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   Abstract — A  large  number  of  metaheuristics  have
been  proposed  and  shown  high  performance  in  solving
complex optimization problems. While most variation op-
erators in existing metaheuristics are empirically designed,
new  operators  are  automatically  designed  in  this  work,
which  are  expected  to  be  search  space  independent  and
thus  exhibit  robust  performance  on  different  problems.
This work first investigates the influence of translation in-
variance, scale invariance, and rotation invariance on the
search  behavior  and  performance  of  some  representative
operators.  This  work  then  deduces  the  generic  form  of
translation,  scale,  and  rotation  invariant  operators,  and
proposes a principled approach for the automated design
of operators, which searches for high-performance operat-
ors based on the deduced generic form. The experimental
results  demonstrate  that  the  operators  generated  by  the
proposed  approach  outperform state-of-the-art  ones  on  a
variety of problems with complex landscapes and up to 1000
decision variables.

   Key words — Metaheuristics, Evolutionary compu-

tation, Swarm  intelligence, Variation  operator, Trans-

formation invariance, Automated design.

 I. Introduction
Metaheuristics  have  shown  effectiveness  in  solving

the complex optimization problems from various fields,
such  as  manufacturing  [1],  scheduling  [2], bioinformat-
ics  [3],  and economics  [4].  In  contrast  to  mathematical

programming methods  that  require  an  explicit  object-
ive  function  [5],  metaheuristics  provide  a  high-level
methodology  solving  problems  in  a  black-box  manner.
So far, there have been a variety of algorithms inspired
by the biological mechanisms in natural evolution, such
as  genetic  algorithms  (GA)  [6],  differential  evolution
(DE) [7], evolution strategies [8], and evolutionary pro-
gramming [9]. Moreover, many swarm intelligence based
algorithms  have  also  been  proposed,  including  particle
swarm  optimization  (PSO)  [10], ant  colony  optimiza-
tion  [11],  artificial  bee  colony  algorithms  [12],  among
many others.

Existing  metaheuristics  exhibit  quite  different
search  behaviors  and  optimization  performance,  which
are mainly  determined  by  the  manually  designed  vari-
ation  operators  [13]–[15], i.e.,  the  strategies  for  receiv-
ing  the  decision  vectors  of  parents  and  generating  the
decision vectors of offspring solutions. For example, the
GA was designed according to the evolution theory and
law  of  inheritance,  which  generates  offspring  by  the
crossover  between  two  parents  and  the  mutation  on  a
single  offspring  solution.  The  crossover  and  mutation
operators  provide  a  powerful  exploration  ability  [16],
making GA good at handling multimodal landscapes [17].
The  DE  mutates  each  solution  according  to  the
weighted  difference  between  the  other  two  solutions,
which holds a good performance on problems with com- 
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plicated  variable  linkages  [18].  The  covariance  matrix
adaptation evolution strategy (CMA-ES) generates new
solutions by  sampling  a  multivariate  normal  distribu-
tion  model  adaptively  learned  from  the  population,
showing high performance on many real-world applica-
tions [19]. Inspired by the choreography of bird flocking,
the PSO updates each particle according to its person-
al best particle and the global best particle, which has a
high speed of convergence [20].

x′ = x+ b x′ = ax

x′ = xM

Among the superiorities in existing variation oper-
ators, the independence of search space is crucial to the
robustness  and  generalization  of  metaheuristics,  since
metaheuristics do not rely on specific  characteristics of
problems.  A  search  space  independent  operator  holds
the  same  performance  on  a  problem  with  arbitrary
search space transformations, including translation (i.e.,

),  scaling  (i.e., ),  and  rotation  (i.e.,
). Existing studies have shed some light on the

sufficient conditions of achieving these invariance prop-
erties. For instance, CMA-ES is scale invariant since its
step-sizes  are  set  proportionally  to  the  distance  to  the
optimum found  so  far  [21],  and  the  mutation  operator
of DE is rotation invariant since it is the weighted sum
of multiple parents [22]. Nevertheless,  the mathematic-
al  definitions  of  all  the  three  properties  have  not  been
given,  and  the  sufficient  and  necessary  condition  of
achieving them  is  still  unknown.  Therefore,  it  is  diffi-
cult to analyze whether an operator is translation, scale,
and rotation invariant theoretically, or to consider these
properties in designing new operators explicitly.

To address this issue, this work aims to deduce the
generic form (i.e., sufficient and necessary condition) of
translation,  scale,  and  rotation  invariant  operators,
which can be used to judge the possession of invariance
properties and guide the design of new operators. Based
on the deduced generic form, this work proposes a prin-
cipled approach for designing new operators with invari-
ance properties. In contrast to the parameter tuning of
metaheuristics [23], [24], the off-line recommendation of
metaheuristics [25], [26], and the on-line combination of
metaheuristics  [27],  [28],  the  proposed  approach  is  not
based  on  any  existing  metaheuristic  but  searches  for
totally new  operators.  Moreover,  the  proposed  ap-
proach does not utilize any existing optimizer or classi-
fier  (e.g.,  F-Race  for  parameter  tuning  [29],  artificial
neural  network  for  metaheuristic  recommendation  [30],
and sum-of-ranks multiarmed bandit algorithm for me-
taheuristic  combination  [31]).  By  contrast,  it  is  a  self-
contained  approach  that  can  search  for  new  operators
by itself. The main components of this work include the
following three aspects:

Theoretical  analysis　To illustrate  the  import-
ance of translation invariance, scale invariance, and ro-

tation  invariance,  their  effects  on  the  search  behavior
and  performance  of  metaheuristics  are  investigated.
Then, the  sufficient  and necessary  condition  of  achiev-
ing  these  properties  is  mathematically  derived,  which
reveals the generic form of search space independent op-
erators.

New approach　A principled  approach  to  auto-
mated design of variation operators is proposed, termed
AutoV. Based on the deduced generic form of variation
operators,  AutoV  converts  the  search  of  high-perform-
ance  operators  into  an  optimization  problem,  in  which
the decision variables are the parameters in the operat-
ors.  This  way,  AutoV can solve  optimization problems
without relying on any existing operators.

Experimental  study　 The  variation  operator
found by AutoV is  embedded in  a  simple  evolutionary
framework  and  compared  with  eight  classical  or  state-
of-the-art  metaheuristics.  The  experimental  results
show that the operator found by AutoV can obtain the
best results  on  various  challenging  benchmark  prob-
lems;  in  particular,  it  outperforms  the  winner  of  the
CEC competition that contains multiple operators with
complex adaptation strategies. The results indicate that
AutoV has  the  potential  to  replace  the  laborious  pro-
cess of manual design of new metaheuristics.

The rest of this paper is organized as follows. Sec-
tion II analyzes the effects of the three invariance prop-
erties, and  Section  III  deduces  their  sufficient  and  ne-
cessary  condition.  Section  IV  presents  the  proposed
principled approach,  and  Section  V  gives  the  experi-
mental studies.  Finally,  Section  VI  concludes  this  pa-
per.

 II. Effects of Invariance Properties
This  work  focuses  on  the  variation  operators  for

the following continuous optimization problem:
 

min f(x)

s.t. l ≤ x ≤ u (1)

x = (x1, x2, . . . , xD)

l = (l1, l2, . . . , lD)

u = (u1, u2, . . . , uD)

D

where  is a decision vector denoting
a  solution  for  the  problem,  denotes
the  lower  bound,  denotes the  up-
per  bound,  and  is  the  number  of  decision  variables.
To solve such problems in a black-box manner, a vari-
ety of variation operators have been proposed to gener-
ate solutions without using any specific information ex-
cept for the lower and upper bounds. This section first
introduces some representative variation operators, then
presents  the  definitions  of  translation  invariance,  scale
invariance,  and  rotation  invariance  and  analyzes  their
effects by examples and experimental studies.

 1. Variation operators
An operator generally receives the decision vectors
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x1 x2

o1 o2

of one or more parents,  then outputs the decision vec-
tors of one or more offspring solutions. For example, the
simulated binary crossover (SBX) operator [32] used in
GA  uses  two  parents  and   to generate  two  off-
spring solutions  and  each time:
  {

o1d = 0.5 [(1 + β)x1d + (1− β)x2d]
o2d = 0.5 [(1− β)x1d + (1 + β)x2d]

(1 ≤ d ≤ D)

(2)

o1d d o1 β

x1 x2 x3 o

where  denotes the -th variable of solution  and 
is a random number obeying a special distribution. The
mutation operator of DE/rand/1/bin [7] uses three par-
ents , , and  to generate an offspring solution 
each time:
 

od = x1d + F · (x2d − x3d), 1 ≤ d ≤ D (3)

F
x2 x3

β

F

where  is a parameter controlling the amplification of
the  difference  between  and  .  In  contrast  to  the
random parameter  in SBX that varies on each dimen-
sion,  the  parameter  in  DE is  a  predefined  constant.
The  operator  of  CMA-ES  [8]  generates  offspring  by
sampling a multi-variate normal distribution:
 

o = xm + σ · N (0,C) (4)

xm σ

C

σ 0.6(u− l)

where  is  the  weighted  sum  of  all  solutions,  is  a
vector of iteratively updated step-sizes, and  is a cov-
ariance matrix updated according to the current popu-
lation. In general, the initial  can be set to 
[33]. Similar to CMA-ES, the operator of fast evolution-
ary  programming  (FEP)  [9]  generates  offspring  by
sampling a single-variate normal distribution:
 

od = xd + ηd · N (0, 1), 1 ≤ d ≤ D (5)

η

x

where  is a vector of self-adaptive standard deviations
related  to  each  solution , whose  elements  can  be  ini-
tialized to 3 [9].

h(x1d, x2d, . . . )

d x1d, x2d, . . .

β C

It can  be  found  that  these  operators  generate  off-
spring by using distinct formulas. Generally, an operat-
or  can  be  regarded  as  a  function  per-
formed  on  each  dimension ,  where  con-
tains the decision variables of parents, the lower bound,
and the upper bound. Note that other parameters (e.g.,
 in  SBX  and  in CMA-ES)  are  ignored  for  simpli-

city. In  the  following,  we  investigate  how  the  invari-
ance properties  influence  the  search  behavior  and  per-
formance of operators.

 2. Effects of translation invariance
h(x1d, x2d,

. . . ) T
h(T (x1d), T (x2d), . . . ) = T (h(x1d, x2d, . . . ))

According  to  [34],  a  variation  operator 
 is  invariant  to  search  space  transformation 

means  that .
A translation of the search space can be regarded as an

T (x) = x+ baddition  of  each  decision  variable,  i.e., ,
hence  the  translation  invariance  property  can  be
defined as follows:

h(x1d, x2d, . . . )

Definition  1 (Translation  invariance)　 A vari-
ation operator  is translation invariant if
and only if
 

h(x1d + b, x2d + b, . . . ) = h(x1d, x2d, . . . ) + b (6)

bholds for any real constant .
It  is  not  difficult  to  find  that  all  the  operators  of

SBX, DE, CMA-ES, and FEP are translation invariant.
In particular, the SBX operator described in (2) can be
rewritten as
 

hsbx(x1d, x2d) = x1d + 0.5(1± β)(x2d − x1d) (7)

hence
 

hsbx(x1d + b, x2d + b)

= x1d + b+ 0.5(1± β)(x2d + b− x1d − b)

= hsbx(x1d, x2d) + b (8)

and the operator is translation invariant. By contrast, if
the SBX operator is modified to
 

hsbx′(x1d, x2d) = 0.1x1d + 0.5(1± β)(x2d − x1d) (9)

then
 

hsbx′(x1d + b, x2d + b)

= 0.1x1d + 0.1b+ 0.5(1± β)(x2d + b− x1d − b)

̸= hsbx′(x1d, x2d) + b (10)

SBX′
and the operator becomes not translation invariant. Ob-
viously,  the  modified  operator  is  likely  to  evolve
the population toward the origin.

SBX′

f(x1, x2) = x41 + x42

SBX′

SBX′

SBX′

(0, 0, . . . , 0)

(−6,−6, . . . ,−6)

x′ = x+ 6

To better illustrate this fact, Fig.1 depicts the con-
vergence profiles of SBX and  based GAs on prob-
lem  with  and  without  translation,
where  the  random  number  seed  is  fixed  and  both  the
population  size  and  the  number  of  generations  are  set
to  10.  It  can  be  found  that  the  SBX  based  GA  holds
the  same  search  behavior  and  can  always  converge  to
the global optimums of the three problems, whereas the

 based  GA  always  converges  to  the  origin.  In
short,  the  SBX  operator  is  translation  invariant  but

 is  not.  Furthermore, Table 1  lists  the  mean  and
standard deviation of the minimum objective values ob-
tained by SBX and  based GAs on six benchmark
problems [17], averaged over 30 runs. The six problems
have  the  same  global  optimum ,  while  the
global  optimum  is  changed  to  if  the
problems are translated by . For the original
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SBX′

SBX′

problems,  the  based GA  significantly  outper-
forms the SBX based GA since the former can quickly
converge to  the  origin.  While  for  the  translated  prob-
lems,  the  performance  of  based  GA  deteriorates

considerably since it  cannot converge to the translated
global  optimum;  by  contrast,  the  performance  of  SBX
based  GA keeps  unchanged  since  the  SBX  operator  is
translation invariant.

 

−10 10
−10

10
No translation

−10 10
−10

10
Translation: x′=x+3

−10 10
−10

10
Translation: x′=x+6

(a) SBX based GA (translation invariant)

−10 10
−10

10
Translation: x′=x+6

(b) SBX′ based GA

−10 10
−10

10
Translation: x′=x+3

−10 10
−10

10
No translation

 
SBX′Fig. 1. Convergence profiles of SBX and  based GAs with fixed random number seed with and without translation.

 

 3. Effects of scale invariance

T (x) = ax

Similarly, a  scaling  of  the  search  space  can  be  re-
garded as a multiplication of each decision variable, i.e.,

,  hence  the  scale  invariance  property  can  be
defined as follows:

h(x1d, x2d, . . . )

Definition 2 (Scale invariance)　A variation oper-
ator  is scale invariant if and only if
 

h(ax1d, ax2d, . . . ) = a · h(x1d, x2d, . . . ) (11)

holds for any real constant a.

σ

It  can  be  found  that  the  operators  of  SBX,  DE,
and  CMA-ES  are  scale  invariant  but  the  operator  of
FEP is not. Considering that the step-size  is propor-
tionally  related  to  the  decision  space,  the  operator  of
CMA-ES described in (4) can be rewritten as
 

hcmaes(xmd, ld, ud) = xmd + (ud − ld) · N (0, σ′
d
2
c)
(12)

σ′
d (0, 1] c

C

where  is a parameter within  and  is related to
the covariance matrix . Therefore,

114 Chinese Journal of Electronics 2023



 

hcmaes(axmd, ald, aud)

= axmd + (aud − ald) · N (0, σ′
d
2
c)

= a · hcmaes(xmd, ld, ud) (13)

which  means  that  the  operator  is  scale  invariant.  On
the  other  hand,  the  operator  of  FEP  described  in  (5)
can be rewritten as
 

hfep(xd) = xd +N (0, η2d) (14)

hence
 

hfep(axd) = axd +N (0, η2d) ̸= a · hfep(xd) (15)

which means that the operator is not scale invariant.

f(x1, x2) = x41 + x42

Fig.2 plots  the  convergence  profiles  of  CMA-ES
and FEP on  with and  without  scal-
ing.  It  can be seen that the search behaviors of  CMA-
ES  are  the  same  on  the  three  problems  with  different
scales,  whereas  the  search  behaviors  of  FEP  are  quite
different.  Moreover, Table 2  presents  the  mean  and
standard deviation of the minimum objective values ob-
tained by  CMA-ES  and  FEP  on  six  benchmark  prob-
lems. Obviously, CMA-ES is competitive to FEP on the
original problems,  while  CMA-ES  dramatically  outper-
forms FEP on the scaled problems. This is because the
operator of CMA-ES is scale invariant and thus exhib-
its  the  same  performance  on  a  problem  with  different
scales; by contrast, the operator of FEP is not scale in-
variant and thus is sensitive to the scales of problems.

 4. Effects of rotation invariance

T (x) = xM

A rotation of the search space can be regarded as a
matrix  multiplication  of  each  decision  vector,  i.e.,

,  hence  the  rotation  invariance  property
can be defined as follows:

h(x1,x2, . . . )

Definition  3 (Rotation  invariance)　A  variation
operator  is  rotation invariant  if  and only
if

 

h(x1M ,x2M , . . . ) = h(x1,x2, . . . )M (16)

Mholds for any orthogonal matrix .

x1,x2, . . .

x1d, x2d, . . .

Note that here the decision variables on all dimen-
sions  rather than those on a single dimension

 should  be  considered.  It  can  be  deduced
that the mutation operator of DE is rotation invariant
while the operators of SBX, CMA-ES, and FEP are not.
In particular, the mutation operator of DE described in
(3) can be rewritten as
 

hde(x1,x2,x3) = x1 + F · (x2 − x3) (17)

hence
 

hde(x1M ,x2M ,x3M) = x1M + F · (x2M − x3M)

= hde(x1,x2,x3)M (18)

and  the  operator  is  rotation  invariant.  By  contrast,
since the SBX operator described in (7) can be rewrit-
ten as
 

hsbx(x1,x2) = x1 + (x2 − x1)B (19)

where
 

B =


0.5(1± β1) 0 . . . 0

0 0.5(1± β2) . . . 0
. . . . . . . . . . . .
0 0 0 0.5(1± βD)


(20)

Therefore,
 

hsbx(x1M ,x2M) = x1M + (x2 − x1)MB (21)

and
 

hsbx(x1,x2)M = x1M + (x2 − x1)BM (22)

hsbx(x1M ,x2M) = hsbx(x1,x2)MThat  is,  holds

   
SBX′Table 1. Minimum objective values obtained by SBX and  based GAs on

six problems [17] with and without translation

x1, . . . , x30 ∈ [−10, 10]Original problem ( ) SBX based GA (translation invariant) SBX′ based GA
Schwefel’s function 2.22 5.4310E+0 (2.13E+0) 1.0965E−49 (1.29E−49)
Schwefel’s function 2.21 4.5792E+0 (1.21E+0) 8.3896E−49 (1.23E−48)

Quaric function 1.6425E+3 (1.03E+3) 2.9477E−4 (2.66E−4)
Griewank function 4.7700E−1 (1.87E−1) 0.0000E+0 (0.00E+0)
Ackley’s function 3.3728E+0 (3.75E−1) 8.8818E−16 (0.00E+0)

Rastrigin’s function 4.2269E+1 (1.08E+1) 0.0000E+0 (0.00E+0)

x′ = x+ 6Translated problem ( ) SBX based GA (translation invariant) SBX′ based GA
Schwefel’s function 2.22 5.2237E+0 (1.88E+0) 1.0083E+12 (2.18E+12)
Schwefel’s function 2.21 4.9401E+0 (1.24E+0) 5.0000E+0 (0.00E+0)

Quaric function 1.9875E+3 (1.62E+3) 2.3718E+5 (1.53E+4)
Griewank function 4.6346E−1 (1.17E−1) 1.1523E+0 (4.76E−3)
Ackley’s function 3.5154E+0 (7.18E−1) 1.2639E+1 (5.98E−4)

Rastrigin’s function 4.5695E+1 (1.01E+1) 7.4895E+2 (1.83E−1)
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50
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Fig. 2. Convergence profiles of CMA-ES and FEP with fixed random number seed with and without scaling.

 

   
Table 2. Minimum objective values obtained by CMA-ES and FEP on six problems [17] with and

without scaling

x1, . . . , x30 ∈ [−10, 10]Original problem ( ) CMA-ES (scale invariant) FEP
Schwefel’s function 2.22 1.8226E+1 (3.38E+0) 1.6919E+1 (5.30E+0)
Schwefel’s function 2.21 1.0000E+1 (0.00E+0) 4.6087E+0 (2.29E−1)

Quaric function 2.5024E+1 (9.92E+0) 1.4005E+3 (1.69E+3)
Griewank function 3.2242E−1 (5.74E−2) 8.5491E−1 (1.18E−1)
Ackley’s function 2.7634E+0 (1.71E−1) 5.7111E+0 (5.97E−1)

Rastrigin’s function 2.1628E+2 (4.87E+0) 1.6904E+2 (2.52E+1)

x′ = 10xScaled problem ( ) CMA-ES (scale invariant) FEP
Schwefel’s function 2.22 1.9390E+1 (2.70E+0) 4.6714E+10 (5.47E+10)
Schwefel’s function 2.21 1.3107E+0 (1.36E−1) 8.4873E+0 (5.56E−1)

Quaric function 2.6711E+1 (2.22E+1) 3.8536E+5 (2.35E+4)
Griewank function 2.8246E−1 (9.96E−2) 1.1561E+0 (8.63E−3)
Ackley’s function 3.0355E+0 (3.42E−1) 1.3471E+1 (5.21E−1)

Rastrigin’s function 2.1651E+2 (1.40E+1) 9.2797E+2 (3.64E+1)
 

116 Chinese Journal of Electronics 2023



MB = BM β1 = β2 = · · · = βDonly  if ,  i.e., ,  which  is
almost  impossible  since  they  are  independent  random
numbers. Hence,  the  SBX  operator  is  not  rotation  in-
variant.

f(x1, x2) = x41+

x42

Fig.3 shows the  convergence  profiles  of  the  muta-
tion based DE and SBX based GA on 

 with  and  without  rotation.  As  can  be  seen,  the
search  behavior  of  DE  keeps  unchanged  on  the  two
problems, where  the  convergence  profile  is  rotated  to-
gether  with  the  search  space.  On  the  contrary,  the

search behavior of GA is unstable and the convergence
profiles  are  different  on  the  two  problems.  As  can  be
further  observed  from Table 3 ,  the  performance  of  DE
is similar  to  and  much  better  than  GA  on  six  bench-
mark problems with and without rotation, respectively,
which is consistent with the facts that the mutation op-
erator of DE is rotation invariant while the SBX oper-
ator is  not.  In fact,  the superiority of DE on problems
with complicated variable linkages [18] is mainly due to
its rotation invariance property.
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No rotation
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No rotation
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Rotation: x’=xM

(b) SBX based GA
−10 10

−10
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Rotation: x’=xM

(a) DE (rotation invariant) 
MFig. 3. Convergence profiles of DE and SBX based GA with fixed random number seed with and without rotation, where  is a

randomly generated orthogonal matrix.

  
Table 3. Minimum objective values obtained by DE and SBX based GA on six problems [17] with and

without rotation

x1, . . . , x30 ∈ [−10, 10]Original problem ( ) DE (rotation invariant) SBX based GA
Schwefel’s function 2.22 1.9799E+1 (2.08E+0) 5.4310E+0 (2.13E+0)
Schwefel’s function 2.21 1.5589E+0 (1.87E−1) 4.5792E+0 (1.21E+0)

Quaric function 1.8303E+2 (9.67E+1) 1.6425E+3 (1.03E+3)
Griewank function 4.9032E−1 (1.01E−1) 4.7700E−1 (1.87E−1)
Ackley’s function 3.7861E+0 (2.96E−1) 3.3728E+0 (3.75E−1)

Rastrigin’s function 2.4783E+2 (2.34E+1) 4.2269E+1 (1.08E+1)

x′ = xMRotated problem ( ) DE (rotation invariant) SBX based GA
Schwefel’s function 2.22 1.7401E+1 (3.38E+0) 2.8069E+1 (4.32E+0)
Schwefel’s function 2.21 1.5535E+0 (2.21E−1) 2.0725E+0 (4.82E−1)

Quaric function 1.2403E+2 (7.80E+1) 9.8479E+2 (1.24E+3)
Griewank function 4.6714E−1 (7.22E−2) 4.9478E−1 (1.20E−1)
Ackley’s function 3.8477E+0 (2.24E−1) 4.0805E+0 (5.49E−1)

Rastrigin’s function 2.4588E+2 (1.23E+1) 2.5095E+2 (1.12E+1)
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 III. Sufficient and Necessary Condition
of Achieving Invariance Properties
It  can  be  concluded  from  the  above  analysis  that

the three  invariance  properties  are  critical  to  the  ro-
bustness of operators, and we can judge whether an op-
erator  possesses  these  properties  according  to  their
definitions.  However,  it  is  still  tricky  to  consider  them
in the design of new operators explicitly. Therefore, this
section  deduces  the  generic  form  of  translation,  scale,
and rotation invariant operators by three steps.

 1. Theoretical derivation
w = (w1, w2, . . . ) = (x1d, x2d, . . . )Firstly,  let ,  then

a translation invariant operator should satisfy
 

h(w + b) = h(w) + b (23)

h(w)

w0

To find the generic form of , it is first expan-
ded in a first order Taylor series at an arbitrary point :
 

h(w) = h(w0) + (w −w0)∇h(w′
0) (24)

∇ = ( ∂
∂w1

, ∂
∂w2

, . . . )T w′
0where  and   is  an  unknown

point. Based on (23), we have
 

h(w0) + (w + b−w0)∇h(w′
0)

= h(w0) + (w −w0)∇h(w′′
0 ) + b (25)

w′
0 w′′

0

w0 b

where  and   are  unknown  points  determined  by
.  Since  (25)  holds  for  any ,  we  only  consider  the

components including b
 

bI∇h(w′
0) = b (26)

Iwhere  is a vector of ones. That is,
 

I∇h(w′
0) = 1 (27)

w′
0holds for any , which measn that

 

∂h

∂w1
+

∂h

∂w2
+ · · · = 1 (28)

h = h(w)

g(w, h) = 0

Obviously, (28)  is  a  quasilinear  first-order  non-
homogeneous  partial  differential  equation  [35]. Let

 be the solution of (28) determined by a func-
tion , then  the  following  homogeneous  par-
tial differential equation can be obtained:
 

∂g

∂h
+

∂g

∂w1
+

∂g

∂w2
+ · · · = 0 (29)

and thus the following first integrals can be obtained: 


h− w1 = c1
w1 − w2 = c2
w2 − w3 = c3

...

(30)

Therefore, the solution of (29) is
 

g = g(h− w1, w1 − w2, w2 − w3, . . . ) (31)

g = 0 ψSince ,  there  must  exists  a  function  such
that
 

h− w1 = ψ(w1 − w2, w2 − w3, . . . ) (32)

which is equivalent to
 

h(w) = w1 + ψ(w2 − w1, w3 − w2, . . . ) (33)

Moreover,  it  is  obvious  that  (33)  satisfies  (23),
hence  (33)  is  a  sufficient  and  necessary  condition  of
(23), and the following theorem can be given:

h(x1d, x2d, . . . )

Theorem  1 (Translation  invariant  operator)　A
continuously  differentiable  variation  operator

 is  translation  invariant  if  and only  if  it
has the following form:
 

h(x1d, x2d, . . . ) = x1d + ψ(x2d − x1d, x3d − x2d, . . . )
(34)

ψwhere  can be any continuously differentiable function.
Secondly, a scale invariant operator should satisfy

 

h(aw) = a · h(w) (35)

according to (33), a translation and scale invariant op-
erator should satisfy
 

aw1 + ψ(aw2 − aw1, aw3 − aw2, . . . )

= aw1 + a · ψ(w2 − w1, w3 − w2, . . . ) (36)

v = (v1, v2, . . . ) = (w2 − w1, w3 − w2, . . . )Let ,  we
have
 

ψ(av) = a · ψ(v) (37)

v0

and the first order Taylor series expansion at an arbit-
rary point  is
 

ψ(v0) + (av − v0)∇ψ(v′
0)

= aψ(v0) + a(v − v0)∇ψ(v′′
0 ) (38)

v′
0 v′′

0 v0

a

a

where  and  are unknown points determined by .
Since  (38)  holds  for  any , we  only  consider  the  com-
ponents excluding  in (38), that is,
 

ψ(v0) = v0∇ψ(v′
0) (39)

v0 v′
0must hold for any  and , which means that 
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v1
∂ψ

∂v1
+ v2

∂ψ

∂v2
+ · · · = ψ (40)

g(v, ψ) = 0Let , the following homogeneous partial
differential equation can be obtained:
 

ψ
∂g

∂ψ
+ v1

∂g

∂v1
+ v2

∂g

∂v2
+ · · · = 0 (41)

and thus the following first integrals can be obtained:
  

lnψ − ln v1 = c1
ln v1 − ln v2 = c2
ln v2 − ln v3 = c3

...

(42)

Therefore, the solution of (41) is
 

g = g(lnψ − ln v1, ln v1 − ln v2, ln v2 − ln v3, . . . ) (43)

g = 0 φSince ,  there  must  exists  a  function  such
that
 

lnψ − ln v1 = φ(ln v1 − ln v2, ln v2 − ln v3, . . . ) (44)

ψ(v)hence the generic form of  can be determined:
 

lnψ(v) = ln v1 + φ

(
ln
v1
v2
, ln

v2
v3
, . . .

)
(45)

φ(u1, u2, . . . ) = lnϕ(e
1
u1 , e

1
u2 , . . . )Let , then

 

ψ(v) = v1ϕ

(
v2
v1
,
v3
v2
, . . .

)
(46)

According to (33), we have
 

h(w) = w1 + (w2 −w1)ϕ

(
w3 − w2

w2 − w1
,
w4 − w3

w3 − w2
, . . .

)
(47)

Moreover, it is obvious that (47) satisfies both (23) and
(35),  hence (47)  is  a  sufficient  and necessary condition
of (23) and (35), and the following theorem can be giv-
en:

h(x1d, x2d, . . . )

Theorem 2 (Translation and scale invariant oper-
ator)　A continuously  differentiable  variation  operator
h  is  translation  and  scale  invariant  if
and only if it has the following form:
 

h(x1d, x2d, . . . )

= x1d + (x2d − x1d)ϕ

(
x3d − x2d
x2d − x1d

,
x4d − x3d
x3d − x2d

, . . .

)
(48)

ϕ can be any continuously differentiable function.
Thirdly, a rotation invariant operator should satis-

fy 

h

(
D∑
i=1

midx1i,

D∑
i=1

midx2i, . . .

)
=

D∑
i=1

mid ·h(x1i, x2i, . . .)

(49)

mid ∈ M d = 1, . . . , D ϕ(w) = φ(w1,∏2
i=1 wi,

∏3
i=1 wi, . . . )

where  and  .  Let 
, then (47) is equivalent to

 

h(w) = w1+(w2−w1)φ

(
w3 − w2

w2 − w1
,
w4 − w3

w2 − w1
, . . .

)
(50)

According to  (49),  a  translation,  scale,  and  rota-
tion invariant operator should satisfy
 

D∑
i=1

midx1i +

(
D∑
i=1

midx2i −
D∑
i=1

midx1i

)

· φ


∑D

i=1
midx3i −

∑D

i=1
midx2i∑D

i=1
midx2i −

∑D

i=1
midx1i

, . . .


=

D∑
i=1

mid

[
x1i + (x2i − x1i)φ

(
x3i − x2i
x2i − x1i

, . . .

)]
(51)

which is equivalent to
 

D∑
i=1

mid(x2i − x1i) · φ


∑D

i=1
mid(x3i − x2i)∑D

i=1
mid(x2i − x1i)

, . . .


=

D∑
i=1

mid(x2i − x1i)φ

(
mid(x3i − x2i)

mid(x2i − x1i)
, . . .

)
(52)

ui = (ui1, ui2, . . . ) = (mid(x2i − x1i),mid(x3i−
x2i), . . . )

Let 
, we have

 

D∑
i=1

ui1·φ


∑D

i=1
ui2∑D

i=1
ui1

, . . .

 =

D∑
i=1

ui1φ

(
ui2
ui1

, . . .

)
(53)

u0 = (u01, u02, . . . )

and the first order Taylor series expansion at an arbit-
rary point  is
 

D∑
i=1

ui1 ·

φ(u0) +


∑D

i=1
ui2∑D

i=1
ui1

− u01, . . .

∇φ(u′
0)


= u11 ·

[
φ(u0) +

(
u12
u11

− u01, . . .

)
∇φ(u′′

0)

]
+ u21 ·

[
φ(u0) +

(
u22
u21

− u01, . . .

)
∇φ(u′′′

0 )

]
+ · · ·

(54)

which can be simplified as 

Principled Design of Translation, Scale, and Rotation Invariant Variation Operators for Metaheuristics 119



(
D∑
i=1

ui2 − u01

D∑
i=1

ui1, . . .

)
∇φ(u′

0)

= (u12 − u01u11, . . . )∇φ(u′′
0)

+ (u22 − u01u21, . . . )∇φ(u′′′
0 )

+ . . . (55)

u′
0,u

′′
0 , . . . u0

u12, u22, . . .

where  are unknown points determined by .
Since (55) holds for any , we have
 

∇φ(u′
0) = ∇φ(u′′

0) = ∇φ(u′′′
0 ) = . . . = c (56)

φ(u)and the form of  can only be
 

φ(u) = c0 + c1u1 + c2u2 + . . . (57)

c0, c1, c2, . . .where  are constants. According to (50),
 

h(w) =w1 + c0(w2 − w1) + c1(w3 − w2)

+ c2(w4 − w3) + . . . (58)

Let
  

1− c0 = r1
c0 − c1 = r2
c1 − c2 = r3

...

(59)

we have
 

h(w) = r1w1 + r2w2 + r3w3 + . . . (60)

r1 + r2 + r3 + . . . = 1and .  Moreover,  it  is  obvious that
formula (60) satisfies (23), (35), and (49), hence (60) is
a sufficient and necessary condition of (23), (35), and (49),
and the following theorem can be given:

h(x1d, x2d, . . . )

Theorem  3 (Translation, scale,  and  rotation  in-
variant  operator)　 A continuously  differentiable  vari-
ation  operator  is  translation,  scale,  and
rotation  invariant  if  and  only  if  it  has  the  following
form:
 

h(x1d, x2d, . . .) = r1x1d + r2x2d + r3x3d + . . . (61)

r1, r2, r3, . . .

r1 + r2 + r3 + · · · = 1

where  can be any real  constants  satisfying
.

 2. Remarks
According  to  the  above  theorem,  the  following

three corollaries can be given:
1) An operator satisfying (61) is scale invariant.

r1 + r2 + r3+

· · · = 1

2)  An  operator  satisfying  (61)  with 
 is scale and translation invariant.

r1, r2, r3, . . .3) An operator satisfying (61) with  be-
ing constants is scale and rotation invariant.

The theoretical proofs of these corollaries are given
in the following.

Corollary 1　If a variation operator satisfying
 

h(x1d, x2d, . . . ) = r1x1d + r2x2d + r3x3d + . . . (62)

then it is scale invariant.
Proof　Since

 

h(ax1d, ax2d, . . . ) = ar1x1d + ar2x2d + ar3x3d + . . .

= ah(x1d, x2d, . . . )
(63)

the operator is scale invariant.
Corollary 2　If a variation operator satisfying

 

h(x1d, x2d, . . . ) = r1x1d + r2x2d + r3x3d + . . . (64)

r1 + r2 + r3 + · · · = 1with , then it is scale and transla-
tion invariant.

Proof　Since
 

h(x1d + b, x2d + b, . . . )

= r1(x1d + b) + r2(x2d + b) + r3(x3d + b) + . . .

= r1x1d + r2x2d + r3x3d + . . .+ (r1 + r2 + r3 + . . .)b

= h(x1d, x2d, . . . ) + b (65)

according  to  Corollary  1,  the  operator  is  scale  and
translation invariant.

Corollary 3　If a variation operator satisfying
 

h(x1d, x2d, . . . ) = r1x1d + r2x2d + r3x3d + . . . (66)

r1, r2, r3, . . . being constants,  then  it  is  scale  and  rota-
tion invariant.

r1, r2, r3, . . .Proof　Since  are constants, we have
 

h(x1,x2, . . . ) = r1x1 + r2x2 + r3x3 + . . . (67)

Therefore,
 

h(x1M ,x2M , . . . )

= r1(x1M) + r2(x2M) + r3(x3M) + · · ·
= (r1x1)M + (r2x2)M + (r3x3)M + · · ·
= h(x1,x2, . . . )M (68)

according to Corollary 1, the operator is scale and rota-
tion invariant.

β N (0, σ′
d
2
c)

Generally,  most  existing  operators  including  those
in GA, DE, and CMA-ES meet the second corollary and
are scale and translation invariant.  However,  the oper-
ators  in  GA  and  CMA-ES  are  not  rotation  invariant
since the weights (i.e.,  in (2) and  in (12))
vary on  different  dimensions.  By  contrast,  the  muta-
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tion  operator  of  DE  is  rotation  invariant  since  the
weights  (i.e.,  in (3))  keep  unchanged  on  all  dimen-
sions.  Nevertheless,  it  should  be  noted  that  a  rotation
invariant operator  does  not  necessarily  lead  to  a  rota-
tion invariant  metaheuristic,  and  vice  versa.  For  ex-
ample, the mutation operator of DE is rotation variant,
but  DE  is  not  rotation  invariant  due  to  the  crossover
operator  with  erator  with  erator  with  erator  with

 [22 ].  The  operator  of  CMA-ES  is  not  rotation
invariant, but  CMA-ES  is  approximately  rotation  in-
variant  due  to  the  rotation  angle  adaptive  covariance
matrix  [8]. In fact, a rotation invariant operator may
not  obtain  good  performance  since  offspring  solutions
can only be the linear combinations of parents.

r1, r2, r3, . . .

For the sake of robustness and generalization, it is
necessary to  consider  translation  invariance,  scale  in-
variance, and rotation invariance in designing new oper-
ators,  which  can  exhibit  the  same  performance  on  the
same landscape with arbitrary search spaces. Neverthe-
less,  many existing operators  meet Corollary 2 but are
not  strictly  rotation  invariant  (i.e.,  the  weights

 are  not  constant),  aiming  to  balance
between rotation invariance and search performance. In
practice,  rotation  invariance  is  approximately  achieved
by rotating  offspring  solutions  according  to  a  covari-
ance  matrix  [8],  [36]  or  associating  each  weight  with
multiple candidate constants [7].

 IV. Principled Approach for Designing
Operators

r1, r2, r3, . . .

The  function  of  (61)  reveals  the  generic  form  of
translation,  scale,  and  rotation  invariant  operators,
while  the optimal  values  of  the weights  are
not provided.  Therefore,  this  section  proposes  a  prin-
cipled  approach  for  designing  new  operators,  which
searches  for  high-performance  operators  by  optimizing
the weights.

 1. Parameterization of variation operators
In order to introduce randomness, the proposed ap-

proach AutoV represents  each weight  by  an independ-
ent normal distribution, and it optimizes the mean and
variance  of  each  normal  distribution  instead  of  the
weight. Formally, the proposed AutoV searches for the
operators having the following form:
 

h(x1d, . . . , xtd) =

t∑
i=1

rixid

s.t.
t∑

i=1

ri = 1, ri ∼ N (µi, σ
2
i ) (69)

µi ∈ [−1, 1] σi ∈ [0, 1]where  and   are  the  parameters  to

ri
d = 1, . . . , D ri

be  optimized.  Note  that  the  value  of  keeps un-
changed for , hence  is still a constant for
generating each offspring solution.

r1
1− r2 − r3 − · · ·

In  order  to  balance  between  rotation  invariance
and search performance, the ensemble of multiple para-
meter  sets  is  adopted  in  AutoV.  Moreover,  the  first
weight  can be omitted since it can be directly set to

.  To summarize,  an operator  in AutoV
is determined by the following matrix
  

µ12, σ12, µ13, σ13, . . . , µ1t, σ1t, p1
µ22, σ22, µ23, σ23, . . . , µ2t, σ2t, p2

...
µk2, σk2, µk3, σk3, . . . , µkt, σkt, pk

 (70)

µji σji
ri j pj

j

where  and   denote  the  mean  and  variance  of
weight  in the -th parameter set, respectively, and 
denotes  the  probability  of  selecting  the -th  parameter
set. When generating a decision variable of an offspring
solution, the roulette-wheel selection is first used to se-
lect a parameter set (i.e., one row of (70)) according to
their probabilities. Then, the decision variable is gener-
ated by sampling the given normal distribution.

In this way, the search of high-performance operat-
ors  can  be  formulated  as  a  continuous  optimization
problem, whose  decision  vector  contains  all  the  ele-
ments  in  (70)  and  the  objective  is  the  performance  of
the  corresponding  operator.  Generally,  it  is  easy  to
measure the fitness by investigating the performance of
a  metaheuristic  equipped  with  the  operator,  but  it  is
difficult  to  optimize  the  decision  vector  since  AutoV
does  not  require  any prior  knowledge,  i.e.,  none of  the
existing optimizers  are  used to  evolve  a  population for
solving the  problem.  Thus,  the  proposed  AutoV  sug-
gests a novel evolutionary procedure, in which the pop-
ulation can be evolved by itself.

 2. Procedure of the principled approach

P P

P

P

P

The procedure of the proposed AutoV is detailed in
Fig.4 and Algorithm 1. Given a benchmark problem for
performance measurement,  AutoV  first  randomly  ini-
tializes a population  and evaluates each solution in ,
where each solution denotes a parameter matrix defined
in (70). At each generation, AutoV selects a number of
parents  from  via  binary  tournament  selection,  then
uses the parents to generate an offspring population by
using the variation operator parameterized by the best
solution  in .  Afterwards,  the  offspring  population  is
combined with , and half the solutions with better fit-
ness survive for the next generation. AutoV repeats the
above  steps  until  the  termination  criterion  is  fulfilled,
and  returns  the  solution  with  the  best  fitness  as  the
found variation operator.
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Algorithm 1　Procedure of AutoV

fInput:  (a benchmark problem)
hOutput:  (the best operator)

P ←1:  Randomly initialize a population, where each solution
is a parameter matrix defined in (70);

x ∈ P2: for each  do
x Evaluation(x, f)3:    Evaluate the objective value of  by ;

4: while termination criterion is not fulfilled do
P ′ ← P5:      Select parents from  via binary tournament se-
lection;
h← P6:     The best solution in ;
O ← h

P ′
7:      Use the operator  to generate offspring based on

parents ;
o ∈ O8:    for each  do

o

Evaluation(o, f)

9:       Evaluate  the  objective  value  of  by
;

P ← P ∪O10:    ;
P ← P11:     Half the solutions in  with better fitness;

h← P12:  The best solution (i.e., operator) in ;
h13: return ;

Since the goal of AutoV is to create high-perform-
ance variation operators, it uses the best operator found
so far to evolve the population for finding a better oper-
ator, and the better operator can then evolve the popu-
lation for finding a much better operator, where none of
the  existing  metaheuristics  are  used.  For  the  fitness
evaluation of  each  candidate  operator,  a  simple  meta-
heuristic is established by adopting the candidate oper-
ator.  As  presented  in  Algorithm  2,  the  best  objective
value found by the established metaheuristic on the giv-
en benchmark problem is regarded as the fitness of the
candidate  operator.  Besides,  we  find  that  a  candidate
operator may  be  over-optimized  for  the  given  bench-
mark problem, which means that it considers a perfect
solution for the given benchmark problem accidentally.
Still,  it  cannot  evolve  the  population  gradually.  To
solve this  issue,  AutoV  executes  the  established  meta-

heuristic for multiple runs and uses the median value of
the found best objective values as the fitness.

Evaluation(p, f)Algorithm 2　

p fInput:  (parameter matrix of an operator),  (a benchmark
problem)

fit pOutput:  (fitness of operator )
fit← ∅1: ;

run = 1 maxRun2: for  to  do
P ←

f

3:      Randomly initialize a population, where each solu-
tion is a decision vector for ;

x ∈ P4:    for each  do
x f(x)5:       Evaluate the objective of  by ;

6:    while termination criterion is not fulfilled do
P ′ ← P7:         Select  parents  from  via binary tournament
selection;
O ← p

P ′
8:         Use the operator  to generate offspring based

on parents ;
o ∈ O9:       for each  do

o f(o)10:         Evaluate the objective of  by ;
P ← P ∪O11:       ;
P ← P12:         Half the solutions in  with better fitness;

x← P13:     The best solution in ;
fit← fit ∪ {f(x)}14:    ;

fit← fit15:  Median value of ;
fit16: return ;

In the  experiments,  we  consider  the  following  five
different sets of parents as the input of (69) for generat-
ing one offspring solution:
  

h1 = h(x1d, x2d)
h2 = h(x1d, ld, ud)
h3 = h(x1d, x2d, ld, ud)
h4 = h(x1d, x2d, x3d)
h5 = h(x1d, x2d, x3d, ld, ud)

(71)

x1d, x2d, x3d
ld ud

d

where  denote the decision variables of three
parents,  denotes the lower bound, and  denotes the
upper bound on the -th dimension.
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Fig. 4. Procedure of AutoV.
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O(N)

O(N logN) N

O(NDk) D
k

O(NDk)

O(N2DkG×maxRun) N
maxRun

G

It can be found from Algorithm 2 that a metaheur-
istic  with an operator  found by AutoV holds  a  similar
procedure to general genetic algorithms, where the time
complexity  of  mating  selection  is  and  the  time
complexity of environmental selection is  (
is the population size). By contrast, the offspring gener-
ation  becomes  less  efficient  due  to  the  use  of  multiple
parameter sets, whose time complexity is  (  is
the number of decision variables and  is the number of
parameter sets).  Therefore,  the time complexity of  one
generation of a metaheuristic with an operator found by
AutoV is . On the  other  hand,  the  time  com-
plexity  of  one  generation  of  AutoV itself  is  as  high  as

, since  metaheuristics need to
be executed for  times and each time contains

 generations. Nevertheless, the search of high-perform-
ance  operators  in  AutoV  is  an  off-line  procedure  that

does  not  affect  the  efficiency  of  solving  problems  in
practice.

 V. Experimental Studies
To verify the effectiveness of the proposed AutoV,

the  performance  of  the  operators  found  by  AutoV  is
first studied. Then, the best operator is compared with
eight  metaheuristics,  where  GA  [6],  PSO  [10],  DE  [7],
CMA-ES  [8],  and  FEP  [9]  are  classical  metaheuristics,
CSO  [37]  is  a  competitive  swarm  optimizer  for  large-
scale  optimization,  and  SHADE  [38]  and  IMODE  [39]
are  hybrid  metaheuristics  based  on  multiple  operators
with parameter  adaptation.  Based on the  settings  sug-
gested in the original  literature of  the compared meta-
heuristics, we  finely  tune  their  parameters  for  a  relat-
ively  good  performance,  where  the  detailed  parameter
settings are listed in Table 4.

  
D u

l
Table 4. Parameter settings of the compared metaheuristics (  is the number of decision variables,  is the upper

bound,  is the lower bound, and n=100 is the population size)

Metaheuristic Parameter setting

GA [6] (based on SBX [32] and polynomial mutation [40]) 1/D

Crossover probability: 1,
Mutation probability: ,

Distribution index: 20
PSO [10] Inertia weight: 0.4

DE [7] (DE/rand/1/bin) CR = 0.9 F = 0.5, 

CMA-ES [8]

σ = 0.6(u− l)

wi = log(µ+ 0.5)− log(i) i ∈ [1, µ]

µ = 0.5n cσ = 0.15

dσ = 1.15 cc = 0.105

Initial ,
, ,

, ,
, 

FEP [9] η = 3Initial 
CSO [37] Social factor: 0.1

SHADE [38] (parameter adaptative DE) –

IMODE [39] (winner of CEC’2020) Minimum population size: 4
Ratio of archive size: 2.6

 
 

 1. Comparison between the operators found
by AutoV

k

maxRun

For  each  of  the  five  functions  given  in  (71),  the
proposed AutoV optimizes it with a population size of 100
for 1000  generations.  As  for  the  fitness  evaluation  of
each candidate operator, the population size is set to 100,
the number of generations is set to 100, the number of
parameter  sets  is  set  to  10,  and the  number  of  runs

 is set to 9. Besides, the Rastrigin’s function [17]
is  adopted  as  the  benchmark  problem  for  performance
measurement.

h1 h5

To compare  the  performance  of  the  found  operat-
ors  with  different  functions – ,  they  are  embedded
in  the  simple  metaheuristic  presented  in  Algorithm  2
and tested  on  eight  benchmark  problems  with  30  de-
cision  variables.  These  benchmark  problems  have  a
variety  of  unimodal,  multimodal,  or  flat  landscapes,
whose definitions can be found in [17]. For all the meta-

h3

h5
h5

h5

heuristics,  the  population  size  is  set  to  100  and  the
number  of  generations  is  set  to  100. Table 5  lists  the
minimum objective values found by the five metaheur-
istics averaged over 30 runs, where the compared oper-
ators  exhibit  similar  performance  and  the  operator 
has slightly better overall performance than the others.
It is worth noting that the operator  does not obtain
the  best  overall  performance,  though  the  function 
has  more  parents  and  is  expected  to  perform  better.
This is because the function  contains more paramet-
ers to be optimized, which hinders AutoV from finding
high-performance operators.

k

h3 k = 1, 5, 10, 15, 20

k = 10

k

To study the influence of the number of parameter
sets , Fig.5 plots the performance of the metaheuristic
with  operator  and   on  the  eight
benchmark problems, where  leads to better over-
all  performance  than  the  other  settings.  On  the  one
hand, a small value of  provides a few different search
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k

behaviors,  and  thus  leads  to  a  low  performance  limit.
On the other hand, although a large value of  provides
many  different  search  behaviors,  it  leads  to  a  large

k = 10

number of parameters that are difficult to be optimized.
As a consequence,  is a proper setting for finding
high-performance operators.
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h3 kFig. 5. Minimum objective values obtained by the operator with function  and different numbers of parameter sets  found by

AutoV.
 

h3

Furthermore, the influence of the benchmark prob-
lem  on  fitness  evaluation  is  studied. Table 6  lists  the
performance  of  the  metaheuristic  with  operator  op-
timized  on  four  benchmark  problems,  including  the

Schwefel’s function 2.22 with a unimodal landscape, the
Schwefel’s  function 2.21 with a flat  landscape,  and the
Ackley’s  function  and  Rastrigin’s function  with  mul-
timodal landscapes. It can be found that the four meta-

   
h1 h5Table 5. Minimum objective values obtained by the operators with different functions –  found by AutoV on

eight benchmark problems [17] (Best results are highlighted)

Problem h1 h2 h3 h4 h5

Schwefel’s function 2.22 9.07E−5 5.27E+0 2.07E−2 8.72E−3 1.02E−1
Schwefel’s function 2.21 1.65E+1 1.19E+1 1.66E+0 8.75E+0 1.67E+0

Quartic function 2.01E−2 1.32E−1 1.12E−2 9.02E−3 1.16E−2
Generalized Griewank function 1.99E−3 2.93E+0 2.81E−2 4.46E−1 2.66E−1

Generalized Schwefel’s function 2.26 −9.17E+3 −1.04E+4 −1.16E+4 −5.70E+3 −5.28E+3
Ackley’s function 5.47E−4 4.77E+0 1.79E−2 8.94E−1 2.05E−1

Rosenbrock’s function 1.20E+4 1.17E+5 9.09E+3 8.80E+3 3.82E+3
Rastrigin’s function 3.76E+1 3.96E+1 3.88E+0 9.99E+0 7.86E+0

 

   
h3Table 6. Minimum objective values obtained by the operator with function  and different benchmark problems [17]

for fitness evaluation (Best results are highlighted)

Problem Optimized on Schwefel’s
function 2.22

Optimized on Schwefel’s
function 2.21

Optimized on Ackley’s
function

Optimized on Rastrigin’s
function

Schwefel’s function 2.22 2.46E−6 7.00E−2 4.91E−6 2.07E−2
Schwefel’s function 2.21 1.46E+1 1.36E+0 1.21E+1 1.66E+0

Quartic function 1.29E−2 1.23E−2 1.44E−2 1.12E−2
Generalized Griewank

function 6.89E−3 7.02E−2 1.48E−3 2.81E−2

Generalized Schwefel’s
function 2.26 −9.35E+3 −9.76E+3 −9.55E+3 −1.16E+4

Ackley’s function 1.00E−4 5.77E−2 5.71E−5 1.79E−2
Rosenbrock’s function 6.03E+3 3.89E+3 7.64E+3 9.09E+3
Rastrigin’s function 2.36E+1 1.59E+1 2.91E+1 3.88E+0
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h3
k = 10

heuristics obtain  the  best  performance  on  the  bench-
mark problem for  fitness  evaluation,  while  they  obtain
quite similar performance on the other problems. In the
following,  the  metaheuristic  with  operator  and

 optimized on the Rastrigin’s function is used as
a representative  of  AutoV  to  be  compared  with  exist-
ing metaheuristics on various problems.

 2. Comparison  on  small-scale  benchmark
problems

h3

Then,  the  proposed AutoV (i.e.,  the  metaheuristic
with operator ) is compared with eight existing meta-
heuristics on 13 small-scale benchmark problems with 30
decision variables,  where  the  definitions  of  these  prob-
lems  can  be  found  in  [9]. For  all  the  compared  meta-
heuristics,  the  population  size  is  set  to  100  and  the

number of function evaluations is set to 10000. Table 7
shows the means and standard deviations of the minim-
um  objective  values  found  by  the  nine  metaheuristics,
averaged over  30  runs.  It  can  be  found  that  the  pro-
posed  AutoV  obtains  the  best  overall  performance,
which  gains  the  best  results  on  9  out  of  13  problems.
The  Wilcoxon  rank  sum  test  [41]  with  a  significance
level  of  0.05  is  adopted  to  perform statistical  analysis,
where AutoV is significantly better than GA, PSO, DE,
CMA-ES, FEP, CSO, SHADE, IMODE on 11, 13, 13, 13,
13, 12, 11, and 10 problems, respectively. Furthermore,
Fig.6 depicts the  convergence  trajectories  of  the  com-
pared metaheuristics on the Step Function and the Pen-
alized  Function,  where  AutoV  converges  obviously
faster than the other metaheuristics.

  
Table 7. Minimum objective values obtained by nine metaheuristics on 13 small-scale benchmark problems with 30

decision variables. Best results are highlighted

Small-scale
problems [9]

GA [6] PSO [10] DE [7] CMA-ES [8] FEP [9] CSO [37] SHADE [38] IMODE [39] AutoV

f1
1.4973E+1−
(2.0053E+0)

3.5453E+3−
(1.2242E+3)

5.0032E+3−
(5.7205E+2)

1.2391E+2−
(2.6004E+1)

9.2809E+3−
(2.7503E+3)

1.2988E+3−
(5.0772E+2)

2.2958E+1−
(7.4054E+0)

2.9105E+0−
(9.0907E−1)

8.3702E−1
(5.333E−1)

f2
8.3310E−1−
(1.7114E−1)

3.2170E+1−
(6.6473E+0)

5.1595E+1−
(1.5480E+1)

8.6103E+0−
(3.3770E+0)

5.1291E+1−
(1.0920E+1)

1.5504E+1−
(3.1662E+0)

6.2312E+0−
(1.1158E+0)

3.2305E−1−
(1.0412E−1)

1.2081E−1
(2.556E−2)

f3
1.0621E+4

(2.6732E+3)
7.8076E+3

(2.9985E+3)
6.4156E+3

(1.1614E+3)
5.0816E+3

(1.2254E+3)
2.1959E+4

(3.5707E+3)
1.7542E+3≈
(5.5302E+2)

1.6461E+3≈
(5.3479E+2)

6.6967E+2+
(1.3529E+2)

2.0131E+3
(8.307E+2)

f4
2.3222E+1−
(3.6870E+0)

2.4005E+1−
(3.0366E+0)

3.4503E+1−
(4.1625E+0)

8.7765E+0−
(1.5806E+0)

5.3464E+1−
(9.3989E+0)

1.1521E+1−
(2.0034E+0)

9.1224E+0−
(1.4948E+0)

8.8346E+0−
(2.0574E+0)

6.4179E+0
(1.953E+0)

f5
1.2336E+3−
(6.8051E+2)

5.5668E+5−
(2.7471E+5)

1.6919E+6−
(1.0907E+6)

5.1996E+3−
(2.8736E+3)

5.8033E+6−
(2.9157E+6)

1.5258E+5−
(7.7532E+4)

7.2347E+2−
(3.3376E+2)

1.2120E+2≈
(6.9918E+1)

2.0580E+2
(1.981E+2)

f6
1.9375E+1−
(3.9978E+0)

3.4820E+3−
(1.1301E+3)

4.5314E+3−
(8.0852E+2)

1.3163E+2−
(3.2824E+1)

8.8923E+3−
(3.1734E+3)

1.0266E+3−
(4.3859E+2)

3.2250E+1−
(7.7965E+0)

3.6250E+0−
(2.1998E+0)

0.0000E+0
(0.000E+0)

f7
9.1447E−2−
(3.8031E−2)

8.2203E−1−
(2.2065E−1)

1.1222E+0−
(3.6673E−1)

8.2239E−2−
(2.6534E−2)

5.2040E+1−
(2.7550E+1)

5.4577E−2−
(2.1989E−2)

5.8113E−2−
(1.4618E−2)

8.4790E−2−
(2.7932E−2)

2.0943E−2
(8.192E−3)

f8
−1.4025E+4≈
(5.0347E+2)

−8.2308E+3
(1.2979E+3)

−1.1684E+4
(5.6921E+2)

−1.2799E+4
(2.8077E+2)

−1.0531E+4
(8.2223E+2)

−1.2285E+4
(4.2013E+2)

−1.4023E+4≈
(8.5233E+1)

−1.4575E+4+
(2.0746E+2)

−1.3852E+4
(6.717E+2)

f9
1.1504E+1+
(3.3186E+0)

1.5864E+2−
(1.7533E+1)

2.7333E+2−
(1.4085E+1)

2.2788E+2−
(2.3562E+1)

2.6914E+2−
(2.7653E+1)

1.0901E+2−
(1.7125E+1)

1.6771E+2−
(1.4089E+1)

2.3842E+1−
(5.6385E+0)

1.4546E+1
(2.163E+0)

f10
1.7023E+0−
(3.1651E−1)

1.2329E+1−
(1.3322E+0)

1.3329E+1−
(8.5004E−1)

4.0097E+0−
(5.6144E−1)

1.4671E+1−
(7.3884E−1)

7.6077E+0−
(1.1400E+0)

2.8370E+0−
(2.1827E−1)

1.2297E+0−
(3.8807E−1)

2.1621E−1
(5.119E−2)

f11
1.1563E+0−
(4.0584E−2)

2.8566E+1−
(3.2736E+0)

4.6051E+1−
(1.3901E+1)

2.1092E+0−
(2.8414E−1)

1.1710E+2−
(3.2432E+1)

1.0340E+1−
(3.2046E+0)

1.2644E+0−
(7.1606E−2)

1.0158E+0−
(3.6145E−2)

6.7928E−1
(1.999E−1)

f12
2.8786E+1−
(1.5748E+1)

1.0624E+3−
(1.3982E+3)

7.1756E+4−
(6.5424E+4)

4.0254E+1−
(5.5667E+0)

4.9839E+6−
(5.9492E+6)

1.3627E+2−
(3.5766E+1)

3.1790E+1−
(9.1497E+0)

7.2029E+1−
(2.4378E+1)

1.5847E+0
(1.976E+0)

f13
7.1895E+0−
(7.2480E+0)

4.3602E+5−
(5.1304E+5)

2.1898E+6−
(1.7255E+6)

1.0939E+1−
(2.7540E+0)

1.2093E+7−
(1.0145E+7)

2.1808E+3−
(5.2706E+3)

4.3094E+0−
(1.5238E+0)

4.3502E+0−
(2.3093E+0)

1.0075E−1
(4.216E−2)

+/− / ≈ 1/11/1 0/13/0 0/13/0 0/13/0 0/13/0 0/12/1 0/11/2 2/10/1 –
Note: “+,” “−,” and “≈” indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by

AutoV.
 
 

While  the  13  benchmark  problems  are  already
translated and scaled,  they are further rotated by ran-
domly generated orthogonal matrices and challenge the
nine metaheuristics.  As  can  be  seen  from  the  experi-
mental  results  listed  in Table 8 ,  the  superiority  of  the
proposed  AutoV  becomes  more  significant,  where
AutoV outperforms the other metaheuristics on 11 out
of  13  problems.  As  a  consequence,  the  superiority  of
AutoV over  some  classical  and  state-of-the-art  meta-
heuristics  can  be  verified.  Besides,  it  also  implies  that

AutoV is  more  effective  than the  approaches  based on
the recommendation and combination of existing meta-
heuristics, whose performance can hardly go beyond the
best existing metaheuristic on each problem.

 3. Comparison  on  large-scale  benchmark
problems

Lastly, the proposed AutoV and the eight existing
metaheuristics are compared on the 15 CEC’2013 large-
scale benchmark problems [42]. These benchmark prob-
lems contain approximately 1000 decision variables and
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a  variety  of  landscape  functions,  transformations,  and
interactions between variables, posing stiff challenges to
general metaheuristics.  For  all  the  compared  al-
gorithms, the population size is set to 100 and the num-
ber of function evaluations is set to 120000.

Table 9 presents the  means  and  standard  devi-
ations  of  the  minimum  objective  values  found  by  the
compared metaheuristics, averaged over 30 runs. It can
be observed  from  the  statistical  results  that  the  pro-
posed  AutoV  also  exhibits  better  overall  performance

than the others on the large-scale benchmark problems,
achieving the best results on 9 out of 15 problems. It is
noteworthy that  although  SHADE  and  IMODE  sug-
gest many  complex  search  strategies  for  the  combina-
tion of  multiple  operators  and  adaptation  of  paramet-
ers,  they  are  still  underperformed  by  AutoV that  only
contains  a  simple  operator  designed  automatically.
Therefore,  the  proposed  AutoV  offers  bright  prospects
to  the  design  of  metaheuristics,  which  can  potentially
replace the laborious manual design process. 
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Fig. 6. Convergence trajectories of nine metaheuristics on two problems.

 

   
Table 8. Minimum objective values obtained by nine metaheuristics on 13 rotated small-scale benchmark problems

with 30 decision variables (Best results are highlighted)

Rotated
small-scale
problems [9]

GA [6] PSO [10] DE [7] CMA-ES [8] FEP [9] CSO [37] SHADE [38] IMODE [39] AutoV

f1
1.7644E+1−
(5.3457E+0)

3.1210E+3−
(8.2974E+2)

4.3448E+3−
(8.3965E+2)

1.2422E+2−
(2.9570E+1)

9.2516E+3−
(3.9378E+3)

1.2894E+3−
(6.7999E+2)

2.9700E+1−
(1.0900E+1)

2.0650E+0−
(1.0838E+0)

7.1625E−1
(5.403E−1)

f2
1.9315E+1−
(1.0234E+1)

3.7244E+1−
(1.8184E+1)

4.9671E+1−
(8.5749E+0)

1.3854E+1−
(6.8676E+0)

8.1606E+1−
(9.7066E+0)

1.4780E+1−
(3.0538E+0)

1.8746E+1−
(2.6580E+0)

1.5749E+0≈
(4.2566E−1)

1.5246E+0
(5.190E−1)

f3
9.9581E+3−
(2.6366E+3)

5.3590E+3−
(1.4792E+3)

5.3369E+3−
(1.3071E+3)

1.3929E+4−
(3.9351E+3)

2.2100E+4−
(5.0673E+3)

1.5239E+3≈
(9.7521E+2)

1.7530E+3≈
(4.7904E+2)

8.5084E+2+
(2.5578E+2)

2.1193E+3
(7.960E+2)

f4
1.4962E+1−
(5.9860E+0)

2.4756E+1−
(4.8244E+0)

3.6628E+1−
(4.7317E+0)

7.8044E+0−
(9.4482E−1)

4.6193E+1−
(2.4146E+0)

1.2863E+1−
(1.8236E+0)

8.1105E+0−
(8.4983E−1)

5.5831E+0−
(1.2362E+0)

3.2227E+0
(1.742E+0)

f5
2.8300E+4−
(4.8151E+4)

8.9721E+5−
(3.4766E+5)

1.7625E+6−
(7.4240E+5)

9.3046E+3−
(6.0657E+3)

5.2830E+6−
(2.3632E+6)

1.1350E+5−
(6.7006E+4)

2.8513E+3−
(3.4473E+3)

2.9329E+2≈
(1.6130E+2)

2.0175E+2
(1.540E+2)

f6
2.3375E+1−
(3.7009E+0)

3.6026E+3−
(6.8520E+2)

5.0828E+3−
(1.1280E+3)

1.1925E+2−
(2.9011E+1)

8.6534E+3−
(2.1819E+3)

1.2864E+3−
(5.8652E+2)

3.2250E+1−
(6.5629E+0)

1.3750E+1−
(7.1464E+0)

2.5000E+0
(2.204E+0)

f7
8.1742E−2−
(2.9263E−2)

8.6616E−1−
(4.3408E−1)

1.1051E+0−
(6.6114E−1)

7.1672E−2−
(3.4086E−2)

4.8419E+1−
(2.8474E+1)

1.1136E−1−
(5.2390E−2)

6.3319E−2−
(1.6838E−2)

4.9230E−2−
(2.2971E−2)

1.7558E−2
(5.800E−3)

f8
−7.6960E+3≈
(4.2092E+2)

−6.4301E+3−
(7.3448E+2)

−5.2233E+3−
(4.2305E+2)

−7.6329E+3≈
(5.6710E+2)

−7.4567E+3≈
(6.5244E+2)

−7.5311E+3≈
(2.9851E+2)

−5.5305E+3−
(2.9295E+2)

−7.1206E+3≈
(2.0444E+2)

−7.3751E+3
(2.951E+2)

f9
7.0727E+1−
(1.4655E+1)

1.4357E+2−
(1.9674E+1)

2.6278E+2−
(1.3668E+1)

2.2499E+2−
(2.5540E+1)

3.0943E+2−
(1.3695E+1)

1.0129E+2−
(1.1932E+1)

2.1434E+2−
(1.3079E+1)

8.0586E+1−
(1.7108E+1)

4.1289E+1
(1.364E+1)

f10
2.9250E+0−
(1.0910E−1)

1.1749E+1−
(5.8613E−1)

1.3413E+1−
(8.0644E−1)

4.3282E+0−
(4.3019E−1)

1.5657E+1−
(1.5809E+0)

7.3892E+0−
(9.1288E−1)

3.0076E+0−
(3.2128E−1)

2.3761E+0−
(5.8902E−1)

9.6926E−1
(6.627E−1)

f11
1.1551E+0−
(2.4035E−2)

2.9789E+1−
(8.3839E+0)

4.5249E+1−
(8.3656E+0)

1.9904E+0−
(2.2665E−1)

1.1321E+2−
(2.2152E+1)

1.2782E+1−
(4.1098E+0)

1.1978E+0−
(7.2707E−2)

9.4447E−1−
(7.3867E−2)

7.6236E−1
(1.343E−1)

f12
3.5756E+1−
(1.7714E+1)

1.5007E+3−
(1.6007E+3)

1.9844E+5−
(1.8928E+5)

3.7031E+1−
(6.1593E+0)

1.2756E+6−
(1.1497E+6)

1.3627E+2−
(6.7341E+1)

3.4071E+1−
(5.6141E+0)

7.2069E+1−
(1.6143E+1)

1.4346E+0
(1.133E+0)

f13
4.1967E+0−
(3.5806E+0)

6.7210E+5−
(4.4019E+5)

3.8989E+6−
(2.7548E+6)

1.0194E+1−
(3.2998E+0)

9.2196E+6−
(7.2385E+6)

7.5595E+3−
(2.0845E+4)

5.1567E+0−
(1.6990E+0)

6.4904E+0−
(1.5676E+0)

1.4557E−1
(6.230E−2)

+/− / ≈ 0/12/1 0/13/0 0/13/0 0/12/1 0/12/1 0/11/2 0/12/1 1/9/3 –
Note: “+,” “−,” and “≈” indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by

AutoV.
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Table 9. Minimum objective values obtained by nine algorithms on the CEC’2013 large-scale benchmark problems
with about 1000 decision variables (Best results are highlighted)

CEC’2013
large-scale

problems [42]
GA [6] PSO [10] DE [7] CMA-ES [8] FEP [9] CSO [37] SHADE [38] IMODE [39] AutoV

f1
1.1824E+9−
(1.5088E+8)

1.7274E+11−
(8.2047E+9)

1.1820E+11−
(5.7453E+9)

1.3230E+10−
(5.9476E+8)

6.2225E+10−
(8.8355E+9)

1.6506E+11−
(6.4000E+9)

9.2604E+8−
(9.2525E+7)

1.5672E+10−
(1.8277E+9)

7.5437E+8
(3.599E+7)

f2
7.0854E+3+
(5.5474E+2)

4.8900E+4−
(1.6515E+3)

4.2656E+4−
(9.8044E+2)

1.1326E+4+
(2.6942E+2)

8.4194E+4
(5.6859E+2)

4.4704E+4
(7.5103E+2)

1.8598E+4
(1.1309E+3)

2.4830E+4
(6.9359E+2)

1.2736E+4
(3.996E+2)

f3
1.9790E+1−
(1.0792E−1)

2.1096E+1−
(3.6567E−2)

2.1011E+1−
(6.4041E−3)

2.1334E+1−
(2.0615E−2)

2.1457E+1−
(8.6678E−3)

2.0977E+1−
(1.9539E−2)

1.7116E+1−
(2.1804E−1)

2.0013E+1−
(1.6968E−2)

7.6972E+0
(2.709E−1)

f4
7.0214E+11−
(3.6361E+11)

3.8264E+12−
(1.0018E+12)

2.8759E+11−
(4.4452E+10)

1.8046E+12−
(2.2407E+11)

7.4290E+11−
(4.1395E+11)

2.0687E+12−
(5.9504E+11)

4.1680E+10+
(7.7120E+9)

3.5605E+11−
(3.1439E+10)

1.7434E+11
(3.356E+10)

f5
8.0929E+6−
(1.1105E+6)

3.3051E+7−
(3.3554E+6)

1.6648E+7−
(1.2160E+6)

1.1814E+7−
(3.5863E+5)

2.0252E+7−
(1.9684E+6)

2.7747E+7−
(2.3903E+6)

6.6297E+6−
(8.5226E+5)

1.0851E+7−
(6.3028E+5)

5.5157E+6
(7.817E+5)

f6
7.6705E+5−
(4.2587E+4)

1.0156E+6−
(6.2467E+3)

9.6778E+5−
(1.9218E+4)

1.0725E+6−
(1.4402E+3)

7.7643E+5−
(6.3779E+4)

9.9765E+5−
(5.1452E+3)

1.0802E+5−
(1.1582E+4)

2.7032E+5−
(4.2843E+4)

8.3894E+4
(9.288E+3)

f7
7.8310E+9−
(2.9908E+9)

4.9258E+13−
(2.3576E+13)

2.3870E+12−
(7.2173E+11)

1.1084E+10−
(9.4838E+9)

2.8185E+11−
(1.4497E+11)

2.2211E+13−
(8.4947E+12)

8.9123E+8≈
(1.9320E+8)

1.3523E+10−
(1.6130E+9)

8.4166E+8
(7.997E+7)

f8
2.9461E+16

(1.4136E+16)
1.6998E+17

(9.1594E+16)
1.2728E+13+
(1.9676E+12)

4.7204E+16−
(6.0409E+15)

6.1725E+15≈
(3.8102E+15)

3.2323E+16−
(3.0414E+16)

3.7727E+13+
(3.0187E+13)

5.4599E+15≈
(2.5604E+15)

4.4372E+15
(1.770E+15)

f9
7.5728E+8−
(1.2373E+8)

2.5298E+9−
(2.0469E+8)

1.2725E+9−
(6.3827E+7)

8.4502E+8−
(4.5495E+7)

1.6577E+9−
(1.3394E+8)

2.0244E+9−
(2.1854E+8)

5.8016E+8−
(1.1320E+8)

7.7668E+8−
(4.1594E+7)

4.4601E+8
(8.503E+7)

f10
4.4221E+7−
(1.3077E+7)

8.7041E+7−
(2.6524E+6)

2.1046E+6−
(6.4391E+5)

9.6156E+7−
(4.6215E+5)

1.7440E+7−
(3.3440E+6)

7.6458E+7−
(5.2418E+6)

1.2506E+6−
(1.4290E+4)

7.8125E+5≈
(2.8894E+5)

4.8728E+5
(4.870E+5)

f11
7.4972E+11−
(4.5447E+11)

3.0398E+15−
(1.4680E+15)

1.1061E+14−
(9.8496E+13)

4.0919E+11−
(1.0871E+11)

1.1334E+13−
(5.1094E+12)

8.9529E+14−
(3.6702E+14)

8.7764E+9+
(4.5005E+9)

4.4608E+11−
(1.6708E+11)

1.6943E+11
(1.144E+11)

f12
2.0599E+10−
(3.9186E+9)

1.9723E+12−
(8.1522E+10)

1.5925E+12−
(3.3820E+10)

1.3548E+10−
(1.3457E+10)

2.6665E+12−
(1.0994E+11)

1.6723E+12−
(2.5065E+10)

3.3481E+10−
(5.8270E+9)

6.4235E+11−
(1.9268E+10)

7.6900E+8
(2.144E+7)

f13
4.0277E+10−
(1.4024E+10)

1.9190E+15−
(8.0609E+14)

5.4725E+13−
(1.7016E+13)

8.3330E+10−
(1.4211E+10)

3.0193E+12−
(1.6034E+12)

1.0082E+15−
(6.2874E+14)

1.0448E+10+
(2.3651E+9)

6.6059E+10−
(9.5957E+9)

1.7051E+10
(4.590E+9)

f14
1.0031E+12−
(3.8285E+11)

4.5075E+15−
(3.3588E+15)

1.2185E+14−
(7.0856E+13)

9.6175E+11−
(4.0377E+11)

1.2889E+13−
(4.1028E+12)

1.1075E+15−
(4.3764E+14)

7.7424E+10+
(1.3029E+10)

7.2323E+11−
(8.4437E+10)

2.3734E+11
(7.915E+10)

f15
5.7586E+7−
(1.5169E+7)

1.8722E+15−
(2.4943E+14)

3.4395E+14−
(4.9325E+13)

9.9936E+8−
(1.1950E+9)

8.8170E+13−
(2.5655E+13)

8.7705E+14−
(1.2736E+14)

3.0449E+7≈
(4.6006E+6)

6.1844E+12−
(1.4191E+12)

2.7840E+7
(2.630E+6)

+/− / ≈ 1/14/0 0/15/0 1/14/0 1/14/0 0/14/1 0/15/0 5/8/2 0/13/2 –
Note: “+,” “−,” and “≈” indicate that the result is significantly better, significantly worse, and statistically similar to that obtained by

AutoV.
 
 

 VI. Conclusions
To reduce the human expertise in designing meta-

heuristics,  this  paper  has  analyzed  the  importance  of
translation, scale, and rotation invariance to the robust-
ness  of  operators,  and  deduced  the  generic  form  of
translation,  scale,  rotation  invariant  operators.  Based
on the deduced generic form, this paper has proposed a
principled approach to search for high-performance op-
erators  automatically.  In  contrast  to  the  automated
design approaches based on existing metaheuristics, the
proposed approach  does  not  rely  on  any  existing  tech-
niques,  and  can  obtain  competitive  performance  over
some  state-of-the-art  metaheuristics  on  complex  and
large-scale optimization problems.

The experimental results have demonstrated the ef-
fectiveness  and  potential  of  the  automated  design  of
variation operators, and further research on this topic is
highly  desirable.  Firstly,  it  is  reasonable  to  search  for
high-performance  operators  based  on  more  complex
functions  (e.g.,  include  more  parents  and  consider  the
update  of  velocity),  where  more  effective  operators  are

expected to be found. Secondly, since the proposed ap-
proach searches  for  operators  according  to  their  per-
formance  on  a  benchmark  problem,  it  is  reasonable  to
adopt  more  representative  and  practical  problems  to
find high-performance operators for general problems or
specific  types  of  problems.  Thirdly,  it  is  interesting  to
develop  novel  approaches  for  automatically  designing
selection  strategies  for  metaheuristics.  Fourthly,  since
deep reinforcement  learning  has  been  applied  in  meta-
heuristics to tune the parameters of operators [43], [44],
it  can  be  adopted  by  the  proposed  approach  to  find
high-performance operators  before  and  during  the  op-
timization of specific problems.
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