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   Abstract — Deep  learning  based  language  models
have improved generation-based linguistic steganography,
posing a huge challenge for linguistic steganalysis. The ex-
isting neural-network-based  linguistic  steganalysis  meth-
ods are  incompetent  to  deal  with  complicated  text  be-
cause they only extract single-granularity features such as
global  or  local  text  features.  To  fuse  multi-granularity
text  features,  we  present  a  novel  linguistic  steganalysis
method  based  on  attentional  bidirectional  long-short-
term-memory (BiLSTM)  and  short-cut  dense  convolu-
tional neural  network  (CNN).  The  BiLSTM  equipped
with the scaled dot-product attention mechanism is  used
to capture the long dependency representations of the in-
put sentence. The CNN with the short-cut and dense con-
nection  is  exploited  to  extract  sufficient  local  semantic
features  from  the  word  embedding  matrix.  We  connect
two structures  in  parallel,  concatenate  the  long  depend-
ency representations and the local semantic features, and
classify the stego and cover texts. The results of compar-
ative experiments demonstrate that the proposed method
is superior to the state-of-the-art linguistic steganalysis.

   Key words — Information  hiding, Natural  language

processing, Linguistic steganalysis, Attentional BiLSTM,
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 I. Introduction
Steganography is a vital branch of information hid-

ing and an integral part of the concealment system [1].
It mainly conceals secret information within the digital
carriers such as images [2], [3], videos [4], [5], and texts
[6].

In  recent  years,  linguistic  steganography  has
achieved  remarkable  improvement  [7]–[9]. On  the  con-
trary, linguistic  steganalysis  aims to  identify  the  exist-
ence of the embedding trace and has also achieved sig-
nificant progress. In the early stage, these methods were
based on the combination of  hand-crafted features and

classifiers [10], [11], which limited the detection capabil-
ity  and  universality  of  steganalysis  algorithms  [12].
While in the current stage, studies mainly rely on end-
to-end  neural  networks  (NNs)  to  extract  text  features
[12]–[18].  However,  the  semantic  features  extracted  by
these NNs-based  methods  are  insufficient.  That  is  be-
cause these kinds of methods do not fully integrate the
semantic information of sentences with multiple granu-
larities. They either pay attention to the high-level  in-
formation of the output layer or give too much consid-
eration  to  the  shallow  text  semantics,  which  restricts
their detection performance.

To address the above-mentioned limitation and fur-
ther improve the detection performance, we propose an
effective NNs-based linguistic steganalysis scheme to ex-
tract text features at multiple granularities. On the one
hand, inspired by the attention mechanism [19], we con-
struct  a  long  dependency  representations  extractor  by
the  bidirectional  long-short-term-memory  (BiLSTM)
equipped with the scaled dot-product attention module.
On the other hand, motivated by the short-cut [20] and
dense connection [21], we propose a short-cut dense con-
volutional neural network (CNN) structure named SDC
(short-cut  dense  CNN)  to  directly  capture  extra  local
semantic  features  from  the  word  embedding  matrix.
Two structures are connected in parallel to form an en-
tire structure, namely BiLSTM-SDC. This structure can
impose helpful  information  on  the  learned  representa-
tion and force the model to learn better text representa-
tions from both shallow and deep layers, hence improv-
ing  detection  accuracy.  The  experimental  results
demonstrate  that  the  proposed  linguistic  steganalysis
scheme  outperforms  the  state-of-the-art  NNs-based
methods.

The main  contributions  of  this  paper  are  high-
lighted as follows: 
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1)  We  propose  an  effective  NNs-based  linguistic
steganalysis model,  namely BiLSTM-SDC, for fully ex-
tracting comprehensive feature representations by mer-
ging multi-granularity attentional text features via two
parallel modules.

2)  We  construct  a  structure  that  enables  parallel
extraction of text representations. On the one hand, we
employ  the  scaled  dot-product  attention  to  learn  the
different weights and design an attentional BiLSTM to
optimize  the  long  dependency  representations.  On  the
other hand,  we  propose  a  short-cut  dense  CNN  struc-
ture parallel to the attentional BiLSTM to capture suf-
ficient local features of the inputs.

3) We conduct extensive experiments on four data-
sets,  and  demonstrate  the  superiority  of  the  proposed
model.

The remaining  of  this  paper  is  structured  as  fol-
lows: Section II summarizes relevant work in the fields
of  linguistic  steganography  and  linguistic  steganalysis.
Section  III  describes  in  detail  the  proposed  BiLSTM-
SDC scheme. We present the experimental settings and
report  the  results  in  Section  IV.  Finally,  we  conclude
the paper in Section V.

 II. Related Work
In  this  section,  we  briefly  review  the  most  widely

used  approaches  in  the  linguistic  steganography  and
steganalysis fields.

 1. Linguistic steganography
Linguistic steganography  has  been  an  active  re-

search area for decades, which is typically grouped into
modification-based methods and generation-based meth-
ods.  The modification-based methods embed the secret
information  mostly  by  substituting  synonyms  [22]–[24]
or  rewriting  phrases  [25].  They  are  not  secure  enough
since the statistical distribution of generated stego texts
is  changed  seriously.  To  tackle  the  obvious  shortage,
the  generation-based  methods  are  proposed  to  embed
confidential information during the text generation pro-
cess.  Specifically,  the  candidate  pool  [26] at  each  mo-
ment is  constructed  by  obeying  a  specific  encoding  al-
gorithm [8], [9], and the stego word is formed using the
bitstream of the confidential information present at the
time. Due to the elaborate design, the generation-based
methods achieve dramatic advances in terms of stegano-
graphic text quality and embedding capacity. However,
these methods cannot guarantee statistical imperceptib-
ility,  a  critical  criterion  for  evaluating  linguistic
steganography.

To  investigate  the  problem,  Dai et  al. [27 ]  first
used the total variation distance (TVD) to quantify the
statistical  imperceptibility,  and  then  proposed  a  novel
encoding method, patient-Huffman. Later on, Ziegler et

al. [28] proposed a new steganographic algorithm using
arithmetic coding to  improve the statistical  impercept-
ibility. Currently, Zhou et al. [29] generated stego texts
based on  the  adaptive  probability  distribution  and  fo-
cused on eliminating the exposure bias produced due to
the  discrepancy  between  training  and  inference  stages.
Yang et  al. [30 ]  proposed  an  improved  generative  text
steganography method to enhance the statistical imper-
ceptibility  of  steganographic  text.  The  candidate  pool
was constructed based on probability difference instead
of greedy sampling, and entropy coding was applied to
embed  secret  information.  Furthermore,  Yi et  al. [31]
proposed  a  novel  linguistic  steganographic  method
which  enables  the  receiver  to  collect  the  tokens  of  the
specific positions  to  directly  constitute  the  secret  mes-
sage in  a  seemingly-natural  steganographic  text  gener-
ated  by  the  off-the-shelf  BERT  model  equipped  with
Gibbs sampling. Deepthi et al. [32] used support vector
machine (SVM),  recurrent neural  network (RNN),  and
CNN to provide secure data with confidentiality and in-
tegrity. The  dramatic  progress  of  linguistic  stegano-
graphic methods  makes  an  enormous  challenge  for  lin-
guistic steganalysis.

 2. Linguistic steganalysis
Corresponding  to  the  development  of  linguistic

steganography, substantial progress has also been made
in steganalysis. Generally, linguistic steganalysis can be
categorized into two categories: feature-based and NNs-
based approaches.  The  feature-based  approaches  ex-
tract  the  statistical  properties  of  the  inputs  and  then
apply binary classification to the extracted features [10],
[11], [33], [34]. Due to the fact that these methods rely
on  a  variety  of  heuristic  qualities  that  are  manually
constructed by domain specialists, they cannot be flex-
ibly  adaptable  to  other  steganography  algorithms  and
text domains.

In order to mitigate the limitations of the feature-
based approaches, researchers have proposed a series of
NNs-based approaches  that  apply  an  end-to-end struc-
ture  to  automatically  learn  the  feature  representations
of the inputs. Wen et al. [12] first attempted to use the
multisize CNN for linguistic steganalysis. Yang et al. [13]
employed BiLSTM to capture the distortion of statistic
distribution before  and  after  embedding  the  confiden-
tial information. These NNs-based methods only obtain
either the local or the global feature representations of
the  input  text,  limiting  the  detection  ability  of  these
methods.  For  the  purpose  of  integrating  the  local  and
the  global  semantic  features,  Niu et  al. [14 ]  proposed
the R-BiLSTM-C model composed of the BiLSTM and
the asymmetric CNN. Yang et al. [16] used the convolu-
tional  sliding  windows  to  learn  the  semantic  features
with  multiple  sizes.  Hao et  al. [15 ]  designed  a  dense
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BiLSTM with  a  feature  pyramid  to  learn  the  compre-
hensive long dependencies of input texts. Some scholars
made  performance  improvements  in  terms  of  inference
time  and  model  size  [17],  [18].  These  methods  rely  on
the  CNN  to  extract  high-level  local  features  from  the
global  semantic  space  generated  by  the  BiLSTM  and
neglect  the  coarse  granularity  of  semantic  text  units
such  as  words,  sentences,  and  so  on.  Therefore,  it  is
meaningful to develop a new steganalysis model for op-
timizing the input text’s joint feature representations.

 III. The Proposed Method
In this  section,  the  overall  framework  of  the  pro-

posed  linguistic  steganalysis  model  BiLSTM-SDC  was
introduced firstly. Then, we elaborate on the word em-
bedding module and the feature representation extract-

ing  module.  Finally,  the  binary  classifying  module  is
presented in detail.

 1. Overall architecture
As shown in Fig.1, the framework of the proposed

BiLSTM-SDC is composed of the word embedding mod-
ule, the features extracting module, and the binary clas-
sifying module. Firstly, the input sentence is converted
into a matrix using the word embedding module which
consists  of  two  dynamic  embedding  layers  followed  by
an integrating  convolutional  layer.  Then,  the  local  se-
mantic features  and  the  long  dependency  representa-
tions are  extracted  by  the  SDC  and  attentional  BiL-
STM, respectively.  Sequentially,  the  two  types  of  fea-
tures are concatenated to form the ultimately joint fea-
tures. Finally, the joint features are fed into a fully-con-
nected layer with a softmax activation function to real-
ize the linguistic steganalysis.
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Fig. 1. The overall framework of the BiLSTM-SDC.

 

 2. Word embedding module

{w1, w2, ..., wN} Dr, Dg ∈
RN×Z

wi

Dm ∈ RN×Z

Most competitive NNs-based linguistic steganalysis
models [12], [14] have the dynamic word embedding lay-
ers, which  are  initialized  by  different  approaches,  in-
cluding the random initialization with uniform distribu-
tion  in  the  interval  [−1;  1]  [12]  and  the  well-trained
Google word2vec [21]. The former ensures that the data
distribution remains unchanged so that the information
in the network can be better transmitted, while the lat-
ter utilizes  extra  information  to  make  the  model  con-
verge faster.  Similar  to  the  previous  models,  the  pro-
posed BiLSTM-SDC  choose  the  Google  word2vec  ini-
tialization  to  initialize  the  dynamic  embedding  layers
and map an input sequence of sentence representations

 into  two  different  matrices 
,  where  each Z -dimension  vector  denotes  a  word

 of the input sentence. Subsequently, a convolutional
layer  is  utilized  to  yield  a  word  embedding  matrix

 integrating the  two  different  word  repres-
entations. The output is denoted as follows:
 

Dm = [Dr, Dg] (1)

 3. Feature representation extracting module
1) Attentional BiLSTM
We use a BiLSTM model  to extract features from

both the forward and backward directions to obtain the
context information of the word at the same time. The
computation process is simplified as follows:
 

→
hi,
→
si= fLSTMf

(di,
→

hi−1,
→

si−1), i ∈ {1, ..., N} (2)
 

←
hi,
←
si= fLSTMb

(di,
←

hi−1,
←

si−1), i ∈ {N, ..., 1} (3)

di ∈ R1×Z i Dm

i

fLSTMf
fLSTMb →

hi,
→
si

←
hi,
←
si∈ R1×M M

where  is the -th row of the  representing
the  word  embedding  vector  of  the -th  word  of  input
sentence.  and   denote  the  forward  and
backward  LSTM functions  respectively,  and  the ,

(  is  the  number  of  hidden  units  of  the
LSTM  layer)  represent  corresponding  output  vectors.
Even if the BiLSTM is specialized for sequential model-
ling and can learn the long dependency representations
of the input texts, the semantic representations extrac-
ted by  BiLSTM can  not  reflect  the  different  contribu-
tions  of  the  different  words.  For  the  steganography,
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since several  output  words  of  the  steganographic  sen-
tences generated by a well-trained LM might be subop-
timal, the  different  words  have  more  dramatic  influ-
ence on  the  semantic  representations  of  the  stegano-
graphic sentence than that of cover sentence. As a res-
ult,  assigning  the  different  weights  to  the  all  semantic
features  is  an  effective  approach  to  optimize  the  long
dependency representations of the input text. Generally,
attention mechanism [19],  [20] can focus on the subop-
timal words  and  reduce  the  impact  of  normal  gener-
ated words on the text semantics. In the BiLSTM-SDC,
in order to prevent the extremely small gradients of the
softmax layer, we employ the scaled dot-product atten-
tion to learn the different weights. The attention mech-
anism is defined as follows:
 

αi = fsoftmax

(
wihi√
M

+ bi

)
, i ∈ {1, ..., N} (4)

 

Outi = αihi, i ∈ {1, ..., N} (5)

fsoftmax

wi bi

where  denotes  the  softmax  activation  function.
 and   are  the  parameters  of  the  attention  layer.

hi = [
→
hi;
←
hi] ∈ R2×M i

αi Outi
i

 represents  the -th  hidden state  of
the  BiLSTM,  and  its  assigned  weight  is .  de-
notes the -th weighted output.

2) Short-cut dense CNNs

Ci, k1 × k2, Co

Kc ∈ RK×Z

Ks1 ∈ R1×Z

Ks2 ∈ RK×1

The  short-cut  dense  CNNs  is  designed  to  directly
capture extra local semantic features from the word em-
bedding  matrix.  The  idea  behind  SDC  is  to  integrate
the  features  from  all  convolutional  layers  to  improve
the representation ability.  However,  directly  fusing the
features  of  the  traditional  convolutional  layers  is  not
practical because it would dramatically increase compu-
tation  and  memory  consumption.  Hence,  we  use  the
short-cut and dense connection, which is diagrammed in
Fig.2.  The  SDC is  composed  of  four  parallel  short-cut
and dense connecting CNN structures where each CNN
consists of four convolutional layers. For each block, the
( ) denotes the number of inputs, the con-
volutional  kernel  size,  and  the  number  of  outputs.  In
the first two layers, the complex filters  are
factorized  into  two  simple  filters  and

. After  that,  two conventional  convolution-
al layers are used to learn high-level representations.
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Fig. 2. The detail of short-cut dense CNNs.

 

We employ a dense structure to connect each con-
volutional  layer  to  every  other  layer  in  a  feed-forward
fashion. Then, the feature maps extracted by each par-
allel CNN incorporate the word embedding matrix with
the  short-cut  connection.  Finally,  the  above  feature
maps are  concatenated  to  form  the  ultimate  local  se-
mantic features. The procedure can be formulated as:
 

Rj
i = frelu(w

j
i [R0; · · · ;Rj

i−1]), i, j ∈ {1, ..., 4} (6)
 

γj = fmaxpool(R
j
4)⊕R0, j ∈ {1, ..., 4} (7)

 

Γ = [γ1; γ2; γ3; γ4] (8)

frelu
fmaxpool wj

i

i j

[; ] ⊕
Rj

i i

where  denotes  the  ReLU  [35]  activation  function,
and  is  the  max  pooling  operation.  is  the
weights of the -th convolutional layer of the -th paral-
lel  CNN where the bias term is  omitted for  simplicity.

 and  refer to the concatenation and addition opera-
tion, respectively.  is the -th convolutional layer out-
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j R0

Dm

γj j

Γ

put in the -th parallel  CNN, except that  is  equals
to  the  that  denotes  the  output  matrix  from  the
word embedding module.  represents the the -th par-
allel CNN output, and the  denotes the final output of
the SDC.

 4. Binary classifying module
A fully-connected  layer  followed  by  a  softmax  ac-

tivation function is used to map the feature representa-
tions  into  the  probability  values  of  two  categories.
Firstly,  the  long  dependency  representations  and  the
local  semantic  features  are  concatenated  to  form  the
comprehensive  joint  semantic  features,  and  then  the
features  are  fed  into  the  fully-connected layer.  Finally,
the softmax activation function is exploited to produce
the probabilities of two class labels. The module can be
formulated as:
 

y′ = fsoftmax(w × [Γ;OutN ] + b) (9)

fsoftmax

w b
y′

where  denotes  the  softmax  activation  function.
 and  are the learnable parameters  of  the fully con-

nection layer.  represents the probabilities of two class
labels. Moreover, in order to prevent the overfitting, the

commonly  used dropout  operation  [36]  is  used  behind
the fully connection layer.

 IV. Experiments and Analysis
 1. Experimental setup
The experiments are conducted on four widely used

corpora, including Mscoco [37], Twitter [38], IMDB [39],
and News [40]. The detailed information of  the experi-
mental dataset is shown in Table 1. We use two genera-
tion-based linguistic  steganography  to  verify  the  per-
formance of the proposed BiLSTM-SDC, i.e., the block-
based and  the  variable  length  coding  (VLC)-based  al-
gorithms  proposed  by  Fang et  al. [8 ]  and  Yang et  al.
[9],  respectively.  The  embedding  capacity  of  the  stego
text is from 1 to 4 bits per word (bpw). Since the num-
ber of payloads is not fixed in VLC, we use the average
value of the embedding capacity in the total generated
stego text as the payload. We randomly select the 10,000
and 1,000 sentences from the well-processed corpora as
cover  text  in  training  and  testing  phases,  respectively.
The  same  number  of  sentences  are  generated  by  the
above two steganography models as stego text.

  
Table 1. The detailed information of experimental dataset

Dataset
Number of sentences

Average lengthTraining set Testing set
Cover Stego Cover Stego

Twitter 10,000 10,000 1,000 1,000 6.67
Mscoco 10,000 10,000 1,000 1,000 10.39
IMDB 10,000 10,000 1,000 1,000 14.41
News 10,000 10,000 1,000 1,000 17.61

 
 

The experiments are implemented on the PyTorch1.
1.0 and NVIDIA 1080Ti graphics cards. The hyperpara-
meters are set as follows:  The word embedding dimen-
sion  is  300,  and  the  number  of  the  BiLSTM  hidden
state is  200.  The  Kaiming  initialization  is  used  to  ini-
tialize the weights of SDC, and the weights of other lay-
ers are initialized using “Xavier” initialization. And the
Adam optimization algorithm [41] is utilized to update
the  parameters,  and  the  learning  rate  is  set  to  0.001.
The  keep  probability  of  the  dropout  [36]  layers  is  0.5,
and the  batch  size  is  64.  In  addition,  the  final  experi-
mental  results are the average values of  the three best
validation  models  in  the  training  phase.  The  accuracy
and precision are used as the evaluation metrics which
are defined as follows:
 

Accuracy =
TP + TN

TP + FN + FP + TN
(10)

 

Precision =
TP

TP + FP
(11)

TP TN FP

FN

where  is true positive,  is  true negative,  is
false positive and  is false negative, and we assume
the stego text are positive samples.

 2. Comparison with prior arts
In this  subsection,  we  mainly  compare  the  pro-

posed BiLSM-SDC with five state-of-the-art NNs-based
steganalysis methods, i.e. LS-CNN [12], TS-BiRNN [13],
R-BiLSTM-C [14], BiLSTM-Dense [15], and the MS-TL
[17]. The steganographic models we choose are the two
most  commonly  used  generation-based  schemes:  block-
based and VLC-based steganography schemes.

The detection results are shown in Tables 2 and 3,
respectively.  As  noted  in Table 2 ,  it  is  obvious  that
these steganalysis  models  have  better  detection  per-
formance  for  high-capacity  embedding  scenarios.  The
straightforward reason is that the semantic distribution
inconsistency  between  the  cover  and  stego  texts  will
gradually  magnify  with  the  increase  of  the  embedding
capacity. Besides, the results show that in all but a few
cases, the BiLSTM-SDC outperforms the previously re-
ported models,  establishing  a  new  state-of-the-art  per-
formance for linguistic steganalysis.

From Table 3 , the  results  indicate  that  the  pro-
posed BiLSTM-SDC is  superior  to  the other  five  NNs-
based  methods  against  the  VLC-based  steganography,
irrespective of the embedding capacity and dataset. The
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reason is that the proposed BiLSTM-SDC can not only
effectively capture the long dependency representations
using the  attentional  BiLSTM,  but  also  directly  ex-
tract the  different  granularities  of  local  semantic  fea-
tures  from the word embedding matrix.  In addition,  it
is worth noting that an increase of the embedded capa-
city  leads  to  detection  performance  degradation  rather
than enhancement.  The main reason for  these  anomal-
ous results  is  that  the  VLC-based  steganography  en-
codes the  bitstream  using  the  Huffman  tree  construc-
ted by the reverse order of conditional probability dur-
ing stego-text generation, which leads to the larger dis-
crepancy  of  the  probability  distribution  between  the
cover and stego texts for the lower embedding capacity.
This phenomenon, also called Psic Effect which is expli-
citly addressed and analyzed in the reported research [42].

 3. Impact of the short-cut dense CNNs
To  further  investigate  the  effect  of  the  short-cut

and dense  connection  structure,  we  implement  a  series
of  experiments  where  the  proposed  BiLSTM-SDC  is
compared with three different variants consisting of the
proposed model without the short-cut (w/o sc), without
the  dense  connection  (w/o  dense),  and  both  of  them
(w/o  both).  The  experimental  results  summarized  in
Table 4 indicate  that  the  model  equipped  with  the
short-cut and  dense  connection  can  remarkably  im-
prove the  detection  performance  for  the  tested  pay-
loads and corpora. Furthermore, it is demonstrated that
the effectiveness of the dense connection is better than
that of the short-cut structure for linguistic steganalysis.

It is worth mentioning that in the model structure
some  model  variants  have  certain  similarities  with  the
previous models [13]–[15]. But there are also subtle dif-
ferences  between  them.  For  example,  variants  (w/o
both)  and  TS-BiRNN  [13]  are  all  based  on  BiLSTM
structure, but the former applies an attention mechan-

   
Table 2. Results of different steganalysis methods against BLOCK-based steganography

Method LS-CNN TS-BiRNN R-BiLSTM-C BiLSTM-Dense MS-TL BiLSTM-SDC
Dataset bpw Acc. Precis. Acc. Precis. Acc. Precis. Acc. Precis. Acc. Precis. Acc. Precis.

Mscoco

1 0.8180 0.8195 0.8030 0.8156 0.821 0.8153 0.8200 0.8560 0.8281 0.8246 0.8345 0.8328
2 0.8645 0.8654 0.8680 0.8629 0.8670 0.8700 0.8605 0.8767 0.8820 0.8841 0.8740 0.8659
3 0.9100 0.9080 0.9045 0.9140 0.9110 0.9225 0.9085 0.9049 0.9160 0.9160 0.9235 0.9239
4 0.9470 0.9573 0.9525 0.9566 0.9525 0.9476 0.947 0.9391 0.9543 0.9556 0.9620 0.9611

Twitter

1 0.8365 0.8439 0.824 0.8333 0.84 0.8427 0.8285 0.8211 0.853 0.858 0.852 0.8761
2 0.8870 0.8901 0.8850 0.8710 0.8890 0.8950 0.8905 0.8925 0.9012 0.8981 0.8970 0.8954
3 0.9260 0.9185 0.9230 0.9123 0.9230 0.9360 0.9270 0.9261 0.9380 0.9314 0.9335 0.9331
4 0.9515 0.9505 0.9470 0.9627 0.9530 0.9650 0.9410 0.9672 0.9545 0.9496 0.9665 0.9700

IMDB

1 0.8395 0.8477 0.847 0.8395 0.8445 0.8290 0.8435 0.8560 0.8543 0.8599 0.869 0.8462
2 0.8965 0.893 0.8855 0.8898 0.9060 0.9118 0.8980 0.8887 0.9077 0.9074 0.9180 0.9286
3 0.9395 0.9296 0.9335 0.9383 0.9395 0.9313 0.9415 0.9473 0.9478 0.9439 0.9572 0.9599
4 0.9630 0.9639 0.9660 0.9578 0.9645 0.9558 0.9675 0.9558 0.9650 0.9622 0.9695 0.9681

News

1 0.8638 0.8387 0.8710 0.8725 0.8780 0.8828 0.8653 0.8662 0.8762 0.8778 0.8930 0.8962
2 0.9192 0.9092 0.9135 0.9131 0.9245 0.9196 0.9257 0.9172 0.9313 0.9345 0.9340 0.9255
3 0.9415 0.9692 0.9563 0.9591 0.9523 0.9623 0.9440 0.9496 0.9617 0.9645 0.9625 0.9705
4 0.9635 0.9674 0.9807 0.9830 0.9762 0.9751 0.9753 0.9750 0.9755 0.9744 0.9808 0.9816

 

   
Table 3. Results of different steganalysis methods against VLC-based steganography

Method LS-CNN TS-BiRNN R-BiLSTM-C BiLSTM-Dense MS-TL BiLSTM-SDC
Dataset bpw Acc. Precis. Acc. Precis. Acc. Precis. Acc. Precis. Acc. Precis. Acc. Precis.

Mscoco

1 0.9505 0.9709 0.9515 0.9529 0.9620 0.9676 0.9515 0.9475 0.9605 0.9560 0.9700 0.9825
2.35 0.8815 0.8700 0.8775 0.8880 0.8980 0.8941 0.8887 0.8841 0.8968 0.9147 0.9065 0.9102
3.08 0.8425 0.8210 0.8475 0.8338 0.8620 0.8410 0.8523 0.8565 0.8693 0.8819 0.8785 0.8729
3.51 0.8305 0.8263 0.8480 0.8799 0.8565 0.8862 0.8430 0.8430 0.8493 0.8716 0.8630 0.8998

Twitter

1 0.9305 0.9388 0.9370 0.9396 0.9290 0.9333 0.9315 0.9328 0.9329 0.9330 0.9425 0.9410
1.81 0.9170 0.9064 0.9045 0.8923 0.9230 0.9172 0.9020 0.8963 0.9332 0.9268 0.9350 0.9466
3.24 0.8405 0.8271 0.8435 0.8391 0.8870 0.8802 0.8660 0.8541 0.8778 0.8607 0.9025 0.9133
4.48 0.8040 0.8280 0.8115 0.8039 0.8335 0.8428 0.8095 0.8037 0.8380 0.8269 0.8550 0.8221

IMDB

1 0.9720 0.9101 0.9595 0.9646 0.9765 0.9779 0.9633 0.9573 0.9722 0.9749 0.9750 0.9808
1.82 0.9525 0.9613 0.9575 0.9620 0.9600 0.9556 0.9458 0.9502 0.9537 0.9521 0.9600 0.9582
3.22 0.9270 0.9287 0.9100 0.9236 0.9175 0.9273 0.9233 0.9225 0.9822 0.9309 0.9325 0.9519
4.41 0.8585 0.8574 0.8565 0.8583 0.8545 0.8658 0.8580 0.9371 0.8622 0.8544 0.8685 0.8567

News

1 0.9795 0.9771 0.9643 0.9542 0.9798 0.9734 0.9682 0.9591 0.9775 0.9745 0.9790 0.9848
1.82 0.9725 0.9586 0.9630 0.9549 0.9663 0.9676 0.9643 0.9610 0.9672 0.9597 0.9740 0.9712
3.22 0.9398 0.9318 0.9223 0.9192 0.9318 0.9333 0.9270 0.9206 0.9388 0.9308 0.9415 0.9367
4.41 0.9260 0.9088 0.9088 0.8957 0.9150 0.8903 0.9030 0.9032 0.9267 0.9124 0.9295 0.9257
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ism.  Variants  (w/o  both)  and  R-BiLSTM-C  [14]  are
composed of BiLSTM and CNN, but the former adopts
parallel connection mode, while the latter adopts serial
connection mode. Variants (w/o sc) and BiLSTM-Dense
[15]  all  apply  dense  connection.  However,  the  former
uses four densely connected CNNs for local  feature ex-
traction, while the latter uses densely connected LSTMs
for global feature extraction.

Although  most  of  the  existing  steganalysis  models
are  based  on  LSTM  and  CNN,  the  structural  design

and connection  mode  have  a  significant  impact  on  the
model effect. It can be seen from Table 4 that although
the BiLSTM-Dense uses densely connected LSTMs, the
model performance is still slightly worse than our mod-
el variant (w/o sc) with densely connected CNNs. Fur-
thermore, the parallel connection will fuse text features
at multiple granularities. However, without some neces-
sary means, such as dense connection and short-cut, the
proposed  model  cannot  compete  in  detection  accuracy
with R-BiLSTM-C. 

  
Table 4. The comparison of our model variants and the common models

Model Mscoco Twitter IMDB News
1 bpw 3 bpw 1 bpw 3 bpw 1 bpw 3 bpw 1 bpw 3 bpw

W/o both 0.814 0.9058 0.8375 0.9154 0.8395 0.9415 0.8595 0.9585
W/o dense 0.8195 0.9132 0.8365 0.9185 0.842 0.9477 0.869 0.9592

W/o sc 0.8275 0.9225 0.8445 0.925 0.854 0.953 0.8786 0.9593
TS-BiRNN 0.803 0.9045 0.824 0.923 0.847 0.9335 0.871 0.9563

R-BiLSTM-C 0.821 0.911 0.84 0.923 0.8445 0.9395 0.878 0.9523
BiLSTM-Dense 0.82 0.9085 0.8285 0.927 0.8435 0.9415 0.8653 0.944
BiLSTM-SDC 0.8345 0.9235 0.852 0.9335 0.869 0.9572 0.893 0.9625

 
 

4. Further  investigating  the  concatenation
schemes

In addition, as can be seen from Table 5, we com-
pare two concatenation schemes for the attentional BiL-
STM  and  SDC,  i.e.  serial  and  the  parallel  (BiLSTM-
SDC)  concatenation.  Specifically,  in  the  serial  model,
the  SDC  does  not  directly  extract  the  local  semantic

features  from  the  embedding  matrix  but  captures  the
high-level representations from the output of the atten-
tional  BiLSTM.  The  experimental  results  demonstrate
that  directly  extracting  the  different  granularities  of
local semantic  features  from the word embedding mat-
rix can significantly boost the detection performance for
linguistic steganalysis.

  
Table 5. The effectiveness of two concatenation schemes

Model Mscoco Twitter IMDB News
1 bpw 3 bpw 1 bpw 3 bpw 1 bpw 3 bpw 1 bpw 3 bpw

Serial model 0.8305 0.914 0.833 0.93 0.8605 0.9385 0.8565 0.9410
BiLSTM-SDC 0.8345 0.9235 0.852 0.9335 0.869 0.9572 0.8930 0.9625

 
 

 5. Effect of the attentional BiLSTM
The  superiority  of  the  attentional  BiLSTM  is

demonstrated  in Fig.3 . We  experiment  with  four  cor-

pora containing 1–4 bpw of secret information. The hy-
perparameters  are  set  as  follows.  The  number  of  the
BiLSTM  hidden  state  is  200,  and  the  learning  rate  is
set to 0.001. The Adam optimization algorithm is util-
ized to update the parameters,  and tanh is  the activa-
tion function of the attention mechanism. Furthermore,
the BiLSTM with and without attention mechanism are
compared to verify the feature extraction performance.
The result shows that the attention mechanism can re-
fine  the  long  dependency  representations  extracted  by
the original BiLSTM to improve the detection perform-
ance for linguistic steganalysis.

 V. Conclusions
Recently, with the advanced neural language mod-

els, generation-based  steganography  has  achieved  re-
markable  improvement,  which  makes  a  huge  challenge
for  the  corresponding  steganalysis.  In  this  paper,  we
propose a novel NNs-based linguistic steganalysis meth-

 

1
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

2 3 4

Mscoco

Twitter

Movie

news

noATT  Mscoco

noATT  Twitter

noATT  Movie

noATT  News

Emberdding capacity (bpw)

S
te

g
an

al
y
si

s 
ac

cu
ra

cy

 
Fig. 3. The effectiveness of the attention mechanism.
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od. First,  the  BiLSTM  with  scaled  dot-product  atten-
tion mechanism  is  used  to  optimize  the  long  depend-
ency  representations  of  the  inputs,  and then a  parallel
CNN structure  with  the  short-cut  and  dense  connec-
tion  is  applied  in  parallel  to  directly  extract  sufficient
local semantic  features  from the word embedding mat-
rix.  Finally,  the  long  dependency  representations  and
the  local  features  are  concatenated  to  form  the  final
joint features, which are fed into the global maxpooling
and softmax layer to classify the stego and cover texts.
The experimental  results  demonstrate  that  the  pro-
posed BiLSTM-SDC is superior to the previous state-of-
the-art  NNs-based  methods  against  the  generation-
based linguistic steganography.

In further work, we will  finetune a pretrained lan-
guage model  such  as  bidirectional  encoder  representa-
tions from transformers in a specific dataset of the lin-
guistic  steganalysis  to  further  improve  the  detection
performance for  linguistic  steganalysis,  and  take  ad-
vantage of the transfer learning to investigate the gen-
eralization ability for the mismatch problem of the lin-
guistic steganalysis.
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