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   Abstract — The  robustness  of  adversarial  examples
to  image  scaling  transformation  is  usually  ignored  when
most existing  adversarial  attacks  are  proposed.  In  con-
trast, image scaling is often the first step of the model to
transfer various sizes of input images into fixed ones. We
evaluate the impact of image scaling on the robustness of
adversarial examples applied to image classification tasks.
We set up an image scaling system to provide a basis for
robustness evaluation  and  conduct  experiments  in  differ-
ent  situations  to  explore  the  relationship  between  image
scaling and the robustness of adversarial examples. Exper-
iment results show that various scaling algorithms have a
similar impact on the robustness of adversarial examples,
but the scaling ratio significantly impacts it.

   Key words — Adversarial  examples, Image  scaling,

Image classification, Deep learning.

 I. Introduction
Machine learning  has  many  applications  in  mal-

ware  detection  [1],  Internet  of  things  security  [2],  [3],
cyber security [4], computing servers [5], and mobile se-
curity  [6].  However,  recent  work  [7]  have  shown  that
deep neural  networks  (DNNs)  are  vulnerable  to  ad-
versarial examples [8].

An  increasing  number  of  researches  on  generating
adversarial examples has accelerated the risks for apply-
ing the deep learning models in the safety-critical fields
[9], [10]. However, most of these researches focus on at-
tacking the target models to expose vulnerability; even
though the studies  on defenses  [11] concentrate  on im-
proving the robustness of deep learning models, the vul-
nerability of adversarial examples has not been studied

much. Xie et al. [12] mention that adding a random im-
age transformation [13] during the iterative processes of
adversarial attacks  increase  the  transferability  of  ad-
versarial examples [14]. This phenomenon inspires us to
study whether the adversarial examples can remain ad-
versarial  after  the  image  geometric  transformation  or
whether the adversarial examples are robust to the im-
age geometric transformation.

In this paper, we focus on the relationship between
image scaling and adversarial examples. Dong et al. [15]
establish  a  comprehensive  benchmark  to  evaluate  the
robustness of  defense  models  against  adversarial  at-
tacks  on  the  image  classification  tasks.  Based  on  their
work, we define the various metrics involved in the im-
age scaling  process  and  design  multiple  sets  of  experi-
ments  to  quantitatively  evaluate  the  impact  of  image
scaling  on  the  robustness  of  adversarial  examples.  We
conduct  experiments  for  robustness  evaluation  from
three  aspects:  models,  perturbation  budgets  and  image
scaling processes.

Experiment results show that adversarial examples
often cannot maintain the adversarial after image scal-
ing, which leads to the failure of the adversarial attacks.
We  hope  our  research  can  provide  a  reference  for
designing  adversarial  attack  algorithms  that  generate
more  robust  adversarial  examples  and  also  provide  an
idea for designing better methods to defend against the
adversarial attacks [16].

The remaining of this paper is organized as follows:
We review the background and related work in Section
Ⅱ. We design the evaluation methodology in Section Ⅲ. 
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The  experiment  results  and  analysis  are  presented  in
Section Ⅳ. We draw the conclusion in Section Ⅴ.

 II. Background and Related Work
 1. Threat model

C(·)

xadv

Adversarial  attacks  can  be  classified  into  targeted
attacks and non-targeted attacks. Non-targeted attacks
only need to construct adversarial samples that misclas-
sify the classifier without paying attention to the specif-
ic category. Targeted attacks misclassify the classifier as
a particular class. We choose the threat models defined
in [15] as the foundation for robustness evaluation and
focus  on  non-targeted  attacks.  For  a  classifier ,  a
non-targeted  attack  aims  to  construct  an  adversarial
sample  to satisfy (1):
 

C(xadv) ̸= C(x) (1)

C(x)

x

where  denotes the  ground-truth  label  of  the  ori-
ginal image .

ϵ

Adversaries  often  have  two strategies  to  construct
tiny  perturbations:  a  fixed  attack  based  on  model
gradients and a minimized perturbation attack based on
optimization.

ϵ

xadv

||xadv − x||p ≤ ϵ ϵ

ϵ

J

Gradient-based fixed  attacks　This  strategy
searches  for  the  adversarial  examples  to  satisfy

 within a specific perturbation budget .
A Gradient-based fixed  attack solves the problem de-
scribed in (2) by maximizing the loss function  to get
a non-targeted adversarial example:
 

xadv = argmaxx′:||x′−x||p≤ϵ J (x′, ytrue) (2)

ϵ

Specifically,  FGSM, BIM, MI-FGSM mentioned in
Section II.2  belong to this  strategy.  GenAttack uses of
genetic algorithms to generate adversarial examples. Al-
though it also specifies , GenAttack does not belong to
this attack strategy in the strict sense.

Optimized-based minimized perturbation at-
tacks　This strategy solves the problem described in (3)
by  an  optimizer  to  find  the  minimum  perturbation  to
meet the conditions.
 

xadv = argminx′:x′ is adversarial ||x′ − x||p (3)

DeepFool,  C&W,  and  HopSkipJumpAttack  [17]
mentioned in Section II.2 belong to this attack strategy.

 2. Adversarial attack algorithm

ϵ

Adversarial  attack  algorithms  can  be  divided  into
white-box  attacks  and  black-box  attacks.  FGSM  (fast
gradient sign  method),  the  most  classic  white-box  at-
tack  algorithm,  generates  adversarial  examples  by  the
fixed  via  linearizing  the  loss  function  in  the  input
space.  BIM (basic  iterative  method),  based  on  FGSM,

takes  the  smaller  gradient  steps  iteratively  to  get  the
more accurate attack. PGD (projected gradient descent)
extends  BIM  by  starting  with  a  random  point  and
searching for the most suitable gradient direction to at-
tack after multiple iterations. MI-FGSM (momentum it-
erative method) integrates momentum into BIM to sta-
bilize  update  gradient  directions  and  jump  out  of  the
local optimum.

DeepFool is  an  optimization-based  white-box  at-
tack method. The adversarial samples obtained by this
attack are often the optimal adversarial samples. C&W
(Carlini&Wagner’s  method)  is  a  more  powerful  white-
box attack in the form of Lagrange with the Adam op-
timizer to generate adversarial examples.

ϵ

Boundary  attack  is  the  first  decision-based  black-
box attack by random access at the decision boundary
of the target model. HopSkipJumpAttack [17] upgrades
boundary attack for fewer queries. GenAttack uses a ge-
netic algorithm (Genetic search) to search for adversari-
al examples with a fixed .

This paper  selects  HopSkipJumpAttack  and  Gen-
Attack algorithms for our subsequent experiments.

 III. Evaluation Methodology
We  describe  the  concrete  process  of  robustness

evaluation into two steps. One is the attack process: the
adversarial  attack  algorithm generates  a  corresponding
adversarial  example  after  multiple  iterations  starting
from an original image. The other is the evaluation pro-
gress: The  scaling  algorithm  scales  the  generated  ad-
versarial examples and inputs the scaled adversarial ex-
ample to the same classifier.  The classifier often classi-
fies adversarial examples and the scaled adversarial ex-
amples into different categories.

Fig.1 simply shows the vulnerability of adversarial
samples to image scaling.

 1. Evaluation metrics
1) Adversarial attack
We adopt  the  definitions  of  adversarial  attacks  in

[15].
Aϵ,p

ϵ Lp Aϵ,p C
< xi, y

true
i > (i ∈ [1, N ])

Accuracy. Given an adversarial  attack ,  which
generates  adversarial  examples  with  perturbation
budget  under -norm, when  attacks classifier 
on the dataset ,  the accuracy of
the classifier is defined as follows.
 

ACC(C,Aϵ,p) =
1

N

N∑
i=1

1(C(Aϵ,p(xi)) = ytruei ) (4)

1(·)where  is the indicator function.

Aϵ,p C
Fooling rate.  Given  a  non-targeted  adversarial  at-

tack , the fooling rate of attacking classifier  is cal-
culated as follows.
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FR(Aϵ,p, C) =
1

N

N∑
i=1

1(C(xi) = ytruei )

∧ (C(Aϵ,p(xi)) ̸= ytruei )) (5)

while  the  fooling rate  of  the  targeted attack is  defined
as follows:
 

FR(Aϵ,p, C) =
1

N

N∑
i=1

1(C(Aϵ,p(xi)) = y∗i) (6)

y∗where  is the target class.

Lp

ϵ

For  DeepFool,  C&W,  and  HopSkipJumpAttack
used  in  this  paper,  we  remove  the  adversarial  samples
generated by such attacks  with  distances  exceeding
the  limit, which is:
 

xadv = Aϵ,p(x)

if ||xadv − x||p > ϵ, then let xadv = x (7)

2) Image scaling definition
We define the five standard scaling algorithms and

their image scaling ratios.
σi(i ∈ [1, 2, 3,4, 5])Image  scaling  algorithms.  Let 

denote the  Nearest  neighbour  algorithm,  Bilinear  al-
gorithm,  Bicubic  algorithm,  Area  algorithm,  and
Lanczos algorithm, respectively.

ζj = 2j(j ∈ [−1, 0, 1])Image  scaling  ratios.  Let  de-
note the image scaling ratio.

x S
According  to  the  above  definition,  given an image

, an image scaling process  is described as follows:
 

Sσi,ζj (x) = σi(x · ζj) = σi(x · 2j) (8)

xwhich denotes the process of scaling original image  by

σi ζj

xadv

image  scaling  algorithm  by   times  to  obtain  the
scaled image. In this paper, the original image targeted
by  the  image  scaling  process  is  the  adversarial  sample

.

Aϵ,p Sσi,ζj

We define the fooling rate of the scaled adversarial
examples  attacking  target  classifier  to  standardize  the
problem of decline in fooling rate of attacks brought by
the image scaling. The fooling rate of  under 
is as described in (9) (non-targeted attack):
 

R(Aϵ,p,Sσi,ζj , C) =
1

N

N∑
k=1

1(C(Sσi,ζj (xk)) = ytruek )

∧ (C(Sσi,ζj (Aϵ,p(xk))) ̸= ytruek )) (9)

 2. Model and algorithms
1) Attack algorithms
ImageNette*1, the subset of ImageNet [18], created

by fast.ai*2 is selected as the image dataset. We use this
dataset according to the scheme described below:

Model training.  We  use  the  training  set  of  Im-
ageNette for training models and use the validation set
to evaluate the accuracy of the trained models.

Adversarial  attack  and  image  scaling.  We  choose
the validation  set  of  ImageNette  and  select  100  pic-
tures  from  these  ten  categories  for  evaluating  in  the
subsequent experiments.

Four  different  architectures  models  (ResNet-18
[19], VGG-11,  MobileNet-v2,  and  Inception-v3)  are  se-
lected  as  the  advanced  image  classification  models.
Through transfer training, we retrain the last layer (full
connection  layer)  of  these  four  DNNs  by  the  dataset
mentioned above. The output is ten categories to match
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Fig. 1. Vulnerability of adversarial examples to image scaling.

 

Towards Evaluating the Robustness of Adversarial Attacks Against Image Scaling Transformation 153

*1
 ImageNette is open source at https://github.com/fastai/imagenette

*2
 fast.ai is the first deep learning library to provide a unified interface for all the most commonly used deep learning applications for

vision, text, tabular data, time series, and collaborative filtering. Official website: https://www.fast.ai/



the experiments.
Based  on  the  threat  models  established  in  Section

Ⅱ,  we  select  seven  attack  scenarios  shown in Table 1.
Three attack algorithms of FGSM, BIM and MI-FGSM
are  regarded  as  one  type:  white-box  attacks  under  the

L∞

L2

L∞

 norm.  Two  attack  algorithms  of  Deepfool  and
C&W are  regarded as  one type:  white-box attacks  un-
der  the  norm.  Two  attack  algorithms  of
HopSkipJumpAttack  and  GenAttack  are  regarded  as
one type: black-box attacks under the  norm.

  
Table 1. The attack methods implemented in our experiments

Attack method Knowledge Goals Capability Distance
FGSM White-box Non-targeted ϵ constrained L∞

BIM White-box Non-targeted ϵ constrained L∞

MI-FGSM White-box Non-targeted ϵ constrained L∞

DeepFool White-box Non-targeted Optimized-based L2

C&W White-box Non-targeted Optimized-based L2

HopSkipJumpAttack Decision-based Non-targeted Optimized-based L∞

GenAttack Decision-based Targeted ϵ constrained L∞
 
 

ϵ

ϵ

The gradient-based fixed  attacks can directly set
the  adversarial  sample  perturbation  distance  through
the setting of , while the optimization-based minimiza-
tion  perturbation  attacks  cannot  directly  set.  To  meet
the perturbation budget setting, we make minor adjust-
ments  to  the  three  algorithms,  DeepFool,  C&W,  and
HopSkipJumpAttack.

2) Image scaling process

< xk, y
true
k >

Aϵ,p

< xadv
k(scaled) >

The image  scaling  process  as  described  in  Al-
gorithm  1.  Among  them,  the  algorithm’s  input  is  the
image  dataset , which  is  the  set  of  ad-
versarial  examples  obtained  by  the  adversarial  attack

,  and  the  output  is  the  adversarial  examples  set
 after image scaling.

Algorithm  1: Using  different  image  scaling  algorithms  to
scale adversarial examples at different scaling ratios

⟨xk, y
true
k ⟩Input: Evaluation dataset: 

⟨xadv
k(scaled)⟩Output: Scaled adversarial examples set: 

Aϵ, p Sσi, ζj1: Adversarial attack: . Image scaling: ;
i ∈ [1, 2, . . . , 5], j ∈ [−1, 0, 1], k ∈ [1, N ]2: Parameters: ;

k ← 1 N3: for  to  do
xadv
k = Aϵ, p(xk) Aϵ,p4:　　  //Using   to  generate  adversarial

examples
i← 1 55:　　for  to  do
j [−1, 0, 1]6:　　　for  in  do
j == 07:　　　　if  then
xadv
k(scaled) = xadv

k8:　　　　　  //Control group
9:　　　　else

xadv
k(scaled) = Sσi, ζj (x

adv
k )10:　　　　　

Sσi,ζj　　　　　　// Using  to scale image
　　　　　　image

11:　　　　end
12:　　　end
13:　　end
14: end

Sσi,ζj (i ∈ [1, ..., 5], j ∈ [−1, 0, 1])

As mentioned in Section III, we use 11 image scal-
ing processes  to scale 112
adversarial examples generated by seven adversarial at-
tack algorithms that attack four different image classi-
fication  models  under  four  levels  of  perturbation
budgets and then send the scaled adversarial  examples
to  corresponding  image  classification  models  again  for
classification.

 IV. Evaluation Results and Analysis
 1. Experimental setup
We  run  our  experiments  on  the  GPU  Server

equipped with Intel E5-2678×2, NVIDIA RTX 2080Ti×3,
and 32 GB of memory. Before we implement the experi-
ments, we describe the set of data corresponding to the
experiments.

In this experiment, each model was trained iterat-
ively for 10 epochs. After 10 iterations, the accuracy of
ResNet-18,  VGG-11,  MobileNet-v2  and  Inception-v3  is
96.67%, 97.18%, 97.22% and 98.04%, respectively.

Perturbation budget  setting:  We  implement  per-
turbation budgets  on  the  above  three  types  of  ad-
versarial attacks according to the four levels of perturb-
ation budgets shown in Table 2.

Hyperparameters setting:  We  set  the  hyperpara-
meters of  adversarial  attacks based on the original  pa-
pers shown in Table 3.

In  this  experiment,  we  all  obtained  the  fooling
rates of 1232 group adversarial attacks.

 2. Results on adversarial attacks
Before the image scaling process, we conduct exper-

iments on  the  fooling  rates  of  various  adversarial  at-
tacks. The adversarial attacks attack four different im-
age classification  models  sequentially.  After  seven  ad-
versarial  attacks  under  four  levels  of  perturbation
budgets, the  accuracies  of  the  four  classifiers  have  de-
creased significantly.  The  accuracy  of  image  classifica-
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tion models under four levels of perturbation budgets is
shown in Table 4.

Under the  different  perturbation  budgets,  the  un-

scaled adversarial  examples  successfully  attack  the  im-
age classification models. Models’ accuracies decrease to
varying degrees, most of which decrease from more than
90%  to  10%.  Partial  white-box  attacks  like  MI-FGSM
and BIM  even  drop  the  model  accuracy  to  0%.  Addi-
tionally,  we  find  that  all  models’ accuracy  decreases
with the increase of perturbation budget.

Among  five  white-box  attacks,  the  accuracy  of
models  after  adversarial  attacks  reduces  significantly
under the Level1 perturbation budget due to their ma-
ture attack  algorithms  and  accessible  attack  environ-
ments.  The  accuracy  of  the  target  model  thus  doesn’t
change sharply.  For  the  remaining  two  black-box  at-
tacks, the accuracy of the target model reflects a more
apparent downward trend.

  
Table 4. The accuracy of different classifiers under the different perturbation budgets

(a) The accuracy of ResNet-18 (b) The accuracy of VGG-11
ResNet-18 (base: 98%) VGG-11 (base: 97%)

Attack Level1 Level2 Level3 Level4 Attack Level1 Level2 Level3 Level4
FGSM 12% 11% 11% 9% FGSM 20% 17% 16% 14%
BIM 2% 0% 0% 0% BIM 2% 1% 0% 0%
MIM 0% 0% 0% 0% MIM 2% 2% 0% 0%
DF 3% 4% 4% 4% DF 4% 4% 6% 12%

C&W 31% 8% 0% 0% C&W 34% 9% 1% 0%
HSJA 17% 11% 10% 7% HSJA 9% 9% 7% 3%
GA 11% 5% 5% 0% GA 61% 52% 45% 41%

(c) The accuracy of Inception-v3 (d) The accuracy of MobileNet-v2
Inception-v3 (base: 93%) MobileNet-v2 (base: 96%)

Attack Level1 Level2 Level3 Level4 Attack Level1 Level2 Level3 Level4
FGSM 53% 48% 36% 16% FGSM 17% 17% 12% 7%
BIM 8% 4% 0% 0% BIM 2% 0% 0% 0%
MIM 0% 1% 0% 0% MIM 0% 0% 0% 0%
DF 10% 5% 6% 5% DF 2% 2% 3% 4%

C&W 62% 40% 27% 11% C&W 40% 13% 5% 2%
HSJA 11% 6% 4% 3% HSJA 11% 13% 5% 2%
GA 17% 11% 7% 3% GA 14% 12% 8% 10%

 
 

 3. Evaluation results  and  analysis  on  per-
turbation budgets

We study the effect of image scaling on the robust-
ness of adversarial  examples generated by different ad-
versarial attacks under multi-level perturbation budgets
attacking the same image classification model. The Res-
Net-18 shows  relatively  stable  performance  and  stand-
ard data rules throughout the experiment. Thus in this
evaluation, we focus on the analysis related to ResNet-18.

The experiment  obtain  seven  robustness  evalu-
ation data of the adversarial examples generated by ad-

versarial attacks under four levels perturbation budgets
attacking ResNet-18.  The  fooling  rate  of  most  ad-
versarial attacks  is  significantly  improved  with  the  in-
crease  of  the  perturbation  budget.  No  matter  it  is  a
black-box attack or a white-box attack, no matter what
kind of image scaling process the adversarial example is
subjected to,  the  fooling  rate  increases  with  the  in-
crease of perturbation budget. The data relating to the
other  image  classification  models  also  show  similar
trends. Therefore,  we  think  that  we  can  construct  ad-
versarial examples that are more robust against various

   
Table 2. Four levels of perturbation budgets for three different types of adversarial attacks

Knowledge attack methods
Perturbation budget

Lp norm Level1 Level2 Level3 Level4

White-box
FGSM,MI-FGSM,BIM L∞ 4/255 8/255 16/255 32/255

DeepFool,CW L2 2 4 6 8
Black-box HSJA,GA L∞ 64/255 72/255 80/255 88/255

 

   
Table 3. Hyperparameters set in adversarial attacks

Attack method Hyperparameters Setting value
FGSM,BIM,MI-FGSM default default

DeepFool steps 100

C&W
initial_const 1000
learning_rate 0.07

max_iterations 1000

HSJA

iterations 64
initial_num_evals 10
max_num_evals 1000

gamma 0.1
GenAttack generations 1000
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image  scaling  processes  by  increasing  the  level  of  the
perturbation budget.

 4. Evaluation results  and analysis  on image
scaling processes

σi ζj

We research  how  the  different  image  scaling  al-
gorithms  , and various image scaling ratios  affect
the robustness of adversarial examples generated by the
same  adversarial  attack  under  the  same  perturbation
budget attacking the same classifier. In this evaluation,
we chose to analyze the data related to VGG-11 and In-
ception-v3, according  to  the  analysis  in  Section  4.  Im-

age  scaling  processes  of  MI-FGSM,  C&W,  and
HopSkipJumpAttack  under  the  Level1  perturbation
budget has the most significant possible impact on the
fooling  rate  of  adversarial  examples.  As  shown  on  the
left  of Fig.2 ,  we  obtain  some  findings  (MobileNet-v2
and ResNet-18 are similar to VGG-11).

σi

ζ−1 σi

ζ1 σ1 σ3

σ1

For the image scaling algorithm , when the scal-
ing ratio is , different  have a similar effect on the
fooling rate, but when the scaling ratio is ,  and ,
compared  to  the  other  three  algorithms,  can  not  have
an approximate  level  of  impact  on the fooling rate  (

 

0

20

C
O

N
TR

O
L_G

R
O

U
P 

×1

IN
TER

_N
EA

R
EST ×

0.
5

TN
TER

_L
IN

EA
R
 ×

0.
5

IN
TER

_A
R
EA

 ×
0.

5

IN
TER

_C
U

B
IC

 ×
0.

5

IN
TER

_L
A

N
C
Z0S

4 
×0.

5

IN
TER

_N
EA

R
EST ×

2

IN
TER

_L
IN

EA
R
 ×

2

IN
TER

_A
R
EA

 ×
2

IN
TER

_C
U

B
IC

 ×
2

IN
TER

_L
A

N
C
Z0S

4 
×2

40

60

A
tt

ac
k
 s

u
cc

es
s 

ra
te

 (
%

)

80

100 98.0%

Ave: 16.8%

Ave: 45.0%

Vgg: mim level 1 adversary robustness

Control group
Scale ×0.5
Scale ×2.0

(a) VGG-11-MI-FGSM (Level1)

0

20

C
O

N
TR

O
L_G

R
O

U
P 

×1

IN
TER

_N
EA

R
EST ×

0.
5

TN
TER

_L
IN

EA
R
 ×

0.
5

IN
TER

_A
R
EA

 ×
0.

5

IN
TER

_C
U

B
IC

 ×
0.

5

IN
TER

_L
A

N
C
Z0S

4 
×0.

5

IN
TER

_N
EA

R
EST ×

2

IN
TER

_L
IN

EA
R
 ×

2

IN
TER

_A
R
EA

 ×
2

IN
TER

_C
U

B
IC

 ×
2

IN
TER

_L
A

N
C
Z0S

4 
×2

40

60

A
tt

ac
k
 s

u
cc

es
s 

ra
te

 (
%

)

80

100

120

100%

Ave: 59%

Ave: 10%

Inception: mim level 1 adversary robustness

Control group
Scale ×0.5
Scale ×2.0

(b) Inception-v3-MIM (Level1)

0

20

10

C
O

N
TR

O
L_G

R
O

U
P 

×1

IN
TER

_N
EA

R
EST ×

0.
5

TN
TER

_L
IN

EA
R
 ×

0.
5

IN
TER

_A
R
EA

 ×
0.

5

IN
TER

_C
U

B
IC

 ×
0.

5

IN
TER

_L
A

N
C
Z0S

4 
×0.

5

IN
TER

_N
EA

R
EST ×

2

IN
TER

_L
IN

EA
R
 ×

2

IN
TER

_A
R
EA

 ×
2

IN
TER

_C
U

B
IC

 ×
2

IN
TER

_L
A

N
C
Z0S

4 
×2

30

40

A
tt

ac
k
 s

u
cc

es
s 

ra
te

 (
%

)

50

60

70 66.0%

Ave: 12.4%

Ave: 29.0%

Vgg: cw level 1 adversary robustness

Control group
Scale ×0.5
Scale ×2.0

(c) VGG-11-C&W (Level1)
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(d) Inception-v3-C&W (Level1)
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(e) VGG-11-HJSA (Level1)
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(f) Inception-v3-HJSA (Level1) 
Fig. 2. Different image scaling algorithms and image scaling ratios affect the robustness of adversarial examples for VGG-11 (left:

(a), (c), and (e)) and Inception-v3 (right: (b), (d), and (f)).
 

156 Chinese Journal of Electronics 2023



σ3

σ2 σ4 σ5

and  causes the fooling rate to decrease to a less ex-
tent than , , ).

ζj ζ−1

ζ1
Sσi,ζ−1

Sσi,ζ1

For the image scaling ratio ,  (reduced to 0.5
times) generally has a greater impact on the fooling rate
of  adversarial  examples  than  that  of  (enlarged  to  2
times).  Under  the  same  conditions,  causes  the
decline degree of the fooling rate to be 20%–30% higher
than that of  on average.

σi

Sσi,ζ−1

Sσi,ζ1

While as shown in the right of Fig.2, we have some
different findings.  For  Inception-v3,  the  impact  of  im-
age scaling algorithm  on the fooling rate of adversari-
al examples is not much different. Under the same con-
ditions,  leads to a decreasing degree of the fool-
ing  rate  of  adversarial  examples  30%–60%  lower  than
that of .

Based on  the  above  analysis,  we  find  that  the  ef-
fect of the image scaling algorithm on the robustness of
adversarial examples is not very obvious. The five scal-
ing  algorithms  can  effectively  reduce  the  fooling  rate,
but the impact of the image scaling ratio on the robust-
ness  of  adversarial  examples  is  quite  different.  For  the
three models of VGG-11, ResNet-18, and MobileNet-v2,
the fooling rates show a similar law: “Reducing the size
of an adversarial example to 0.5 times” makes the fool-
ing rate drop more generally than “magnifying the ad-
versarial example size to 2 times”. However, Inception-
v3 is the opposite.

 V. Conclusions
In this paper, we designed groups of experiments in

different  situations,  including  other  models,  different
adversarial  attack  algorithms,  different  perturbation
budgets, and various image scaling processes to system-
atically evaluate the impact of image scaling on the ro-
bustness of  adversarial  examples.  Based  on  the  experi-
ment results, we got some interesting observations. Our
work will be beneficial to design more robust adversari-
al  attack  algorithms  against  image  scaling.  It  can  also
provide a solid foundation for developing more efficient
methods to defend against adversarial attacks.
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