ES and PSO face ill-condi-
tioned and non-separable problems,” Applied Soft Comput-
ing, vol.11, no.8, pp.5755–5769, 2011.

[34]

 K. A. Hoffmann and S. T. Chiang, Computational Fluid Dy-
namics Volume I, Engineering Education System, Wichita,
USA, 2000.

[35]

 L. Pan, W. Xu, L. Li, C. He, and R. Cheng, “Adaptive sim-
ulated binary crossover for rotated multi-objective optimiza-
tion,” Swarm and Evolutionary Computation , vol.60, art-
icle no.100759, 2021.

[36]

 R. Cheng and Y. Jin, “A competitive swarm optimizer for
large scale optimization,” IEEE Transactions on Cybernet-
ics, vol.45, no.2, pp.191–204, 2015.

[37]

 R. Tanabe and A. Fukunaga, “Success-history based para-
meter adaptation for differential evolution,” in Proceedings
of the 2013 IEEE Congress on Evolutionary Computation,
Cancun, Mexico, 2013.

[38]

 K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, and M.
J. Ryan, “Improved multi-operator differential evolution al-
gorithm for solving unconstrained problems,” in Proceed-
ings of the 2020 IEEE Congress on Evolutionary Computa-

[39]

128 Chinese Journal of Electronics 2023

tion, Glasgow, UK, 2020.
 K. Deb and M. Goyal, “A combined genetic adaptive search
(GeneAS) for engineering design,” Computer Science and
Informatics, vol.26, no.4, pp.30–45, 1996.

[40]

 J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practic-
al tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelli-
gence algorithms,” Swarm and Evolutionary Computation,
vol.1, no.1, pp.3–18, 2011.

[41]

 X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin,
“Benchmark functions for the CEC’2013 special session and
competition on large-scale global optimization,” Gene, vol.7,
no.33, 2013.

[42]

 J. Sun, X. Liu, T. Bäck, and Z. Xu, “Learning adaptive dif-
ferential evolution algorithm from optimization experiences
by policy gradient,” IEEE Transactions on Evolutionary
Computation, vol.25, no.4, pp.666–680, 2021.

[43]

 H. A. A. Nomer, A. W. Mohamed, and A. H. Yousef,
“GSK-RL: Adaptive gaining-sharing knowledge algorithm
using reinforcement learning,” in Proceedings of the 3rd
Novel Intelligent and Leading Emerging Sciences Confer-
ence, Giza, Egypt, pp.169–174, 2021.

[44]

TIAN Ye was born in Anhui
Province in 1991. He received the B.S.,
M.S., and Ph.D. degrees from Anhui Uni-
versity, Hefei, China, in 2012, 2015, and
2018, respectively. He is currently an As-
sociate Professor with the Institutes of
Physical Science and Information Tech-
nology, Anhui University, Hefei, China.
His current research interests include

evolutionary computation and its applications.
(Email: field910921@gmail.com)

ZHANG Xingyi (corresponding
author) was born in Anhui Province in
1982. He received the B.S. degree from
Fuyang Normal College, Fuyang, China,
in 2003, and the M.S. and Ph.D. degrees
from Huazhong University of Science and
Technology, Wuhan, China, in 2006 and
2009, respectively. He is currently a Pro-
fessor with the School of Artificial Intelli-

gence, Anhui University, Hefei, China. His current research in-
terests include unconventional models and algorithms of computa-
tion, evolutionary multi-objective optimization, and logistic
scheduling. (Email: xyzhanghust@gmail.com)

HE Cheng was born in Hubei
Province in 1989. He received the B.E.
degree from the Wuhan University of Sci-
ence and Technology, Wuhan, China, in
2012, and the Ph.D. degree from the
Huazhong University of Science and
Technology, Wuhan, China, in 2018. He
is currently an Associate Professor with
the School of Electrical and Electronic

Engineering, Huazhong University of Science and Technology,
Wuhan, China. His current research interests include model-based
evolutionary algorithms, multiobjective optimization, large-scale
optimization, deep learning, and their applications.
(Email: chenghehust@gmail.com)

TAN Kay Chen received the
B.E. (First Class Hons.) and Ph.D. de-
grees from the University of Glasgow,
Glasgow, UK, in 1994 and 1997, respect-
ively. He is currently a Chair Professor of
the Department of Computing at the
Hong Kong Polytechnic University, Hong
Kong SAR, China.
(Email: kctan@polyu.edu.hk)

JIN Yaochu was born in 1966.
He received the B.S., M.S., and Ph.D. de-
grees from Zhejiang University, Hang-
zhou, China, in 1988, 1991, and 1996, re-
spectively, and the Dr.-Ing. degree from
Ruhr University Bochum, Germany, in
2001. He is currently an Alexander von
Humboldt Professor for artificial intelli-
gence, Chair of Nature Inspired Comput-

ing and Engineering, Faculty of Technology, Bielefeld University,
Germany. He is also a Distinguished Chair, Professor in computa-
tional intelligence, Department of Computer Science, University
of Surrey, Guildford, UK.
(Email: yaochu.jin@uni-bielefeld.de)

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 129

