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   Abstract — Real-time  six  degrees-of-freedom  (6D)
object pose estimation is essential for many real-world ap-
plications, such  as  robotic  grasping  and  augmented  real-
ity.  To  achieve  an  accurate  object  pose  estimation  from
RGB  images  in  real-time,  we  propose  an  effective  and
lightweight model, namely high-resolution 6D pose estim-
ation  network  (HRPose).  We  adopt  the  efficient  and
small  HRNetV2-W18  as  a  feature  extractor  to  reduce
computational  burdens  while  generating  accurate  6D
poses. With only 33% of the model size and lower compu-
tational costs, our HRPose achieves comparable perform-
ance compared with state-of-the-art models. Moreover, by
transferring knowledge  from  a  large  model  to  our  pro-
posed HRPose through output and feature-similarity dis-
tillations, the performance of our HRPose is improved in
effectiveness and efficiency. Numerical experiments on the
widely-used benchmark  LINEMOD  demonstrate  the  su-
periority of our proposed HRPose against state-of-the-art
methods.

   Key words — 6D  pose  estimation, Keypoint detec-

tion, Knowledge distillation, Lightweight model.

 I. Introduction
Object pose  estimation  aims  to  obtain  the  six  de-

grees-of-freedom (6D) pose of an object in a camera co-
ordinate,  and  its  real-time  application  is  crucial  for
autonomous  driving  [1]–[4],  augmented  reality  [5], ro-
botic  grasping [6],  and so  forth.  For  instance,  fast  and
accurate  6D  pose  estimation  is  essential  in  Amazon
Picking Challenge [7], where a robot needs to pick ob-
jects from a warehouse shelf. Although methods [8], [9]
that rely on depth images for this task are more robust,

estimating object  poses  from  RGB  images  is  more  at-
tractive for actual scenarios, in terms of hardware cost
and availability. This problem is still challenging due to
variations in appearance and cluttered environments.

Traditional methods [10], [11] compute object poses
by  establishing  maps  between  object  images  and  their
actual model through feature points or template match-
ing. They rely on hand-crafted features, which are sens-
itive  to  image  variations  and  background  clutters.
Nowadays, with the development of deep learning, deep
convolutional  neural  networks  (CNNs)  have  achieved
significant progresses in 6D object pose estimation.

To  achieve  an  efficient  pose  estimation,  existing
methods  [12]–[15]  first  use  CNNs  to  detect  predefined
two-dimensional (2D)  keypoints  and  then  recover  ob-
ject poses via a perspective-n-point (PnP) algorithm [16].
Among  these  methods,  Tekin et  al. [13 ]  employed  the
object detector YOLOv2 [17] to directly regress 2D loc-
ations of  keypoints  which  can  achieve  almost  the  fast-
est speed in pose estimation. However, directly regress-
ing  the  keypoints  coordinates  makes  the  CNN hard  to
converge,  which  results  in  degradation  of  accuracy.
Tremblay et al. [18] proposed a multistage architecture
to estimate pixel-wise heatmaps of 2D keypoints.  Peng
et al. [15] proposed pixel-wise unit vectors as a repres-
entation of  keypoints.  However,  such dense predictions
lead  to  an  increase  in  model  size  and  computational
complexity, which restricts them from practical applica-
tions.

Recently,  neural  networks  with  high  accuracies,
small model sizes, and low computational costs have at- 
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tracted  much  attention  for  their  demands  in  resource-
limited  devices,  such  as  embedded  systems  [19].  For
such  systems,  knowledge  distillation  [20]  has  been
widely  studied  for  its  simplicity  and  effectiveness.  Its
main idea is to improve the performance of a small net-
work by transferring the knowledge from a large teach-
er  network.  Felix et  al. [21 ]  proposed  an  improved
knowledge  distillation  to  get  a  faster  version  of  a  2D
keypoints  detector  based  on  YOLO6D  [13]  for  object
pose estimation,  where the output of  a trained teacher
network  is  simply  transfered.  However,  the  unreliable
teacher network introduces noises in training and makes
the student  network  fail  to  meet  requirements  on  ac-
curacies in real-world applications.

An  ideal  solution  to  6D  object  pose  estimation
should satisfy  some  actual  conditions  such  as  texture-
less appearance, heavy clutter scenes, and environment-
al variations.  Also,  it  should  meet  the  speed  require-
ment  for  real-time  tasks  (e.g.  30  frames  per  second
[17]).  To  this  end,  we  propose  a  simple  and  efficient
model, namely  high-resolution  6D pose  estimation  net-
work (HRPose) which predicts keypoints from the high-
resolution feature  representation in  a  bottom-up meth-
od. HRPose takes the small HRNetV2-W18 [22] as the
backbone and is able to retain spatial positions as well
as deep semantic  information,  which leads to more ac-
curate pose estimations.

To further improve the estimation accuracy of HR-
Pose without a performance degradation, we propose a
novel method, namely integrated knowledge distillation.
We propose to align the output of the teacher and stu-
dent  network  at  a  pixel  level,  which  is  named  output
distillation. We further apply a feature-similarity distil-
lation,  which  intends  to  transfer  the  prior  information
from the feature maps. The similarity matrix is used to
represent the  rich  semantic  information  from  the  fea-
ture  maps.  By  minimizing  the  distance  of  similarity
matrices between the teacher and student networks, the
distribution of the feature maps of the student network
can approach that of the teacher network.

Our contribution can be summarized as follows:
1) We propose an efficient high-resolution pose es-

timation network for  6D object  pose estimation,  which
can achieve comparable performance but has about 33%
parameters compared with the state-of-the-art methods
on the widely-used LINEMOD dataset.

2) To further improve the accuracy of HRPose, we
propose  an  integrated  knowledge  distillation  method,
which transfers both the structure information from the
outputs and the feature maps of a trained teacher net-
work,  for  achieving  a  mean gain  of  1.66% on accuracy
in the average distance of model points metric.

3) Our approach is highly accurate and fast enough

(33 ms per image) to achieve the speed requirement in
real-time tasks.

 II. The Related Work
In  this  section,  we  review  related  works  on  RGB-

based 6D object pose estimation and knowledge distilla-
tion.

 1. 6D object pose estimation
Recently, the estimation of 6D object poses includ-

ing 3D locations  and 3D orientations  has  been an act-
ive  topic.  Previous  methods  mainly  rely  on  matching
techniques  [11]  or  local  feature  descriptors  [10],  [23]
which  are  not  robust  to  variations  of  appearances  and
environments.

Similar  to  other  computer  vision  tasks,  learning-
based  methods  have  achieved  significant  progresses.
Given  an  image,  some  previous  works  [6],  [24]  rely  on
the power  of  deep  neural  networks  and  directly  estim-
ate object poses in a single shot. However, the direct re-
gression of 6D poses is still difficult due to the non-lin-
earity of the rotation space [15], which requires a pose-
refinement algorithm to get an accurate 6D pose.

Some recent methods [13],  [15],  [25],  [26] first  pre-
dict  2D  keypoints  of  objects  and  then  compute  6D
poses  through 2D-3D correspondences  with  a  PnP  al-
gorithm. In other words, the problem of 6D pose estim-
ation is transformed into the problem of keypoint detec-
tions. In this kind of methods, BB8 [12] detects the ob-
jects of interest using segmentation and then predicts 2D
keypoint coordinates from detected regions. PVNet [15]
is proposed to use pixel-wise unit vectors as a represent-
ation of keypoints and use the predicted vectors to vote
for keypoint locations through RANSAC [27]. DPOD [25]
estimates dense multi-class 2D-3D correspondence maps
between an input  image and available  3D models.  Hy-
bridPose [26] utilizes keypoints, edge vectors, and sym-
metry  correspondences  as  the  representation  of  6D
poses. HybridPose  achieves  a  state-of-the-art  perform-
ance with an additional refinement sub-module.

Despite  the  accuracy  of  CNN  on  pose  estimation
increases,  this  relies  on  its  large  scalability  and  time-
consuming  computations  (e.g.,  VGG  [28]  or  ResNet
[29])  which  ignores  model  efficiencies.  A  few  recent
works focus on improving the efficiency. Tekin et al. [13]
employed  a  lightweight  detector  YOLOv2  [17]  to  this
task and  achieved  almost  the  fastest  speed  of  estima-
tion. However, this method made predictions based on a
low-resolution feature map and was not sufficiently pre-
cise to meet the accuracy requirement in practical scen-
arios.

 2. Knowledge distillation
CNNs are expensive in terms of computations and

memories.  Deeper  networks  are  preferred  for  accuracy,
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while smaller networks are widely used due to their effi-
ciency [30]–[32]. So model compression becomes a focus,
which intends  to  speed  up  running  times  while  main-
taining accuracies.  Knowledge distillation [20] is one of
the model compression methods, which transfers know-
ledge  from  an  accurate  teacher  network  to  a  compact
student network. By utilizing extra supervision informa-
tion of a trained teacher network, the student network
can achieve a better performance.

Bucila et al. [33] proposed an algorithm to train a
single small neural network by mimicking the output of
an  ensemble  of  models.  Hinton  [20] proposed  a  know-
ledge distillation (KD) method using softmax outputs of
a teacher network as an extra supervision. Since the di-
mension  of  both  outputs  is  identical,  such  an  output
distillation method  can  be  applied  to  any  pair  of  net-
works.

For  better  utilizing  the  information  contained  in
the  teacher  network,  some  feature  distillation  metho-
ds [34]–[37] have been proposed, which transfer interme-
diate  feature  representations.  Romero et  al. [34 ] pro-
posed a hint learning method that aligns the intermedi-
ate feature maps between the teacher and student net-
work.  Zagoruyko et  al. [35 ] proposed  to  force  the  stu-
dent network to mimic the attention maps of a power-
ful  teacher  network.  Liu et  al. [37 ]  proposed  to  distill
the  pixel-level  and  structure  information  from  the
teacher network  simultaneously.  Such  feature  distilla-
tion schemes can be  combined with an output  distilla-
tion to improve the performance of the student network.

Given  the  effectiveness  of  knowledge  distillation,
we  propose  a  novel  integrated  knowledge  distillation
that contains output and feature-similarity distillations
to enhance the performance of HRPose in this work.

 III. High-Resolution 6D Pose Estima-
tion Network Using Knowledge

Distillation

[R, t; 0, 1]

R 3× 3 t

3× 1

Given an RGB image, the task of 6D pose estima-
tion  is  to  detect  objects  and  estimate  their  6D  poses.
The 6D pose can be denoted as  a  rigid transformation

 from the object coordinate to the camera co-
ordinate, where  is a  rotation matrix and  is a

 translation vector.
We propose  a  framework  of  HRPose  with  know-

ledge distillation  for  real-time  6D  object  pose  estima-
tion  as  shown  in Fig.1 .  We  first  train  a  large  teacher
network that  shares  the  same  architecture  as  the  pro-
posed  HRPose.  Then,  we  train  the  proposed  HRPose
with  the  assistance  of  knowledge  learned  from  the
teacher  network.  HRPose  takes  the  small  HRNetV2-
W18 [22] as the backbone, which has fewer convolution-
al layers than the teacher network. Knowledge distilla-

tion works in this step which transfers both the know-
ledge  of  the  output  and  the  feature  maps  from  the
teacher network to the HRPose.
 

Feature-similarity
 distillation loss

Output distillation
loss

MSE loss

Teacher network

 Student network 

Teacher’s output

Student’s output Label

Input

 
Fig. 1. An overview  of  the  proposed  HRPose  with  know-

ledge  distillation.  In  the  training  process,  we  keep
the  large  teacher  network  fixed  and  only  optimize
the student network. The student network is trained
with  two  distillation  terms  (feature-similarity  loss
and output  distillation  loss)  and  the  pose  estima-
tion loss.  The trained student  network can perform
an efficient object pose estimation.

 

In this section, we start with an introduction to the
proposed  HRPose  and  then  describe  the  details  of  the
knowledge distillation.

 1. High-resolution pose estimation network
We propose a two-step pipeline for object pose es-

timation:  we  first  detect  2D  object  keypoints  using
CNNs  in  a  bottom-up  method  as  shown  in Fig.2  and
then calculate 6D poses via a PnP algorithm. We select
the 8 vertices of the 3D bounding box and the centroid
of an object as keypoints.

H ×W × 3

H

L

H = (H1,H2, ...,HI) I
H
4 × W

4 Hi

i

L = (L1,L2, ...,LJ) J
H
4 × W

4 × 2

Lj

Given  an  RGB image  size  of ,  HRPose
processes it using a fully-convolutional architecture and
predicts  a  set  of  2D  belief  maps  of keypoint  loca-
tions (Fig.2(c))  and a set of  2D vector fields ,  which
represents the degree of correlation between the corners
and  the  centriod  (Fig.2(d))  for  each  object.  The  set

 has   belief  maps  with  a  size
,  where each belief  map  represents the loca-

tion  confidence  of  the -th  keypoint.  The  set
 has   vector  fields  with  a  size

. Each pair of vertex and the centroid gener-
ate a vector field, where each image location in  de-
notes a 2D vector. Finally, the belief maps and the vec-
tor  fields  are  parsed  using  a  post-processing  algorithm
to output the locations of 2D keypoints.

3× 3
1
4

The  network  of  HRPose,  shown  in Fig.2 (a), con-
sists  of  three  parts:  a  stem  composed  of  two 
strided  convolutions  decreasing  the  resolution  to ,  a
backbone network that extracts  semantic  features,  and
a regressor using the feature of the backbone to estim-
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H
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4 × (K × C)
H
4 × W
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C K

ate the belief maps and the vector fields. The regressor
consists  of  three  convolutions,  and  outputs  a

 tensor representing belief maps and a
 tensor  representing  vector

fields. Here,  and  denote the number of the classes
of  objects  and  keypoints  for  each  object,  respectively.
Considering  the  positive  impact  of  a  high-resolution
representation on the keypoint detection, we adopt the
small  HRNetV2-W18  [22]  as  the  backbone,  which  can
maintain  a  high-resolution  representation  to  achieve  a
precise keypoint location.

Hi

p ∈ R2 Hi

An individual belief maps  is generated by cen-
tering  a  Gaussian  kernel  around  the  labeled  position.
The value at a location  in  is defined as,
 

Hi (p) = exp

(
−∥p− xi∥22

2σ2

)
(1)

xi ∈ R2

i σ

where  denotes the ground-truth position of the
-th keypoint in the image and  denotes the standard
deviation.

vj(p)

j

xj xcen

j

p

j Lj(p)

We use a unit vector  to represent the direc-
tion from the -th vertex to the centroid of the corres-
ponding  object.  Let ,  denote  the  ground-truth
position of the -th vertex of the 3D bounding box and
the centroid in the image, respectively. If a point  lies
around the -th vertex, the value at  is a unit vec-
tor that points  from the vertex to the centroid;  for  all
other  points,  the  vector  is  zero-valued.  Therefore,  the

p

Lj

value at the location  in the ground-truth vector field
 is defined as,

 

Lj(p) =
{
vj(p), if p ∈ N (xj) or p = xj
0, otherwise (2)

vj(p) = (xj − xcen)/∥xj − xcen∥2
N (xj)

xj

Here,  is  the  unit
vector.  denotes the  local  neighborhood  contain-
ing  pixels  within  a  3-pixel  radius  of  the  ground-truth
vertex .

We use the mean squared error for learning the be-
lief  maps  and  the  vector  fields.  The  overall  objective
loss function is defined as,
 

Lmse =
1

I

I∑
i=1

∥∥∥Hi − H̃i

∥∥∥2
2
+

1

J

J∑
j=1

∥∥∥Lj − L̃j

∥∥∥2
2

(3)

Hi H̃i i

Lj L̃j j

where  and   are  the -th  ground-truth  and  the
predicted belief map, respectively.  and  are the -
th ground-truth and predicted vector fields, respectively.

After processing an input image with the proposed
network, we can extract 2D keypoint positions from the
estimated belief  maps  using  a  greedy  inference  al-
gorithm [18]. Since each belief map represents the key-
points of an unknown number of instances of the same
type, it is necessary to assemble the detected keypoints
to  form  individual  objects  according  to  the  predicted
vector fields.  We  take  the  local  peaks  from  the  pre-
dicted  belief  maps  above  a  threshold  as  keypoints  and
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Fig. 2. Overview: (a) The architecture of HRPose. In the output of the network, the first nine heatmaps represent the predicted

belief maps for keypoints and the latter 16 heatmaps represent the predicted vector fields; (b) An image in the LINEMOD
dataset; (c) Belief maps; (d) Vector fields; (e) Predictions of the 2D location of the corners of the projected 3D bounding
boxes in the image.
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then group  the  keypoints  into  object  instances  accord-
ing  to  the  predicted  vector  fields.  For  each  vertex,  we
then compare the predicted vector field with the direc-
tion  from the  vertex  to  the  object  centroid  and  assign
the detected vertex to the closest object centroid with-
in a certain angular threshold.

When the  vertices  of  each  object  instance  are  de-
tected, a PnP [16] algorithm can use the camera intrins-
ic,  the  3D  keypoints,  and  the  corresponding  projected
vertices to compute the final 6D pose.

 2. Integrated knowledge distillation
To  further  improve  the  pose  estimation  accuracy

without a  model  performance  degradation,  we  intro-
duce and integrate the knowledge distillation technique,
named integrated  knowledge  distillation.  A  brief  out-
line  of  the  training  method  is  shown  in Fig.1 . We  ex-
pect the student network to learn not only the informa-
tion  provided  by  the  ground-truth  labels,  but  also  the
finer structure  knowledge  encoded  by  the  teacher  net-
work. Let T and S denote a teacher network and a stu-
dent network, respectively.

We  adopt  the  output  distillation  and  the  feature-
similarity  distillation  to  help  the  training  of  HRPose
jointly. The purpose of the output distillation is intuit-
ive: if  the output of a student is similar to that of the
teacher, the performance of the student should be simil-
ar to the teacher. Transferring the knowledge from the
output  layer  forces  the  student  network  to  produce  a
similar output as that of the teacher which is useful to
improve the performance of the student network. Here,
mean squared error (MSE) is used as a loss function to
measure the  divergence  between  the  teacher  and  stu-
dent  outputs.  Therefore,  the  output  distillation  loss
function is formulated as:
 

Lod =
1

I

I∑
i=1

∥∥Hs
i −Ht

i

∥∥2
2
+

1

J

J∑
j=1

∥∥Ls
j −Lt

j

∥∥2
2

(4)
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i Ht

i i
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j j

Here,  and  denote the belief maps for the -
th keypoint predicted by the pre-trained teacher model
and the  in-training  student  model,  respectively.  Simil-
arly,  and   denote  the  vector  fields  for  the -th
keypoint predicted by the teacher and the student mod-
els, respectively.

The  feature-similarity  distillation  aims  to  transfer
more  structured  information  from the  teacher  network
to  the  student  network.  Generally,  features  in  certain
regions  share  the  same  properties  related  to  the  task.
The trained teacher network has extracted certain fea-
tures  related  to  the  object  pose  estimation  task  from
the  original  input.  The  information  from  the  feature
maps of the teacher network is valuable for the student
network  since  it  provides  the  student  network  with

guidance on  the  keypoint  detection.  Therefore,  we  ap-
ply the  feature-similarity  distillation  to  make  the  stu-
dent feature maps similar to that of the teacher.

F ∈ RC×H×W

C

H ×W

F t F s

F t F s

We  use  to denote  the  output  fea-
ture  map  of  a  layer  in  the  CNN where  is  the  total
number  of  channels  and  is the  spatial  dimen-
sions. Let  and  denote the feature maps from cer-
tain layers  of  the  teacher  and  student  networks,  re-
spectively.  In  our  method,  we  assume  that  the  spatial
dimensions  of  and   are  identical.  The  function
loss in the feature-similarity distillation is written as
 

Lfs = ∥Gs −Gt∥2F (5)

G ∈ RHW×HW

gij

Here,  is the similarity matrix, with
each entry  defined as,
 

gij =
fT
i fj

∥fi∥2 ∥fj∥2
(6)

fi ∈ RC

i (i = 1, 2, ..., H ×W )

F gij
i j

where  denotes a feature vector extracted from
the -th  spatial location  of  the  fea-
ture  map .  Each  item  represents  the  similarity
between the -th feature vector and the -th feature vec-
tor.  With the help of feature-similarity distillation, the
student  is  trained  to  minimize  the  divergence  between
the student  and teacher  feature  maps.  Feature-similar-
ity  distillation  provides  more  supervision  information
for  student  models.  In  our  experiments,  we  choose  to
align the feature maps extracted from the backbone be-
cause the abstract semantics makes more sense for key-
point detection.

Therefore, the student network is trained to optim-
ize the following loss function:
 

L = Lmse + λ1Lod + λ2Lfs (7)

λ1 λ2Here,  and  are tunable parameters to balance
the standard MSE loss and the distillation loss.

Fig.1 summarizes  the  training  of  the  knowledge
transfer framework.  The  backbone  of  the  teacher  net-
work  and  the  student  network  are  HRNetV2-18  and
small HRNetV2-18, respectively. We first train a teach-
er  network  to  optimize  (3)  without  any  extra  loss.
Then, we train a target student network to minimize (7),
with the  knowledge  distillation  from  the  teacher  net-
work to the target network being conducted throughout
the entire training process. At a test time, we only use
the  efficient  and  cost-effective  HRPose  while  throwing
away the  large  teacher  network,  since  the  target  net-
work already extracts the teacher’s knowledge.

 IV. Experimental Results and Analysis
 1. Dataset and training strategy
To validate  the  proposed  method,  we  perform ex-
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periments  on  the  LINEMOD  dataset  [38],  which  is  a
standard  benchmark  for  6D  object  pose  estimation.  It
provides about 15000 actual images with annotated 6D
poses  of  13  texture-less  objects  in  heavily  cluttered
scenes. The precise 3D models of the corresponding ob-
jects  are  also  available.  We  follow  prior  works  [13]  to
use around  15% of  the  LINEMOD examples  for  train-
ing and 85% for testing. To prevent overfitting, we add
synthetic  images  to  the  training  set  following [15].  We
render 10000 images for each object and synthesize an-
other 10000 images by the “Cut and paste” strategy as
shown in Fig.3. The background of all synthetic images
is randomly sampled from the SUN397 dataset [39]. Be-
sides,  we  perform  online  data  augmentation  including
random blur, color jittering, and rotation (  degrees)
during training.
 

(a) (b)  
Fig. 3. An  illustration  of  the  synthetic  images.  (a)  The

rendered  image  whose  pose  is  uniformly  sampled;
(b) The synthetic image using “Cut and paste.”

 

λ1 λ2

In  training,  we  adopt  the  ADAM  optimizer  [40]
with a mini-batch size of 32. The initial learning rate is
set to 0.0001 and halves every 20 epochs. All models are
trained for 120 epochs. Our implementation is based on
PyTorch with TITAN XP GPU. In our experiment, we
set  and  to be 0.5 and 0.00005. For simplicity, the
proposed teacher network is named “Teacher,” and the
student networks  with  and  without  knowledge  distilla-
tion are named “HRPose+KD” and “HRPose,” respect-
ively.

 2. Evaluation metrics
We use two common metrics for evaluation: the av-

erage distance of model points (ADD) metric [38] and 2D
projection metric [41]. The ADD metric is defined as an
average  distance  between  the  transformed  3D  model
points  using  the  ground-truth  pose  and  the  estimated
pose. For the ADD metric, we identify a pose to be cor-
rect if the average distance is less than 10% of the ob-
ject’s diameter. The 2D projection metric computes the
mean distance between the 2D projections of the object’s
3D  mesh  vertices  using  the  estimated  and  the  ground
truth pose. A pose is identified to be correct if the dis-
tance is less than 5 pixels when using the 2D projection
metric.

R

t R̃ t̃

Given the ground-truth rotation  and the transla-
tion ,  the predicted rotation  and the translation ,
the ADD metric is calculated as,
 

ADD =
1

m

∑
x∈M

∥(Rx+ t)− (R̃x+ t̃)∥ (8)

M mwhere  represents the set of 3D model points and 
is the number of points. For symmetric objects, the av-
erage closest point distance (ADD-S) [6] is used to eval-
uate the performance of 6D pose estimation. The accur-
acy  of  pose  estimation  is  defined  as  the  percentage  of
correct pose estimations. Besides, the number of model
parameters  and  the  FLOPs  (floating  point  operations)
are adopted to evaluate the model efficiency.

 3. Comparison with state-of-the-art methods
We compare  the  proposed  method  with  the  state-

of-the-art  RGB  only  methods  without  any  refinement
using both ADD metric (shown in Table 1 [13], [15], [25],
[26], [42], [43]) and 2D projection error (shown in Table 2
[13], [15], [43]). Since some methods do not report their
2D  projection  accuracy,  we  do  not  include  them  in
Table 2.

  
Table 1. Quantitative evaluation of 6D pose using ADD(-S) metric on the LINEMOD dataset

(The boldface numbers denote the best overall methods; Objects with * are symmetric)

Tekin [13] DPOD [25] PVNet [15] CDPN [42] HybridPose [26] GDR-Net [43] Teacher HRPose HRPose+KD
Ape 21.62 53.28 43.62 64.38 63.10 76.29 68.26 61.21 65.36(+4.15)

Benchvise 81.80 95.34 99.90 97.77 99.90 97.96 99.42 95.53 97.38(+1.85)
Cam 36.57 90.36 86.86 91.67 90.40 95.29 89.78 84.89 85.98(+1.09)
Can 68.80 94.10 95.47 95.87 98.50 98.03 98.62 93.60 94.88(+1.28)
Cat 41.82 60.38 79.34 83.83 89.40 93.21 90.02 86.03 87.33(+1.30)

Driller 63.51 97.72 96.43 96.23 98.50 97.72 98.91 96.23 96.73(+0.50)
Duck 27.23 66.01 52.58 66.76 65.00 80.28 72.72 67.95 71.52(+3..57)

Eggbox* 69.58 99.72 99.15 99.72 100.00 99.53 100.00 98.97 99.06(+0.09)
Glue* 80.02 93.83 95.66 99.61 98.80 98.94 98.65 97.00 97.49(+0.49)

Holepuncher 42.63 65.83 81.92 85.82 89.70 91.15 84.64 78.10 80.55(+2.45)
Iron 74.97 99.80 98.88 97.85 100.00 98.06 98.98 95.50 95.90(+0.40)

Lamp 71.11 88.11 99.33 97.89 99.50 99.14 99.42 96.64 97.70(+1.06)
Phone 47.74 74.24 92.41 90.75 94.90 92.35 91.93 86.65 89.91(+3.26)

Average 55.95 82.98 86.27 89.86 91.36 93.69 91.64 87.55 89.21(+1.66) 
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Table 2. Quantitative evaluation of 6D pose using 2D projection metric on the LINEMOD dataset

YOLO6D [13] PVNet [15] GDR-Net [43] Teacher HRPose HRPose+KD
Ape 92.10 99.23 98.29 98.86 97.99 98.47(+0.48)

Benchvise 95.06 99.81 99.32 99.03 98.35 99.13(+0.78)
Cam 93.24 99.21 99.41 99.41 99.31 99.51(+0.20)
Can 97.44 99.90 99.51 99.70 98.33 99.02(+0.69)
Cat 97.41 99.30 99.60 99.30 99.20 99.30(+0.10)

Driller 79.41 96.92 98.22 98.41 97.32 98.32(+1.00)
Duck 94.65 98.02 98.97 98.21 98.21 98.68(+0.47)

Eggbox* 90.33 99.34 98.87 99.53 99.15 99.15(+0.00)
Glue* 96.53 98.45 99.42 99.23 99.23 99.42(+0.19)

Holepuncher 92.86 100.00 99.62 99.81 97.14 97.43(+0.29)
Iron 82.94 99.18 97.62 99.28 96.93 97.44(+0.51)

Lamp 76.87 98.27 96.64 98.66 96.64 97.79(+1.15)
Phone 86.07 99.42 97.92 99.33 97.89 98.85(+0.96)

Average 90.38 99.00 98.72 99.14 98.13 98.67(+0.46)
 
 

Table 1 indicates  that  the  proposed  simple “HR-
Pose” achieves  87.55%  pose  estimation  accuracy
without any  extra  information  on  average  and  outper-
forms PVNet [15]. With the help of knowledge distilla-
tion,  the  overall  pose  estimation accuracy of “HRPose”
raises  from  87.55% to  89.21% in  the  ADD metric  and

from 98.13% to 98.67% in the 2D projection metric. Al-
though “HRPose+KD”  does not  outperform  Hybrid-
Pose  [26],  it  still  achieves  comparable  pose  estimation
accuracy  with  merely  33%  parameters  and  20.6%
FLOPs  of  HybridPose  [26],  as  shown  in Table 3 ,  in
which M and G stands for 106 and 109, respectively.

  
Table 3. Comparison of different methods in the backbone, model size (the number of model parameters), and com-

putational cost (FLOPs)

Methods Backbone #Params FLOPs
YOLO6D [13] YOLOv2 50.5M 26.1G
PVNet [15] ResNet-18 12.9M 72.7G

HybridPose [26] ResNet-18 12.9M 75.2G
GDR-Net [43] ResNet-34 33.5M –

Teacher HRNetV2-W18 9.7M 23.2G
HRPose Small HRNetV2-W18 4.2M 15.5G

 
 

From  both Table 1  and  Table 2 ,  we  can  observe
that  the  distilled  small  network  achieves  a  better  6D
pose  estimation  performance  than  its  corresponding
baselines  using  both  ADD  metric  and  2D  projection
metric.  Especially,  the “HRPose+KD” outperforms the
baseline  model  by  a  significant  margin  of  4.15%  on
“Ape” using the ADD metric.

Fig.4 provides  some  qualitative  results  on  the
LINEMOD  dataset.  It  can  be  observed  that  HRPose
can  achieve  robust  and  reliable  pose  estimation  with
various background clutters.

640× 480

We  calculate  the  number  of  network  parameters
(#Params)  and  the  sum  of  float  point  operations  to
measure the model efficiency. The resolution of the in-
put RGB image is . As shown in Table 3, HR-
Pose has the minimal model size and the lowest compu-
tational  complexity.  Note  that,  GDR-Net  [43]  needs  a
detector  to  obtain  the  object  region  and  we  do  not
count the model size of the detector. The distilled HR-
Pose  model  achieves  comparable  even  better  results

with only about 8.3% of the model size of YOLO6D, 33%
of the model size of HybridPose [26]. Although the ac-
curacy of our model is slightly lower than GDR-Net, it
is still a comparable result (89.21% in the ADD metric
with 98.67% in the 2D projection metric) with almost 13%
 

 
Fig. 4. Visualization  of  results  on  the  LINEMOD  dataset.

White  and  blue  bounding  boxes  represent  the
ground-truth and estimated poses respectively.
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of  the  model  size  of  GDR-Net.  This  means  our  model
achieves relative comparable results with a cheaper de-
ployment cost. Also, the proposed method can run at 33
fps on a GTX 2080 GPU which can satisfy the require-
ment for real-time object pose estimation.

 4. Ablation study
To investigate  the  effectiveness  of  different  com-

ponents of our distillation scheme, we conduct an abla-
tion  study  on  the  object “Cat”  from LINEMOD data-
set.  From Table 4 ,  we  can  observe  that:  i)  With  the

Lod

Lfs

output-distillation  ( ) and  the  feature-similarity  dis-
tillation  ( ), it  achieves  1.02%  and  0.79%  improve-
ments  in  term  of  ADD  metric,  respectivelly.  ii)  With
the combination  of  the  output-distillation  and  the  fea-
ture-similarity, the  proposed  model  achieves  an  im-
provement of 1.30% (from 86.03% to 87.33%) accuracy.
These  observations  indicate  that  the  two  distillation
schemes  that  we  present  can  improve  the  accuracy  of
the network,  which  can  be  combined  to  help  the  stu-
dent network to obtain a better performance.

  

Lod Lfs

Table 4. Ablation study of different components of the loss in the proposed method
( : output distillation; : feature-similarity distillation)

W/O distillation Lod Lfs Lod Lfs+
ADD 86.03 87.05(+1.02) 86.83(+0.80) 87.33(+1.30)

 
 

λ1 λ2

λ1

λ2

λ2 λ1

Besides, we perform an ablation study on the  set-
ting of  the hyperparameters  and .  For simplicity,
we  fix  to  be  0.5. Table 5  reports  the  impact  of  the
hyperparameters  on  the  training  process  using  ADD
metric, where  increases from 0.00005 to 0.001. Then
we fix  to be 0.00005 and let  vary from 0.05 to 1.
It can be observed that the proposed HRPose achieves

λ2=0

λ1=0.5, λ2=0.00005

λ1=1 λ2

a higher accuracy varying from 0.00005 to 0.0005 com-
pared  with  the  ADD accuracy  obtained  with .  If

,  the  proposed  model  achieves  the
highest  accuracy.  However,  if  the  hyperparameters  is
set too large (e.g.  or =0.001), knowledge distil-
lation  will  disrupt  the  training  of  the  student  network
which leads to the failure of convergence.

  
λTable 5. Ablation study on the selection of hyperparameters 

λ1 = 0.5
λ2

0 0.00005 0.0001 0.0005 0.001
ADD 87.05 87.33 87.23 87.14 85.73

λ2 = 0.00005
λ1

0 0.05 0.1 0.5 1
ADD 86.83 87.23 87.14 87.33 86.03

 
 

 V. Conclusions
In this paper, we have proposed a simple and light-

weight  high-resolution  6D  pose  estimation  network
(HRPose) by adopting the small HRNet as a feature ex-
tractor.  This  design  is  helpful  to  reduce  computation
burdens as well as to guarantee a high accuracy of pose
estimation. With about 33% parameters of the state-of-
the-art  models,  our  HRPose  can  achieve  a  comparable
performance on the widely-used benchmark LINEMOD
dataset.  To  enhance  the  performance  of  HRPose,  we
have also proposed a novel knowledge distillation tech-
nique  that  transfers  the  structure  knowledge  from  a
large  and  complex  network  to  the  proposed  HRPose.
With  the  help  of  the  proposed  knowledge  distillation
method,  the  performance  of  the  proposed  HRPose  can
be further improved for 6D object pose estimation. Our
method  is  highly  accurate  and  fast  enough  (33  frames
per second) to satisfy the real-time requirement.
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