
IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023 211

Real-Time Object Pose Tracking System With
Low Computational Cost for Mobile Devices
Yo-Chung Lau , Kuan-Wei Tseng , Peng-Yuan Kao , I-Ju Hsieh , Hsiao-Ching Tseng ,

and Yi-Ping Hung

Abstract—Real-time object pose estimation and tracking is challenging but essential for some emerging applications,
such as augmented reality. In general, state-of-the-art methods address this problem using deep neural networks, which
indeed yield satisfactory results. Nevertheless, the high computational cost of these methods makes them unsuitable
for mobile devices where real-world applications usually take place. We propose real-time object pose tracking system
with low computational cost for mobile devices. It is a monocular inertial-assisted-visual system with a client–server
architecture connected by high-speed networking. Inertial measurement unit (IMU) pose propagation is performed on
the client side for fast pose tracking, and RGB image-based 3-D object pose estimation is performed on the server side
to obtain accurate poses, after which the pose is sent to the client side for refinement, where we propose a bias self-
correction mechanism to reduce the drift. We also propose a fast and effective pose inspection algorithm to detect tracking
failures and incorrect pose estimation. In this way, the pose updates rapidly even within 5 ms on low-level devices, making
it possible to support real-time tracking for applications. In addition, an object pose dataset with RGB images and IMU
measurements is delivered for evaluation. Experiments also show that our method performs well with both accuracy and
robustness.

Index Terms—Low computational cost, mobile device, object pose estimation, real-time object pose tracking.

I. INTRODUCTION

THE purpose of object pose estimation and tracking is to find
the relative six degrees of freedom (6DoF) transformation,

including the translation and rotation, between the object and the
camera. This important task plays a significant role in real-life
applications, such as augmented reality (AR) [1], [2] and robotic
manipulation [3], [4].

Object pose tracking, in contrast to object pose estimation,
puts emphasis on tracking object pose in consecutive frames [5],
[6]. This is challenging since real-time performance is re-
quired to ensure coherent and smooth user experience. Despite
the seeming prevalence of solutions, whether they are vision-
only [6], [7] or visual–inertial [8], [9], [10], such methods are

Manuscript received 30 September 2023; revised 22 November 2023
and 5 December 2023; accepted 5 December 2023. Date of publication
11 December 2023; date of current version 18 December 2023. This
work was supported in part by the National Science and Technology
Council, Taiwan, under Grants NSTC 109-2221-E-002 -207-MY3 and
NSTC 112-2218-E-119-001-MBK. (Corresponding author: Yo-Chung
Lau.)

Yo-Chung Lau is with the Graduate Institute of Networking and Mul-
timedia, National Taiwan University, Taipei 10617, Taiwan, and also
with the Digital Innovation Laboratory, Chunghwa Telecom Laboratories,
Taoyuan 326402, Taiwan (e-mail: lyc0326@cht.com.tw).

Kuan-Wei Tseng is with the Department of Computer Science, Tokyo
Institute of Technology, Tokyo 152-8550, Japan (e-mail: kuanwei@
g.ntu.edu.tw).

Peng-Yuan Kao and Yi-Ping Hung are with the Graduate Institute of
Networking and Multimedia, National Taiwan University, Taipei 10617,
Taiwan (e-mail: zbabqr@gmail.com; hung@csie.ntu.edu.tw).

I-Ju Hsieh and Hsiao-Ching Tseng are with the Department of
Computer Science and Information Engineering, National Taiwan Uni-
versity, Taipei 10617, Taiwan (e-mail: r10922094@csie.ntu.edu.tw;
r10922022@csie.ntu.edu.tw).

This article has supplementary downloadable material available at
https://doi.org/10.1109/JISPIN.2023.3340987, provided by the authors.

Digital Object Identifier 10.1109/JISPIN.2023.3340987

designed to be run on computers or even servers. Hou et al. [11]
proposed lightweight neural networks to track objects on mobile
devices, but hardware requirements are still critical. Moreover,
with the development of head-mounted displays, frame rate
demands have increased. Although 60 FPS may be sufficient for
smartphone-based applications, more than 90 FPS is expected
for AR glasses to prevent the motion sickness, which makes the
problem more difficult. In addition, considering tasks running
in AR applications, such as rendering and human–computer
interaction, also share the same computational resource at the
same time, and it is necessary to make the computational cost
of the tracking as low as possible.

We then propose an inertial-assisted-visual system for ac-
curate object pose estimation and tracking to support static
scene AR applications (e.g., AR museum exhibition [12], [13],
[14], [15]) on mobile devices. Unlike traditional visual–inertial
methods using pose fusion, we track the object pose mainly
with inertial measurements and refine it with visual infor-
mation coordinately. As shown in Fig. 1, our system uses a
client–server architecture that performs fast pose tracking on
the client side (mobile device) and accurate pose estimation on
the server side. The accumulated error or drift on the client
is diminished by data exchanges with the server. Specifically,
the client is composed of three modules: a pose propagation
module (PPM) to calculate a rough pose estimation via inertial
measurement unit (IMU) integration, a pose inspection module
(PIM) to detect tracking failures, including lost tracking and
large pose errors, and a pose refinement module (PRM) to
optimize the pose and update the IMU state vector to cor-
rect the drift based on the response from the server, where
we run state-of-the-art object pose estimation methods using
RGB images. This pipeline not only achieves real-time and
accurate tracking on low-end mobile devices, but also saves

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0005-8251-1270
https://orcid.org/0000-0003-1134-5314
https://orcid.org/0000-0002-5582-1039
https://orcid.org/0009-0002-0561-5154
https://orcid.org/0009-0006-1590-8072
https://orcid.org/0000-0002-9373-2184
mailto:lyc0326@cht.com.tw
mailto:kuanwei@g.ntu.edu.tw
mailto:kuanwei@g.ntu.edu.tw
mailto:zbabqr@gmail.com
mailto:hung@csie.ntu.edu.tw
mailto:r10922094@csie.ntu.edu.tw
mailto:r10922022@csie.ntu.edu.tw
https://doi.org/10.1109/JISPIN.2023.3340987

212 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

Fig. 1. System overview. We propose an object pose tracking system with a client–server architecture for mobile applications. The input of the
system is IMU measurements and RGB image sequences. On the frontend side (mobile device), we perform the fast pose propagation based
on IMU measurements. On the backend side (server), we utilize 6DoF object pose estimation models to estimate the object pose based on RGB
images. A more accurate object pose from the backend will be sent back to the frontend to refine the pose and calibrate the biases of IMU
measurements. Note that Ti and Ii stand for the object pose and image taken at timestamp i, respectively.

the computational cost on the tracking time within 5 ms per
frame. The main contributions of our work are summarized as
follows.

1) We proposed a monocular inertial-assisted-visual system
with a client–server architecture to track the object pose
with an extremely low computational cost on low-level
mobile devices. To the best of authors’ knowledge, our
method is the most computationally efficient.

2) We developed a bias self-correction mechanism (BSCM)
to improve the accuracy of pose propagation in tracking.

3) We designed a pose inspection algorithm (PIA) to effi-
ciently and quickly exclude probable wrong poses.

4) We collected a real-world object pose dataset with RGB
images and IMU measurements to evaluate the tracking.

The rest of this article is organized as follows. In Section II,
we review the related work on the object pose estimation and
tracking. In Section III, we propose our method and explain the
detail specifically. In Section IV, we explore the experiments
and discuss the results. Finally, Section V concludes this article.

II. RELATED WORK

A. Object Pose Estimation

Object pose estimation has long been an open issue; of the
many studies on this, some [16], [17], [18], [19] use the depth
information to address this problem and indeed yield satisfactory
results. Unfortunately, RGB-D images are not always supported
or practical in most real use cases. As a result, we then focus on
methods that do not rely on the depth information.

1) Classical Methods: Conventional methods that estimate
the object pose from an RGB image can be classified either as
feature-based or template-based. In feature-based methods [20],
[21], [22], features in 2-D images are extracted and matched
with those on the object 3-D model, and the object pose can
be estimated by a perspective-n-point (PnP) solver. This kind
of method still performs well in occlusion cases, but fails in
textureless objects without distinctive features. Template-based

methods [23], [24], [25] can handle both textured and textureless
objects. Synthetic images rendered around an object 3-D model
from different camera viewpoints are generated as a template
database, and the input image is matched against the templates
to find the correct object pose. However, these methods are
sensitive and not robust when objects are occluded.

2) Deep Learning-Based Methods: Learning-based meth-
ods can also be categorized into direct and PnP-based ap-
proaches. Direct approaches regress or infer poses with feed-
forward neural networks. SSD6D [26] disentangles the 6DoF
pose into viewpoint and in-plane rotation, first by estimating the
rotation and then by inferring the 3-D translation with a rotation
and bounding box. PoseCNN [27] generates semantic labels
and localizes the object center with its distance to the camera
via a CNN network. It constructs a region of interest (ROI)
and regresses the ROI features to estimate 3-D translation and
rotation. PnP-based approaches find 2D–3D correspondences
by deep learning, and the estimation of object pose is handled
by other PnP solvers. BB8 [28] processes the coarse-to-fine seg-
mentation of the object from an image and predicts its pose based
on the projection of object bounding box. PVNet [29] selects
keypoints using a voting-based algorithm based on the distance
from the center to the surface of the 3-D object model, which
allows it to effectively tackle occluded objects. Yu et al. [30]
proposed differentiable proxy voting loss to reduce the search
error of object keypoints. Some studies, such as RePOSE [31]
and RNNPose [32], add postrefinement procedures for better
pose accuracy. However, these multistage pipelines are too slow
for real-time applications.

B. Object Pose Tracking

Unlike the general concept of the object tracking, which
means to know just where the target object is in the video
or consecutive images, the tracking we discuss in this article
is to keep localizing the 6DoF object poses. In addition to
a single image, temporal information among frames is also

LAU et al.: REAL-TIME OBJECT POSE TRACKING SYSTEM WITH LOW COMPUTATIONAL COST FOR MOBILE DEVICES 213

utilized to facilitate estimation. Studies [16], [17], [33], [34]
use a stereo/depth camera or Lidar to help tracking, but this
is not practical in real use cases in which only a monocular
camera is available. In real-world AR applications, instead of
using stereo or RGB-D cameras, IMUs are also commonplace
solutions. Thus, we briefly introduce vision-based and visual–
inertial-based methods.

1) Vision-Based Methods: Classical vision-based methods
track features, such as SIFT, SURF, and ORB, to estimate the
correct pose by solving a PnP problem. Likewise, these methods
may have high accuracy but their high computational overhead
and low robustness to the image distortion and self-occlusion
are problems [35]. Based on deep learning, Zhong et al. [6]
tracked objects in video effectively by segmenting objects from
the frame even with heavy occlusion.

2) Visual–Inertial-Based Methods: As the development of
simultaneous localization and mapping [36], conventional
visual–inertial fusion using extended Kalman filters [10], [37],
[38] or nonlinear optimization [9], [39] has been deployed
for AR and robotic applications. However, these suffer from
problems of low frame rates and the long delay due to their
high computational costs. Recently, learning-based methods [8],
[40], [41] have been proposed, which regress the fused visual
and inertial features for the pose estimation.

III. PROPOSED METHOD

Compared with studies on implementations for PCs or servers
mentioned above, there is a lack of studies for mobile devices.
MobilePose [11] uses two lightweight neural network models
to track objects and shows strong results on smartphones. It
achieves 36 FPS on a Galaxy S20. However, in order to sup-
port the fluent user interaction, applications may need higher
requirements of frame rate (e.g., more than 90 FPS for mixed
reality on smart glasses) and lower processing time in tracking
to save computational resources to support other tasks, such
as rendering and human–computer interaction control. These
critical requirements and restrictions also further complicate the
problem.

A. System Architecture

For real-time object pose tracking, the main factors lie on how
to properly use the contextual information between consecutive
time points and quickly update the pose based on it. To minimize
the computational cost and support fluent object pose tracking
on general mid-level or even low-level mobile devices, tasks
running on mobile ends should not be overly complicated.
Specifically, for static scene AR applications, the change of
motion between two continuous frames is usually small; that
means, if the object pose in the current frame is known, the pose
in the next frame can be updated just based on the motion change
between frames from the device.

Inspired by studies of outdoor localization [42], [43], [44], we
then use a client–server design to separate out the frontend and
backend tasks. Complicated and time-consuming tasks, such as
the object recognition and precise pose estimation, are processed
on the backend where powerful computers or servers with the

high-level hardware are executed. Simple tasks, such as the pose
propagation and checking, are handled by the mobile device
itself on the frontend. The two ends are connected to each
other through a high-speed network, such as 5G or WiFi. In
this way, poses update rapidly, making it possible to track the
object instantly with a very low computational cost.

The system workflow is shown in Fig. 2. There are three
modules running on the mobile device frontend: the PPM, the
PIM, and the PRM. When the system starts, the PRM sends
an RGB frame to the backend to obtain the object pose for the
frontend initialization. Here, the solution implemented on the
backend is not restricted but instead kept open, so that hosts
can choose the method that best fits their needs. For example,
PVNet [29] may be a choice for general use. Once the frontend is
initialized, the PPM then regularly updates the pose according to
IMU measurements. Meanwhile, the PIM checks the correctness
of pose by the proposed PIA. The PRM repeatedly optimizes the
pose computed by the PPM using the response from the backend
to maintain the accuracy.

B. System Modules

1) Pose Propagation Module: As the PPM periodically up-
dates the object pose according to the IMU data by pose propa-
gation, its processing frequency is equal to the IMU sample rate,
which is the maximum supportable tracking rate. The IMU data
are also saved in the system for later pose updates in the PRM.

2) Pose Inspection Module: The PIM checks the correctness
of the pose by PIA when a frame arrives. It reports back with
fine pose, wrong pose, or tracking lost. The pose is accepted in
case of fine pose; other statuses are classified as failures. The
PIM reinitializes the PRM status when a failure occurs, and the
current frame is processed immediately in the PRM in case of
wrong pose.

3) Pose Refinement Module: The PRM attempts to retrieve
the frame’s correct object pose through the cloud. A pose esti-
mation request with the frame is sent to the backend, after which
the module waits for a response. If we assume the request sent
and response received occurred at time t0 and t1 respectively,
the correct object pose at time t1 can be calculated based on
the backend result and previously held IMU data from time t0

to t1. Meanwhile, we also perform BSCM, which leverages the
correct object pose from the backend to compensate for the drift.
In general, the PRM is triggered for every frame if it is idle, but it
can also be triggered by the PIM when a wrong pose is found. It is
noteworthy that the whole processing time should be concerned
not to be larger than IMU sample time to ensure the smooth pose
updating in the PPM.

C. Pose Propagation by IMU Measurement

For a static scene, given a known camera pose Mt at time t,
we have Mt+δt at time t+ δt with

Mt+δt = M t+δt
t Mt (1)

where M t+δt
t = [Rt+δt | Tt+δt] is the camera pose transfor-

mation matrix. It represents the transformation of the rotation,
Rt+δt, and translation, Tt+δt, from time t to t+ δt. When δt is

214 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

Fig. 2. System workflow. The system is composed of a frontend client and a backend server. The frontend performs the fast pose propagation with
IMU measurements and fuses the result of visual pose estimation by the backend server. The client is composed of three modules: a PPM to update
the pose via IMU integration, a PIM to detect tracking failures, including lost tracking and wrong pose, and a PRM to optimize the pose and update
the IMU state vector to correct the drift based on the pose received from the server, where we run state-of-the-art object pose estimation methods
using RGB images. The state vector contains the device pose and motion information, such as the velocity and biases of IMU measurements.

very small, it is safe to calculateM t+δt
t by the IMU measurement

on the device [45].
Theoretically, Rt+δt can be calculated by the rotational

change of angular velocity from the gyroscope, and Tt+δt can
be determined by the moving offset based on the acceleration
from the accelerometer as follows [46]:

Rt+δt = Rt

(
I +

sinσ

σ
B +

1 − cosσ

σ2
B2

)
(2)

B =

⎡
⎣ 0 −ωz

t+δtδt ωy
t+δtδt

ωz
t+δtδt 0 −ωx

t+δtδt
−ωy

t+δtδt ωx
t+δtδt 0

⎤
⎦ (3)

σ = |ωt+δtδt| (4)

ωt+δt =
[
ωx
t+δt, ω

y
t+δt, ω

z
t+δt

]T
(5)

where I is the identity matrix and ωt+δt is the device local
angular velocity sampled at time t+ δt.

Tt+δt = Tt + δtVt+δt (6)

Vt+δt = Vt + δt (Rt+δt at+δt − g) (7)

where Vt+δt is the device velocity at time t+ δt, at+δt is the
device local acceleration sampled at time t+ δt, and g is the
acceleration of gravity.

Although it would seem thatMt+δt can be propagated directly
from Mt by (1)–(7), there may be a problem about correctness.
First, IMU data are usually polluted by noise and bias, which
makes the pose calculated unreliable. Second, we lack a good
initial estimation of system velocity, which results in the trans-
lational error. This is nontrivial because there is no reference
of the velocity from the backend. The correctness of IMU data
and system velocity is so critical to pose propagation that we
propose BSCM to compensate for the error.

D. Bias Self-Correction Mechanism

BSCM improves the pose accuracy during pose propagation
by removing the bias of IMU data and system velocity. Gener-
ally, bias-dependent pose error accumulates and amplifies as the
pose is propagated continuously. The estimated rotation R̂imu

obtained from IMU data is defined as

R̂imu = RnoiseRbiasRreal (8)

whereRreal is the true rotation, andRbias andRnoise are erroneous
rotation resulted from the bias and noise. By omitting the noise
term, which is essentially random, we can approximate the bias
R̂bias using the estimated true rotation R̂real from the backend
as

R̂bias ≈ R̂imuR̂
−1
real. (9)

The corresponding XYZ Euler angles (Êbias) can be decomposed
from R̂bias, and the time difference (Δt) from the time of last
triggered backend pose estimation to now is also known. Hence,
the bias of angular velocity can be written as

ω̂bias =
Êbias

Δt
. (10)

As for the velocity and acceleration biases, we use the average
velocity calculated by consecutive poses as the reference. As-
sume we have two consecutive frame poses at time t0 and t1 from
the backend, the system average velocity at time t0+t1

2 (denoted
as t1

0) can be represented as

V̂avg =
T̂t1 − T̂t0

t1 − t0
(11)

where T̂t0 and T̂t1 are the translation at time t0 and t1 estimated
by the backend. Thus, we have the system velocity bias at time
t1

0 as

V̂bias = V̂imu − V̂avg (12)

where V̂imu is the system velocity closest to time t1
0 calculated

based on IMU data. Therefore, the acceleration bias can be
derived as

âbias =
V̂bias

t1 − t0
. (13)

Through BSCM, we not only estimate and remove the IMU
biases but also regularly compensate for the velocity error.

LAU et al.: REAL-TIME OBJECT POSE TRACKING SYSTEM WITH LOW COMPUTATIONAL COST FOR MOBILE DEVICES 215

Fig. 3. Demonstration of experiments. We tracked the gray box and white cat in simulation and real-world experiment, respectively. The figure
shows the tracking results in different camera viewpoints, in which we drew the bounding boxes of the object in white with the estimated pose and
in blue with the GT, respectively. Note that two bounding boxes in each picture are almost overlapped accurately. (a) Simulation (Noisy backend) (b)
Real-world experiment.

E. Pose Inspection Algorithm

A backend pose is reliable and image-independent, but that
from the frontend is not always guaranteed. PIA is proposed
to quickly check whether the frontend pose is acceptable by
excluding probable cases of lost tracking and wrong poses. To
satisfy the goal of low computational cost, the first concern of
PIA is still its execution speed. Therefore, PIA is not designed for
absolutely accurate pose inspection, instead, its effectiveness is
reflected in finding out most suspicious poses as fast as possible.

There are two cases in which the propagated pose is unaccept-
able, including the lost tracking and wrong pose. The tracking
can be considered lost when the object is out of the camera view
or it is too small in the frame. Once the tracking is lost, the pose
calculated becomes meaningless and should not be used, even if
it is correct. On the other hand, the pose propagation is sensitive
to the motion change captured by IMU and may not be reliable
when the device moves too rapidly. As a result, for safe use, we
should also regard the pose as a wrong one if a large motion is
detected.

According to the above concept, the core PIA algorithm is
to first find the bounding box of the object in the image based
on the pose. We check the projection area and determine for
the tracked object whether the area is not less than a threshold,
THRarea, or we consider tracking lost. Afterward, we calculate
the mean offset of the vertices from those on last frame. If the
offset is less than a threshold, THR2d, we take it as a fine pose;
otherwise, we assume that the motion is too drastic that the
pose propagation might be poor, and a wrong pose is returned.
Obviously, if the threshold is set too small, the pose inspection
will become too sensitive to the motion change, while there may
be an opposite result in cases of larger settings. The setting of
(THRarea, THR2d) is actually a tradeoff problem and empirically

defined as (framearea
100 , 17) here. We will have a more detailed

discussion about it in Section IV-C2.

IV. EXPERIMENTS

Since there is no publicly available dataset for both visual and
inertial object pose tracking, we first evaluated the proposed
system with a simulated dataset using Gazebo (v11.0.0) [47].
Subsequently, we collected a lightweight real-world dataset
ourselves and used it to verify our method.

A. Experiments on Simulated Data

As Fig. 3(a) shows, we created an indoor scene in which the
target object was placed on a table and its initial distance to
the device with an on-board monocular camera and IMU was
about 1.2 m. The camera captured images up to 120 FPS, and the
IMU sample rate was about 200 Hz throughout the experiment.
The IMU noise parameters were 6.63 × 10−5 rps/

√
Hz for the

gyroscope and 7.35 × 10−4 m/s2
√

Hz for the accelerometer,
which resembled the LSM6DSM, a consumer-level IMU chipset
in the Google Pixel 2. In our simulations, the camera followed
the target object, and its movement followed predefined motion
programs. After that, we compared the tracking results with the
true poses.

1) Motion Programs: In order to simulate the diverse inter-
action behaviors of real interactive applications, such as AR, we
used translational and circular motion scripts, each with three
levels of difficulty. The detail of scripts is given in Table I. Each
script ran for 30 s. For the translational motion, we primarily
moved the camera using a combination of dolly, pedestal, and
trucking; for the circular motion, we moved and rotated the
camera around the object. We also applied a random additional

216 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

TABLE I
SIMULATION SPECIFICATIONS

force and torque to the camera, roughly resembling real-world
vibration or shaking. Thus, the higher the difficulty of the script,
the faster the movement and the larger the force and torque.

2) Networking and Transmission: Considering the updating
frequency of backend pose, which is proportional to the network
speed may influence the tracking accuracy proportionally, we set
the network transmission speed and data propagation delay to
50 Mbps and 10 ms according to the minimum standard of a 5G
network [48], which could be considered to be the worst case in
verification. Also, as the real-world transmission is imperfect,
we added a uniformly distributed (U) extra delay of 0–30 ms. The
size of the transmitted data was 100 kB, including a 90-kB 640×
480 JPEG image with a compression ratio of 10, and a 10 kB of
metadata containing the state vector and other information. Once
the server received the data, the backend task started instantly
without delay. The backend response time was thereby

Timetrans =
100 (size)× 8 (kB to kb)× 103 (s to ms)

1024 (kb to Mb)× 50 (network speed)

+ 10 (propagation delay)× 2 (back/forth)

+ U (0 ms, 30 ms) (extra delay)

≈ (35 ms, 66 ms). (14)

3) Computational Power Conversion: In order to specifically
understand the performance on the computational cost of our
method, low-level phones with limited computational power
released several years ago, such as the Google Pixel 2 released
in 2017, are taken as simulated devices. Thus, we restricted the
CPU performance of our testing device so that its computa-
tional power was commensurate with the Google Pixel 2. We
referred to the CPU multicore scores from Geekbench [49].
The performance ratio of two CPUs can be directly obtained
from the ratio of multicore scores. Based on this assumption, we
delayed the processing time of each operation on the frontend
by adding extra sleep. Specifically, the multicore scores of our
device and Google Pixel 2 were 3185 and 1294, respectively.
The performance ratio was thereby 3185/1294 ≈ 2.46. Hence,
we extended the processing time of each frontend operation by
246%.

4) Simulation Results and Discussion: Fig. 3(a) shows a
glimpse of the tracking results in different camera viewpoints.
For the more qualitative visualization of our tracking system,
refer to the Supplementary Material. Following the convention,

Fig. 4. 2-D projection errors among the pose refinement processes.
The tracking error in our method will be fixed periodically by BSCM with
the responses from the backend. Each local fluctuation here (between
the local maximum and minimum) can be considered as a cycle of the
pose propagation and refinement.

we computed the 2-D projection error by measuring the distance
projected on the image plane using the estimated pose and
the true pose. Besides, considering the perfect pose estimation
solution with no error is nonexistent, we noised the backend
ground-truth (GT) poses as noisy ones with Gaussian noise, and
then compared the tracking performance in these two condi-
tions. The mean 6DoF pose (translation and rotation) and 2-D
projection errors were revealed in Table II.

In general, the error increased in harder sequences with higher
motion complexity. If GT backend was utilized, the tracking was
very smooth and accurate in all experiments. Its 2-D projection
error was less than 1 pixel among all sequences regardless of
motion complexity. The result has validated our core element
that once the true pose is received from the backend, the pose
is refined and the error should decrease. More clearly, Fig. 4
shows the object 2-D projection error of frames (points) within
a short period of time in tracking. Each fluctuation can be taken
as one process of the pose refinement. The pose error first kept
increasing to the peak, after which the refinement occurred,
leading to fixing the pose error of the next frame. Specifically,
for each fluctuation, the pose refinement would happen in the
interval between the peak and the foot.

On the other hand, if the backend returned a noisy pose, which
reflected the practical situation, then there was an admitted drop
in the performance. The average 2-D projection error became
about 2 pixels, but was still below the critical threshold of
5 pixels [29], meaning the pose was correct and acceptable. This
demonstrated that even with an imperfect backend solution, our
system was still capable of maintaining acceptable poses and
reducing the impact of inaccurate backend responses in tracking.

Moreover, we analyzed the influence of frame rate on tracking
accuracy. If GT backend was used, the error decreased at a higher
frame rate due to a shorter waiting time to send a pose estimation
request. Consequently, it benefited the pose refinement and pose
propagation afterward. Nevertheless, a counterproductive result
would happen in noisy backend case. In other words, if the
backend pose was noisy, then higher frame rate would lead to

LAU et al.: REAL-TIME OBJECT POSE TRACKING SYSTEM WITH LOW COMPUTATIONAL COST FOR MOBILE DEVICES 217

TABLE II
COMPARISON OF MEAN POSE ERROR OF TRACKING IN SIMULATION

higher error. We believe the reason behind this contradictory
phenomenon was that the error accumulated during the latency
was less than the noisy backend poses. In this case, we actually
added additional error to the system, while there was no serious
drift on the frontend. However, this problem was also mitigated
by our BSCM, and the tracking accuracy was maintained.

B. Experiments on Real-World Data

1) Real-World Data Collection: Apart from simulation, we
collected our own dataset to validate our system under the real-
world scenario. We utilized Intel RealSense D435i camera to
capture RGB images, depth images, and IMU measurements in
a room with Vicon motion capture system. The average frame
rate of RGB images was 52 FPS, while the IMU sample rate
was 200 Hz. The target object was a 3-D printed cat model from
LineMOD [24]. As shown in Fig. 3(b), we put the cat model on
the table and moved the camera in a common movement pattern
of general interactive AR applications. We totally recorded five
30 s videos for experiments. A conceptual sketch of the setup
could be found in Fig. 5.

To obtain the object pose with respect to the camera is a
nontrivial work. Inspired by the work in [50], we first calibrated
the extrinsic parameters by using a checkerboard with Vicon
markers attached at each corner. Combined with intrinsic pa-
rameters, we then had the transformation between image plane
and the global coordinate system defined by Vicon. Next, we
backprojected depth maps with corresponding camera poses
to reconstruct a 3-D point cloud model of the cat under the
global coordinate system. We then registered the reconstructed
3-D point cloud model with the original computer aided design
(CAD) model of the cat using iterative closest point (ICP) to
obtain the transformation between the predefined object-centric
coordinate system and the global coordinate system. Eventually,
we could compute the 6DoF object pose, which was the trans-
formation between object-centric coordinate system and camera
coordinate system. In practice, since the depth maps may fail to
precisely segment the silhouette of the object, we performed
some postprocessing with ICP by each frame. Although the
object poses are still noisy, it serves a great opportunity to

Fig. 5. Real-world dataset construction. The data were collected in
a room with the Vicon motion capture system. We obtained the trans-
formation between camera and Vicon Tcam

vcn by camera calibration and
computed the transformation between camera and object Tobj

cam via the
ICP algorithm.

TABLE III
MEAN POSE ERROR OF THE REAL-WORLD EXPERIMENTS

examine whether our system would work in the real world where
the backend would actually return poses with noise.

2) Real-World Experiment Results and Discussion: We then
verified our method with the collected real-word data based
on the network setting and computational power conversion
mentioned in Sections IV-A2 and IV-A3. Fig. 3(b) demon-
strates the tracking results from several camera viewpoints. We
also summarized the mean pose and 2-D projection errors of
each sequence in Table III. We found that compared with the
simulated data, the rotational error was larger. This could be
attributed to the shaking of the capturing device during data
collection. Videos shot by handheld devices without stabilizer
would inevitably contain such movements. As a consequence,

218 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

Fig. 6. Ablation study on BSCM by comparing the 2-D projection error
in experiments w/wo BSCM.

the average angular velocity (and acceleration) was larger than
the simulated data. Besides, the magnitude of translational error
was about that of simulated ones with GT backend although
it utilized noisy backend poses. This resulted from the slower
moving speed in real-world applications. We moved the camera
faster in the simulated data to examine the robustness of model.
However, for real-world AR applications we focus on what
mentioned in Section I, it is less possible that users would move
so fast. Thus, the smaller error was due to the slower movement.

C. Ablation Studies

In this section, we discuss the influence about BSCM and
provide a detailed analysis of thresholds of PIA in our method.

1) Influence of BSCM: To verify the effectiveness of the
proposed pose refinement mechanism, we conducted an ablation
study on the PRM by disabling the BSCM and PIA. Note that
once the BSCM and PIA are disabled, the IMU biases would
never be removed during pose propagation. The result is shown
in Fig. 6. The tracking with BSCM performed well with a good
pose accuracy, while huge 2-D projection errors of poses were
observed in case of no BSCM. We also found that the error
could still decrease periodically in tracking without BSCM.
This was because the pose would still be repropagated on the
frontend if a backend pose was received. However, even with the
correct pose from the backend, the repropagated pose was still
wrong with a huge error since the incorrect system velocity and
IMU measurements with biases were used. BSCM was, thereby,
proven important to keep the tracking accuracy.

2) Thresholds in PIA: There are two thresholds in the PIA,
including THRarea and THR2d. THRarea is used to roughly screen
out reasonable cases of lost tracking, which is actually related
to what kind of the object pose estimation algorithm is used
on the backend. For example, if the backend solution can still
estimate the object pose well even if the object is far away from
the device (camera), THRarea could be defined smaller. As a
result, compared with THRarea, the discussion on THR2d would
be more practical and significant in the PIA.

We investigated the performance of PIA by conducting an
ablation study on various configurations of THR2d shown in

Fig. 7. Ablation study on the performance of PIA with various configu-
rations of thresholds.

Fig. 7. Although it seemed we already had a pretty good
result of the correct pose inspection rate when THR2d was
around 12.5, there was another problem about the retracking.
As described in Section III-B2, if the pose does not pass the
inspection, the original tracking is interrupted and the system
will be reinitialized. Accordingly, the retracking occurs. It is
also intolerable that the tracking is interrupted too many times
but the tracking pose estimated is acceptable actually. Thus, we
must broaden the threshold. Nevertheless, as we mentioned in
Section III-E, the inspection would also be meaningless if the
threshold is too large. In fact, it is essentially a tradeoff problem
and may have different settings depending on different cases.
For these reasons, we thereby set THR2d as 17 for balance in
our experiments eventually.

D. Computational Cost

Compared with the tracking accuracy, for the support on
the low-end devices, the frontend workload is always the most
important issue we care about actually. We also measured the
mean processing time of the pose propagation (in the PPM),
inspection (in the PIM), and refinement (in the PRM). The
mean pose propagation and inspection time were around 0.22
and 0.88 ms, which were both much smaller than the IMU
updating time of 5 ms. The pose refinement, as we described in
Section III-B3, should be the most time-consuming in tracking.
This is because, after a backend pose is received, lots of pose
propagation will be redone again based on the new updated
system state vector. However, even in demanding condition of
limited computational power, the pose refinement still just took
around 2.01 ms in average. Through experiments, our method
was proven not only real time but also highly cost effective in
computation.

E. Comparisons With state of the art (SOTA)

As given in Tables II and III, the tracking accuracy of our
method is around 3 pixels of 2-D projection error on average.
Rather than comparing the tracking error of 1 or 2 pixels that does
not affect the actual use, we put emphasis on the performance
of computational cost in the form of the pose updating time,
which is the key we always focus on. We compared our method
with other state-of-the-art tracking solutions of VIPose [8] and
MobilePose [11] in Table IV. In fact, the comparison is nontrivial
since the other two methods both need GPU support, while it is

LAU et al.: REAL-TIME OBJECT POSE TRACKING SYSTEM WITH LOW COMPUTATIONAL COST FOR MOBILE DEVICES 219

TABLE IV
COMPARISON OF COMPUTATIONAL COST OF TRACKING

not to ours. That means, for some current mid-level or even low-
level mobile devices without GPU support, these two methods
are not usable. The requirement of hardware for our method
is the lowest. However, even in such poor hardware condition,
the pose updating time of our method (3.11 ms) was still far
less than the others’, which demonstrated the extremely good
performance in computational cost.

V. CONCLUSION

We review the importance and difficulty of low computational
cost real-time object pose tracking using only RGB images taken
by mobile devices. To this end, we present a real-time inertial-
assisted-visual object pose tracking solution with a very low
computational overhead. To ensure the robustness, we propose a
BSCM to alleviate the error that accumulates over time. We also
devise a PIA to quickly examine the reliability of the object pose.
Moreover, an object pose dataset with RGB images and IMU
measurements is delivered to evaluate the tracking performance.
A pretty low processing time of 3.11 ms in updating pose is
measured even in demanding condition of limited computational
power, which demonstrates the feasibility of our method. We
believe the proposed method and dataset will facilitate the future
research.

Future work includes extending this method in pose inspec-
tion and refinement. For pose inspection, there may exist other
parameters (e.g., the frame rate or the distance between object
and camera) to further discuss. For pose refinement, modeling
the noise may helpful to eliminate the error in tracking. It could
also be an alternative to analyze the system biases on the backend
to save more computational power of the frontend.

REFERENCES

[1] J. P. S. do Monte Lima, F. P. M. Simoes, L. S. Figueiredo, and J. Kelner,
“Model based markerless 3D tracking applied to augmented reality,” J.
Interactive Syst., vol. 1, no. 1, 2010.

[2] Y. Su, J. Rambach, N. Minaskan, P. Lesur, A. Pagani, and D. Stricker,
“Deep multi-state object pose estimation for augmented reality assembly,”
in Proc. IEEE Int. Symp. Mixed Augmented Reality Adjunct, 2019, pp. 222–
227.

[3] C. Choi and H. I. Christensen, “Real-time 3D model-based tracking using
edge and keypoint features for robotic manipulation,” in Proc. IEEE Int.
Conf. Robot. Autom., 2010, pp. 4048–4055.

[4] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield,
“Deep object pose estimation for semantic robotic grasping of household
objects,” in Proc. 2nd Conf. Robot Learn. Mach. Learn. Research, vol. 87,
Oct. 2018, pp. 306–316.

[5] H.-N. Hu et al., “Joint monocular 3D vehicle detection and tracking,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 5390–5399.

[6] L. Zhong et al., “Seeing through the occluders: Robust monocular 6-DOF
object pose tracking via model-guided video object segmentation,” IEEE
Robot. Autom. Lett., vol. 5, no. 4, pp. 5159–5166, Oct. 2020.

[7] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“PoseRBPF: A Rao–Blackwellized particle filter for 6-D object
pose tracking,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1328–1342,
Oct. 2021.

[8] R. Ge and G. Loianno, “VIPose: Real-time visual-inertial 6D object pose
tracking,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 4597–
4603.

[9] T. Sandy and J. Buchli, “Object-based visual-inertial tracking for additive
fabrication,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1370–1377,
Jul. 2018.

[10] K. Eckenhoff, P. Geneva, N. Merrill, and G. Huang, “Schmidt-EKF-based
visual-inertial moving object tracking,” in Proc. IEEE Int. Conf. Robot.
Autom., 2020, pp. 651–657.

[11] T. Hou, A. Ahmadyan, L. Zhang, J. Wei, and M. Grundmann, “MobilePose:
Real-time pose estimation for unseen objects with weak shape supervi-
sion,” 2020, arXiv:2003.03522.

[12] M. Ryffel et al., “AR museum: A mobile augmented reality application
for interactive painting recoloring,” in Proc. Int. Conf. Interfaces Human
Comput. Interact. 2017, pp. 54–60.

[13] H. Choi, “The conjugation method of augmented reality in museum
exhibition,” Int. J. Smart Home, vol. 8, no. 1, pp. 217–228, 2014.

[14] K. Kitamura, “Case study of digital exhibition of Japanese classical
writings and drawings based on AR technology,” in Proc. Int. Conf. Culture
Comput., 2017, pp. 125–126.

[15] Z. Gong, R. Wang, and G. Xia, “Augmented reality (AR) as a tool for
engaging museum experience: A case study on Chinese art pieces,” Digital,
vol. 2, no. 1, pp. 33–45, 2022.

[16] K. Pauwels, L. Rubio, J. Diaz, and E. Ros, “Real-time model-based rigid
object pose estimation and tracking combining dense and sparse visual
cues,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 2347–
2354.

[17] S.-C. Huang et al., “Efficient recognition and 6D pose tracking of marker-
less objects with RGB-D and motion sensors on mobile devices,” in Proc.
VISIGRAPP, 2019, pp. 375–382.

[18] Y. Liu, J. Zhou, Y. Zhang, C. Ding, and J. Wang, “3DPVNet: Patch-level 3D
Hough voting network for 6D pose estimation,” 2020, arXiv:2009.06887.

[19] Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun, “FFB6D: A full flow
bidirectional fusion network for 6D pose estimation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 3003–3013.

[20] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. IEEE 7th Int. Conf. Comput. Vis., 1999, pp. 1150–1157.

[21] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3D object modeling
and recognition using local affine-invariant image descriptors and multi-
view spatial constraints,” Int. J. Comput. Vis., vol. 66, no. 3, pp. 231–259,
2006.

[22] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg,
“Pose tracking from natural features on mobile phones,” in Proc. IEEE 7th
ACM Int. Symp. Mixed Augmented Reality, 2008, pp. 125–134.

[23] S. Hinterstoisser et al., “Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes,” in Proc. Int. Conf. Comput.
Vis., 2011, pp. 858–865.

[24] S. Hinterstoisser et al., “Model based training, detection and pose estima-
tion of texture-less 3D objects in heavily cluttered scenes,” in Proc. Asian
Conf. Comput. Vis., 2012, pp. 548–562.

[25] K. Ramnath, S. N. Sinha, R. Szeliski, and E. Hsiao, “Car make and model
recognition using 3D curve alignment,” in Proc. IEEE Winter Conf. Appl.
Comput. Vis., 2014, pp. 285–292.

[26] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D: Making
RGB-based 3D detection and 6D pose estimation great again,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 1521–1529.

[27] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A convolu-
tional neural network for 6D object pose estimation in cluttered scenes,”
in Proc. Robot., Sci. Syst., 2018.

[28] M. Rad and V. Lepetit, “BB8: A scalable, accurate, robust to partial
occlusion method for predicting the 3D poses of challenging objects
without using depth,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 3828–3836.

[29] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “PVNet: Pixel-wise voting
network for 6DoF pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 4561–4570.

220 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 1, 2023

[30] X. Yu, Z. Zhuang, P. Koniusz, and H. Li, “6DoF object pose estimation
via differentiable proxy voting regularizer,” in Proc. 31st Brit. Mach. Vis.
Conf., 2020.

[31] S. Iwase, X. Liu, R. Khirodkar, R. Yokota, and K. M. Kitani, “RePOSE:
Fast 6D object pose refinement via deep texture rendering,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 3303–3312.

[32] Y. Xu, K.-Y. Lin, G. Zhang, X. Wang, and H. Li, “RNNPose: Recurrent
6-DoF object pose refinement with robust correspondence field estimation
and pose optimization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 14880–14890.

[33] X. Weng, J. Wang, D. Held, and K. Kitani, “3D multi-object tracking: A
baseline and new evaluation metrics,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2020, pp. 10359–10366.

[34] B. Wen et al., “BundleSDF: Neural 6-DoF tracking and 3D reconstruction
of unknown objects,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2023, pp. 606–617.

[35] U. Neumann and S. You, “Natural feature tracking for augmented reality,”
IEEE Trans. Multimedia, vol. 1, no. 1, pp. 53–64, Mar. 1999.

[36] M. Servières, V. Renaudin, A. Dupuis, and N. Antigny, “Visual and
visual-inertial SLAM: State of the art, classification, and experimental
benchmarking,” J. Sensors, vol. 2021, pp. 1–26, 2021.

[37] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proc. IEEE Int. Conf. Robot.
Autom., 2007, pp. 3565–3572.

[38] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial
odometry using a direct EKF-based approach,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2015, pp. 298–304.

[39] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34, no. 4,
pp. 1004–1020, Aug. 2018.

[40] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “VINet: Visual-
inertial odometry as a sequence-to-sequence learning problem,” in Proc.
AAAI Conf. Artif. Intell., vol. 31, 2017, pp. 3995–4001.

[41] C. Chen et al., “Selective sensor fusion for neural visual-inertial odometry,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 10542–
10551.

[42] C. Arth, A. Mulloni, and D. Schmalstieg, “Exploiting sensors on mobile
phones to improve wide-area localization,” in Proc. 21st Int. Conf. Pattern
Recognit., 2012, pp. 2152–2156.

[43] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt, “Scalable 6-DoF
localization on mobile devices,” in Proc. Comput. Vis., 13th Eur. Conf.,
2014, pp. 268–283.

[44] C. Arth, G. Reitmayr, and D. Schmalstieg, “Full 6DoF pose estimation
from geo-located images,” in Proc. Comput. Vis., 11th Asian Conf. Comput.
Vis., 2012, pp. 705–717.

[45] P. Lang, A. Kusej, A. Pinz, and G. Brasseur, “Inertial tracking for mobile
augmented reality,” in Proc. the 19th IEEE Instrum. Meas. Technol. Conf.,
2002, pp. 1583–1587.

[46] O. J. Woodman, “An introduction to inertial navigation,” Comput. Lab.,
Univ. Cambridge, Tech. Rep. UCAM-CL-TR-696, 2007.

[47] C. Aguero et al., “Inside the virtual robotics challenge: Simulating real-
time robotic disaster response,” IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 494–506, Apr. 2015.

[48] N. Alliance, “5G White paper,” Next Gener. Mobile Netw., White Paper,
vol. 1, 2015.

[49] “Geekbench browser,” Sep. 13, 2021. [Online]. Available: https://browser.
geekbench.com/

[50] M. Garon, D. Laurendeau, and J.-F. Lalonde, “A framework for evalu-
ating 6-DOF object trackers,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 582–597.

Yo-Chung Lau received the B.S. and M.S. de-
grees in computer science and information en-
gineering from National Cheng Kung University,
Tainan, Taiwan, in 2005 and 2007, respectively.
He is currently working toward the Ph.D. degree
in computer science with National Taiwan Uni-
versity, Taipei, Taiwan.

From 2008 to 2011, he developed the prod-
ucts of embedded systems in Novatek Mi-
croelectronics Corp., Hsinchu, Taiwan. From
2011, he has been a Researcher in Chunghwa

Telecom. He is currently with Chunghwa Telecom Laboratories,
Taoyuan, Taiwan. His research interest includes the computer vi-
sion, pattern recognition, object localization, image processing, aug-
mented/mixed/virtual reality, and metaverse.

Kuan-Wei Tseng received the B.S. degree in
engineering from National Taiwan University,
Taipei, Taiwan, in 2020. He is currently working
toward the M.S. degree in artificial intelligence
with the Department of Computer Science,
Tokyo Institute of Technology, Tokyo, Japan.

Prior to his graduate study, he was a Full-
Time Research Associate with the AI Applica-
tions and Integration Lab (AI^2Lab) for one year
and as a Research Assistant with the Image and
Vision Lab (imLab) for 1.5 years. He is currently

in imLab, National Taiwan University, as a Graduate Research Assistant.
His research interests include visual computing, focusing on 3-D com-
puter vision, deep learning for computer vision, and their applications to
augmented and virtual reality.

Peng-Yuan Kao received the B.S. degree in
computer science and information engineering
from National Taiwan University of Science and
Technology, Taipei, Taiwan, in 2014, and the
Ph.D. degree in computer science from the
Graduate Institute of Networking and Multime-
dia, National Taiwan University, Taipei, in 2023.

His research interests include computer vi-
sion, deep learning, and multimedia.

I-Ju Hsieh received the B.S. and M.S. degrees
in computer science from the Department of
Computer Science and Information Engineer-
ing, National Taiwan University, Taipei, Taiwan,
in 2021 and 2023, respectively.

In 2021, he was a Product Developer Intern
with Synology and a Software Development En-
gineer Intern with Amazon Ring in 2022. His
research interests include object pose estima-
tion, visual localization, and unsupervised do-
main adaptation.

Hsiao-Ching Tseng received the B.S. degree in
computer science from the Department of Com-
puter Science, National Chiao Tung University,
Hsinchu, Taiwan, in 2021, and the M.S. degree
in computer science from the Department of
Computer Science and Information Engineer-
ing, National Taiwan University, Taipei, Taiwan,
in 2023.

Her research focuses on computer vision, fo-
cusing on object tracking and unmanned aerial
vehicle localization.

Yi-Ping Hung received the B.Sc. degree in
electrical engineering from the National Tai-
wan University, Taipei, Taiwan, in 1982, and the
M.Sc. degree in engineering, M.Sc. degree in
applied mathematics, and the Ph.D. degree in
engineering from Brown University, Providence,
RI, USA, in 1987, 1988, and 1990, respectively.

He served as the Director of the Graduate In-
stitute of Networking and Multimedia from 2007
to 2013. He is currently a Professor with the
Graduate Institute of Networking and Multime-

dia and the Department of Computer Science and Information Engi-
neering at the National Taiwan University, as well as the Academic Vice
President of the Taipei National University of Arts. His current research
interests include VR/AR/XR, metaverse, image processing, multimedia,
and human–computer interaction.

https://browser.geekbench.com/
https://browser.geekbench.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

