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   Abstract — Few-shot learning  (FSL)  is  a  new  ma-
chine  learning  method  that  applies  the  prior  knowledge
from  some  different  domains  tasks.  The  existing  FSL
models  of  metric-based  learning  have  some  drawbacks,
such as the extracted features cannot reflect the true data
distribution and the generalization ability is weak. In or-
der  to  solve the problem in the present,  we developed a
model  named  cross  modal  adaptive  few-shot  learning
based  on  task  dependence  (COOPERATE  for  short).  A
feature  extraction  and  task  representation  method  based
on  task  condition  network  and  auxiliary  co-training  is
proposed.  Semantic  representation  is  added  to  each  task
by combining both visual and textual features. The meas-
urement scale is adjusted to change the property of para-
meter  update  of  the  algorithm.  The experimental  results
show that the COOPERATE has the better performance
comparing  with  all  approaches  of  the  monomode  and
modal alignment FSL.

   Key words — Meta-learning, Few-shot  learning,

Metric learning, Cross modal.

 I. Introduction
Deep  learning  has  made  great  achievements  in

many applications such as natural language processing,
speech recognition,  and graphics  and image processing.
However,  it  needs  to  learn  a  good  model  from a  large
amount of labeled data to ensure the efficiency of deep
learning.  Aiming  to  solve  the  problems  that  there  are
few labeled data in machine learning, few-shot learning
(FSL) is introduced [1].

Based  on  meta-learning,  few-shot  learning  can  be
generalized  to  new  tasks  quickly  in  recent  progress  by
using priori knowledge. The model is divided into differ-
ent  episodes  during  meta-training,  generating  specific
classifiers  on  each  scenario.  At  test  time  it  gives  the
machine the ability to learn based on the effects gener-

ated  by  new  tasks  that  do  not  overlap  with  those  at
training time.  However,  when there is  insufficient data
in  a  single  modality,  another  shape  would  assist  the
model in training and produce better classification (e.g.,
people  can  rely  on  limited  visual  information  to  learn
new concepts in a small amount of information and can
combine visual,  auditory,  contextual  and  other  know-
ledge to achieve good discrimination in the real world).
This suggests that semantic features are useful informa-
tion for pattern recognition [2].

In  traditional  unimodal  meta-learning,  the  model
can be meta-trained with only a little fine-tuning to ac-
complish the generalization to new tasks. The most rep-
resentative algorithm is the model-agnostic meta-learn-
ing  (MAML)  [3] method.  The  advantage  of  this  al-
gorithm is that it has less iterative steps, good general-
ization  performance,  no  need  to  worry  about  the  form
of the model or add new parameters, so it can be easily
fine-tuned.  Mishra  [4]  adopted  simple  neural  attentive
learner (SNAIL) to achieve his objective of meta-learn-
ing.  The  meta-learner  LSTM  [5]  is  a  meta  learning
method with direct coding and rapid adaptation. Trans-
ductive  propagation  network  (TPN)  [6]  used  a  label
propagation  way  to  make  the  model  to  learn  how  to
from  the  tag  samples  to  the  spread  of  unmarked
samples  label.  Ren [7] proposed that  attention attract-
or  networks  would  learn  to  assign  a  new  weight  to  a
new category  to  balance  the  basic  category  perform-
ance  with  that  of  the  new  category.  The  XtarNet,
which  learns  to  extract  task-adaptive  representation,
proposed by Sung [8] is an incremental model with few
samples,  and  learns  to  construct  new  representations
with  information  features  to  identify  base  classes  and
new  classes.  In  meta-learning,  few-shot  learning  based
on  measurement  is  an  important  learning  method. 
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Through  measurement,  the  distance  between  the  same
class keeps getting closer and the gap between different
classes  is  as  far  as  possible.  Matching  network  [9]  and
prototypical  networks  [10]  are  the  most  representative
methods. The former is based on the attention mechan-
ism  and  uses  the  nearest  neighbor  framework  as  the
similarity measure.  The latter  learns a metric  space so
that  the  sample  query  set  is  close  to  the  prototype  of
the same category and away from the different classes.
Xiang’s  conditional  class-aware  meta-learning  (CAML)
[11] combines the advantages of MAML and prototypic-
al network  to  perform  conditional  conversion  embed-
ding  in  the  metric  space.  Ren  proposed  a  semi-super-
vised  k-means  learning  method  (prototypical  network
with  soft  k-means,  ProtoNets  W  soft  k-means)  [12],
which uses unmarked samples to improve the prototyp-
ical network. The relation network proposed by Sung et
al. [13] introduces a separate relation module, which can
be learned and modified in the training process to meas-
ure  similarity.  Yu et  al.  [14] hybrid  trained  the  net-
work  and  get  the  better  generalization  ability  and
knowledge transfer effect by using the pseudo label data
of  the  target  domain  and  the  real  label  data  of  the
source domain.

The image classification algorithms using auxiliary
modal assist  model  are  mainly used in zero-shot learn-
ing (ZSL).  Moreover,  the existing methods mainly rely
on  mode  alignment,  which  aligns  two  modes  of  the
same  class  of  samples  to  obtain  the  same  semantic
structure.  Andrea  put  forward  of  the  deep  visual-se-
mantic embedding model (DeViSE) [15]. It uses the rep-
resentation  space  to  map  the  visual  representation
space to the semantic  representation space.  The model
uses  the  semantic  information  obtained  from  marked
image data  and  unmarked  text  to  recognize  visual  ob-
jects. Yao’s robust semi-supervised visual-semantic em-
beddings  model  (ReViSE)  [16] minimized  the  maxim-
um average difference between the two spatial distribu-
tions in terms of distribution representation alignment,
to align the model.  Edgar proposed cross-and distribu-
tion  aligned  variational  autoencoders  (CADA-VAE)
[17]. It uses two VAEs to embed two types of modal in-
formation,  shares  image  and  semantic  information  in
hidden space,  and  generates  hidden  features  for  invis-
ible classes.

In  the  unimodal  meta-learning,  the  information  of
this modality is often local and tends to make the mod-
el fall  into  overfitting  with  few  visually  supported  im-
ages.  The  semantic  representation  information  can  be
used as a priori knowledge and context to assist model
training.  However,  the  traditional  approach  of  using
auxiliary modalities  to help model  training is  generally
applied  in  the  field  of  ZSL.  Modal  alignment  is  most

common  method,  and  mostly  utilized  to  force  the  two
modes to map together. Therefore, a cross modal adapt-
ive  few-shot  learning  based  on  task  dependence  (CO-
OPERATE  for  short)  was  proposed.  Firstly,  a  task
cluster was adopted as task representation to reduce the
supporting  set  dimension  and  parameters.  It  used  the
mean of  each  class  of  support  set  samples  as  a  proto-
type  to  make  the  same  category  task  cluster  more
closely in the representation space.  Secondly,  the task-
specific feature extractor is conditioned to be more task-
dependent  using  task  conditioning  networks.  At  the
same time, the role between task conditioning and aux-
iliary  co-training  reduces  the  difficulty  of  tuning  both
networks  together.  Thirdly,  in  terms  of  modal  mixing,
the algorithm regards the two modes as two independ-
ent sources  of  knowledge  and  performs  the  classifica-
tion task in an adaptive convex combination. Finally, in
the metric  space,  we  use  scaling  to  improve  the  per-
formance of similarity further. The results showed that
COOPERATE  adaptively  adjusts  both  modalities’ fo-
cus according to the merits of different spaces. And the
model characterization  capability  is  significantly  en-
hanced  based  on  a  task-dependent  approach.  We have
achieved  state-of-the-art  classification  accuracy  on  two
publicly data sets of few-shot image classification.

The main  contributions  were  summarized  as  fol-
lows:  i)  The  metric  scaling  method  is  introduced  into
the  entropy  loss  function  to  improve  the  similarity
measurement criteria  between  the  output  of  the  train-
ing sample and its true category, so as to improve the
performance  of  the  Few-Shot  learning.  ii)  A  task-de-
pendent network  was  created  to  construct  task  repres-
entation based on the support set of each scene to im-
prove  feature  extraction  capability.  iii)  The  auxiliary
tasks were uesd to perform collaborative training on the
feature extraction  network  to  improve  the  generaliza-
tion  effect  of  the  model.  iv)  The  cross-modal  adaptive
few-shot classification mode is used to combine the two
modal structures,  which  proves  that  it  is  more  ad-
vanced than (single-modal and cross-modal) few-shot al-
gorithms in different shot numbers of two data sets.

The structure of this paper is as follows: Section II
is the problem definition, Section III  is  the specific  ex-
planation of the model, Section IV uses experiments to
verify  the  performance  of  the  model,  and  Section  V
summarizes the full text.

 II. Problem Definition
To facilitate the description, the basic concepts re-

lated to FSL are defined in this section using the math-
ematical formalism with reference to several authoritat-
ive literatures [3], [9], [10] and [13]. Table 1 is the nota-
tion table related to the definition.
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D
D = {X,Y } X
|X| {x1, x2, ..., x|X|}

∀xi ∈ X xi

Y |Y |
{y1, y2, ..., y|Y |} g : X → Y

X ∀xi ∈ X, ∃yj ∈ Y g(xi) =

yj ∀yj ∈ Y g−1(yj) = {xi ∈ X|g(xi) = yj} g−1(yj)

yj

Definition 1 (Few-shot dataset)　Let  the data
set  be  a  two-tuple ,  where  is  the  input
space. It consists of  input instances .
In  this  paper, ,  represent input  image  in-
stances.  is the input space. It consists of  input in-
stances .  is  an  information
function  that  specifies  the  category  tag  value  for  each
input  instance  in ,  i.e., ,  so 

. , if ,  is
called the set of instances of class label .

|Y | = C |g−1(yj)| = K D
C K

K | · |
i = 1, 2, ..., |X| j = 1, 2, ..., |Y |

Specifically,  if  and  ,  is
called  way   shot Few-Shot  data  set  when  we  ob-
tain  a  small .  Where  is  the  potential  of  the  set,

, .
C K

Ds = (Xs, Ys)

Dt = (Xt, Yt) Ds = (Xs, Ys)

Dt = (Xt, Yt) Ys ∩ Yt = ∅

In  few-shot  learning,  multiple -way -shot  few-
shot sets need to be sampled on a large source domain
data  set  according  to  a  certain  method.
And  then  the  classification  model  is  trained  on  these
sets. The  classification  algorithm  is  transferred  to  tar-
get  domain  data ,  and

 need to meet .

Ds = (Xs, Ys) Str = (XS , YS) Qtr = (XQ,

YQ) Str Qtr

YS {yj |j = 1, 2, ..., C} C

K T = (Str,

Qtr)

Definition  2 (Training  task  support  and  query
set)　Given ,  and 

, where  and  are respectively called the train-
ing task  support  set  and  query  set,  classes  are  ran-
domly selected from , i.e.,  . -way

-shot  few-shot  training  task  is  defined  on 
, which meets the following requirements:

Ys = YQ = {yj |j = 1, 2, ..., C}1) ;
∀ym ∈ YS , |g−1(ym)| = K2) ;
∀yn ∈ YQ, |g−1(yn)| = q3) ;

Xs ∩XQ = ∅4) .

Dt = (Xt, Yt) Ste = (Xe, Ye) Qte = (Xh, Yh)

Ste Qte

C

Yt {yj |j = 1,2, ..., C} C K
R = (Ste, Qte)

Definition 3 (Testing task support and query set)
Given ,  and ,
where  and   are  respectively  called  the  testing
task support set and query set,  classes are randomly
selected from ,  i.e., . -way -shot
few-shot testing task is defined on , which
meets the following requirements:

Ye = Yh = {yj |j = 1, 2, ..., C}1) ;
∀ym ∈ Ye, |g−1(ym)| = K2) ;
∀yn ∈ Yh, |g−1(yn)| = p3) ;
Se ∩Qh = ∅4) .

T = {(Str, Qtr)} R = {(Ste,

Qte)} C K

F ∗

f∗=F ∗(Ste)

Ste f∗

Definition 4 (Few-shot learning)　Given training
task set  and testing task set 

. The -way -shot FSL task aim to learn a clas-
sification  function  on  the  data  of  multiple  training
tasks, and to learn a classification function 
on  the  support  set  of  the  testing  task,  so  that 
can  complete  the  classification  of  the  query  set  in  the
test task. The learning process is as follows:

F L
k ∈ T Str

fk = F (Str) lk fk

Qtr L(F ) = Σ
|Tasks|
k=1 lk

L(F )

F ∗ = argmin
F

L(F )

1) Training:  A  set  of  learning  classification  func-
tions  and loss function  is defined. For each train-
ing task ,  the support set  was used to gener-
ate , and loss  of  was calculated on the
query set . Then the loss function 
on  the  training  task  followed.  By  minimizing ,  a
classification  model  on  the  training
task set is generated.

f∗ = F ∗(Ste)

Ste f∗

2)  Testing:  For  the  testing  task,  the  classification
model  is generated by using the support-
ing  set .  And  then  the  model  evaluation  the  by

   
Table 1. Notation table related to the definition

Notation Meaning

D Data set

X,Y Matrix
xi I-th vector

{· · ·} Set

| · · · | The potential of a set

g(·) Information function

C The number of task categories for few-shot classification

K The number of support set instances in each class

T Few-shot training tasks

R Few-shot testing tasks
q The number of instances of query set for training task with few-shot learning
p The number of instances of query set for testing task with Few-Shot learning

Tasks {(·, ·)} = Training task set

F ∗ Classification function

lk The loss function for a single task

L(·) Loss function
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Qteusing query set .

F ∗
In  particular,  if  the  adjustment  of  model  super

parameters is involved in the process of training , the
training task set can also be divided into training task
set and verification task set.

K = 1

For the definition of few-shot in Definition 4, there
are two special  cases:  If ,  this task is called one-
shot learning. Only the single picture of one class is giv-
en as the support set for each training. And the remain-
ing pictures are used as the query set. Another is zero-
shot learning. ZSL does not mean that training samples
are not required at all. Instead, it is studied to train the
model with training set samples and corresponding aux-

iliary text description and attribute feature information
of samples when specific training cases are missing.

 III. Model
 1. Model architecture
The architecture of the COOPERATE is shown in

Fig.1. In the figure, part A is the metric scaling and re-
lationship module, B is the task condition module, C is
the auxiliary collaborative training module, and part D
is the semantic modal embedded module. Sections II–VI
are  detailed  descriptions  of  each  module  of  the  model,
and Section VII is the training strategy of the model.

 

Relation network

C

B
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α
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Fig. 1. The model architecture of COOPERATE.

 

 2. Metric scaling

α

pφ,ϕ,α(y = k|XQ) =

softmax(−αdϕ(fφ(XQ), ck))

α

α

α

This section explains the metric scaling concept in
part A of Fig.1. Scaling of the metric has been shown to
be beneficial for the similarity measurement in entropy
loss  functions  [18].  Define  a  super  parameter , soft-
max based metrics are represented as 

.  The  model  updates  the
embedded  module  and  relational  module  parameters
through the overall loss. As proved by [18], for small 
value,  the  parameter  will  reduce  the  distance  between
the  query  sample  and  the  corresponding  prototype.
Meanwhile, it also maximizes the distance between the
query sample  and the  non-attributable  category  proto-
type.  Large  value  of  (which  are  the  same  for  the
former)  will  maximize  the  distance  of  sample  with  the
closest  wrongly  assigned  prototype  (if  any).  The  latter
is equivalent  to  learning  only  from  the  hardest  ex-
amples. Thus, the two different modes of  are condu-
cive  to  minimizing  the  overlap  of  sample  distributions
or correcting cluster attribution on the case.

αThe  larger  is  more  directly  related  to  the  error
correcting for the few-shot learning. However, with the

α

improvement of  optimization  and  classification  accur-
acy, the number of samples of misclassification will de-
crease. As a result, the average effective batch size is re-
duced  and  more  samples  generate  zero  derivatives  in
this  updating  mode.  Therefore,  for  a  given  data  set,
task,  and metric,  there  is  an optimal  value  for . Sec-
tion  IV.3  proves  the  existence  of  the  optimal  value
through experiments (i.e. scaling effect).

 3. Prototypes and relational networks

ck ∈ RM

fφ : RD → RM

φ

In  order  to  understand  part  A  of Fig.1 , this  sec-
tion explains the principles of prototypes and relational
networks.  COOPERATE  is  based  on  meta-learning  of
metric. For each episode, the prototype network calcu-
lates the prototype for each category using the support
set. Query  samples  are  classified  according  to  the  dis-
tance  to  each  prototype.  The  network  computes  each
class M -dimensional  prototype  by  embedding
functions ,  and  parameters  that  can  be
updated by learning . The prototype is represented by
the mean value of the embedded feature vectors of each
class,  which not only reduces the input dimension, but
also  is  an  effective  way  of  task  clustering,  making  the
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task  representation  space  clustering  of  the  same  class
more compact. The prototype is calculated as (1).
 

ck =
1

|Sk|
∑

(Xi, yi) ∈ Skfφ(xi) (1)

L2

Relational  network  [13]  is  a  deep  convolutional
neural network model, whose structure includes embed-
ded  modules  and  relational  modules.  The  embedded
module  is  used  to  extract  features,  and  the  relational
module serves  to  measure  the  image  similarity.  Differ-
ent  from  [13],  COOPERATE  modified  the  embedded
module  as  Resnet-12,  which  is  a  popular  and  widely
used  feature  extraction  network  recently  and  has  been
proved  effective  in  experiments.  The  relational  module
adopts a two-layer fully connected network and carries
out  regularization.  ReLU as the activation function
after the hidden layer. It is followed by a layer of dro-
pout to reduce overfitting, with the drop rate paramet-
er set to 0.3.

XS XQ

Str Qtr

fφ
fφ(XS) fφ(XQ)

ck
ck fφ(XQ) C(ck, fφ(XQ))

C(·, ·)
gφ

ηk,Q
XQ

ck

Relational  score:  and   are located  in  sup-
port set  and query set , respectively. Input them
into the embedded module  to form the feature mat-
rix  and  after mapping. The support set
prototype  is  calculated by (1).  And then the  model
combines  and  with the operator .

 is series in rows. The combination operator is in-
put into the relation module  to calculate the similar-
ity of features. We represent it as a scalar from 0 to 1
(i.e. a relational score). The relational score  can be
obtained by querying the set sample  and the proto-
type . The relational score is calculated as (2).
 

ηk,Q = gφ(C(ck, fφ(XQ))), k = 1, 2, ..., C (2)

XQ d

The mean square error loss in the model of [13] was
adjusted to be the cross-entropy loss that is now widely
used.  Query  sample  to  the  softmax  distance  of
the  embedded  prototype  to  generate  a  distribution  as
shown in (3).
 

p(y = k|XQ, Str, φ, ϕ) =
exp(d(XQ, ck))∑
n
exp(d(XQ, cn))

(3)

d(XQ, ck) = ηk,Qwhere,  is the measurement of relation-
al distance. The loss is calculated as the negative logar-
ithmic  likelihood  of  each  query  sample  to  the  ground
true value. The loss function is shown in (4).
 

L(φ, ϕ) = E
(Str,Qtr)

−
Qtr∑
Q=1

log pφ,ϕ(YQ|XQ, Str) (4)

(XQ, YQ) ∈ Qtr Str

φ and ϕ

where  and   are query  set  and  sup-
port  set  sampled  in  each  episode  respectively. 
are the model parameter.  The model adopts the gradi-
ent descent feedback loss optimization network.

 4. Task conditioning

fφ
fφ(x, Γ ) x Γ

fφ(x, Γ )

Ds

hl+1 = γ⊙
hl + β γ β

hl

c̄ = 1
K

∑
k ck

γ β

Task  condition  network  is  located  in  Part  B  of
Fig.1. It is assumed that the tasks of feature extractor

 are independent of each other. We define a dynamic
feature  extractor ,  as  the  sample,  and  as
the parameter  set  represented  by  the  task.  The  per-
formance of  is optimized under the condition of
given task sample . According to FILM conditioning
layer [19] and conditional batch normalization, 

 is  defined,  where  and   are  scaling  and  shift
vectors of  layer. According to Section III.3, the mean
value  of  the  class  is  used  as  the  class  prototype,  and
then  the  mean  value  of  the  class  prototype  is  used  as
the task representation, i.e. . This network
is called a task embedded network. The task embedded
network  is  used  to  predict  the  layer-level  element-wise
scale and shift vectors ,  of each convolutional layer
in the feature extractor. Mean value of the prototype as
task  representation  can  reduce  the  dimension  of  task
embedded  network,  and  better  clustering  effect  can  be
achieved  without  the  establishment  of  complex  work
such as CNN, RNN or attention modeling [20].

γ β

γ0 β0

L2 L2 γ0 β0

γ0 β0

γ β

γ = γ0hϕ(c̄) + 1 β = β0gθ(c̄) hφ gθ
γ β

Following  the  terminology  in  [18],  task  embedded
network  create  two  separate  fully  connected  residual
networks to generate , . And the number of layers is
3.  The  first  layer  represents  the  task  as  the  target
width,  and  the  remaining  layers  operate  according  to
the target width (each layer containing a jump connec-
tion). ,  are  multiplied  by  the  task  code  after  the

 penalty. The  regularization weights of  and 
are cross-verified at each layer. ,  are the prior ex-
perience of , . And the restriction on them is critical
for  task  embedding  network.  Without  them,  training
tends to sink into local minima, which is bad for over-
all  performance.  The  mathematical  equations  are

, , where, ,  are the pre-
dictors  of , .  In  order  to  maximize  its  contribution,
the  task  embedded  network  is  injected  into  the  layer
before  the  maximum pool  separately  and  the  injection
of the last layer is retained according to [18].

 5. Auxiliary task co-training
This  section  explain  the  auxiliary  task  co-training

network in part C of Fig.1. The insertion of task condi-
tioning layer after feature extraction increases the com-
plexity of  model  training.  This makes the training fea-
ture extraction network and task conditioning network
too hard.  Thus,  a  separate  predictor  is  used  to  auxili-
ary co-training.  The  auxiliary  task  uses  the  loss  func-
tion alone  to  adjust  the  parameters  backward.  Auxili-
ary tasks were classified 64-way on the miniImageNet [21]
data  set  and 351-way on the  tieredImageNet  [12].  The
model  initial  attenuation exponent is  chosen to be 0.9,
and  the  number  of  attenuation  steps  is  20.  In  Section
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IV.5, it can be seen that auxiliary tasks have a positive
effect on model training. The FSL of auxiliary task co-
training  is  related  to  the  total  training  task  volume.
That is a simple structure in the whole complex model
structure, which can help to intensify extract features.

 6. Cross modal
The text embedding module is shown in part D of

Fig.1.  In  few-shot  learning,  due  to  the  limited samples
of the support set, it is difficult to improve the classific-
ation  effect  by  relying  only  on  the  visual  information.
Furthermore, if the target domain data is a more gran-
ular image [22], such as “dog” and “wolf,” it is easy to
distinguish  with  semantic  information  [2].  In  the  ZSL,
the test task has not support set of image information,
and  the  model  relies  entirely  on  semantic  information.
Few-shot  learning  is  somewhere  between zero-shot  and
traditional learning.

Assume that both visual information and semantic
information  are  effective  for  FSL.  But  two  modes  are
different in spatial structure. We hope to train a model
to  make  use  of  both  modal  information  adaptively.
When visual  information  is  insufficient,  text  informa-
tion  can  be  relied  on  to  achieve  good  recognition.  On
the contrary, it can make full use of image information
to participate in training.

W

Ds ∪Dt

C

The text  mode  of  COOPERATE  adopts  the  lan-
guage structure word embedded  which is pre-trained
in large unsupervised text corpus. It contains labels em-
bedded  for all categories. The new prototype is
a  convex  combination  of  the  two  representations,  i.e.,
for each category , the adjusted calculation as shown
in (5).
 

p′c = λc · pc + (1− λc) · wc (5)

λc pc
wc = g(ec)

c ec W

g : Rnw → Rnp

θg

Rnp

where,  is  the  adaptive  mixing  coefficient  and  is
the  prototype.  is  the  label  embedding  of
class ,  is the word embedding of  pre-training tag.
The  mapping  transformation  uses  the
parameter  to  map  the  two  representation  spaces  to
the same dimension space . The calculation of coeffi-
cient T  is  based on the condition of  category,  and the
calculation formula is shown as (6).
 

λt =
1

1 + exp(−h(wc))
(6)

h

θh d

p′c

where,  is adaptive hybrid network, and the paramet-
er  is .  At  this  point,  is  the  distance  between  the
query  sample  and  the  cross-modal  prototype ,  as
shown in (7).
 

pθ(y = c|XQ, Str,W ) =
exp(d(XQ, p

′
c))∑

k
exp(d(XQ, p

′
k))

(7)

θwhere  is  the  model  parameter  set.  The  model  is

W

trained by  minimizing  (4).  The  probability  is  also  re-
lated to the word embedded .

 7. Training strategy

s
C K

q
W

This  section  mainly  introduces  the  training
strategy of each episode loss of the COOPERATE. The
input  of  the  algorithm  is  the  training  set,  where  each
episode randomly selects the support and the query set
according  to  Definition  2.  The  training  process  is  end-
to-end  training,  and  finally  the  model  loss  is  updated.
The update method of the loss is shown in Algorithm 1,
where  is  the  total  number  of  classes  in  the  training
set,  is  the  number  of  classes  in  every  episode,  is
the number of supports for eachclass,  is the number of
queries  for  each  class,  and  is  the  pretrained  label
embedding dictionary.

Algorithm 1　Training strategy of each episode loss of CO-
OPERATE

Ds = {(Xs, Ys)}s, Ys ∈ {1, ..., C}Input: Train set 
L(θ)Output: Episodic loss .

C e{select  class for episode }
T ← RandomSample({1, 2, ..., |Yi|}, C)1: 

{compute cross modal prototypes}
i T2: For  in  do

j Tpretrain3: 　For  in  do
image, label←RandomSample(Ds,4: 　　

co_trainBatch)　　　　　　　　

　 　　%Auxiliary co-training
φ← co_trainNet(image, label)5: 　　

φ6: 　　Co_training Loss( )
7: 　End for

Str ← RandomSample(Ds,K)8: 　  ％Select support set
Qtr ← RandomSample(Ds \ Str, q)9: 　

　　%Select query set

ci ← 1
|Str|

∑
(XS ,YS)∈Str

fφ(Xs)10:　  %Task condition

β, γ ← TaskConditionNet(ci)11:　

c′i ← 1
|Str|

∑
(XS ,YS)∈Str

fφ,β,γ(Xs)12:　

ei ← LookUp(i,W )13:　  %Word embedding
wi ← g(ei)14:　
λi ← 1

1+exp(−h(wi))
15:　

pi ← λi · c′i + (1− λi) · wi16:　  %Convex combination
17: End for
{compute loss}

i T18: For  in  do
(XQ, YQ) Qtr19: 　For  in  do

ηi,Q ← gϕ(C(pi, fφ(XQ)))20: 　　

　 　　％Calculate the relation score
L(θ)← L(θ)+ 1

C·K [−αηi,Q+log
∑

k exp(−αηk,Q)]21: 　　 　　　

　 　　 %Scaling metric
22: 　End for
23: End for
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 IV. Experiments

In order to verify the effect of the work, the experi-
ment is  divided  into  five  parts.  1)  Comparing  CO-
OPERATE  with  two  baselines  (the  single-modal  and
the modal alignment FSL model) to analyze the gener-
alization effect.  2) Quantitatively analyzing the impact

of  scaling  in  COOPERATE on accuracy.  3)  Analyzing
the  cross-modal  adaptive  coefficients  and  influencing
factors.  4)  The  different  feature  input  methods  of  the
adaptive  mechanism  is  explored.  5)  Doing  ablation
study on each module.

Table 2 is the evaluation-related notation paramet-
er table.

  
Table 2. Evaluation-related notation parameter table

Notation Meaning
Backbone Feature extraction network

Test-accuracy Test accuracy
α Metric scaling factor
λ Modal adaptive mixing coefficient

h(o) λThe original output characteristics of the GloVe model are used for adjustment the 
h(v) λThe features of the support set samples are used to adjust the 

h(w, q) λThe combination of query sample features and semantic features is used to adjust the 
h(w) λThe output of the GloVe model is adjusted and deformed by the network to adjust the 
ST The effect of scale transformation on model generalization
AT The effect of auxiliary collaborative training on model generalization
TC The effect of task conditioning on model generalization
CM The effect of cross-modal on model generalization

 
 

 1. Experimental setup

84× 84

Dataset　The  evaluation  of  the  experiment  uses
two  widely  used  datasets  with  few-shot  learning:
miniImageNet  [21]  and  tieredImageNet  [12].  The
miniImageNet  dataset  contains  100  random  sampling
categories. Each class has 600 images in total of 60,000

 images. For comparison, we follow the segment-
ation method of [13], i.e., divide them into 64 training,
16 validation and 20 testing classes. TieredImageNet is
larger than miniImageNet, contains 779,165 images, cor-
responding  indicators  are  351,  97  and  160.  Each  class
has more than 1,000 images (more challenging).

(−1, 1)

Word  embeddeding　 GloVe  [23],  embedding
network trained with large unsupervised text corpora, is
used  to  extract  words  embedded  in  category  labels  of
images  in  FSL  data  sets.  GloVe  is  an  unsupervised
learning  method  based  on  word-word  co-occurrence
statistics  in  a  large  text  corpus.  This  fixed  output  of
this part is 300. When there are multiple synonym com-
ments for a category, the first one is selected as the cat-
egory.  If  the  first  class  does  not  appear  in  GloVe’s
vocabulary, the  second  category  is  selected.  If  a  cat-
egory  is  not  marked  in  the  dictionary,  each  dimension
of the  embedding  is  randomly  selected  from  the  uni-
form distribution of . When the annotation con-
tains more than one word, the average value of them is
selected as the embedding.

Baselines　 In  order  to  better  prove  the  validity,
two  types  of  models  were  chosen  for  comparison.  The
first  is  uni-modality  few-shot  learning  method,  such as
matching network [9],  prototypical  network [10],  meta-

learner  LSTM  [5],  MAML  [3],  ProtoNets  W  soft  k-
means [12], relation network [13], TPN [6], attention at-
tractor  networks  [7],  XtarNet  [8],  SNAIL  [4],  and
CAML  [11].  In  these  method,  relation  network  is  the
closest  to  our  work.  The  second  fold  of  modal  aligned
multimodal  learning  methods,  respectively  is:  DeViSE
[15],  ReViSE  [16],  CADA-VAE  [17].  Among  them,
CADA-VAE got the best performance in both zero-shot
and few-shot learning.

Implementation　 The experimental  configura-
tion uses  Linux operating system. We use Python lan-
guage programming.  TensorFlow  deep  learning  frame-
work  and  NVIDIA  Tesla  V100  GPU  did  computing
power acceleration for us.

 2. Results
Tables 3 and 4 respectively show the comparison of

COOPERATE classification  accuracy  in  miniImageNet
and tieredImageNet. In these two tables, top of the ta-
ble are the single mode few-shot models, the middle are
modal alignment  baselines,  and  the  bottom  are  CO-
OPERATE and  its  backbone  results.  In  all  test  cases,
our  report  was  superior  to  relation  network.  Focusing
on  embedding  network,  the  Resnet  can  improve  the
ability  of  model  feature  extraction  w.r.t.  classification
capacity  is  better  than  that  of  convolutional  network.
COOPERATE  is  also  built  over  the  backbone  of  the
Resnet. But on miniImageNet dataset, COOPERATE’s
classification  accuracy  is  12.28%  higher  than  that  of
convolutional embedded network for 1-shot tasks and 10.
24%  better  than  that  of  relation  network  for  Resnet
backbone. It improves 5.29% and 1.41% on 5-shot mis-
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sions, respectively. On the tieredImageNet, the classific-
ation accuracy of 1-shot task is 5.02% higher than that
of relation network. Performance is improved by 2.46%
in  a  5-shot  scenario.  This  shows  that  COOPERATE
can effectively improve the performance of the model in
metric-based few-shot learning. Through the above ana-

lysis  people  will  ask  two  questions.  Because  the  fewer
shots, the better  the scene.  We speculate that the fea-
ture weight of the text mode will decrease as the num-
ber of shots increases. When there is less visual inform-
ation,  the  model  may  have  better  adaptability.  These
questions will be verified in Section IV.4.

  
Table 3. Classification accuracy test on miniImageNet data set

Model Backbone
Test-accuracy

5-way 1-shot 5-way 5-shot
Uni-modality few-shot learning baselines

Matching network [9] ConvNet ±43.56 0.84 ±55.31 0.73
Prototypical network [10] ConvNet ±49.42 0.78 ±68.20 0.66
Meta-learner LSTM [5] ConvNet ±43.44 0.77 ±60.60 0.71

MAML [3] ConvNet ±48.70 1.84 ±63.11 0.92
ProtoNets W soft k-means [12] ConvNet ±50.41 0.31 ±69.88 0.20

TPN [6] ConvNet ±55.51 0.86 ±69.86 0.65
MAML [3] ResNet ±49.61 0.92 ±65.72 0.77

Matching network [9] ResNet ±52.91 0.88 ±68.88 0.69
Attention Attractor Networks [7] ResNet ±54.59 0.30 ±63.04 0.30

XtarNet [8] ResNet ±55.28 0.33 ±66.86 0.31
SNAIL [4] ResNet ±55.71 0.99 ±68.80 0.92
CAML [11] ResNet ±59.23 0.99 ±72.35 0.71

Modality alignment baselines
DeViSE [15] – ±37.43 0.42 ±59.82 0.39
ReViSE [16] – ±43.20 0.87 ±66.53 0.68

CADA-VAE [17] ResNet ±58.92 1.36 ±73.46 1.08
Relation network [13] ConvNet ±50.44 0.82 ±65.32 0.70
Relation network [13] ResNet ±52.48 0.86 ±69.83 0.68

Ours ResNet ±62.72 0.41 ±71.24 0.33
  

Table 4. Classification accuracy test on tieredImageNet data set

Model Backbone
Test-accuracy

5-way 1-shot 5-way 5-shot
Uni-modality few-shot learning baselines

Prototypical network [10] ConvNet ±53.31 0.89 ±72.69 0.74
MAML [3] ConvNet ±51.67 1.81 ±70.30 1.75

ProtoNets W soft k-means [12] ConvNet ±53.31 0.89 ±72.69 0.74
TPN [6] ConvNet ±59.91 0.94 ±73.30 0.75

SNAIL [4] ResNet ±55.71 0.99 ±68.88 0.92
CAML [11] ResNet ±59.23 0.99 ±72.35 0.71

Attention attractor networks [7] ResNet ±56.11 0.33 ±65.52 0.31
XtarNet [8] ResNet ±61.37 0.36 ±69.58 0.32

Modality alignment baselines
DeViSE [15] – ±49.05 0.92 ±68.27 0.73
ReViSE [16] – ±52.40 0.46 ±69.92 0.59

CADA-VAE [17] ResNet ±58.92 1.36 ±73.46 1.08
Relation network [13] ConvNet ±54.48 0.93 ±71.32 0.78

Ours ResNet ±59.5 0.43 ±73.78 0.34

Compared  with  the  traditional  monomodal  few-
shot learning models, COOPERATE has obvious effect
under the 1-shot situation of  miniImageNet and the 5-
shot  situation  of  tieredImageNet,  preformed  the  best
results  than  current  state-of-the-art.  The  results  are

even better than the TPN model (using transductive in-
ference). In other scenarios, although the highest accur-
acy rate is not achieved, the classification effect is still
outstanding.  Its  performance  is  very  close  to  theirs.
Compared to  the  baseline  of  modal  alignment,  CO-
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OPERATE is  at the highest level  except for a slightly
lower than  CADA-VAE  in  the  5-shot  task  of  miniIm-
ageNet dataset. At the same time, it can be seen from
the table that most of the methods of modal alignment
are not as good as the current learning method of single
modal in few-shot. The possible reason is that when the
two  modes  are  aligned,  part  of  the  information  is  lost
because the model structure is forced aligned.

 3. Scaling effect

α

In this section, the effect of scale transformation on
the accuracy of generalization is studied through experi-
ments, and the experimental results are shown in Fig.2.
The  curve  in Fig.2  reflects  the  model  verification  and
test accuracy with the change of zoom factor  in part

A in Fig.1 (the scaling factor is from 1 to 10 times).

α

It  can  be  seen  from  the  four  broken  line  graphs
that under the same other conditions, the metric para-
meter  and  the  model  verification  and  test  accuracy
rate are  inverse  U-shaped  curves.  This  verifies  the  as-
sumption  mentioned  in  Section  III.2  that  the  metric
parameters have optimal values. For the miniImageNet,
on  the  5-way  1-shot  task,  when  the  zoom  factor  is  2,
the  test  accuracy  reaches  the  highest.  In  the  5-shot
task, the highest point of the task is reached when the
scaling factor reaches 5. For the tieredImageNet, on the
5-way 1-shot classification task, the classification accur-
acy  is  the  best  when  the  zoom  factor  is  5.  For  5-shot
tasks, this value is 3.
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Fig. 2. Results of  measurement scale parameters.  (a) 5-way 1-shot on miniImageNet;  (b) 5-way 5-shot on miniImageNet;  (c) 5-

way 1-shot on tieredImageNet; (d) 5-way 5-shot on tieredImageNet.
 

 4. Adaptiveness analysis
In  order  to  answer  the  questions  raised  in  Section

IV.2,  the  relationship  between  the  adaptive  coefficient
and the  number  of  shots  is  studied  through  experi-
ments, and the influence of the adaptive mechanism on
the  performance  improvement  of  the  model  is  verified.
In this  section,  experiments  are  designed  to  quantitat-
ively verify  that  the  COOPERATE  adaptive  mechan-
ism  can  effectively  and  reasonably  adjust  the  two
modes.

Fig.3 shows the test accuracy of the model for 1–10
shot  tasks  on  miniImageNet  and  tieredImageNet.  As
shown in figure,  with the increase of  shot number,  the
accuracy  rate  increases  gradually.  This  indicates  that
the support of visual samples is increased and the clas-

sification effect of models is improved significantly.

λ

λ

λ

λ

Fig.3 also shows the mean and std. of different shot
numbers and the mixing coefficient . First of all, it can
be seen that the mean value of  is related to shots. As
shots decrease, the amount of visual data decreases, and
COOPERATE has a greater weight for text modes and
a  smaller  weight  for  visual  modes.  This  shows  that
when visual information is low, the model can automat-
ically  adjust  the  focus  to  the  text  mode  to  help  the
model  classify.  Secondly,  it  can  also  be  observed  that
the 10-fold variance of  is correlated with the perform-
ance of  COOPERATE. The variance of  decreases as
the number of shots increases and the performance im-
proves accordingly. It shows that the algorithm’s adapt-
ability  at  the  level  of  category  plays  a  very  important
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role in improving performance.
 5. The study of the input of adaptive mech-

anism

h

h(o)

h(v)

h(w)

In order to study the operation effect of the adapt-
ive mechanism under different input features, the abla-
tion  study  of  the  adaptive  mechanism  is  carried  out
through experiments. Table 5 shows the results of 4 dif-
ferent inputs of the adaptive hybrid network : i) Ori-
ginal  input  form of  GloVe ( ); ii)  Visual  input  rep-
resentation  of  support  set  samples  ( ); iii)  Connec-
tion combination of query samples and semantic embed-
ding; and iv) The GloVe deformed semantic input mode
( ), which is the method adopted by COOPERATE.

h(w)

The result shows in the last row of the table is the best
result of the  feature input method. By comparing
with the first three rows, it can be seen that the effect
of inputting the adaptive mixing network after deform-
ing GloVe is the best. The visual spatial input form in
line 2 and the connection method of query samples and
semantic embedding in row 3 increase a lot of computa-
tional  overhead  due  to  the  increase  of  image  samples.
Under  the  same  hardware  and  software  configuration,
the optimization time is also extended. However, it does
not exceed the effect of word feature conditions, which
shows that  semantic  space  is  more  suitable  for  adapt-
ive mechanisms.

  
Table 5. The impact of different feature input ways of the adaptive mechanism on the

model classification accuracy (%)

Method
miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
h(o) 61.30 70.59 58.8 73.27
h(v) 61.12 70.79 59.32 72.81

h(w, q) 61.93 70.86 58.36 72.95
h(w) 62.72 71.24 59.50 73.78

 
 

 6. Ablation studies
In this  section,  the  effects  of  scaling,  task  condi-

tioning,  auxiliary  co-training,  and  cross-modal  on  the
generalization  are  studied  through  experiments.  The
results are shown in Table 6.

Firstly,  the  relationship  between task  conditioning

and  auxiliary  task  co-training  (mentioned  in  Sections
III.4 and III.5) is analyzed through experiments. As ob-
served  in  lines  2  and  3  of  the  table,  when  there  is  no
auxiliary  cooperative  training,  task  conditioning  has
little  effect  on  feature  extractor.  It  is  difficult  for  task
embedding network to  extract  features  and filter  them

 

1 2 3 4 5

63

66

69

72

A
cc

u
ra

cy
 (

%
)

(a)

Shots
1 2 3 4 5

0.7

0.8

0.9

1.0

(b)

Shots

1 2 3 4 5

0.7

0.8

0.9

1.0

(d)

Shots
1 2 3 4 5

60

64

68

72

A
cc

u
ra

cy
 (

%
)

(c)

Shots 

λ

λ
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effectively  at  the  same time,  which  is  easy  to  fall  into
local extremum. This problem can be greatly improved
through collaborative  training  of  auxiliary  tasks.  From
the  experimental  results,  it  can  be  concluded  that  the
contribution  of  the  auxiliary  collaborative  training  to
the  model  is  outstanding  mainly  for  the  following  two
reasons: i)  the  initial  convergence  value  can  be  ob-
tained by  pre-training,  and  ii)  the  forced  feature  ex-
tractor  performs  well  on  both  separate  tasks,  thus
achieving  good  performance  on  the  Few-Shot  learning
task.  The  coupling  of  the  auxiliary  task  and  the  main
task enables the task regulation to give full play.

Secondly, combined  line  1  of  the  table  with  Sec-
tion  IV.3,  it  can  be  seen  that  task  regulation  plays  a
great  role  in  COOPERATE.  This  is  also  of  reference
significance in other relevant researches in this field.

Finally, it  is  analyzed  from  the  cross-modal  per-
spective. As it be seen from line 4 of Table 6, semantic
information  play  well  in  COOPERATE,  especially  for
the 1-shot task. At this time, the image support sample
feature is insufficient, which is compensated by the ad-
dition  of  semantic  feature.  Comparing  the  two  data
sets, it can be seen that semantic modes play a greater
role  on  smaller  data  sets  such  as  miniImageNet.  This
not  only  reflects  the  difficulty  of  tieredImageNet  data
set classification, but also indicates that the addition of
auxiliary  modes  should  consider  the  mode  scale  and
model  type.  Because  whether  semantic  modal  features
are useful for visual modal features is related to the se-
lected word embedding model as well as the size of text
corpus.

 V. Conclusions
In this paper, a new method which can map adjust-

ment to adapt to different task representations and use
cross-modal  information  adaptively  and  effectively  for
the  classification  of  few-shot  learning  is  proposed.  The
effects of similarity metric scaling, auxiliary co-training,
task  conditioning  and  cross-modal  information  on  the
model  are  quantitatively  analyzed.  It  was  proved  that
scale factor plays an active role in parameter updating
of similarity measure. It also be verified that the meth-
od of task conditioning representation can improve the
performance of feature extractor in few-shot tasks, so as

to design a more powerful task representation. In addi-
tion, by  using  unsupervised  textual  data,  COOPER-
ATE is  greatly  improved  in  terms  of  the  classification
of  few-shot  learning.  When  visual  data  is  insufficient
(such  as  one-shot),  the  semantic  features  of  text  have
obvious effect on model classification. Moreover, quant-
itative  experiments  shown  that  our  algorithm  coule
reasonably  and  effectively  adjust  the  concerns  of  the
two  modes.  In  the  future,  we  will  consider  using  few-
shot learning to realize automatic labeling.
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